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Abstract

Hierarchical latent class (HLC) models are tree-structured Bayesian networks where
leaf nodes are observed while internal nodes are latent. There are no theoretically well
justified model selection criteria for HLC models in particular and Bayesian networks with
latent nodes in general. Nonetheless, empirical studies suggest that the BIC score is a
reasonable criterion to use in practice for learning HLC models. Empirical studies also
suggest that sometimes model selection can be improved if standard model dimension is
replaced with effective model dimension in the penalty term of the BIC score.

Effective dimensions are difficult to compute. In this paper, we prove a theorem that
relates the effective dimension of an HLC model to the effective dimensions of a number
of latent class models. The theorem makes it computationally feasible to compute the
effective dimensions of large HLC models. The theorem can also be used to compute the
effective dimensions of general tree models.

1. Introduction

Hierarchical latent class (HLC) models (Zhang, 2002) are tree-structured Bayesian networks
(BNs) where leaf nodes are observed while internal nodes are latent. They generalize latent
class models (Lazarsfeld and Henry, 1968) and were first identified as a potentially useful
class of Bayesian networks by Pearl (1988). We are concerned with learning HLC models
from data. A fundamental question is how to select among competing models.

The BIC score (Schwarz, 1978) is a popular metric that researchers use to select among
Bayesian network models. It consists of a loglikelihood term that measures the fitness
to data and a penalty term that depends linearly upon standard model dimension, i.e.
the number of linearly independent standard model parameters. When all variables are
observed, the BIC score is an asymptotic approximation of (the logarithm) of the marginal
likelihood (Schwarz, 1978). It is also consistent in the sense that, given sufficient data, the
BIC score of the generative model — the model from which data were sampled — is larger
than those of any other models that are not equivalent to the generative model.

When latent variables are present, the BIC score is no longer an asymptotic approx-
imation of the marginal likelihood (Geiger et al., 1996). This can be remedied, to some
extent, using the concept of effective model dimension. In fact if we replace standard model
dimension with effective model dimension in the BIC score, the resulting scoring function,
called the BICe score, is an asymptotic approximation of the marginal likelihood almost
everywhere except for some singular points (Rusakov and Geiger, 2002).
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Neither BIC nor BICe have been proved to be consistent for latent variable models. As
a matter of fact, it has not even been defined what it means for a model selection criterion
to be consistent for latent variable models. Empirical studies suggest that the BIC score is
well-behaved in practice for the task of learning HLC models. There are three related search-
based algorithms for learning HLC models, namely double hill-climbing (DHC) (Zhang,
2002), single hill-climbing (SHC) (Zhang et al., 2003), and heuristic SHC (HSHC) (Zhang,
2003). In the absence of a theoretically well justified model selection criterion, Zhang (2002)
tested DHC with four existing scoring functions, namely the AIC score (Akaike, 1974), the
BIC score, the Cheeseman-Stutz (CS) score (Cheeseman and Stutz, 1995), and the holdout
logarithmic score (HLS)(Cowell et al., 1999). Both real-world and synthetic data were used.
On the real-world data, BIC and CS have enabled DHC to find models that are regarded as
the best by domain experts. On the synthetic data, BIC and CS have enabled DHC to find
models that either are identical to or resemble closely the true generative models. When
coupled with AIC and HLS, on the other hand, DHC performed significantly worse. SHC
and HSHC were tested on synthetic data sampled from fairly large HLC models (as much
as 28 nodes). Only BIC was used in those tests. In all cases, BIC has enabled SHC and
HSHC to find models that either are identical to or resemble closely the true generative
models. Those empirical results not only indicate that the algorithms perform well, but
also suggest that the BIC is a reasonable scoring function to use for learning HLC models.

The experiments also reveal that model selection can sometimes be improved if the BICe
score is used instead of the BIC score. We will explain this in detail in Section 3

In order to use the BICe score in practice, we need a way to compute effective dimen-
sions. This is not a trivial task. The effective dimension of an HLC model is the rank of
the Jacobian matrix of the mapping from the parameters of the model to the parameters
of the joint distribution of the observed variables. The number of rows in the Jacobian
matrix increases exponentially with the number of observed variables. The construction of
the Jacobian matrix and the calculation of its rank are both computationally demanding.
Moreover they have to be done algebraically or with very high numerical precision to avoid
degenerate cases. The necessary precision grows with the size of the matrix.

Settimi and Smith (1998, 1999) studied effective dimensions for two classes of models:
trees with binary variables and latent class (LC) models with two observed variables. They
have obtained a complete characterization of these two classes. Geiger et al. (1996) com-
puted the effective dimensions of a number of models. They conjectured that it is rare for
the effective and standard dimensions of an LC model to differ. As a matter of fact, they
found only one such model. Kocka and Zhang (2002) found quite a number of LC models
whose effective and standard dimensions differ. They also proposed an easily computable
formula for estimating effective dimensions of LC models. The estimation formula has been
empirically shown to be very accurate.

In this paper, we prove a theorem that relates the effective dimension of an HLC model
to the effective dimensions of two other HLC models that contain fewer latent variables.
Repeated application of the theorem allows one to reduce the task of computing the effective
dimension of an HLC model to subtasks of computing effective dimensions of LC models.
This makes it computationally feasible to compute the effective dimensions of large HLC
models.
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We start in Section 2 with a formal definition of effective dimensions for Bayesian net-
works with latent variables. In Section 3, we provide empirical evidence that suggest the use
of BICe instead of BIC sometimes improves model selection. Section 4 presents the main
theorem and Section 5 is devoted to the proof of the theorem. In Section 6, we prove a the-
orem about effective dimensions of general tree models and explain how this and our main
theorem allows one to compute the effective dimension of arbitrary tree models. Finally,
concluding remarks are provided in Section 7.

2. Effective Dimensions of Bayesian Networks

In this paper, we use capital letters such as X and Y to denote variables and lower case
letters such as x and y to denote states of variables. The domain and cardinality of a
variable X will be denoted by ΩX and |X| respectively. Bold face capital letters such as Y

denote sets of variables. ΩY denotes the Cartesian product of the domains of all variables
in the set Y. Elements of ΩY will be denoted by bold lower case letters such as y and will
sometimes be referred to as states of Y. We will consider only variables that have a finite
number of states.

Consider a Bayesian network model M that possibly contains latent variables. The
standard dimension ds(M) of M is the number of linearly independent parameters in the
standard parameterization of M . The parameters denote, for each variable and each parent
configuration of the variable, the probability that the variable is in some state (except one)
given the parent configuration. Suppose M consist of k variables x1, x2, . . . , xk. Let ri and
qi be respectively the number of states of xi and the number of all possible combinations of
the states of its parents. If xi has no parent, let qi be 1. Then ds(M) is given by

ds(M) =
k∑

i=1

qi(ri − 1).

For notational simplicity, denote the standard dimension of M by n. Let ~θ=(θ1, θ2, . . . , θn)
be a vector of n linearly independent model parameters of M . Further let Y be the set of
observed variables. Suppose Y has m+1 possible states. We enumerate the first m states
as y1, y1, . . . , ym.

For any i (1≤i≤m), P (yi) is a function of the parameters ~θ. So we have a mapping from
the n dimensional parameter space (a subspace of Rn) to Rm, namely T : (θ1, θ2, . . . , θn) ⊢
(P (y1), P (y2), . . . , P (ym)). The Jacobian matrix of this mapping is the following m×n
matrix:

JM (~θ) = [Jij ] = [
∂P (yi)

∂θj
]

For convenience, we will often write the matrix as JM = [∂P (Y)
∂θj

], with the understanding

that elements of the j-th column are obtained by allowing Y run over all its possible states
except one.

For each i, P (yi) is a function of ~θ. For most commonly used parameterizations of
Bayesian networks, it is actually a polynomial function of ~θ. Hence we make the following
assumption:
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Assumption 1 The Bayesian network M is so parameterized that the parameters for the
joint distribution of the observed variables are polynomial functions of the parameters for
M .

An obvious consequence of the assumption is that elements of JM are also polynomial
functions of ~θ.

For a given value of ~θ, JM is a matrix of real numbers. Due to Assumption 1, the rank
of this matrix is some constant d almost everywhere in the parameter space (Geiger et al.,
1996. Also see Section 5.1.). To be more specific, the rank is d everywhere except in a set
of measure zero where it is smaller than d. The constant is called the regular rank of JM .

The regular rank of JM is also called the effective dimension of the Bayesian network
model M . Hence we denote it by de(M). To understand the term “effective dimension”,
consider the subspace of Rm spanned by the joint probability P (Y) of observed variables,
or equivalently the range of the mapping T . The term reflects the fact that, for almost every
value of ~θ, a small enough open ball around T (~θ) resembles Euclidean space of dimension d
(Geiger et al., 1996).

There are multiple ways to parameterize a given Bayesian network model. However, the
choice of parameterization does not affect the space spanned by the joint probability P (Y).
Together with the interpretation of the previous paragraph, this implies that the definition
of effective dimension does not depend on the particular parameterization that one uses.

3. Selecting among HLC Models

A hierarchical latent class (HLC) model is a Bayesian network where (1) the network struc-
ture is a rooted tree and (2) the variables at the leaf nodes are observed and all the other
variables are not. The observed variables are sometimes referred to as manifest variables
and all the other variables as latent variables. Figure 1 shows the structures of two HLC
models. A latent class (LC) model is an HLC model where there is only one latent variable.

The theme of this paper is the computation of effective dimensions of HLC models. As
mentioned in the introduction, this is interesting because effective dimension, when used in
the BIC score, gives us a better approximation of the marginal likelihood. In this section,
we give an example to illustrate that the use of effective dimension sometimes also leads to
better model selection. We will also motivate and introduce the concept of regularity that
will be used in subsequent sections.

3.1 An Example of Model Selection

Consider the two HLC models shown in Figure 1. In one experiment, we instantiated the
parameters of M1 in a random fashion and sampled a set D1 of 10,000 data records on the
observed variables. Then we ran SHC and HSHC on the data set D1 under the guidance
of the BIC score. Both algorithms produced model M2. In the following, we explain why,
based on D1, one would prefer M2 over M1 if BIC is used for model selection and why M1

would be preferred if BICe is used instead. We argue that M1 should be preferred based on
D1 and hence BICe is a better scoring metric for this case.
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Figure 1: Two HLC models. The shaded variables are latent, while the other variables are
observed. The cardinality of X1 is 2, while cardinalities of all other variables are
3.

The BIC and BICe scores of a model M given a data set D are defined as follows:

BIC(M |D) = logP (D|M, ~θ∗) −
ds(M)

2
logN,

BICe(M |D) = logP (D|M, ~θ∗) −
de(M)

2
logN

where ~θ∗ is the maximum likelihood estimate of the parameters of M based on D and N is
the sample size.

In our example, notice that M2 includes M1 in the sense that M2 can represent any
probability distributions of the observed variables that M1 can. In fact, if we make the
conditional probability distributions of the observed variables in M2 the same as in M1 and
set PM2(X2) and PM2(X3|X2) such that

PM2(X2)PM2(X3|X2) =
∑

X1

PM1(X1)PM1(X2|X1)PM1(X3|X1),

then the probability distribution of the observed variables in the two models are identical.
Because M2 includes M1, we have logP (D1|M1, ~θ

∗
1) ≤ logP (D1|M2, ~θ

∗
2). Together with

the fact that D1 is sampled from M1, this implies that logP (D1|M1, ~θ
∗
1) ≈ logP (D1|M2, ~θ

∗
2)

for sufficiently large enough sample size. The standard dimension of M1 is 45, while that
of M2 is 44. Hence

BIC(M1|D1) < BIC(M2|D1).

On the other hand, the effective dimensions of M1 and M2 are 43 and 44 respectively. Hence

BICe(M1|D1) > BICe(M2|D1).

Model M2 includes M1. The opposite is clearly not true because the effective dimension
of M1 is smaller than that of M2. So, M2 is in reality a more complex model than M1. Both
model fit data D1 equally well. Hence the simpler one, i.e. M1, should be preferred over
the other. This agrees with the choice of the BICe score, while disagrees with the choice of
the BIC score. Hence, BICe is more appropriate than BIC in this case.
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3.2 Regularity

Now consider another model M ′
1 that is the same as M1 except that the cardinality of X1

is increased from 2 to 3. It is easy to show that M2 includes M ′
1 and vice versa. So, the two

models are equivalent in terms of their capabilities of representing probability distributions
of the observed variables. They are hence said to be marginally equivalent. However, M ′

1

has more standard parameters than M2 and hence we would always prefer M2 over M ′
1. To

formalize this consideration, we introduce a concept of regularity.
For a latent variable Z in an HLC model, enumerate its neighbors (parent and children)

as X1, X2, . . . , Xk. An HLC model is regular if for any latent variable Z,

|Z| ≤

∏k
i=1 |Xi|

maxk
i=1 |Xi|

, (1)

and the strict inequality holds when Z has two neighbors and at least one of them is a
latent node. Models M1 and M2 are regular, while model M ′

1 is not.
For any irregular model M there always exists a regular model that is marginally equiv-

alent to M and has fewer standard parameters (Zhang, 2003b). The regular model can
be obtained from M as follows: For any latent node that has only two neighbors and its
cardinality is no smaller than that of one of the neighbors, then remove the latent node and
connect the two neighbors. For any latent node that has more than two neighbors and that
violates (1), reduce it’s cardinality to the quantity on the right hand side. Repeat both
steps until no more changes can be made.

It is also interesting to note that the collection of all regular HLC models for a given set
of observed variables is finite (Zhang, 2002). This provides a finite search space for the task
of learning regular HLC models.1 In the rest of this paper, we will consider only regular
HLC models.

Before ending this subsection, we point out a nice property of effective model dimension
in relation to model inclusion. If an HLC model includes another model, then its effective
dimension is no less than that of the latter. As a consequence, two marginally equivalent
models have the same effective dimensions and hence the same BICe score. The same is
not true for standard model dimension and the BIC score.

3.3 The CS and CSe Scores

We have argued on empirical grounds that the BIC score is a reasonable scoring function
to use for learning HLC models and that the BICe score can sometimes improve model
selection. But the two scores are not free of problems. One problem is that their derivation
as Laplace approximations of the marginal likelihood are not valid at the boundary of the
parameter space. The CS score in a way alleviates this problem. It involves the BIC score
based on completed data and the BIC score based on original data. In other words, it
involves two Laplace approximations of the marginal likelihood. It lets errors in the two
approximation cancel each other.

Chickering and Heckerman (1997) empirically found the CS score to be a quite accurate
approximation of the marginal likelihood and robust at the boundary of the parameter

1. The definition of regularity given in this paper is slightly different from the one given in Zhang (2002).
Nonetheless, the two conclusions mentioned in this paragraph remain true.
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Figure 2: Problem reduction.

space. They realized the need for effective model dimension in the CS score, although they
did not actually use it. This would not have made any differences to their experiments
because, for the models they used, the standard and effective dimensions agree.

We use CSe to refer to the scoring function one obtains by replacing standard model
dimension in the CS score with effective model dimensions. Just as BICe is better than
BIC as approximations of the marginal likelihood (Geiger et al., 1996), CSe is better than
CS. To compute CSe, we also need to calculate effective dimensions.

4. Effective Dimensions of HLC Models

As we have seen, effective model dimension is interesting for a number of reasons. Our
main result in this paper is a theorem about the effective dimension de(M) of a regular
HLC model M that contains more than one latent variable. Let X be the root of M , which
is a latent node. Because there are at least two latent nodes, there must exist another latent
node Z that is a child of X. In the following, we will use the terms X-branch and Z-branch
to respectively refer to the sets of nodes that are separated from Z by X or from X by Z.
Let Y be the set of observed variables in the Z-branch and let O be the set of all other
observed variables. Note that the X-branch doesn’t contain the node X. The relationship
among X, Z, Y, and O is depicted in the left-most picture of Figure 2.

The standard parameterization of M includes parameters for P (X) and parameters for
P (Z|X). For convenience, we replace those parameters with parameters for P (X, Z). As
mentioned at the end of Section 2, such reparameterization does not affect the effective
dimension de(M). To reflect the reparameterization, the edge between X and Z is not
directed in Figure 2.

Suppose P (X, Z) has k0 parameters θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
k0

. Suppose the conditional distri-

butions of variables in the X-branch consists of k1 parameters θ
(1)
1 , θ

(1)
2 , . . . , θ

(1)
k1

and the

conditional distributions of variables in the Z-branch consists of k2 parameters θ
(2)
1 , θ

(2)
2 ,

. . . , θ
(2)
k2

. For convenience we will sometimes refer to those three groups of parameters using

three vectors ~θ(0), ~θ(1) and ~θ(2) respectively.

In the following, we will define two other HLC models M1 and M2 starting from M and
establish a relationship between their effective dimensions and the effective dimension of
M . In this context, M , M1, and M2 are regarded purely as Mathematical objects. The
semantics of their variables are of no concern. In particular, a variable H that is latent
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X1(6)

X2(3)
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X1

X2 Y3 X3
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Figure 3: The picture on the left shows an HLC model with five observed and five latent
variables, each variable is annotated by its name and its cardinality. The picture
on the right shows the components we can decompose the HLC model into by
applying Theorem 1. Latent variables are shaded, while observed variables are
not.

in M might be designated to be observed in M1 or M2 as part of the definition of those
Mathematical objects.

We obtain a Bayesian network model B1 from M by deleting the Z-branch. Strictly
speaking B1 is not Bayesian network due to the parameterization it inherits from M : instead
of probability tables P (X) and P (Z|X), we have table P (X, Z). But P (X) and P (Z|X) can
readily be obtained from P (X, Z). With this in mind, we view B1 as a Bayesian network.
This network is obviously tree-structured. It’s leaf variables include those in the set O and
the variable Z. We define M1 to be the HLC model that share the same structure as B1

and where the variable Z and all the variables in O are observed. The parameters of M1

are ~θ(0) and ~θ(1).
Similarly let B2 be the Bayesian network model obtained from M by deleting the X-

branch. It is a tree-structure and its leaf variables include those in Y and the variable X.
We define M2 to be the HLC model that share the same structure as B2 and where the
variable X and all the variables in Y are observed. The parameters of M2 are ~θ(0) and ~θ(2).

Theorem 1 Suppose M is a regular HLC model that contains two or more latent nodes.
Then the two HLC models M1 and M2 defined in the text are also regular. Moreover,

de(M) = de(M1)+de(M2)−[ds(M1)+ds(M2)−ds(M)]. (2)

In words, the effective dimension of M equals the sum of the effective dimensions of M1

and M2 minus the number of common parameters that M1 and M2 share.

To appreciate the significance of this theorem, consider the task of computing the ef-
fective dimension of a regular HLC model that contains two or more latent nodes. By
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repeatedly applying the theorem, we can reduce the task into subtasks of calculating effec-
tive dimensions of LC models. As an example, consider the HLC model depicted by the
picture on the left in Figure 3. Theorem 1 allows us to, for the purpose of computing its
effective dimension, decompose the HLC model into five LC models, which are shown on
the right in Figure 3.

How might one compute the effective dimension of an LC model? One way is to use
the algorithm suggested by Geiger et al. (1996). The algorithm first symbolically computes
the Jacobian matrix, which is possible due to Assumption 1. Then it randomly assigns
values to the parameters, resulting a numerical matrix. The rank of the numerical matrix
is computed by diagonalization. Because the rank of Jacobian matrix equals the effective
dimension of the LC model almost everywhere, we get the regular rank with probability
one. This algorithm has recently been implemented by Rusakov and Geiger (2003). Kocka
and Zhang (2002) suggest an alternative algorithm that computes an upper bound. The
algorithm is fast and has been empirically shown to produce extremely tight bounds.

Going back to our example, the effective dimension of the LC models for X1, X2, X3, X4

and X5 are 26, 23, 23, 34 and 17 respectively. Thus the effective dimension of the HLC model
in Figure 3 is 26+23+34+23+17−(5∗3−1)−(3∗6−1)−(6∗3−1)−(3∗5−1) = 61. In contrast,
the standard dimension of the model is 5+6∗2+6∗2+6∗2+3∗4+5∗5+5+3∗4+5∗2+5 = 110.

5. Proof of Main Result

This section is devoted to the proof of Theorem 1. We begin with some properties of
Jacobian matrices of Bayesian network models.

5.1 Properties of Jacobian Matrices

Consider the Jacobian matrix JM of a Bayesian network model M . It is a matrix parame-
terized by the parameters ~θ of M . Let v1, v2, . . . , vm be column vectors of JM .

Lemma 1 A number of column vectors v1, v2, . . . , vm of the Jacobian matrix JM are
either linearly dependent everywhere or linearly independent almost everywhere. They are
linearly dependent everywhere if and only if there exists at least one column vector vj that
can be expressed as a linear combination of other column vectors everywhere.

Proof: Consider diagonalizing the following transposed matrix:

[v1, v2, . . . , vm]T .

According to Assumption 1, elements of the matrix are polynomials (of ~θ). Hence we would
multiply rows with polynomials or fraction of polynomials. Of course, we need also to add
one row to another row. At the end of the process, we get a diagonal matrix whose nonzero
elements are polynomials or fractions of polynomials. Suppose there are k nonzero rows
and suppose they correspond to v1, v2, . . . , vk.

Because elements of the diagonalized matrix are polynomials or fractions of polynomials,
they are well-defined 2 and nonzero almost everywhere (i.e. for almost all values of ~θ). If
k=m, then the m vectors are linearly independent of each other almost everywhere.

2. A fraction is not well defined if the denominator is zero.

9



Zhang & Kočka

If k<m, there exist, for each j (k<j≤m), polynomials or fractions of polynomials ci

(1≤i≤k) such that

vj =
k∑

i=1

civi. (3)

The coefficients ci’s can be determined by tracing the diagonalization process. So vj can be
expressed as a linear combination of {vi|i = 1, . . . , k} everywhere 3. 2

Although it might sound trivial, this lemma is actually quite interesting. This is because
JM is a parameterized matrix. The first part, for example, implies that there do not exist
two subspaces of the parameter space that both have nonzero measures such that the m
vectors are linearly independent in one subspace while linearly dependent in the other.

If m is the total number of column vectors of JM , we get the following lemma:

Lemma 2 In the Jacobian matrix JM , there exists a collection of column vectors that form
a basis of its column space almost everywhere. The number of vectors in the collection
equals to the regular rank of the matrix. Moreover, the collection can be chosen to include
any given set of column vectors that are linearly independent almost everywhere.

Proof: The first part has already been proved. The second part follows from the definition
of regular rank. The last part is true because we could start the diagonalization process
with the transpose of the vectors in the set on the top of the matrix. 2

5.2 Proof of Theorem 1

We now set out to prove Theorem 1. It is straightforward to verify that the HLC models
M1 and M2 are regular. So it suffices to prove equation (2). This is what we do in the rest
of this section.

The set of observed variables in M is O ∪ Y, the set of observed variables in M1 is
O ∪ {Z} and the set of observed variables in M2 is Y ∪ {X}. Hence the Jacobian matrices
of models M , M1, and M2 can be respectively written as follows:

JM = [
∂P (O,Y)

∂θ
(0)
1

, . . . ,
∂P (O,Y)

∂θ
(0)
k0

;
∂P (O,Y)

∂θ
(1)
1

, . . . ,
∂P (O,Y)

∂θ
(1)
k1

;
∂P (O,Y)

∂θ
(2)
1

, . . . ,
∂P (O,Y)

∂θ
(2)
k2

]

JM1 = [
∂P (O, Z)

∂θ
(0)
1

, . . . ,
∂P (O, Z)

∂θ
(0)
k0

;
∂P (O, Z)

∂θ
(1)
1

, . . . ,
∂P (O, Z)

∂θ
(1)
k1

]

JM2 = [
∂P (X,Y)

∂θ
(0)
1

, . . . ,
∂P (X,Y)

∂θ
(0)
k0

;
∂P (X,Y)

∂θ
(2)
1

, . . . ,
∂P (X,Y)

∂θ
(2)
k2

]

3. There is a subtle point here. Being fractions of polynomials of ~θ, the ci’s might be undefined for some
values of ~θ. So from equation (3) alone, we cannot conclude that vj linearly depends on {vi|i = 1, . . . , k}
everywhere.

The conclusion is nonetheless true for two reasons. First the set of ~θ values where the ci’s are
undefined has measure zero. Second, if vj does not linearly depend on {vi|i = 1, . . . , k} at one value of
~θ, then the same would be true in a sufficiently small and nonetheless measure-positive ball around that
value.
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It is clear that there is a one-to-one correspondence between the first k0+k1 column vectors
of JM with the column vectors of JM1 and there is a one-to-one correspondence between
the first k0 and the last k2 column vectors of JM with the column vectors of JM2 . We will
first show

Claim 1: The first k0 vectors of JM (JM1 or JM2) are linearly independent
almost everywhere.

Together with Lemma 2, Claim 1 implies that there is a collection of column vectors in
JM1 that includes the first k0 vectors and that is a basis of the column space of JM1 almost
everywhere. In particular, this implies that de(M1)≥k0. Suppose de(M1)=k0+r. Without
loss of generality, suppose the basis vectors are

∂P (O, Z)

∂θ
(0)
1

, . . . ,
∂P (O, Z)

∂θ
(0)
k0

;
∂P (O, Z)

∂θ
(1)
1

, . . . ,
∂P (O, Z)

∂θ
(1)
r

. (4)

By symmetry, we can assume that de(M2)=k0+s where s≥0 and that the following column
vectors form a basis for JM2 almost everywhere:

∂P (X,Y)

∂θ
(0)
1

, . . . ,
∂P (X,Y)

∂θ
(0)
k0

;
∂P (X,Y)

∂θ
(2)
1

, . . . ,
∂P (X,Y)

∂θ
(2)
s

. (5)

Now consider the following list of vectors in JM :

∂P (O,Y)

∂θ
(0)
1

, . . . ,
∂P (O,Y)

∂θ
(0)
k0

;
∂P (O,Y)

∂θ
(1)
1

, . . . ,
∂P (O,Y)

∂θ
(1)
r

;
∂P (O,Y)

∂θ
(2)
1

, . . . ,
∂P (O,Y)

∂θ
(2)
s

. (6)

We will show

Claim 2: All column vectors of JM linearly depend on the vectors listed in (6)
everywhere.

Claim 3: The vectors listed in (6) are linearly independent almost everywhere.

Those two claims imply that the vectors listed in (6) form a basis of the column space of
JM almost everywhere. Therefore

de(M) = k0+r+s = de(M1)+de(M2)−k0.

It is clear that k0=ds(M1)+ds(M2)−ds(M). Therefore Theorem 1 is proved. 2

5.3 Proof of Claim 1

Lemma 3 Let Z be a latent node in an HLC model M and Y be the set of the observed
nodes in the subtree rooted at Z. If M is regular, then we can set conditional distributions
of nodes in the subtree in such a way that they encode an injective mapping ρ from ΩZ to
ΩY in the sense that P (Y=ρ(z)|Z=z) = 1 for all z ∈ ΩZ .

11
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Proof: We prove this lemma by induction on the number of latent nodes in the subtree
rooted at Z. First consider the case when there is only one latent node, namely Z. In this
case, Z is the parent of all nodes in Y. Enumerate all these nodes as Y1, Y2, . . . , Yk. Because
M is regular, we have |Z| ≤

∏k
i=1 |Yi|. Hence we can define an injective mapping ρ from

ΩZ to ΩY =
∏k

i=1 ΩYi
. For each state z of Z, ρ(z) can be written as y = (y1, y2, . . . , yk),

where yi is a state of Yi. Now if we set

P (Yi=yi|Z=z) = 1,

then P (Y=ρ(z)|Z=z) = 1.
Now consider the case when there are at least two hidden nodes in the subtree rooted

at Z. Let W be one such latent node that has no latent node descendants. Let Y(1) be
the set of observed nodes in the subtree rooted at W and Y(2)=Y\Y(1). By the induction
hypothesis, we can parameterize the subtree rooted at W in such a way that it encodes an
injective mapping from ΩW to Ω

Y(1) . Moreover, if all nodes below W are removed from M ,
M remains a regular HLC model. In that model, we can parameterize the subtree rooted at
Z in such a way that it encodes an injective mapping from ΩZ to Ω(W,Y(2)) = ΩW × Ω

Y(2) .
Together, those two facts prove the lemma. 2

Corollary 1 Let Z be a latent node in an HLC model M . Suppose Z have a latent neighbor
X. Let Y be the set of the observed nodes separated from X by Z. If M is regular, then
we can set probability distributions of nodes separated from X by Z in such a way that they
encode an injective mapping ρ from ΩZ to ΩY in the sense that P (Y=ρ(z)|Z=z) = 1 for
all z ∈ ΩZ .

Proof: The corollary follows readily from Lemma 3 and the property of the root-walking
operation (Zhang, 2002). 2

Proof of Claim 1: Consider the following matrix

[
∂P (X, Z)

∂θ
(0)
1

. . . ,
∂P (X, Z)

∂θ
(0)
k0

] (7)

Because θ
(0)
1 , θ

(0)
2 , . . . , θ

(0)
k0

are the parameters for the joint distribution P (X, Z), this matrix
is the identity matrix if the rows are properly arranged. So its column vectors are linearly
independent almost everywhere.

Now consider the first k0 column vectors of JM : ∂P (O,Y)/∂θ
(0)
1 , . . . , ∂P (O,Y)/∂θ

(0)
k0

.
They must be linearly independent almost everywhere. If not, one of the vectors, say

∂P (O,Y)/∂θ
(0)
k0

, would linearly depend on the rest everywhere according to Lemma 1.
Observe that for any i (1≤i≤k0),

∂P (O,Y)

∂θ
(0)
i

=
∑

X,Z

P (O|X)P (Y|Z)
∂P (X, Z)

∂θ
(0)
i

.

Choose P (O|X) and P (Y|Z) as in Corollary 1. The vector ∂P (O,Y)/∂θ
(0)
i might con-

tain zero elements. If we remove the zero elements, what remains of the vector is iden-

tical to ∂P (X, Z)/∂θ
(0)
i . So we can conclude that ∂P (X, Z)/∂θ

(0)
k0

linearly depends on

12
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∂P (X, Z)/∂θ
(0)
1 . . . , ∂P (X, Z)/∂θ

(0)
k0−1 everywhere, which contradicts the conclusion of the

previous paragraph. Hence the first k0 vectors of JM must be linearly independent almost
everywhere.

It is evident that, using similar arguments, we can also show that the first k0 vectors of
JM1 (JM2) are linearly independent almost everywhere. Claim 1 is therefore proved. 2

5.4 Proof of Claim 2

Every column vector of JM1 linearly depends on vectors listed in (4) everywhere. Observe
that

∂P (O,Y)

∂θ
(0)
i

=
∑

Z

P (Y|Z)
∂P (O, Z)

∂θ
(0)
i

, i = 1, . . . , k0

∂P (O,Y)

∂θ
(1)
i

=
∑

Z

P (Y|Z)
∂P (O, Z)

∂θ
(1)
i

, i = 1, . . . , k1.

Therefore every column vector of JM that corresponds to vectors in JM1 linearly depends
on the first k0+r vectors listed in (6) everywhere.

By symmetry, every column vector of JM that corresponds to vectors in JM2 linearly
depends on the first k0 and the last s vectors listed in (6) everywhere. The claim is proved.
2

5.5 Proof of Claim 3

We prove this claim by contradiction. Assume the vectors listed in (6) were not linearly
independent almost everywhere. According to Lemma 1, one of them, say v, must linearly
depend on the rest everywhere. Because of Claim 1 and Lemma 2, we can assume that v is

among the last r+s vectors. Without loss of generality, we assume that v is ∂P (O,Y)/∂θ
(2)
s .

Then for any value of ~θ, there exist real numbers ci (1≤i≤k0), c
(1)
i (1≤i≤r), and c

(2)
i

(1≤i≤s−1) such that

∂P (O,Y)

∂θ
(2)
s

=
k0∑

i=1

ci
∂P (O,Y)

∂θ
(0)
i

+
r∑

i=1

c
(1)
i

∂P (O,Y)

∂θ
(1)
i

+
s−1∑

i=1

c
(2)
i

∂P (O,Y)

∂θ
(2)
i

.

Note that in the last term on the right hand side, i runs from 1 to s−1.

The parameter vector ~θ consists of three subvectors ~θ(0), ~θ(1) and ~θ(2). Set the parameters
~θ(1) (for the X-branch) as in Lemma 3. Then there exists an injective mapping ρ from ΩX

to ΩO such that

P (O=ρ(x)|X=x) = 1 for all x ∈ ΩX . (8)

For each of the vectors in (6), consider the subvector consisting only of elements for
those states of O that are the images of states of X under the mapping ρ. Such subvectors

will be denoted by ∂P (OX ,Y)/∂θ
(0)
i , ∂P (OX ,Y)/∂θ

(1)
i , and ∂P (OX ,Y)/∂θ

(2)
i . For any

values of ~θ(0) and ~θ(2), we still have

13



Zhang & Kočka

∂P (OX ,Y)

∂θ
(2)
s

=
k0∑

i=1

ci
∂P (OX ,Y)

∂θ
(0)
i

+
r∑

i=1

c
(1)
i

∂P (OX ,Y)

∂θ
(1)
i

+
s−1∑

i=1

c
(2)
i

∂P (OX ,Y)

∂θ
(2)
i

. (9)

Consider the first two terms on the right hand side:

k0∑

i=1

ci
∂P (OX ,Y)

∂θ
(0)
i

+
r∑

i=1

c
(1)
i

∂P (OX ,Y)

∂θ
(1)
i

=
k0∑

i=1

ci

∑

Z

P (Y|Z)
∂P (OX , Z)

∂θ
(0)
i

+
r∑

i=1

c
(1)
i

∑

Z

P (Y|Z)
∂P (OX , Z)

∂θ
(1)
i

=
∑

Z

P (Y|Z){
k0∑

i=1

ci
∂P (OX , Z)

∂θ
(0)
i

+
r∑

i=1

c
(1)
i

∂P (OX , Z)

∂θ
(1)
i

}

Because of (8) and the fact that P (O, Z) =
∑

X P (X, Z)P (O|X), the column vector

∂P (OX , Z)/∂θ
(0)
i is identical to the vector ∂P (X, Z)/∂θ

(0)
i . As we have argued when proving

Claim 1, the vectors {∂P (X, Z)/∂θ
(0)
i |i=1, . . . , k0} constitute a basis for the k0-dimensional

Euclidian space. This implies that, each of the vectors ∂P (OX , Z)/∂θ
(1)
i can be represented

as a linear combination of the vectors {∂P (OX , Z)/∂θ
(0)
i |i = 1, . . . , k0}. Consequently, there

exist c′i (1≤i≤k0) such that

k0∑

i=1

ci
∂P (OX , Z)

∂θ
(0)
i

+
r∑

i=1

c
(1)
i

∂P (OX , Z)

∂θ
(1)
i

=
k0∑

i=1

c′i
∂P (OX , Z)

∂θ
(0)
i

Hence

k0∑

i=1

ci
∂P (OX ,Y)

∂θ
(0)
i

+
r∑

i=1

c
(1)
i

∂P (OX ,Y)

∂θ
(1)
i

=
k0∑

i=1

c′i
∂P (OX ,Y)

∂θ
(0)
i

Combining this equation with equation (9), we get

∂P (OX ,Y)

∂θ
(2)
s

=
k0∑

i=1

c′i
∂P (OX ,Y)

∂θ
(0)
i

+
s−1∑

i=1

c
(2)
i

∂P (OX ,Y)

∂θ
(2)
i

.

Because of (8) and the fact that the fact that P (O,Y) =
∑

X P (X,Y)P (O|X), the column

vector ∂P (OX ,Y)/∂θ
(1)
i is identical to the vector ∂P (X,Y)/∂θ

(1)
i and the column vector

∂P (OX ,Y)/∂θ
(2)
i is identical to the vector ∂P (X,Y)/∂θ

(2)
i . Hence

∂P (X,Y)

∂θ
(2)
s

=
k0∑

i=1

c′i
∂P (X,Y)

∂θ
(0)
i

+
s−1∑

i=1

c
(2)
i

∂P (X,Y)

∂θ
(2)
i

.

This contradicts the fact that the vectors in the equation form a basis for the column space
of JM2 almost everywhere (see (5) in Section 5.2) Therefore, Claim 3 must be true. 2
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6. Effective Dimensions of Trees

Let us use the term tree model to refer to Markov random fields on undirected trees over
a finite number of random variables. If we root a tree model at any of its nodes, we get a
tree-structured Bayesian network model. In a tree model, define leaf nodes be those that
have only one neighbor. An HLC model is a tree model where all leaf nodes are observed
while all others are latent.

It turns out that Theorem 1 enables us to compute the effective dimension of any tree
model. Consider an arbitrary tree model. If some of its leaf nodes are latent, we can remove
such nodes without affecting its effective dimension.

After removing latent leaf nodes, all the leaf nodes are observed. If some non-leaf nodes
are also observed, we can decompose the model into submodels at any observed non-leaf
node. The following theorem tells us how the model and the submodels are related in terms
of effective dimensions.

Theorem 2 Suppose Y is an observed non-leaf node in a tree model M . If M decomposes
at Y into k submodels M1, . . . , Mk, then

de(M) =
k∑

i=1

de(Mi) − (k − 1)(|Y | − 1).

After all possible decompositions, the final submodels either do not contain latent nodes
or are HLC models. Effective dimensions of submodels with no latent variables are simply
their standard dimensions. If an HLC submodel is irregular, we make it regular by applying
the transformation mentioned at the end of Section 3.2. The transformation does not affect
the effective dimensions of the submodels. Finally, effective dimensions of regular HLC
submodels can be computed using Theorem 1.

Proof of Theorem 2: It is possible to prove this theorem starting from the Jacobian
matrix. Here we take a less formal but more revealing approach.

It suffices to consider case of k being 2. The two submodels M1 and M2 share only one
node, namely Y . Let O1 and O2 be respectively the sets of observed nodes in those two
submodels excluding Y . Root M at Y . Then we have

P (Y,O1,O2)P (Y ) = P (O1, Y )P (O2, Y ).

Let ~θ0 be the set of parameters in the distribution P (Y ), ~θ1 and ~θ2 be respectively the sets
of parameters in the conditional probability distributions of nodes in M1 and M2. Consider
fixing ~θ0 and letting ~θ1 and ~θ2 vary. In this case, the space spanned by P (Y ) consists of only
one vector, namely ~θ0 itself. Moreover, there is a one-to-one correspondence between vectors
in the space spanned by P (Y,O1,O2) and vectors in the Cartesian product of the spaces
spanned by P (O1, Y ) and P (O2, Y ). Now let ~θ0 vary. This adds |Y |−1 dimensions to each
of the four spaces spanned by P (Y,O1,O2), P (Y ), P (O1, Y ), and P (O2, Y ). Consequently,
we have

de(M) = de(M1) + de(M2) − (|Y | − 1).

The theorem is proved. 2
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7. Concluding Remarks

In this paper we study the effective dimensions of HLC models. The work is motivated by
empirical evidence that the BIC behaves quite well when used with several hill-climbing
algorithms for learning HLC models and that the BICe score sometimes leads to better
model selection than the BIC score. We have proved a theorem that relates the effective
dimension of an HLC model to the effective dimensions of two other HLC models that
contain fewer latent variables. Repeated application of the theorem allows one to reduce
the task of computing the effective dimension of an HLC model to subtasks of computing
effective dimensions of LC models. This makes it computationally feasible to compute the
effective dimensions of large HLC models. In addition, we have proved a theorem about
effective dimensions of general tree models. This and our main theorem allows one to
compute the effective dimension of arbitrary tree models.
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