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Abstract

Noisy dynamical models are employed to describe a wide range of phenomena. Since exact 

modeling of these phenomena requires access to their microscopic dynamics, whose time 

scales are typically much shorter than the observable time scales, there is often need to 

resort to effective mathematical models such as stochastic differential equations (SDEs).  

In particular, here we consider effective SDEs describing the behavior of systems in the 

limits when natural time scales become very small. In the presence of multiplicative noise 

(i.e. noise whose intensity depends upon the system’s state), an additional drift term, called  

noise-induced drift or effective drift, appears. The nature of this noise-induced drift 

has been recently the subject of a growing number of theoretical and experimental 

studies. Here, we provide an extensive review of the state of the art in this �eld. After an 

introduction, we discuss a minimal model of how multiplicative noise affects the evolution 

of a system. Next, we consider several case studies with a focus on recent experiments: 

the Brownian motion of a microscopic particle in thermal equilibrium with a heat bath 

in the presence of a diffusion gradient; the limiting behavior of a system driven by a 

colored noise modulated by a multiplicative feedback; and the behavior of an autonomous 

agent subject to sensorial delay in a noisy environment. This allows us to present the 

experimental results, as well as mathematical methods and numerical techniques, that can 

be employed to study a wide range of systems. At the end we give an application-oriented 

overview of future projects involving noise-induced drifts, including both theory and 

experiment.
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1. Introduction

Dynamical systems are widely employed to describe and 

predict the behavior of complex phenomena [1]. At any 

given time t, a dynamical system is characterized by a state 

xt, which evolves according to a deterministic rule. A com-

plete deterministic description requires access to the system’s 

microscopic dynamics. A classical example is the Brownian 

motion of a particle in a �uid [2]. The motion of the particle 

and �uid molecules is deterministic, as it can be described by 

a set of Newton’s equations: knowing the initial positions and 

velocities of all particles (i.e. the Brownian particle and the 

�uid molecules), it is in principle possible to determine their 

motion over time, as is done in the molecular dynamics simu-

lation shown in �gure 1(a). Nevertheless, the resulting motion 

of the microscopic particle (shown in �gure 1(b)) appears to 

be random, especially if one has no access to the exact posi-

tions and velocities of the �uid molecules. In fact, it is often an 

impossible task to construct a model for a dynamical system 

that accounts for its microscopic dynamics. For example, even 

though in principle it would be possible to construct a model 

of Brownian motion writing down Newton’s equation  of 

motion for the particle as well as for each �uid molecule, this 

is a practically unfeasible task due to the huge number of mol-

ecules in any realistic situation—of the order of the Avogadro 

number ⋅6.02 10
23.

It is often convenient to reduce the effective number of 

degrees of freedom in order to obtain more tractable models. 

This can be achieved by introducing some randomness. For 

example, the Brownian motion of a particle can be modelled 

by the stochastic differential equation (SDE)

σ=x Wd d ,t t (1)

where Wt is a Wiener process, i.e. a stochastic process with 

continuous paths, whose increments −W Wt s are indepen-

dent and normally distributed with mean zero and variance 

t  −  s [3], representing the stochastic driving, σ = D2 SE ,  

and DSE is the Stokes–Einstein diffusion constant [2]. The 

resulting Brownian motion is shown in �gure 2(a) for the case 

of a 1 µm-radius Brownian particle in water at room temper-

ature in bulk, i.e. far away from any boundaries. SDE (1) is 

arguably the simplest way to describe the properties of a free 

diffusion, as it only involves explicitly one degree of free-

dom. The term σ Wd t is thus a mathematical model for the 

noise, which permits one to implicitly account for the micro-

scopic dynamics of the system (in this case, the motion of 

the �uid molecules). We stress that SDE (1) with an initial 

condition x0 has a unique solution, σ= +x x Wt t0 , for any 

given realization of Wt. Similar models have been employed 

to describe a wide range of phenomena, from thermal �uc-

tuations in electronic circuits and evolution of stock prices,  

to heterogeneous response of biological systems, to stochas-

ticity in gene expression [4–8].

Often, the system’s state in�uences the intensity of the driv-

ing noise, as it is fed back on the input noise and modulates it. 

If such feedback loop is multiplicative, i.e. the intensity of the 

input noise gets multiplied by a function of the system’s state, 

as shown in �gure 2(b), one says that the system is driven by 

a multiplicative noise. For example, the Brownian �uctuations 

of a microscopic particle near a wall are reduced by hydrody-

namic interactions [9], as shown in �gure 2(c). The corresp-

onding SDE (in the absence of other forces, see SDE (4) for a 

more complete model) is

( )σ=x x Wd d ,t t t (2)

where ( ) ( )σ = ⊥x D x2t t  and ( )⊥D x  is the particle’s diffusion 

coef�cient in the direction normal to the wall, which depends 

on the particle-wall distance x. Let us mention that SDE 

(2) with the noise coef�cient σ equal to a power of | |x  was 

studied recently in detail in the context of diffusion in inho-

mogeneous media; the reader is referred to [10] and [11] 

for analytical and numerical results, concerning ergodic-

ity, anomalous diffusion and other properties of this model. 

Similar models are employed to describe, e.g. the change of 

the step size of a random walk due to inhomogeneity of the 

medium [12], the alteration of the volatility of a stock price 

depending on its actual value [13], and the regulation of the 

stochastic expression of a gene by the concentration of its 

products [14].

Unlike SDE (1), the integration of SDE (2) has to be per-

formed carefully, because a realization of the Wiener process 

Wt has in�nite variation on any interval (in fact, the deriva-

tive 
W

t

d

d

t  does not exist anywhere) [3]. The stochastic integral 

∫ ≡ ∑ ∆α ∞ =
−

�f x W f x Wd lim
T

t t N n
N

t t
0 0

1

n n
( ) ( )→ , where =

α+
t Tn

n

N
 

and α is a real number (typically, α = 0, 0.5 or 1), may have 

different values for different choices of α [3, 15]. Therefore,  

a complete model is de�ned by an SDE and the integration 

convention, which must be determined on the basis of the 

available experimental data or derived from another unam-

biguous model [16]. If desired, one can change the convention 

to α′, but only by adding an appropriate noise-induced drift 

term at the same time; as we will see in section 2, this noise-

induced drift term is in general proportional to ( ) ( )σ σx xt
x

t

d

d
 

[3]. Thus, a more precise way of writing SDE (2) is

x x
x

x
t x Wd

d

d
d d ,t t

t

t t( ) ( )
( )

( )α α σ

σ

σ= − +′
α′� (3)

Figure 1. Stochastic motion from deterministic simulations. (a) A 
microscopic particle (large circle) immersed in a �uid continuously 
undergoes collisions with the �uid molecules (dots). (b) The 
resulting motion obtained from a molecular dynamics simulation 
(dotted line), despite being deterministic, appears to be random, 
especially if one has no access to the exact positions and velocities 
of the �uid molecules.
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where the integration convention indicated by α′ and the 

noise-induced drift, i.e. ( ) ( )
( )

α α σ− ′
σ

xt
x

y

d

d

t , are explicitly 

shown. This shows that the equations  ( )σ= α�x x Wd dt t t are 

not equivalent for different α and it is thus clear that the 

choice of the appropriate SDE-convention pair is of critical 

importance from the modeling perspective, especially when 

the model is employed to predict the system’s behavior under 

new conditions.

Finally, let us note that until now we have only considered 

equations without a deterministic drift. If a deterministic drift 

g(xt) is present, SDE (2) becomes

( ) ( )σ= +x g x t x Wd d d .t t t t (4)

However, the presence of ( )g x tdt  does not lead to any ambi-

guities, since this term can be integrated in a standard way.

In section 2, we introduce the fundamental concepts and 

ideas in a simple and intuitive way, making use of a mini-

mal discrete-time model. In section 3, we describe in detail 

some case studies focusing mainly on recent experiments; 

this allows us to present not only the experimental �ndings, 

but also some mathematical methods and numerical tech-

niques that can be employed to study a wide range of systems. 

Finally, in section  4, we give an overview of various other 

situations where noise-induced drifts in the limiting SDEs 

become relevant when describing a system driven by multi-

plicative noise. We argue that the possibility of such noise-

induced drifts and of their dramatic consequences should be 

recognized and accounted for in many cases where SDEs with 

multiplicative noise are routinely employed to predict the 

behavior and evolution of complex physical, chemical, bio-

logical, and economic phenomena.

2. A minimal discrete-time model

In this section we introduce a minimal (discrete-time) model 

to demonstrate how multiplicative noise affects the evolution 

of a system. We will see, in particular, how the presence of 

a multiplicative noise can generate a noise-induced drift and 

alter the long-term probability distribution of the system’s 

state.

We start by considering the system without multiplicative 

noise described by SDE (1). The continuous-time solution x(t) 

of SDE (1) can be approximated by a discrete-time sequence 

xn, which is the solution of the corresponding �nite-difference 

equation (FDE) evaluated at regular time steps = ∆t n tn ; for 

∆t suf�ciently small, ( )≈x x tn n . The �nite-difference (FD) 

terms corresponding to xd t are −+x xn n1 , while those corresp-

onding to Wd t are given by a sequence of independent random 

numbers with zero mean and variance ∆t,3 such as a sequence 

of indepenendent random numbers with values ± ∆t . We 

thus obtain the discrete-time random walker FDE:

Figure 2. Stochastic dynamical system without and with feedback. (a) A schematic representation of a stochastic dynamical system: 
the system’s state x(t) evolves as the system is driven by a noisy input r(t). (b) Same system with feedback ( ) ( ( ))σ σ=t x t : r(t) is now 
modulated by ( )σ t , and x(t) is clearly affected. The data correspond to the motion of a 1 µm-radius Brownian particle in water at room 
temperature (a) in bulk and (b) close to a boundary; the curve in (c) shows the diffusion coef�cient ( )⊥D x  of the particle in the direction 
perpendicular to the boundary (normalized to the bulk diffusion coef�cient ( )= ∞⊥D DSE ) as a function of its distance from the boundary x.

3 This follows from the properties of a Wiener process Wt:  

∫ = =
+∆

∆W Wd 0
t

t t

t t  and ∫ = = ∆
+∆

∆W W td
t

t t

t t

2
2( ) . A more  

detailed discussion can be found in [87].
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σ= ± ∆+x x t ,n n1 (5)

where the symbol ‘±’ signi�es that at each step the sign is 

chosen randomly. As shown in �gure 3(a), at each time step 

the value of the system’s state either increases or decreases 

with the same probability (0.5) and amplitude ( )σ ∆t . In 

�gure 3(b), we show a simulated trajectory for the evolution 

of such system starting at x0  =  50. Since the probability and 

amplitude of the step are equal in both directions (i.e. ‘+’ and 

‘−’), the system’s state evolves in a symmetric way. In the 

simulations presented in �gure 3, in order to obtain a steady-

state probability distribution for the system’s state, we have 

restricted the system’s space to the interval between 0 and 

100, introducing re�ecting boundary conditions at x  =  0 and 

x  =  100.4 As shown in �gure 3(c), we obtain a steady-state 

probability distribution that is uniform, as can be expected due 

to the absence of deterministic forces acting on the system 

[12].

We will now consider the system with multiplicative noise 

described by SDE (2). Again, we can approximate the con-

tinuous-time solution by a discrete-time sequence of states, 

which solves the corresponding FDE. Now, however, we have 

to decide: Where should the value of ( )σ x  be evaluated at con-

secutive time steps? At the starting state xn? At the �nal state 

xn+1? At the (midpoint) intermediate state ( )+ +x xn n

1

2
1 ? At 

some other state?

Let us �rst consider the case when the value of ( )σ x  is eval-

uated at xn (�gures 4(a)–(c)), explicitly:

( )σ= ± ∆+x x x t .n n n1 (6)

This is particularly convenient from a computational point of 

view because the value of xn is already available when the 

FDE is solved iteratively (see also appendix A). As shown in 

�gure 4(a), the value of x either increases or decreases by the 

same amount, equal to ( )σ ∆x tn  ( ( )σ x  is plotted by the black 

solid line). A numerical solution is shown in �gure 4(b) and 

the evolution of the probability density of the system’s state 

is shown in �gure 4(c). At the beginning, the state is x0  =  50 

and evolves in a symmetric way, but, as time passes, the sys-

tem reaches an asymmetric steady-state probability distribu-

tion and is more likely found in low-noise states, i.e. states for 

which ( )σ x  is smaller.

We can also consider the case when the value of ( )σ x  is 

evaluated at the midpoint state ( )+ +x xn n

1

2
1 . A heuristic argu-

ment for applying this convention to real systems is that the 

value of ( )σ x  should be averaged over the change of the sys-

tem’s state. In this case, the corresponding FDE is

( )( )σ= ± + ∆+ +x x x x t .n n n n1

1

2
1

 (7)

We will explain how to approximately solve this equa-

tion below (see equation  (10) and appendix A). Figure 4(d) 

shows that the change of the system’s state now becomes 

asymmetric because it is larger (smaller) when moving toward 

increasing (decreasing) σ. A simulated trajectory is shown in 

�gure  4(e) and the evolution of the probability density of 

the system’s state is shown in �gure 4(f ). At the beginning 

the probability density drifts towards higher-noise states. 

However, at long times, the system is still more likely to be 

found in low-noise states.

Furthermore, for reasons that will become clear later (sec-

tion 3.1), it can be also useful to evaluate σ at other states and, 

in particular, at the �nal state xn+1. In this case, the corresp-

onding FDE is given by

( )σ= ± ∆+ +x x x t .n n n1 1 (8)

The change in the system’s state becomes even more 

asymmetric than in the previous case (�gure 4(g)) and an 

even larger noise-induced drift can be seen at short times  

(�gures 4(h) and (i)). Interestingly, the steady-state probability 

density distribution appears to be uniform, i.e. independent of 

the value of ( )σ x . We can conclude that in this case the noise-

induced drift is suf�cient to compensate for the tendency of 

the system to linger in low-noise states.

Figure 3. Evolution of the random walker without multiplicative noise described by SDE (5). (a) The intensity of the noise σ does not 

depend on the system’s state x; therefore at each time step the state increases or decreases by a �xed amount σ ∆t  (not to scale) with equal 

probability (0.5). (b) Example of a trajectory of the system in state space (σ = 1). (c) Probability density of the distributions at selected 
times (calculated from 10 000 simulated trajectories). Re�ecting boundary conditions are imposed at x  =  0 and x  =  100. Note that the 
steady-state probability distribution is uniform, as can be expected from the absence of deterministic forces acting on the system.

4 In absence of boundary conditions, the state space would be unbounded 

and a steady state probability distribution would not exist.

Rep. Prog. Phys. 79 (2016) 053901
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In order to understand the origin of the noise-induced drift 

and how it is related to the way the noise term is evaluated, we 

study the following FDE:

( )σ α= ± + ∆ ∆+x x x x t ,n n n1 (9)

where ∆ = −+x x xn n1 . We expand the factor ( )σ α+ ∆x xn  as

( ) ( )
( )

σ α σ α

σ

+ ∆ ≈ + ∆x x x
x

x
x

d

d
.n n

n

Substituting the �rst-order expansion of ( )σ∆ ≈± ∆x x tn , 

we obtain

( ) ( ) ( )
( )

σ α σ α σ

σ

+ ∆ ≈ ± ∆x x x x
x

x
t

d

d
n n n

n

and we can therefore re-write equation (9) as

( )
( )

( )

 

α σ

σ

σ= + ∆ ± ∆+

−

� �������� ��������

x x x
x

x
t x t

d

d
.n n n

n
n1

noise induced drift

 (10)

Therefore, various values of α lead to different noise-induced 

drifts and, consequently, to different steady-state probability 

distributions, as we have seen in �gure 4 for the cases α = 0, 

0.5, and 1. Importantly, we note that the presence of the noise-

iduced drift does not depend on the value of ∆t, i.e. it is pres-

ent in the limiting SDE, as we will see in the case studies 

presented in the section 3.

The parameter α determines how the stochastic integration 

is performed. Common choices are: the Itô integral with α = 0 

corresponding to the use of the initial value (equation (6)) [17]; 

Figure 4. Evolution of the random walker with multiplicative noise described by SDE (9) for various values of α. (a) For α = 0 (equation 
(6)), the amplitude of each random step is a function of the initial state and is therefore symmetrically distributed; (b) example of a 
trajectory in state space; (c) probability density of the distributions at selected times. The corresponding results for α = 0.5 (equation (7)) 
and α = 1 (equation (8)) are shown in ((d)–(f )) and ((g)–(i)), respectively. In all cases, re�ecting boundary conditions are imposed at x  =  0 
and x  =  100. Note that the steady-state probability distribution is uniform only in the α = 1 case, while in the other two cases it is peaked in 
the low-noise (small ( )σ x ) region. The steady-state probability distributions are calculated from 100 000 simulated trajectories.

Rep. Prog. Phys. 79 (2016) 053901
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the Stratonovich integral with α = 0.5 corresp onding to the use 

of the midpoint value (equation (7)) [18]; and the anti-Itô or 

isothermal integral with α = 1 corresp onding to the use of the 

�nal value (equation (8)) [19, 20]. In particular, α = 0 mod-

els are typically employed in economics [5] and biology [21] 

because of their property of ‘not looking into the future’, refer-

ring to the fact that, when the integral is approximated by a sum, 

the �rst point of each interval is used (see also appendix A).  

α = 0.5 naturally emerges in physical systems with noise cor-

relation time τ> 0, e.g. the SDEs describing electrical circuits 

driven by a multiplicative noise [22]; this is explained math-

ematically by the Wong–Zakai theorem, which states that, if in 

SDE (2) the Wiener process is approximated by a sequence of 

smooth processes with symmetric covariance and τ going to 0, 

the resulting limiting SDE should be interpreted according to 

Stratonovich calculus [23]. Finally, α = 1 naturally emerges in 

physical systems in equilibrium with a heat bath [12, 24–26]. 

Interestingly, in some dynamical systems, e.g. circuits with 

time delay and colored noise (see section 3.3), α can actually 

vary under changing operational conditions [27].

SDE (3) explicitly states the integration convention α′ 

and the noise-induced drift. As we have seen in section 1, if 

desired, one can change the convention (α′), but this entails 

a corresponding change in the drift coef�cient (α α− ′). For 

example,

( )
( )

( )σ

σ

σ= +

α α

α

− =

=

′

′� ����� �����

� ���� ����
x x

x

y
x Wd

d

d
d ,t t

t
t t

1

0
 (11)

is equivalent to

( )
( )

( )σ

σ

σ= +

α α

α

− =

=

′

′� ������� �������

�
� ����� �����

x x
x

y
x Wd 0.5

d

d
d ,t t

t
t t

0.5

0.5
 (12)

and to

( )σ=

α α α− = =′ ′

�
� ����� �����

x x Wd d ,t t t1

0, 1
 (13)

where we are using the common notations 

x W x Wd dt t t t0( ) ( )σ σ≡ �  and x W x Wd dt t t t0.5( ) ( )σ σ≡� � . In 

this review, unless otherwise stated, we will use the Itô con-

vention (α =′ 0) throughout and explicitly indicate the noise-

induced drifts to avoid misunderstandings associated with 

changing between different formalisms.

Before moving to the case studies in the next section, we 

want to make an important remark. In this section we have 

considered only �rst-order SDEs, where the presence of 

a noise-induced drift is related to the choice of a stochastic 

integration convention. In the case studies in section  3, we 

will typically start from a microscopic model of a system 

and eliminate some of its complexity to obtain an effective 

�rst-order SDE. The noise-induced drift present in the effec-

tive �rst-order SDE will, thus, be the result of this simpli�ca-

tion process. For clarity, we will always write the effective 

SDEs using the Itô formalism, where the noise-induced drift 

is explicitly stated. For example, in sections 3.1 and 3.2, our 

starting point is a second-order equation, which we want to 

simplify further taking a parameter (e.g. mass of a particle) 

to zero. The resulting �rst-order Itô equation contains a drift 

term that combines the damping and the noise coef�cients of 

the original equation. We emphasize that the source of this 

(physically measurable) additional drift is that we are taking 

a singular limit of a second-order equation  in the presence 

of noise and we thus call it again a noise-induced drift. Its 

explicit form is now much harder to derive than in the case 

of the minimal model of section 2. In the case discussed in 

section  3.1, it is possible (but not necessary) to interpret it 

in terms of a stochastic integration convention choice (α = 1) 

[28, 29], as explained in section 2, but no such interpretation 

is possible in the generality of the examples considered in 

section 3.

3. Case studies

In section  2 we have seen how the presence of multiplica-

tive noise induces a drift in a simple discrete-time model of 

a random walker. In the present section we consider in detail 

several examples of realistic models with a part icular empha-

sis on those systems that have been subject of experiments. 

Section 3.1 considers Brownian motion of a microscopic par-

ticle in thermal equilibrium with a heat bath (i.e. for which 

the �uctuation-dissipation relations holds) in the presence of 

a diffusion gradient. Section 3.2 relaxes the condition that the 

system should be in equilibrium with a heat bath and thus con-

siders systems for which a generalized �uctuation-dissipation 

relation holds. Section 3.3 considers the limiting behavior of 

a system driven by a colored noise modulated by a multiplica-

tive delayed feedback. Finally, in section 3.4 we demonstrate 

how sensorial delay can alter the behavior of an autonomous 

agent in the presence of noise and how this effect can be used 

to control complex collective behaviors. In all cases we will 

present not only experimental �ndings, but also the basic 

mathematical methods and/or numerical techniques that can 

be employed to study a wide range of systems, while a more 

in-depth discussion of these methods and techniques is pro-

vided in the appendices.

3.1. Brownian motion in a diffusion gradient

Diffusion gradients emerge naturally when a Brownian par-

ticle is in a complex or crowded environment. For example, 

diffusion gets hindered when a particle is close to a wall 

due to hydrodynamic interactions: as shown in �gure  2(c), 

the diffusion coef�cient increases with the particle-wall 

distance approaching its bulk value at a distance of several  

particle radii away from the wall [9]. More generally, the 

study of diffusion in non-homogenous media is attracting a lot 

of attention in classical physical systems [30–35] as well as 

in biological systems [36] and in quantum systems [37]. The 

presence of a diffusion gradient introduces a multiplicative 

noise and thus leads to a noise-induced drift, often referred 

to in this context as a ‘spurious drift’. The need to account 

for such spurious drifts was realized already several decades 

ago in the context of numerical simulations [19, 24, 38, 39], 

Rep. Prog. Phys. 79 (2016) 053901
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but only very recently did it become possible to observe them 

experimentally [12, 26, 40, 41].

In order to understand how spurious drifts emerge in the 

presence of diffusion gradients, we will consider a Brownian 

particle with mass m moving in one dimension in a �uid at 

temperature T. Importantly, we assume that the particle is in 

thermal equilibrium with the heat bath provided by the �uid. 

The corresponding equation of motion is

( ) ( ) ( ) ( )γ γ η= − +mx F x x x x D x¨ ˙ 2 ,t t t t t t t (14)

where F(x) denotes the sum of the external forces acting on the 

particle, ( )γ x  is the position-dependent friction coef�cient, D(x) is 

the position-dependent diffusion coef�cient, and η
t
 is a unit white 

noise. Since we assume that the system is in thermal equilibrium, 

the intensity of the �uctuations D(x) and the rate of energy dis-

sipation ( )γ x  satisfy the �uctuation-dissipation relation [42]

( )
( )γ

=D x
k T

x
,

B
 (15)

where k TB  is the thermal energy and kB is the Boltzmann con-

stant. The equilibrium distribution of the system is given by 

the Boltzmann–Gibbs probability density

( )
( )⎡

⎣
⎢

⎤

⎦
⎥ρ = − −

−

x v Z
U x

k T

mv

k T
, exp

2
,1

B

2

B

 (16)

where U(x) is the potential of the (external) forces F(x) so that 

( )
( )

= −F x
U x

x

d

d
, and we are assuming that the density is normal-

izable with Z denoting the normalizing factor. Furthermore, 

the Maxwellian velocity distribution (
⎡
⎣

⎤
⎦∝ −exp

mv

k T2

2

B

) implies 

energy equipartition, so that the equilibrium kinetic energy is 

on average equal to the thermal energy:

=mv k T .t

1

2

2 1

2
B (17)

In SDE (14), inertial effects decay on a very short time 

scale, i.e. the momentum relaxation time τ γ= m/m , which 

is typically of the order of a fraction of a microsecond5. For 

example, for a silica microsphere with radius R  =  1 µm  

(  =m 11 pg) in water at room temperature (  =T 300 K), 

τ = 0.6m  µs. This time is several orders of magnitude shorter 

than the time scales of typical experiments, which are of the 

order of milliseconds or longer6. Thus, it is justi�ed to take 

the limit →m 0 in SDE (14). This has to be done carefully and 

requires a nontrivial calculation. In particular, it is not correct 

to simply set m  =  0 and drop the inertial term. As a result of the 

calculation outlined in appendix B, we obtain the effective SDE

( ) ( ) ( )
( )

 

= + +

� ����� �����

x
F x D x

k T
t

D x

x
t D x Wd d

d

d
d 2 d .t

t t t
t t

B

spurious drift

 (18)

Note that, if we denote the noise coef�cient ( )D x2  by ( )σ x  

the noise-induced drift equals ( )
( ) ( )

σ=
σ

x
D x

x

x

x

d

d

d

d
.

The numerical simulations shown in �gure 5 give us some 

insight into the derivation of the limiting SDE and the emer-

gence of the noise-induced drift. We simulate a Brownian par-

ticle at equilibrium with a thermal bath, so that the coef�cients 

( )γ x  (�gure 5(a)) and D(x) (�gure 5(b)) are related by the 

Einstein �uctuation-dissipation relation (equation (15)). The 

dashed lines in �gure  5(c) represent solutions of SDE (14) 

obtained for decreasing values of m, but with the same reali-

zation of the driving Wiener process. These solutions become 

rougher as m decreases and converge towards the solution of 

the limiting SDE (18) (black solid line in �gure 5(c)), again 

calculated using the same realization of the Wiener process. 

We see that omitting the spurious drift leads to clear devia-

tions, which diverge as a function of time (grey solid line in 

�gure 5(c)).

The noise-induced drift in SDE (18) has been directly 

observed in at least two sets of experiments. Before proceed-

ing further, we note that, in general, the diffusion D(x) and 

(total) drift C(x) of an experimental system can be obtained 

from an experimental discrete time-series { }x x, ... , N1  sam-

pling the system’s state at regular intervals ∆t as the condi-

tional averages

( ) ( ) ∣=
∆

− ≅+D x
t
x x x x

1

2
n n n1

2 (19)

Figure 5. Limiting SDE for a system satisfying the �uctuation-
dissipation relation. For a Brownian particle in thermal equilibrium 
in a diffusion gradient (a) ( )γ x  and (b) ( )σ x  are related by the 
Einstein �uctuation-dissipation relation (equation (15)). (c) The 
solutions of the equations of motion (SDE (14)) for →m 0 (dashed 
lines) converge to the solution of the limiting SDE (18), including 
the spurious drift (black solid line). The (physically incorrect) 
solution without spurious drift (grey solid line) is given for 
comparison. All solutions are numerically calculated using the same 
realization of the Wiener process, with ( )≡F x 0.

5 In a liquid environment, furthermore, also the hydrodynamic memory of 

the �uid, i.e. the mass of the �uid displaced together with the particle, must 

be taken into account and can, in fact, signi�cantly increase the effective 

momentum relaxation time [88, 89].
6 In fact, recent experiments have been able to resolve the inertial regime 

of Brownian particles immersed both in a gas and in a liquid. For a recent 

review see [43].
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and

( ) ∣=
∆

− ≅+C x
t
x x x x

1
.n n n1 (20)

In experiments, ∆t should be much smaller than the character-

istic relaxation time of the system, which is determined by the 

drift part of the SDE and is typically several orders of magni-

tude larger than τm. Furthermore, in the limit →∆t 0 inertial 

effects come into play [43] and, therefore, in practice equa-

tions  (19) and (20) should only be used in the overdamped 

limit, i.e. for τ∆ ≫t m. Similar considerations hold also for 

other microscopic dynamics determining the evolution of the 

system, i.e. ∆t should be much longer than the characteris-

tic times of the dynamics that have been homogenized in the 

effective SDE.

The �rst direct experimental observation of the noise-

induced drift was performed by Lançon et al [12] who studied 

the Brownian motion of particles con�ned between two nearly 

parallel walls. The experimental sample was realized by plac-

ing a droplet of colloidal suspension between a spherical lens 

(with curvature L) and a �at disk, as shown in �gure 6(a). The 

spacing h between the �at and curved walls depended on the 

distance r from the center of the cell as ( )≈h r L/ 2
2 . The col-

loidal solution consisted of polystyrene spheres (radius R  =  1 

µm) suspended in a mixture of H O2  and D O2  adjusted to cancel 

any sedimentation effects. The horizontal Brownian motion 

of the particles was observed using digital video microscopy. 

The experimental values of the ratio between the measured 

diffusion coef�cient parallel to the walls ( )∥D h  and the bulk 

diffusion coef�cient DSE were inferred from the measured 

trajectories using equation (19) and are shown in �gure 6(b) 

(white squares). For the measurement of the noise-induced 

drift, the center of the observation frame was �xed at a posi-

tion with y  =  0 and x  =  300 µm (inset in �gure 6(a)), corresp-

onding to an average relative con�nement h/(2R)  =  1.5 so that 

all particles present in the frame were outside of the excluded 

volume (i.e. ⩽h R2 ) and had a diffusion coef�cient with the 

largest x-dependence, but no y-dependence (to �rst order). The 

drift of the Brownian particles over a period of about three 

minutes is shown in �gure 6(c). Importantly, no �ux and no 

concentration gradient were observed over a period of a week 

or more, which is consistent with the (uniform) Boltzmann 

distribution expected in the absence of external forces and in 

thermal equilibrium (equation (16)).

In [26] and [41], we studied the Brownian motion of a col-

loidal particle in water with a diffusion gradient imposed by the 

presence of the bottom wall of the sample cell, as shown in �g-

ure 7(a). The external forces acting on the particle were gravity 

and electrostatic repulsion from the bottom of the sample cell. 

Since both are vertical, one can separate the horizontal degrees 

of freedom and write the equation of motion for the vertical 

coordinate only, which we will call z. ( )⊥D z  decreases near the 

bottom of the sample cell and its precise form can be found in 

[9] (see also �gure 2(c)). The trajectory of a particle close to 

the wall was measured with total internal re�ection microscopy 

(TIRM), which is a technique that permits one to measure the 

position of a colloidal particle above a surface with nanometer 

resolution [44]. From the measured trajectories we obtained 

( )⊥D z  using equation (19) (symbols in �gure 7(b)), which is in a 

very good agreement with the theor etical prediction [9] (line in 

�gure 7(b)). We were then able to directly measure the spurious 

drift for particles of various sizes, as shown in �gure 7(c).

We conclude this section with a brief discussion of how 

the presence of a noise-induced drift plays a crucial role in 

Figure 6. Drift without �ux. (a) Cross-section of a sample cell where 
a colloidal suspension (particle radius R  =  1 µm) is con�ned between 
a spherical lens and a �at disk, separated by an elastic O-ring. The 
round inset identi�es the observation frame. The height of the cell 

is denoted by h. (b) Diffusion coef�cient parallel to the walls ∥D  

normalized to the bulk diffusion coef�cient DSE
 as a function of the 

relative con�nement h/(2R). The open squares are the experimental 
data; the dotted line is the best �t to the black dots, which correspond 
to numerical predictions calculated by the collocation method. 
(c) Drift of the walkers as a function of time along the diffusion 
gradient (black dots) and perpendicular to the diffusion gradient 
(open squares). Adapted with permission from [12]. Copyright 2001 
EDP Sciences.
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the measurement of forces acting on Brownian particles in 

a liquid medium. The forces acting on a microscopic object 

immersed in a liquid medium can be assessed either by 

their underlying potential or by their effect on the object’s 

trajectory [26, 41]. The �rst approach—to which we shall 

refer as equilibrium distribution method—requires sampling 

of the equilibrium distribution ( )ρ x  of the particle’s position 

(see also equation (16)). The force can then be obtained from

( )
( )

( )

( )

ρ

ρ
= − =F x

U x

x

k T

x

x

x

d

d

d

d
.

B

 (21)

This method can only be applied under conditions where the 

investigated system is in thermodynamic equilibrium with a 

heat bath. The second method—to which we shall refer as drift 

method—does not require the object to be in (or even close 

to) thermal equilibrium. This method requires obtaining D(x) 

and C(x) from experimental trajectories (equations (19) and 

(20)) and including a correction for the presence of a spurious 

(noise-induced) force. The force can then be calculated as

( ) ( ) ( ) ( )
( )

 

γ γ= −

� ������ ������

F x x C x x
D x

x

d

d
.

spurious force

 (22)

This method has the advantage that it can be applied also to 

systems that are intrinsically out-of-equilibrium, e.g. molecu-

lar machines, transport through pores, DNA stretching; how-

ever, it requires recording the object’s trajectory with high 

sampling rates, which can be technologically challenging, in 

particular when combined with a high spatial resolution. For 

example, the correction due to the presence of spurious forces 

has been taken into account in the experimental simultaneous 

determination of potential and diffusivity landscapes in mac-

romolecular solutions [45].

3.2. Diffusive systems not satisfying the �uctuation- 

dissipation relation

While in section 3.1 we considered systems in thermal equi-

librium with a heat bath that satisfy the �uctuation-dissipation 

relation (equation (15)), in this section we consider the zero-

mass limiting behavior of a larger class of models for which 

( )γ x  and ( )σ x  are allowed to vary independently from each 

other. This is a very general class of noisy dynamical systems, 

with many interesting examples and applications (see, e.g.  

Ao et al [46] and [47]). Using the methods of [48], we will 

thus study the general SDE

( ) ( ) ( )γ σ η= − +mx F x x x x¨ ˙ ,t t t t t t (23)

where the damping and diffusion terms are not necessarily 

related by the �uctuation-dissipation relation (equation (15)). 

For a wide class of such systems the effective equation in the 

→m 0 limit is

( )

( )

( )

( )

( ) ( )

( )

 

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

γ

σ

γ

γ σ

γ
= − +

−

� �������� ��������

x
F x

x

x

x

x

x
t

x

x
Wd

2

d

d
d d .t

t

t

t

t

t t

t

t

2

3

noise induced drift

 (24)

An outline of the mathematical derivation of this equa-

tion  is provided in appendix C. An example of such a sys-

tem is illustrated in �gure 8: for the case with ( )γ ≡x constant  

(�gure 8(a)) and ( )σ x  state-dependent (�gure 8(b)), the 

Figure 7. Experimental measurement of spurious drifts. (a) A 
Brownian particle (drawn not to scale) diffuses above a wall in the 
presence of gravitational and electrostatic forces. Its trajectory’s 
component in the direction perpendicular to the wall is measured 
with total internal re�ection microscopy (TIRM). Adapted 
with permission from [26]. Copyright 2010 American Physical 
Society. (b) Comparison of measured (symbols) and calculated 
(line) normalized vertical diffusion coef�cient ( )⊥D z D/ SE for an 

 =R 400 nm particle as a function of the particle-wall separation 
z. (c) Distance dependence of the theoretically calculated spurious 

drift 
( )D z

z

d

d
 for various particle radii R (lines). Experimentally 

measured spurious drifts are shown for  =R 400 nm (circles),  

 =R 655 nm (squares) and  =R 1180 nm (triangles). Adapted with 

permission from [41]. Copyright 2011 American Physical Society.
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solutions of SDE (23) for →m 0 (dashed lines in �gure 8(c)) 

conv erge to the solution of the approximate SDE (24) (grey 

solid line in �gure  8(c)); note that in this case the noise-

induced drift is zero, differently from the system considered 

in section 3.1.

In general, there is no relation between noise and damping 

coef�cients if the noise is external, as in an electrical circuit 

driven by a noise source. Such a circuit with a colored noise 

and involving a delayed response is studied in section  3.3. 

Another physical example described by an equation  of the 

form of SDE (23) is diffusion of a Brownian particle in a 

temper ature gradient. This system shows more interesting 

phenomena when it is driven by a colored noise; a simple 

model of this type is studied in [49]. Brownian motion in a dif-

fusion gradient, discussed in section 3.1, is yet another special 

case of a system described by SDE (23) and the result outlined 

there is a special case of SDE (24).

SDE (23) can be generalized to multidimensional (i.e. vec-

tor) systems as

⎧

⎨
⎪

⎩
⎪

⎡

⎣
⎢

⎤

⎦
⎥

x v

v
F x x

v
x

W

t

m m
t

m

d d ,

d d d ,

t

m

t

m

t

m t

m

t

m

t

m t

m

t

( ) ( ) ( )γ σ

=

= − +
 (25)

where W is a vector Wiener process (i.e. the components of W 

are independent Wiener processes), and γ and σ are matrices. 

The form of the limiting equation is again:

[ ( ) ( ) ( )] ( ) ( )γ γ σ= + +
− −

x x F x S x x x Wtd d d ,t t t t t t t
1 1 (26)

The precise expression for S and a sketch of its deriva-

tion are provided in appendix C. The zero-mass limits of 

equations similar to SDE (25) have been studied by many 

authors beginning with Smoluchowski [50] and Kramers 

[51]. In the case where F  =  0 and γ and σ are constant, the 

solution to SDE (23) converges to the solution of SDE (24) 

almost surely [2]. Schuss [52] treated the case including an 

external force by entirely different methods. Hänggi [19] 

identi�ed the limit with position-dependent noise and fric-

tion for the case when the �uctuation-dissipation relation is 

satis�ed and Sancho et al [39] for the general one-dimen-

sional case (the multidimensional case is also discussed 

there but without complete proof ). Hottovy et al [47] used 

the homogenization techniques described in [53, 52] and 

[54] to compute the limiting backward Kolmogorov equa-

tion corresponding to equation (23) as mass is taken to zero. 

Pardoux and Veretennikov [55] proved rigorously conv-

ergence in distribution for equations  of the same type as 

SDE (25), under somewhat stronger assumptions than those 

made in [48]. Freidlin [56] gave the �rst rigorous proof of 

strong convergence in the zero-mass limit for γ constant 

and σ position-dependent. Hottovy et al [48] provided the 

�rst rigorous derivation of the zero-mass limit of SDE (25) 

for a multidimensional system with general friction and 

noise coef�cients.

The general form of SDE (25) allows to treat many inter-

esting physical situations, including the case when the force 

F is not conservative. In this case, there is no known explicit 

formula for the stationary measure of the dynamics de�ned 

by SDE (25), even when the system satis�es the �uctuation- 

dissipation relation. Nevertheless, the general theorem applies, 

giving the limiting equation for xt.

As another application of the general scheme given by 

SDE (25), suppose the white noise in SDE (23) is replaced 

by a colored (i.e. time-correlated) stationary noise process, 

which is itself a solution of a stochastic differential system. 

For example, ητ may be an Ornstein–Uhlenbeck process:

η
τ
η

τ
= − +

τ τa
t Wd d

1
d .

t t t (27)

De�ning ∫χ η= τ
sd

t

t

s0
, we introduce a new, compound space 

variable ( )χx,  and the corresponding velocity ( )ητv, . If the 

parameter τ scales linearly with m, the variables ( )χx,  and 

( )ητv,  satisfy a system of equations of the same form as SDE 

(25). The above general result applies, yielding an effective 

equation for a system in which the momentum relaxation time 

τm and the characteristic noise correlation time τ go to zero at 

the same rate. The details are given in [48]. In section 3.3 we 

will see that τ can also interact with the feedback delay time 

of the system.

The well-known Itô-to-Stratonovich correction [5] can be 

presented (using Wong–Zakai theorem [57]) as a special case 

of noise-induced drift. However, the latter is much more gen-

eral and can be nonzero even when the noise coef�cient is 

constant.

Figure 8. Limiting SDE for a system not satisfying the �uctuation-
dissipation relation. Consider a system for which (a) ( )γ ≡x constant 
and (b) ( )σ x  is state-dependent. (c) The solutions of SDE (23) for 

→m 0 (dashed lines) converge to the solution of the approximate 
SDE (24), which in this case corresponds to the Itô interpretation 

(grey solid line) of the equation 
( ) ( )

γ

σ

γ
= +x

F x
t

x
Wd d dt

t t
t, as the 

noise-induced drift equals zero (α = 0) when γ is constant. The 
solution for the anti-Itô integral (α = 1, black solid line) is given for 
comparison. All solutions are obtained for the same realization of 
the Wiener process.
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3.3. Delayed multiplicative feedback and colored noise

White noise does not exist in real systems, since its correla-

tion time is strictly equal to zero (and even as a mathematical 

object it does not have well-de�ned realizations which would 

be functions of time) [5]. Colored noises are more regular 

mathematical objects, and more similar to signals that can be 

actually generated. Thus, it is natural to consider SDEs driven 

by colored noise. An SDE with colored noise can be inter-

preted as a usual ordinary differential equation for each noise 

realization. However, the very correlation effects we want to 

model make such equations harder to study. The characteristic 

time of the noise correlations, τ, becomes an important time 

scale of the model, whose properties often simplify in the limit 

when →τ 0. Such limit is studied in the classic work of Wong 

and Zakai [57], who considered a sequence of SDEs driven 

by colored noises with symmetric covariance functions and 

with correlation times →τ 0n  and showed that their solutions 

converge to the solution of the corresponding Stratonovich 

equation driven by the white noise. A more general result can 

be found in [58]; see also [59], where such limits are studied 

using homogenization methods, and [60]. We remark that all 

these results can be recovered by the methods discussed in 

section 3.2 and in appendix C.

A system obeying an SDE with a colored noise was exper-

imentally realized by Smythe et al [22] as an eletrical circuit 

driven by a multiplicative noisy voltage input. Depending on 

the mean and variance of the noise, the output voltage of the 

circuit could have a probability density with either one or two 

maxima, and the precise form of the phase diagram depended 

on whether the equation describing the circuit was interpreted 

using Itô or Stratonovich integral. As shown in �gure 9, the 

results of [22] were in quite good agreement with the theor-

etical predictions based on the Stratonovich interpretation, 

illustrating the role of the colored noise, as mathematically 

described by the Wong–Zakai theorem.

We will now consider in detail the experiment performed 

by Pesce et al [27] using an RC electric circuit driven by a 

multiplicative colored noise (�gure 10(a)), in which the output 

voltage was fed back into the system and multiplicatively cou-

pled to the noise source, after going through a nonlinear �lter. 

Unlike the circuit studied by Smythe et al [22], the circuit 

studied by Pesce et al [27] involved a delay in the feedback 

cycle. The SDE describing the evolution of the voltage in the 

circuit presented in �gure 10(a) is

( )σ η= − + δ
τ

−x kx t F x td d d ,t t t t (28)

where k  =  (RC)−1, R is the resistance of the circuit, C is 

its capacitance, and F(x) represents the modulation by the  

�lter. The colored noise ητ is an Ornstein–Uhlenbeck process 

with mean zero and with the characteristic time of correlation 

decay equal to τ (i.e. the stationary solution of SDE (27) with 

a  =  1). δ is the time delay resulting from the application of the 

�lter and σ denotes the (constant) noise intensity.

We studied SDE (28) in the limit of small τ and δ. 

Mathematically, this meant making τ and δ proportional to a 

small parameter ε and taking the limit →ε 0, keeping the ratio 

δ τ/  constant. The limiting SDE turned out to be

( )
( )

( )

 

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ασ σ= − + +

−

� �������� ��������

x kx F x
F x

x
t F x Wd

d

d
d d .t t t

t
t t

2

noise induced drift

 (29)

The outline of the derivation is provided in appendix D. The 

second term has the same structure as the noise-induced drift 

in the Brownian motion case: it is proportional to the product 

of the original noise coef�cient, ( )σF x , and its spatial deriva-

tive (see section 3.1). The proportionality constant depends on 

the time scales of the problem as

Figure 9. Experimental observation of a noise-induced phase 
transition. Phase diagram of the electric circuit with multiplicative 
noise used by Smythe et al [22]. Depending on the input noise 
parameters, namely its mean λ and its standard deviation σ, the circuit 
could be either monostable (1 maximum) or bistable (2 maxima). The 
experimentally measured transition between the two regimes (open 
circles) agrees with the predictions obtained by integrating the SDE 
describing the circuit according to the Stratonovich convention. The 
reason for this is that the driving noise is colored. The predictions 
according to the Itô convention are shown for comparison. Adapted 
with permission from [22]. Copyright 1983 American Physical Society.
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α =

+
δ

τ

0.5

1
, (30)

which agrees well with the experimental results, as shown 

in �gure  11; see also [90] where a more precise calcul-

ation yields α = −
δ
τe

1

2
. SDE (29) is written here in the Itô 

form, but it can be interpreted according to another conven-

tion, corresponding to another choice of the parameter α, as 

described in section 2. In this language, the presence of such 

delay made the SDE describing the behavior of the electric 

circuit with multiplicative noise cross over from obeying the 

Stratonovich convention (α = 0.5) to obeying the Itô conven-

tion (α = 0), as the ratio between the colored noise correla-

tion time τ and the feedback delay δ varied (equation (30)), as 

shown in �gures 10(b)–(e). The fact that this transition occurs 

as τ becomes close to δ, i.e. δ τ≈/ 1 (�gure 11), can be quali-

tatively explained as follows: if δ = 0, there is a correlation 

between the sign of the input noise and the time derivative of 

the feedback signal (which is the underlying reason why the 

process converges to the Stratonovich solution [57]); however, 

if δ τ≫ , this correlation disappears, effectively randomizing 

the time-derivative of the feedback signal with respect to the 

sign of the input noise and leading to a situation where the 

system loses its memory. While this crossover between two 

stochastic integration conventions was emphasized in [27], we 

remark here that this is just a possible way of interpreting the 

noise-induced drift.

McDaniel et al [61] study theoretically a much more gen-

eral system of delayed SDEs driven by several colored noises 

with couplings that are functions of the delayed dynami-

cal variables. The corresponding results also are outlined in 

appendix D. A more accurate results was recently derived by 

Hottovy et al [90].

3.4. Delayed sensorial feedback

Another example in which the effective behavior of a diffu-

sive system depends on a relation between two characteristic 

time scales occurs in the motion of autonomous agents, such 

as robots [62] and active Brownian particles [63, 64], whose 

speed depends on position and whose velocity’s direction 

changes randomly. Mijalkov et al [62] performed an exper-

imental, theoretical, and numerical study of such a system in 

two and (for theory and numerics) also in three dimensions. 

For simplicity, we discuss here only the planar case.

In the �rst part of the experiment performed by Mijalkov  

et al [62], a single robot moves in a gradient of light intensity. 

The robot reacts to the local light intensity by adjusting its speed, 

possibly with a time shift (positive or negative, as explained 

below). The robot’s orientation (and, thus, the direction of  

Figure 10. Stochastic dynamical system driven by multiplicative noise with delayed feedback. (a) Schematic representation of a stochastic 

dynamical system (an electric circuit) with multiplicative feedback F(x): the driving colored noise η τ
t

 (  τ = 1.1 ms) is multiplied by a 

function of the system’s state xt. (b) Average of 1000 trajectories for various initial conditions. These results are in agreement with the 

Stratonovich treatment of the circuit SDE. ((c)–(e)) Samples of input noises η τ
t

 (top) and average of 1000 trajectories (bottom) for various 

initial conditions with τ = 0.6, 0.2 and  0.1 ms respectively for (c)–(e). From (b)–(e), one sees a shift of the equilibrium towards x  =  0, 
corresponding to a crossover from the Stratonovich solution to the Itô solution of the circuit SDE. Adapted with permission from [27]. 
Copyright 2013 Nature Publishing Group.
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its velocity) changes randomly in time. The robot’s motion 

is studied in the regime where the time shift is small and the 

orientation changes occur fast. The idealized SDEs describing 

the robot’s motion are thus

⎧

⎨

⎪
⎪
⎪
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where ( )x y,t t  represents the position of the robot, φ
t
 is its orien-

tation, ( )δ δ−
−

u x y,t t  is the speed of the robot, which is related to 

the local light intensity measured by the robot with a delay δ, 

and τ is the characteristic time with which the robot’s orienta-

tion changes. In order to realize the model experimentally and 

to perform numerical simulations, we linearized the �rst two 

SDEs (31), obtaining
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Importantly, in this form, they make sense also for negative 

δ. The stationary density (if it exists) of �nding the robot at a 

position (x, y) is

( )
( )
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+
δ
τ

x y
Nu x y

,
1

,
.0

1
 (33)

which represents a probability density if it is an integrable 

function (and in this case we choose the normalizing constant 

N so that the integral of ρ
0
 equals 1). An outline of the mathe-

matical derivation of equation (33) is provided in appendix E. 

The critical role of the condition δ τ= −  is clearly seen from 

this formula: as long as δ τ>− , the density is larger where 

u is smaller, but the relation reverses for δ τ<− . Therefore, 

for δ τ>−  the robot tends to spend more time in the region 

where u is smaller, in agreement with the natural intuition: 

once it gets there, it slows down, so it takes it longer to get 

out. However, the two time scales interact in a complicated 

way and the above intuition correctly predicts what is happen-

ing only when the delay is positive or when it is negative, but 

its magnitude is not too big compared to the noise correlation 

time. Beyond this value (i.e. for δ τ<− ) the behavior changes 

qualitatively. This effect is seen clearly in the experiment as 

well as in numerical calculations [62], as shown in �gure 12.

The second part of the experiment studies many robots 

that in�uence each other’s motion through light �elds each 

Figure 11. Dependence of α on δ τ/ . α varies from 0.5 
(Stratonovich integral) to 0 (Itô integral) as δ τ/  increases. The 
solid line represents the theoretical results (equation (30)); the dots 
represent the experimental values of α for �xed δ = 0.4 µs and 
varying τ; and the squares the experimental values for �xed τ = 0.4 µs  
and varying δ. The error bars represent one standard deviation 
obtained by repeating the experimental determination of the ratio 
δ τ/  ten times. Adapted with permission from [27]. Copyright 2013 
Nature Publishing Group.

Figure 12. Effect of sensorial delay on the behavior of an 
autonomous agent. The long-term behavior of a robot in the 
light intensity gradient generated by an infrared lamp changes 
depending on the delay with which it adjusts its speed in response 
to the sensorial input, i.e. the measured total light intensity. (a) 
For positive delays ( )δ τ= +5 , the tendency of the robot to move 
towards the high-intensity (low-speed) regions is enhanced, 
when compared to the case without delay. (b) For negative delays 
δ τ= −5( ) the robot tends to move towards the low-intensity (high-

speed) regions. In both cases, the trajectories are shown for a period 
of 5 s preceding the time indicated on the plot and the robot is at the 
�nal position. (c) Radial drift calculated from a 40 min trajectory 
for the cases of positive (circles) and negative (diamonds) delays. 
The solid lines correspond to the theoretically predicted radial 
drifts. Adapted with permission from [62].
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of them creates, as shown in �gure 13. Each robot’s speed 

is a function of the total light intensity at its location (with 

the time delay as above). It is observed that when δ τ>− , the 

robots tend to aggregate, but for δ τ<−  they stay away from 

each other. This collective effect is a re�ection of the single 

robot’s behavior studied above: for delays greater than τ−  a 

robot spends more time in the vicinity of other robots, which 

decreases its velocity by creating a stronger cumulative light 

�eld, and for delays smaller than τ−  a robot spends more time 

away from other robots, where its velocity is larger.

4. Applications, future work and perspectives

As we have seen in the previous sections, there is often a need 

to derive effective and tractable mathematical models that 

reduce the number of degrees of freedom of real systems while 

still representing their complex nature. In fact, the exact mod-

eling of phenomena discussed in this review would require 

access to their microscopic dynamics, whose time scales are 

typically much shorter than the observable time scales. A fur-

ther reduction can be obtained by considering limits in which 

one or more natural time scales of the problem go to zero. We 

have also seen that the presence of multiplicative noise (in its 

multifaceted forms) leads to the appearance of noise-induced 

drifts in the effective SDEs. Importantly, recent experiments 

have been able to measure these noise-induced drifts and their 

consequences in the case of Brownian particles in thermal 

equilibrium with a heat bath [12, 26, 40, 41] and in the case of 

electric circuits [22, 27]. Even more importantly, at least one 

subsequent experiment [62] puts forward a concrete applica-

tion, by using a noise-induced drift to control the long-term 

behavior of autonomous agents.

We expect future research to focus on noise-induced drifts 

and on their dramatic consequences in many cases where 

SDEs with multiplicative noise are routinely employed to pre-

dict the behavior and evolution of complex physical, chemi-

cal, biological and economic phenomena. In particular, there 

is a need to study in more detail the nature and signi�cance 

of noise-induced drifts in multidimensional systems. In fact, 

while several theoretical works have dealt with the multidi-

mensional case, all experiments performed until now focus on 

noise-induced drifts emerging in effectively one-dimensional 

systems, i.e. systems where the number of effective degrees of 

freedom has been reduced to one, even when they are intrinsi-

cally multidimensional. For example, in [62] the motion of the 

robots occurs in a plane, but the effective noise-induced drift 

is measured only along the radial coordinate.

Here we provide a list of topics of interest, focusing on 

effects that are important for applications and/or that can be 

veri�ed experimentally.

 • More realistic experimental model systems. Electrical 

circuits are relatively easily controllable physical systems 

with damping and noise. As such, they provide a natural 

class of systems whose parameters can be manipulated to 

test the theory, e.g. to observe noise-induced bifurcations 

[22] and transitions [27]. However, they are also relatively 

simple physical systems. It will therefore be crucial to move 

towards experimentation in more relevant and realistic 

systems. For example, biological systems can be investi-

gated starting from simple bacterial colonies reacting to a 

time-varying environment in order to study whether, e.g. 

noise-induced bifurcation in the population dynamics may 

occur, and moving at a later stage towards more complex 

ecosystems. Economic systems can be analyzed by using 

available econometric data; for example, it would be fasci-

nating to study the possibility that booms and bursts in the 

stock market might be due to a noise-induced transition 

similar to the one described in section 3.3.

 • Effect of multiplicative noise on steady-state distribu-

tions. As we have seen in section 2 and, in particular, in 

�gure 4, the presence of a noise-induced drift changes the 

stationary distribution of an SDE system (if it has one). 

While for systems satisfying the �uctuation-dissipation 

relation, e.g. in thermal equilibrium, potential landscape 

and steady-state (or, in this case, equilibrium) distribu-

tion are connected by the Boltzmann statistics [25], 

this is not necessarily the case for other systems [46]. 

Things become particularly tantalizing when considering 

multidimensional systems, where also non-conservative 

(e.g. magnetic) forces may be present. Overall, it will be 

interesting to explore the interplay between multiplicative 

noise, noise-induced drifts, non-conservative forces, and 

steady-state probability distributions both from theor-

etical and experimental perspectives.

Figure 13. Clustering and segregation in a swarm of autonomous 
agents as a function of sensorial delay. Simulation of the long-term 
behavior of an ensemble of 100 autonomous agents that emit a 
radially decaying intensity �eld and adjust their speed depending on 
the measured local intensity. Depending on the sensorial delay, the 
long-term behavior and large-scale organization are signi�icantly 
different. (a), (b) In the case of positive delays, the agents come 
together and form metastable clusters. (c), (d) In the case of 
negative delays, they explore the space, staying away from each 
other. Adapted with permission from [62].
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 • Noise-induced bifurcations. Noise-induced drifts can 

radically modify the properties of a dynamical system, 

making it undergo a bifurcation. Interestingly, one of the 

�rst works studying experimentally systems with multi-

plicative noise [22] addressed precisely the issue of how 

the transition from a monostable to a bistable behavior 

in a noisy electric circuit was affected by the presence 

of multiplicative noise (section 3.3 and �gure 9). Also,  

a system similar to a van der Pol oscillator has been 

recently theoretically studied in this context [65]. These 

studies constitute a good starting point to explore more 

complex situations. In particular, we are planning to 

identify conditions under which the presence of noise 

and state-dependent damping induces speci�c types 

of bifurcations, e.g. saddle-node or Hopf bifurcations. 

Furthermore, we are planning to study models of popula-

tion dynamics, including, e.g. effects of randomness on 

Lotka-Volterra-type equations (see, e.g. Tang et al [66]). 

We emphasize that the very interesting theory of sto-

chastic bifurcations (see, e.g. [67, chapter 9]) is concerned 

with bifurcations of vector �elds (or their absence) under 

adding individual realizations of the noise and thus has 

a different focus from the one proposed here. Similarly, 

Arnold [68] studies stability of equilibria of dynamical 

systems perturbed by individual noise realizations, rather 

than modi�ed by the noise-induced drifts considered 

here.

 • Noise-induced drifts in thermophoresis. While it has 

already been suggested that noise-induced drifts might 

play a role in thermophoresis [30, 49], this is a subject 

that still needs to be investigated in detail both theor-

etically and experimentally. In particular, in the presence 

of a colored noise, the damping term should be an integral 

of contributions with different delay times and one should 

study the noise-induced drift in the resulting stochastic 

integro-differrential equations.

 • Noise-induced drift in stochastic thermodynamics. 

Despite some very recent theoretical works [69–71], the 

interplay between noise-induced drifts and stochastic 

thermodynamics is still a largely unexplored and tanta-

lizing �eld of research.

 • Noise-induced drifts in noise-induced phenomena. 

Noise plays a crucial (and constructive) role in many 

phenomena such as Kramers transitions [51], stochastic 

resonance [72], and Brownian ratchets [73]. It will be 

fascinating to explore how multiplicative noises and 

noise-induced drifts can affect such phenomena.

 • Entropy production in the small-mass limit. Entropy 

production in stochastic systems has been a subject 

of numerous recent works (a systematic exposition is 

given in [74]). Celani et al [75] discuss the behavior of 

entropy production for the equation equivalent to SDE 

(23) with constant damping (and zero external force), 

where there is no noise-induced drift. We propose to 

study entropy production in the general SDEs (25). 

This may lead to a variational characterization of the 

noise-induced drift.

 • Noise-induced drifts in curved spaces. Another direc-

tion of future work is concerned with the diffusion of 

Brownian and active Brownian particles [63, 64] on sur-

faces. In addition to its intrinsic mathematical interest and 

beauty, diffusion on surfaces occurs naturally in biology 

(e.g. molecular complexes on a cell membrane, white 

blood cells on the surface of an alveolus) and in physics 

(e.g. colloids trapped on a membrane or interface). For 

example, Polettini [76, 77] has recently suggested an 

analogy between the motion of a Brownian particle 

constrained in a curved geometry (more speci�cally 

in one-dimensional curves embedded in a space of an 

arbitrary dimension) and in a temperature gradient. The 

techniques outlined in this review allow one to study the 

zero-mass and related limits of equations describing such 

systems. In particular, we are planning two theoretical pro-

jects. In the �rst one, we will present the Wiener process 

(Brownian motion) on a manifold as a zero-mass limit 

of an inertial system, justifying its use in mathematical 

modeling of overdamped systems of surface diffusion. In 

the second project, we will consider a particle moving on 

a two-dimensional surface by inertia, with rapid random 

changes of direction (as in the example discussed in 

section  3.4). Considering an active particle that rotates 

around its center, we aim to show that in the limit of 

fast rotations, the particle’s dynamics is described by 

the Wiener process in agreement with the general result 

of [78]. To complete these two projects we will couple 

the techniques presented here with those of stochastic 

differ ential geometry [79, 80]. Finally, we are planning a 

numerical study of diffusion on two-dimensional surfaces 

in the presence of interesting geometry, resulting in long-

term particle trapping, similarly to the results reported (in 

a different context) by Chepizhko and Peruani [81].

 • Quantum noise-induced drift. Another interesting 

research direction is to study noise-induced drifts in open 

quantum systems. The dynamics of such systems in the 

Markov approximation is described by quantum Langevin 

equations  (in the Heisenberg picture). We are planning 

to conduct an analysis of these equations, similar to the 

integration-by-parts technique described here. In some 

systems, the master equation (analog of the Kolmogorov 

equation of classical theory) may be more amenable to 

analysis, patterned in this case on the classical multiscale 

analysis (homogenization). Among others, we will study 

quantum Brownian particles whose coupling to the 

environ ment depends on position. A physical realization 

of such system is the motion of an impurity atom inter-

acting with a Bose–Einstein condensate. See also the recent 

review by Massignan et al [37] and the references therein.

In conclusion, the study of multiplicative noise and of the 

associated noise-induced drifts has recently become an active 

and fertile �eld of research. It opens several interesting ave-

nues towards studying new phenomena and offers exciting 

future research directions, with implications for both funda-

mental science and potential technological applications.
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Appendix A. Finite-difference (FD) numerical 

simulations

The numerical integration of SDEs is discussed in detail in 

[4]; here we provide a primer on how to integrate SDEs with 

multiplicative noise accounting for the integration convention.

In the FD integration of an ordinary differential equa-

tion  (ODE), the continuous-time solution x(t) of the ODE 

is approximated by a discrete-time sequence xn, which is 

the solution of the corresponding FDE evaluated at regular 

time steps = ∆t n tn . If ∆t is suf�ciently short, ( )≈x x tn n . For 

example, in the case of a 1st order ODE, the FDE is obtained 

by perfoming the following substitutions:

( )

( )
−

∆

+

֏

֏

x t x

x t
x x

t

,

˙ .

n

n n1

The solution is then obtained by solving the resulting FDE 

recursively for xn+1, using the previous value xn as the initial 

condition.

Let us now consider the SDE

x g x t x Wd d d ,t t t t( ) ( )σ= + α� (A.1)

where the noise term is to be integrated with the convention 

α. As we have seen at the end of section 2, the SDE (A.1) is 

equivalent to

( ) ( )
( )

( )ασ

σ

σ= + +x g x t x
x

x
t x Wd d

d

d
d d ,t t t

t
t t (A.2)

where the multiplicative noise term is an Itô integral. The 

numerical integration of the �rst two terms on the right-hand 

side of SDE (A.2) is straightforward and can be performed as 

for the case of ODEs. In the FDE, the noise term, i.e. ( )σ x Wdt t, 

is replaced by ( )σ x wn n, where wn is a Gaussian random num-

ber with zero mean and variance ∆t1/ . Thus, the resulting 

FDE corresponding to SDE (A.1) (and SDE (A.2)) is

( ) ( )
( )

( )ασ

σ

σ= + ∆ + ++x x g x t x
x

x
t x w

d

d
d .n n n n

n
n n1 (A.3)

This approach can be straightforwardly generalized to vecto-

rial systems.

Appendix B. Derivation of the spurious drift of a 

Brownian particle

SDE (14) is equivalent to the system
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where ∫ η=W sdt

t

s
0

 is the time integral of the white noise7. The 

evolution of a probability density ( )ρ x v,  under the stochastic 

dynamics de�ned by this system is described by the Fokker–
Planck (in mathematics literature: forward Kolmogorov) 

equation
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where the subscripts denote partial derivatives. To �nd the 

steady-state probability density, we need to solve this equa-

tion with the left-hand side equal to zero. A direct calcul ation 

shows that it is satis�ed by the Boltzmann–Gibbs probability 

distribution given by equation (16).

We now outline the derivation of the correct limiting SDE 

for →m 0 and the corresponding noise-induced drift. We start 

by rewriting the system (B.1) as
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In integral form, SDE (B.3) becomes
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where the �rst integral term on the right-hand side is the 

contrib ution due to the deterministic (external) forces and 

the next term is an Itô integral. In order to derive the noise-

induced drift, we will study the limiting behavior for →m 0 

of the last term. We start by integrating it by parts, obtaining

( ) [ ( ) ( )]
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mv D x mvD x

m

k T

D x

x
v s

d
1

d

d
d .

t

s s t t

t
s

s

0 B B

0 0

0 B

2

 

(B.5)

Using equation (17), the boundary terms in equation (B.5) go 

to zero with →m 0 and, replacing the kinetic energy mvs
1

2

2( ) by 

7 Note that in SDEs (B.1) there is no multiplicative noise because the noise 

term for vt is multiplied by a function of xt (not of vt).
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its average k T
1

2
B( ) in the last integral, we obtain the effective 

SDE (18).

We emphasize that the averaging of the kinetic energy is 

far from trivial and needs a careful justi�cation; a sketch of the 

argument (in a more general case) will be given in section 3.2. 

The physical picture is that the velocity vt is a fast variable that 

homogenizes in the →m 0 limit. The term adiabatic elimina-

tion is also used in literature to describe this phenomenon. 

The above result was proven rigorously by Hottovy et al [48] 

and by Herzog et al [82]. Related results were obtained ear-

lier by Hänggi [19] and by Sancho et al [39]. Interestingly, 

Marchesoni [83] has recently suggested that the spurious drift 

at zero cur rent could possibly provide an option to design a 

Maxwell demon.

Appendix C. Derivation of noise-induced drift for 

systems not satisfying the �uctuation-dissipation 

relation

To analyze the general SDE (23), we follow the argument in 

[48], concentrating on the main steps and leaving out techni-

cal details and estimates. The �rst step in the derivation of the 

limiting equation  is the same as in the special case studied 

in appendix B: introducing the velocity vt, we rewrite SDE  

(24) as
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The �rst two terms on the right-hand side do not depend 

explicitly on m and thus remain unchanged in the limit →m 0. 

To derive the limiting contribution of the third term, we use 

the product rule:
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While the equipartition theorem no longer holds in this gen-

erality, we will show that the fast oscillations of the veloc-

ity allow to replace in the integrals the expression mvt
2 by a 

function of xt (homogenization or adiabatic elimination of the 

fast variable vt [54]). This is done by �rst showing that mvt 

converges to zero as →m 0 (a technical step, involving careful 

estimates [48]). It follows that in the integral form of the last 

equation, i.e.
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the �rst term on the right-hand side vanishes in the limit. The 

integrand in the second term equals ( )
( )

γ
γ

−

x mvt

x

x t
2 d

d

2t . To �nd 

its homogenization limit, we study the expression [( ) ]d mvt
2 . 

On the one hand, this quantity becomes zero when →m 0. On 

the other hand, using the Itô product formula [5], we have

( ) ( ) [ ( )]⋅ = +d mv mv mv d mv d mv2 .t t t t t
2 (C.4)

Substituting for m vd t the expression on the right-hand side of 

SDE (23), we obtain

[( ) ] [ ( ) ( ) ( ) ] ( )γ σ σ= − + +d mv mv F x t x v t x W x t2 d d d d .t t t t t t t t
2 2
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The �rst and third terms on the right-hand side converge to 

zero, since mvt does (the rigorous argument again requires 

some care [48]). Since in the limit →m 0, the whole expres-

sion converges to zero, it follows that mv tdt

2  is asymptotically 

equivalent to 
( )
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γ
td

x
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t
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. We thus obtain from equation (C.3)
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in the zero mass limit. Substituted into SDE (C.1), this gives 

the limiting SDE (24).

The method described above can be adapted to the multi-

dimensional case, i.e. to derive the limit of SDE (25) as the 

mass goes to zero. The main idea is the same as in the one-

dimensional case, but calculations become more complicated 

and the description of the noise-induced drift is more involved: 

it is expressed using a unique solution of a matrix equation (the 

Lyapunov equation). The �nal result becomes more implicit, 

since the solution of the Lyapunov equation  is, in general, 

expressed as an integral over an auxiliary parameter. In an 

important class of cases, the Lyapunov equation has an explicit 

solution and the limiting equation becomes explicit as well.

The precise form of the limiting equation is

[ ( ) ( ) ( )] ( ) ( )γ γ σ= + +
− −

x x F x S x x x Wtd d d ,t t t t t t t
1 1 (C.7)

where ( )S xt  is the noise-induced drift whose i th component 

equals

( ) [( ) ( )] ( )∑ γ=
∂

∂

−
x x xS

x
J ,i

j l l
ij jl

,

1
 (C.8)

and J is the matrix solving the Lyapunov equation

γ γ σσ+ =
∗ ∗J J . (C.9)

When all eigenvalues of γ have positive real parts, the unique 

solution is given by the formula [84, chapter 11]

∫ σσ= γ γ
∞
− ∗ − ∗

yJ e e d .
y y

0

 (C.10)

Note that when γ γ=
∗ commutes with σσ∗, the solution of 

the Lyapunov equation is explicitly given by γ σσ=
− ∗J

1

2

1 .

Appendix D.  Derivation of the noise-induced 

drift for systems with colored noise and delayed 

feedback

To derive the limiting SDE (29), we approximate the delay 

equation  by an SDE without delay and apply the method 

based on integration by parts outlined in appendix C. First, we 

de�ne a time-shifted process

= δ−z xt t (D.1)

and rewrite the equation as

( )σ η= − +δ δ
τ

+ +z kz F z td d .t t t t (D.2)

Introducing the process
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=v
z

t

d

d
,t
t

 (D.3)

we use approximations

δ≈ +δ+z z vt t t (D.4)

and, accordingly,

δ≈ +δ+z z vd d d .t t t (D.5)

Substituting these expressions into SDE (28) and solving for 

vd t, we obtain the system

⎜ ⎟

⎧

⎨
⎪

⎩
⎪

⎛

⎝

⎞

⎠

z v t

v kz t k v t t

d d ,

d
1

d
1

d
1

d .

t t

t t t tδ δ δ
η

=

= − − + +
τ (D.6)

This system can be studied using the method outlined in 

appendix C: we add the equations  describing the process 

η
τ to the system and apply the general method of [48] to 

identify the limiting system which matches the experimental 

results.

In [61], the same method is applied to a much more general 

system of delayed SDE driven by several colored noises with 

couplings that are functions of the delayed dynamical variables:

( ) ( )η= + δ
τ

−x f x g xt td d d ,t t t t (D.7)

where ( )=x x x x, ..., , ...,t t t

i

t

m1 T is the state vec-

tor (the superscript ‘T’ denotes transposition), 

( ) ( ( ) ( ) ( ))=f x x x xf f f, ..., , ...,t t
i

t
m

t
1 T is a vector-valued func-

tion describing the deterministic part of the dynamical system,

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

⎡
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⎢
⎢
⎢
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11 1 1

1

1

 (D.8)

is a matrix-valued function, ( )=δ δ δ δ− − − −
x x x x, ..., , ...,t t t

i

t

m1 T
i m1

 

is the delayed state vector (note that each component 

is delayed by a possibly different amount δ > 0i ), and 

( )η η η η=
τ τ τ τ

, ..., , ...,
t t t

j
t
n,1 , , T is a vector of independent noises 

η
τ j, , where ητ j,  are colored noises (harmonic noises [85]) with 

characteristic correlation times τj, as described in detail in 

[27]. We study the limit of this SDE as the parameters δi and 

τj all go to zero at the same rate, i.e. δ = εci i , τ = εkj j  where 

ci and kj are constants and →ε 0. Using a modi�cation of the 

method outlined in appendix C, we obtain the limiting system

( ) ( )

( )
( )

 

∑

∑

= +

+
∂

∂
+

−

−

� ���������������� ����������������
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y y

y
y

y f t g W
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d d d

1

2
1 d .

t
i i

t

j

ij
t t

j

p j

pj
t

ij
t

p

p

j,

1

nose induced drifts

 
(D.9)

The noise-induced drift terms are again of the Itô-Stratonovich 

correction type, entering with coef�cients that are explicit 

functions of the ci and kj. See also [90] for a more precise 

result replacing ( )+ −⎜ ⎟
⎛
⎝

⎞
⎠

1 by exp
c

k

c

k

p

j

p

j

Appendix E.  Derivation of noise-induced drift for 

systems with sensorial delay

In order to derive equation  (33), we will study the approxi-

mate SDEs (32) and derive limiting SDEs for xt and yt in the 

limit when τ and δ go to zero at the same rate. It will be seen 

that, within the approximation discussed below, these equa-

tions reproduce the experimental results obtained in [62] and 

discussed in section 3.4, including a qualitative change of the 

robot’s behavior at δ τ= − .

Solving the �rst two SDEs (32) for ẋt and ẏt, we obtain the 

system

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

x
u x y

x y x y

y
u x y

x y x y
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2
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x t t t
u

y t t t

t

t t t

u

x t t t
u

y t t t

t t

1

1
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( )

( ) ( )

φ

φ φ

φ

φ φ

φ
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=

+ +

=

+ +

=

τ

δ

τ

τ

δ

τ

∂

∂

∂

∂

∂

∂

∂

∂

 (E.1)

which, assuming that δ τ ≪/ 1, we approximate further by

( )

( ) ( )

( )

( ) ( )

τ
φ
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φ φ
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(E.2)

As mentioned earlier, the above system is meaningful for 

both positive and negative δ; in fact, it is for ‘negative time 

delay’ (δ< 0) that we see the most interesting phenomena. 

We are going to study its limit when δ and τ go to zero at 

the same rate, which is consistent with our earlier assumption 

δ τ ≪/ 1.

The methods described in the previous appendices do not 

apply to the above system. Instead, we use the multiscale 

method, whose mathematical details and foundations can be 

found in [54] or in [53]. The essence of the method is to study 

a partial differential equation  (the backward Kolmogorov 

equation) associated with the system (E.2), take its limit as 

→ε 0, and recover the limiting SDE system from the result. 

The calculations are involved and we refer the reader to [62] 

for details. The limiting Kolmogorov equation is

⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝
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⎠
⎟

ρ δ
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ρ ρ
ρ

∂

∂
= −

∂

∂

∂

∂
+
∂

∂

∂

∂
+ ∆

t
u

u

x x

u

y y

u1

2
1

2
.

0 0 0
2

0 (E.3)

To obtain a meaningful limit, we scaled the velocity by τ . 

This means that to compare the result with experiment, we 
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have to substitute τ=u v and rewrite the equation in terms 

of v:

⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝
⎜

⎞
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ρ τ δ
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∂

∂

∂
+ ∆

t
v
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x x

v

y y

v

2
1

2
.

0 0 0
2

0 (E.4)

According to diffusion theory [5], the limiting SDEs for xt and 

yt, which correspond to this Kolmogorov equation, are

( ) ( )

( )

( ) ( )
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1
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 (E.5)

where W (1)and W (2) are independent Wiener processes. Two 

remarks are in order. First, the angular variable φ is no lon-

ger present in the limiting equations: similarly to vt in the 

Brownian motion case, it is a fast variable that gets adia-

batically eliminated in the limit. Second, the limiting SDEs 

involve two independent sources of noise, while only one was 

present in the original ones. This system correctly reproduces 

the limiting distribution (statistics) of the paths solving the 

original system whose asymptotics is, however, not studied 

here for individual realizations of the noise. Rather, for each 

value of τ and δ (with the ratio δ τ/  kept constant) we consider 

the distribution of the solutions and study the limit of this 

distribution, i.e. of the probability measure on the path space. 

This mode of convergence is called weak [86]. The pres-

ence of two independent noise sources in the limiting system 

makes it unlikely that one can prove a stronger convergence 

statement, including any information about the solutions’ 
behavior for a �xed realization of the noise. In part icular, 

such a statement would require a natural de�nition of two 

independent Wiener processes W (1) and W (2) in terms of a 

single Wiener process W.

From SDEs (E.5) one obtains, applying the Itô formula [5] 

to the function = +r x y2 2 ,

)( ( ) )
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Let us note that in the radially symmetric case, in which  

v(x, y)  =  v(r) we may obtain from here after some calculations  

(with an aid of the Lévy theorem [5, theorem 8.6.1]) the 

 limiting equation for the evolution of the radial process

( ) ( )
( )
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where the Wiener process B is de�ned in terms of W (1) and 

W (2) by

( ) ( )
⎛

⎝
⎜

⎞

⎠
⎟∫= +B
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r
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r
Wd d .t

t
s

s
s

s

s
s

0

1 2
 (E.8)

Going back to general case, we now use a standard method 

in diffusion theory to �nd the density of the stationary dis-

tribution of the stochastic evolution governed by the limiting 

SDEs (E.5). Namely, we consider the adjoint to the backward 

Kolmogorov equation  (equation (E.3)), which is called for-

ward Kolmogorov or Fokker–Planck equation:

( )
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2
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This equation  describes the time evolution of a probability 

density under the dynamics of the corresponding SDE system. 

The stationary density given by equation (33) was obtained by 

equating its right-hand side to zero.
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