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Abstract
The elastic moduli of single layer graphene sheet (SLGS) have been a subject of intensive
research in recent years. Calculations of these effective properties range from molecular
dynamic simulations to use of structural mechanical models. On the basis of mathematical
models and calculation methods, several different results have been obtained and these are
available in the literature. Existing mechanical models employ Euler–Bernoulli beams rigidly
jointed to the lattice atoms. In this paper we propose truss-type analytical models and an
approach based on cellular material mechanics theory to describe the in-plane linear elastic
properties of the single layer graphene sheets. In the cellular material model, the C–C bonds are
represented by equivalent mechanical beams having full stretching, hinging, bending and deep
shear beam deformation mechanisms. Closed form expressions for Young’s modulus, the shear
modulus and Poisson’s ratio for the graphene sheets are derived in terms of the equivalent
mechanical C–C bond properties. The models presented provide not only quantitative
information about the mechanical properties of SLGS, but also insight into the equivalent
mechanical deformation mechanisms when the SLGS undergoes small strain uniaxial and pure
shear loading. The analytical and numerical results from finite element simulations show good
agreement with existing numerical values in the open literature. A peculiar marked auxetic
behaviour for the C–C bonds is identified for single graphene sheets under pure shear loading.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Graphene sheets (GS) have Young’s modulus and thermal
conductivity rivalling that of graphite (1.06 TPa and
3000 W m−1 K−1 respectively) [1, 2]. They may exist as single
layered or multi-layer structures. It is possible to harness
the multifunctional properties of graphene sheets and design
novel class of advanced composites with superior mechanical
and electric performance [1–3], as well as innovative strain
sensors [5]. An approach to produce graphene–polymer
composites by complete exfoliation of graphite and molecular-
level dispersion of GS in a polymer host has been described
in [4]. The latter work, from Stankovich et al, has fuelled
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a growing interest into the mechanical determination and
characterization of single layer graphene sheets (SLGS),
although from the experimental point of view advances have
been made in measuring magneto-transport properties [9],
while experimental mechanical data are still confined to
graphene layers only. The enhanced flexibility of GS,
despite their high Young’s modulus, has been attributed to the
change in curvature given by reversible elongation of sp2 C–C
bonds [6, 8, 49]. Vibrational properties of SLGS [10] or multi-
layer graphene assemblies [7] have also been evaluated using
analytical and finite element simulation methods.

Molecular mechanistic modelling of single layer graphene
sheets has been pursued by several authors. Simple lattice
models with force constants derived from an assumed
potential have been developed by Bacon and Nicholson [11]
and Gillis [12]. Ab initio methods have been used by
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Kudin et al [13], who predict a Young’s modulus of 1.02 TPa
and Poisson’s ratio of 0.149, and Van Lier et al [14],
reporting a Young’s modulus for graphene equal to 1.11 TPa.
Several authors have made use of Tersoff–Brenner potentials
to describe the mechanical properties of single graphene
sheets, with Young’s modulus predictions between 0.694 and
0.714 TPa, and Poisson’s ratios from 0.397 to 0.417 [15, 16].
Brenner’s potential and Cauchy–Born rule have also been used
by Reddy et al [23] to describe the mechanical properties of
finite size graphene sheets, highlighting the difference between
minimized and unminimized strain energy configurations for
the SLGS under different types of loading. Rajendran and
Reddy have also indicated the maximum numerical precision
attainable using the above methods to calculate the stiffness
of SLGS and carbon nanotubes [22]. Second generation
Brenner potentials have also been used by Huang et al
[17] to calculate the in-plane Young’s moduli, Poisson’s
ratios and thickness of GS and single wall carbon nanotubes
(SWCNTs), with stiffness values for the GS ranging from
2.99 to 4.23 TPa, and Poisson’s ratio of around 0.397. A
rigorous homogenization technique has been also developed
by Caillerie et al [25] to calculate first Piola–Kirchhoff and
Cauchy stress tensors considering stretching and bond angle
variation. Other analytical models of SLGS incorporating
energy contributions from bond stretching and changes in
bond angle have been proposed as subset of analogous models
for single wall carbon nanotubes, [50]. The mechanical
properties of different graphene configurations, with chiral
index n towards infinity, have been extracted from analytical
nanotubes models. Hemmasizadeh et al [24] have also used a
mixed MD–continuum mechanics model based on thin shell
theory to obtain the properties of SLGS from a numerical
nanoindentation simulation.

Another approach widely used recently for nanostructures
modelling is the equivalent atomistic continuum–structural
mechanics approach, pioneered by Odegard et al [18] and Li
and Chou [19]. In this approach, typical elements of structural
mechanics, such as rods, beams and shells are used with
appropriate mechanical properties to simulate the static and
dynamic behaviour of graphene layers and carbon nanotubes.
The mechanical properties for the structural elements are
derived from equilibrium between harmonic steric potentials
of the C–C bonds and mechanical strain energies associated to
tension, torsion and bending related to the mechanical elements
simulating the bonds themselves. A truss model was proposed
in [18], wherein rods of different stiffnesses represent the
stretching and in-plane bending capabilities of the C–C bonds.
Reddy et al [21] extended the model from [18] to account for
the orthotropy generated in finite size graphene sheets. Meo
and Rossi [20] developed a finite element model comprising
uniaxial links and nonlinear rotational spring to represent
the modified Morse potential when simulating graphene and
carbon nanotube structures. Tserpes and Papanikos [33]
identified thickness and stiffness properties (Young’s and shear
modulus) for an equivalent material associated to the C–C
bonds represented by finite element beams in single walled
carbon nanotubes (SWCNTs). The approach of [33] has been
used by Sakhaee-Pour et al [10] to compute natural frequencies

and modes of single graphene sheets, and to characterize the
in-plane properties of SLGS with different chirality [34].

The wide dispersion of the mechanical properties of
graphene sheets can be attributed principally to the uncertainty
associated to the thickness of these nanostructures. For
the majority of models used, the assumed thickness of the
graphene layer is 3.4 Å, equal to the one of a graphite layer.
The 3.4 Å value provides in-plane Young’s modulus of the
order of 1 TPa. However, several models related to graphene
and single wall nanotubes have indicated thickness values
ranging from 0.57 Å [17] to 6.9 Å [18]. In SWCNTs, the
dispersion of mechanical properties associated with thickness
and stiffness has been known as the ‘Yakobson’s paradox’ [29].
From the modelling point of view, thickness becomes
also important when considering the equivalent structural
mechanics approach. Sun et al [30] determined a thickness for
the C–C bond in SWCNTs of 1.2 Å for an equilibrium length
of 1.42 Å, coupling chemical potentials with Kirchhoff–Love
thin shell theory. However, the use of an isotropic thin shell
can be considered valid for nanotubes with radius/thickness
ratio higher than 10 [31], and for the first order of error of
the ratio between atomic spacing and SWCNT radius [32].
In [33], the thickness of the Euler–Bernoulli (EB) beam
element representing the C–C bond for a carbon nanotube is
1.47 Å, corresponding to an equilibrium length of 1.42 Å. On
the other hand, EB theory can be applied only to slender beams
with aspect ratios higher than 10 [38]. An improved model
has been proposed by Scarpa and Adhikari [33] considering
deep beam theory, where shear correction factors depending
on the cross-section and Poisson’s ratio of the equivalent C–C
bond material are taken into account. Using the AMBER force
model [41], the thickness value for the C–C bond for 1.42 Å
of length is 0.84 Å, with a Poisson’s ratio of 0.0032. The C–C
bond has therefore a negligible mechanical lateral deformation
when stretched or compressed, behaving like cork [26].

Reddy et al [23] have also highlighted the variation
in bond lengths present in finite graphene sheets, as well
as the in-plane orthotropy of single GS. Equilibrium bond
lengths in finite graphene sheets up to 120 atoms have been
observed varying between 1.39 and 1.47 Å under potential
energy minimization for different in-plane loading behaviour.
Special orthotropy [37] has also been recorded in two and
four straight edges SGS configurations, with anisotropy degree
between 0.92 and 0.99 [23]. The special orthotropy behaviour
is particularly interesting, because it is also observed in
common structural honeycomb configurations, even when
regular hexagonal topologies are considered [27]. The other
linear elastic models available for SGS predict however
an isotropic in-plane mechanical behaviour, with Young’s
modulus Y constant along the principal directions, with in-
plane shear modulus G obeying the relation G = Y/2/(1+ν).
Analytical models of structural honeycombs and cellular solids
are able to simulate in-plane mechanical properties [36, 37].
Structural honeycombs have ribs made of elements behaving
like structural beams, with stretching and bending capabilities,
and hinging important for high relative densities and damage
at the base of the ribs [36].

In this work we develop closed form solutions for
the in-plane elastic properties of SLGS using mechanical
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cellular solids combined with equivalent atomistic-continuum
mechanics approaches. A full analytical truss-lattice model
of the SGS based on the geometry proposed in [18] is
developed, and the rigidity matrix coefficients computed. A
cellular solid micromechanics model is also developed for the
hexagonal honeycomb configuration of the graphene, based on
the theoretical framework proposed by Masters and Evans [36].
The evaluation of the force constants to be used in this
model is based on the equivalent mechanical properties of
the C–C bond. Using a deep beam theory model with
Timoshenko shear correction factor, it is possible to determine
the thickness, Poisson’s ratio and equivalent Young’s modulus
of the C–C bond material, and use this values to provide the
stretching, flexural and hinging capabilities of the equivalent
beam elements constituting the SGS lattice. Equilibrium C–
C bond lengths are evaluated from models of the braced-
truss and honeycomb lattice using finite element models with
2096 atoms under different in-plane loading (uniaxial and pure
shear). The models are used to identify bond lengths and
thickness distributions related to minimum potential energy
configurations for imposed strains up to 0.01%. The finite
element results provide a benchmark of the analytical models
developed, together with a critical assessment from results in
open literature.

2. Braced-truss model truss-lattice model

A kinematically stable hexagonal truss-structure model can be
derived analytically from the one proposed by Odegard et al
[18], in figure 1. Elements a, b, c, d, e and f are representative
of stretching effects on the C–C bonds, while the rods g, h,
i, l, m and n provide the in-plane bending stiffness of the
graphene layer. In a truss-like structure, the equivalent in-
plane properties can be calculated from the rigidity matrix T,
the product between the stress–strain matrix and thickness of
the material [28]:

T =
[ T11 T12 T16

T12 T22 T26

T16 T26 T66

]
(1)

where the rigidity matrix coefficients Ti j are defined as:

T11 =
6∑

i=1

ri cos4 αi (2a)

T12 =
6∑

i=1

ri cos2 αi sin2 αi (2b)

T16 =
6∑

i=1

ri cos3 αi sin αi (2c)

T22 =
6∑

i=1

ri sin4 αi (2d)

T26 =
6∑

i=1

ri cos αi sin3 αi (2e)

T66 =
6∑

i=1

ri cos2 αi sin2 αi . (2 f )

Figure 1. Unit cell for braced-truss model.

In ((2a)–(2 f )), αi are the rod angles versus the reference
frame 12. The rigidity matrix coefficients are expressed in
terms of bar forces ri = Ai Yi/bi and the bar row spacings bi =
�A/li , where �A = 3

√
3L2/2 is the area of the hexagonal

unit cell. The equivalent Young’s moduli for the rods a–f and
g–n are computed starting from Odegard approach [18]:

Ya−f = 4Lkr

πd2
s

(3)

Yg−n = 16kθ

π Ld2
b

(4)

where kr and kθ are stretching and rotational force constants,
and the suffix s and b stands for the stretching rods a–f and
bending rods g–n. The rods are assumed to have a circular
cross-section. Applying (4) and (5) into the bar forces, bar
spacing and coefficient definitions (2), one obtains the rigidity
matrix:

T =
{√

3

L2

(
kr L2 + 36kθ

)}[ 1 1/3 0
1/3 1 0
0 0 1/3

]
. (5)

Considering the graphene layer under in-plane stress, the
uniaxial Young’s moduli E and is:

E = 1

dmax

4
√

3

9L2

(
kr L2 + 12kθ

)
(6)

where dmax is the maximum thickness between ds and db. The
in-plane shear modulus G12 is given by:

G12 = 1

dmax

4
√

3

27L2

(
kr L2 + 12kθ

)
. (7)

The coupling uniaxial–shear terms Ti6, with i = 1, 2 are
zero, while T11 = T22. The kinematically stable hexagonal
truss is isotropic, with shear modulus always given by T12.
The Poisson’s ratio ν for the graphene layer, in this model,
is equal to 1/3. This value of Poisson’s ratio is common for
all equivalent continuum mechanical properties of single layer
truss structures [28]. It is worth noticing that the rigidity matrix
coefficients are not function of the thickness ds and db—the
model would lead the same results if a single constant thickness
is assumed both for the stretching and bending elements.
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3. Continuum beam for C–C bond

A common approach to describe the total steric potential
energy of the C–C bonds in a CNT or graphene sheet
under small linear elastic deformations is the harmonic
representation, omitting the electrostatic interaction [19]:

Utotal = Ur + Uθ + Uτ (8)

where Ur , Uθ and Uτ are respectively the energies due to bond
stretching, bond angle variation, and combined dihedral angle
and out-of-plane torsion. Following, the single terms in (8) can
be expressed as [19, 33]:

Ur = 1
2 kr (�r)2 (8a)

Uθ = 1
2 kθ (�θ)2 (8b)

Uτ = 1
2 kτ (�ϕ)2 (8c)

where kr , kθ and kτ are respectively the force constants related
to bond stretching, bending and torsional stiffness. Bond
stretching variation, in-plane and twisting angle increments are
indicated by �r , �θ and �ϕ respectively. In the equivalent
structural network approach, the elastic constants for the
equivalent continuum material composing the C–C bonds are
determined equating the interatomic interaction energies and
the strain energies associated to the mechanical deformation of
the structural elements. Assuming that the C–C bonds behave
as uniform three-dimensional beams with stretching, torsion
and bending capabilities, the strain energies associated to pure
axial and torsion loading can be expressed as [33]:

Uaxial = 1

2
Kaxial(�L)2 = E A

2L
(�L)2 (9a)

Utorsion = 1

2
Ktorsion(�β)2 = G J

2L
(�β) (9b)

Ubending = 1

2
Kbending(2α)2 = E I

2L

4 + 


1 + 

(2α)2. (9c)

In (9a) and (9b), E and G are the equivalent Young’s and
shear moduli for the bond, while A and J are the cross-section
area and polar moment of inertia. The axial deformation and
end beam rotation are expressed by �L and �β . Equation (9c)
is related to a deep uniform beam with cross-section shear
deformation, second moment of area I under pure bending,
with 2α being the change in rotational angle (bond angle
variation [33]). The shear deformation constant 
 is defined
as [38]:


 = 12E I

G AsL2
(10)

where As = A/Fs, and Fs is the shear correction factor.
Considering the C–C bond as a prismatic beam with circular
section, the area and inertia properties of the beam are A =
πd2/4, I = πd4/64 and J = πd4/32, where d is
the diameter (thickness) of the bond. The optimum shear
deflection constant for circular cross-section is provided by
Timoshenko’s formula [39]:

Fs = 6 + 12ν + 6ν2

7 + 12ν + 4ν2
(11)

where ν is the Poisson’s ratio of the beam element material.
Imposing the equivalence between �r and �L, as well as
between �β and �θ , one can obtain the following expressions
for the Young’s and shear modulus from the equivalence
between the steric and mechanical strain energies:

E = 4kr L

πd2
, (12a)

G = 32kτ L

πd4
. (12b)

If one assumes that the equivalent material for the C–C
beam is isotropic, the condition ν = −1 + (E/2/G) with
−1 < ν < 0.5 leads to the following maximum condition
for the thickness value:

d < 2
√

6

√
kτ

kr
. (13)

From (13), using the Morse force model [40] and the
torsion constant from [42] (kr = 84.7 nN Å

−1
, kτ =

2.78 nN Å rad−2), the limiting value for the thickness would
0.887 Å. With a AMBER force field used for the bond [41, 33]
(kr = 65.2 nN Å

−1
, kτ = 2.78 nN Å rad−2), the limit value

would 1.01 Å. Substituting (11) in (10) with the moduli
definitions (12), the shear correction factor becomes:


 = 3kr d4
(
6 + 12ν + 6ν2

)
32kτ L2

(
7 + 12ν + 4ν2

) . (14)

Inserting (14) and (12a) in (9c), and equating the bending
strain energy with the angle deformation one from (8c), one
obtains the following relation:

kθ = kr d2

16

4A + B

A + B
(15)

where:

A = 112L2kτ + 192L2kτ ν + 64L2kτ ν
2 (16a)

B = 9kr d4 + 18kr d4ν + 9kr d4ν2. (16b)

Equation (15) can be solved for d and ν for a fixed L using
a nonlinear optimization approach like a Marquardt algorithm.

4. Equivalent honeycomb graphene model

An equivalent honeycomb graphene (EHG) model can be
derived from Masters and Evans approach [36] used to predict
the mechanical properties of cellular solids. The C–C bonds
are treated like structural elements having hinging, stretching,
bending and shear beam deformation capabilities. For each
type of deformation, a particular force constant K = F/δ is
identified, where F is the force associated to the mechanical
loading, and δ the corresponding equivalent displacement.
For the stretching deformation, the force constant is provided
by the stretching parameter kr . Hinging at the base of the
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Figure 2. Equivalent hexagonal honeycomb cell under (a) stretching,
(b) hinging.

honeycomb rib is associated to the shear modulus of the core
material, with a related force constant [36]:

Kh = G A

L
(17)

where G is the shear modulus of the equivalent core material.
Inserting (12b) in (17), the hinging spring constant is therefore:

Kh = 8kτ

d2
. (18)

The bending force constant is associated to the Euler–
Bernoulli beam deflection mechanism [38], with the spring
constant equal to:

Kb = F

L�θ
(19)

where �θ = F Ld/2E I . Considering the expression (12a) for
the equivalent Young’s modulus of the C–C bond, the bending
force constant becomes:

Kb = kr

8

d

L
. (20)

The force constant Ks associated with the shear beam
deflection is given by [38]:

Ks = 12E I

L3

1

1 + 

. (21)

Inserting (14) and (12) in (21), the value of Ks is:

Ks = {
12krkτ d2(7 + 12ν + 4ν2)

}{
112L2kτ + 192L2kτ ν

+ 64L2kτ ν
2 + 9krd4 + 18krd4ν + 9krd4ν2

}−1
. (22)

4.1. Stretching and hinging deformation

Figure 2 shows the overall deformation behaviour of a
graphene layer unit cell subjected to pure stretching (a) and
pure hinging (b). When adapting the Masters and Evans
model [36] to the SLGS, both the horizontal and oblique ribs
of the honeycomb have length L, while the internal cell angle
θ is fixed at 30◦. Considering only the stretching and hinging

Figure 3. C–C bond undergoing hinging for (a) compressive and (b)
tensile loading along direction 2.

contributions (figure 3), the equations for the in-plane Young’s
modulus E1 can be derived as:

E1 = 4
√

3kr Kh

3d (kr + 3Kh)
. (23)

The Poisson’s ratio ν12 = −ε2/ε1 obtained by loading
along the 1-direction is recast as:

ν12 = 1 − Kh/kr

1 + 3Kh/kr
. (24)

When considering loading along direction 2, one can
identify in a similar manner the Young’s modulus E2 and the
Poisson’s ratio ν21 [36]:

E2 = 4
√

3kr Kh

3d (kr + 3Kh)
(25)

ν21 = ν12 = 1 − Kh/kr

1 + 3Kh/kr
. (26)

Considering a plane stress deformation field for the SLGS,
the coefficients of the rigidity matrix are:

T11 = T22 =
√

3ks (kr + 3Kh)

6 (kr + Kh)
(27)

T12 = T21 =
√

3ks (1 − Kh/kr )

6 (1 + Kh/kr )
. (28)

For the in-plane shear modulus G12 in pure shear
(figure 4(a) for the stretching effect, figure 4(b) for the hinging
one), model [36] for the graphene lattice case would provide:

G12 =
√

3Khkr

3d (kr + Kh)
. (29)

The rigidity matrix coefficient T66 would be therefore:

T66 =
√

3Khkr

3 (kr + Kh)
. (30)

It is possible to notice how the GS in-plane properties
under stretching–hinging deformation only are isotropic, with
G12 = E1/2/(1 + ν12).
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Figure 4. (a) Unit cell under shearing forces; (b) deformation due to
shearing.

4.2. Bending and shear beam deformation

The strain along direction 1 caused by equivalent bending of
the bond can be defined using the bending force constant Kb

as [36]:

bε1 = σ1d
√

3

4Kb
(31)

where σ1 is the applied in-plane stress along the direction 1.
In structural honeycombs, the deformation provided by deep
beam bending is taken into account as separate contribution to
the overall mechanical properties [37]. The strain along the
1-direction is therefore similar to equation (31):

θ ε1 = σ1d
√

3

4Ks
. (32)

Considering the total strain given by all the deformation
mechanisms, the Young’s modulus E1 can be derived as [36]

E1 = σ1

ε1

= 4
√

3Kb Khkr Ks

3d (kr Ks Kh + Kb Khkr + Kb Kskr + 3Kb Kh Ks)
. (33)

In a similar way, the strains along direction 2 arising from
bending are:

bε2 = σ1d
√

3

4Kb
. (34)

A similar expression to (34) can be obtained for
the induced strain caused by the shear beam deflection,
substituting Kb with Ks. The bending terms provide
a deformation opposing the one given by the stretching
mechanism. Applying the definition of Poisson’s ratio ν12 one
would obtain [36]:

ν12 = −ε2

ε1
= M − N

M + 3N
(35)

where:
M = Kskr Kh + Kb Khkr + Kb Kskr (36a)

N = KbKs Kh. (36b)

For the uniaxial properties along direction 2, using a
similar approach one can obtain [36]:

E2 = 4
√

3Kb Khkr Ks

3d (kr KsKh + Kb Khkr + Kb Kskr + 3Kb Kh Ks)
(37)

ν21 = −ε1

ε2
= M − N

M + 3N
. (38)

The equivalent shear modulus G12 from the Masters and
Evans adaptation to the SLGS case would be:

G12 =
√

3Kb Khkr Ks

3d (kr KsKh + Kb Khkr + Kb Kskr + Kb Kh Ks)
.

(39)
Also in this case, one can observe the isotropic in-plane

properties of an infinite SLGS by the satisfaction of the
condition G12 = E1/2/(1 + ν12).

5. Numerical models

Finite size graphene sheet finite element models were
assembled using a technique similar to [19]. Each rod
of the braced-truss unit cell was represented by a single
uniaxial element with tension–compression capabilities, linear
interpolation functions and translation degrees of freedom
along the 1 and 2 directions. The node at the junction of each
uniaxial element corresponds to a single atom in the graphene
lattice, with overall 2096 atoms for the whole model (length
79.93 Å, width 68.87 Å). The uniaxial loading conditions
were represented by uniform displacements at the end of
the graphene sheet corresponding to an imposed strain of
0.01%, while the opposite end of the sheet had the degrees
of freedom corresponding to the loading direction blocked
to represent a sliding condition (figure 5(a)). The in-plane
Poisson’s ratio was calculated averaging the side normal
displacements and calculating the corresponding strains [43].
For the pure shear loading, a uniform shear strain γ was
imposed on the edges of the sheet, and the in-plane shear
modulus calculated from the estimation of the strain energy
U of the system [38]. The nodes at the edge were loaded
with imposed horizontal and vertical displacements u and v,
to represent the strain γ = ∂u/∂y + ∂v/∂x [18]. For each
type of loading, the average equilibrium C–C bond length
L and thickness ds and db were identified using a multistep
optimization route, involving the minimization of the total
strain energy of the system using zero order and first order
derivative techniques [44].

The honeycomb lattice finite element models (figure 5(b))
were developed following a similar approach. The C–C bonds
were simulated using 2-nodes beam elements having axial
bending and shear deformation capabilities in 3D with six
degrees of freedom (three translations and three rotations).
Similarly to the braced-truss models, loading was performed
along the 1 and 2 directions, and pure shear was imposed
on the edges of the sheet. The minimization of the potential
energy was carried out during the different loading conditions
to identify the equilibrium length of the C–C bond, as well
as the thickness d and the bond Poisson’s ratio ν. An added
constraint relation imposing the isotropic condition for the
equivalent C–C bond material was inserted in the optimization
set of equations.
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(a) (b)

Figure 5. (a) Finite element of braced-truss single layer graphene sheet under tensile loading along x-direction; (b) finite element of
honeycomb single layer graphene sheet under pure shear loading.

Table 1. In-plane rigidity for braced-truss graphene model.

Force field
E (TPa)
(equation (6))

G12 (TPa)
(equation (7)) ν12

E1

(TPa) (FE)
E2

(TPa) (FE)
G12

(TPa) (FE) ν12 (FE) ν21 (FE)

AMBER 1.222 0.143 0.33 1.303 1.378 0.208 0.569 0.567
Morse 1.910 0.181 0.33 1.957 1.379 0.213 0.570 0.578

6. Results and conclusions

6.1. Braced-truss model

For the braced-truss model, the AMBER force constants used
were kr = 32.6 nN Å

−1
and kθ = 0.438 nN Å rad−2 [18, 19].

A modified version of the linearized Morse potential [40]
(kr = 42.3 nN Å

−1
and kθ = 0.45 nN Å rad−2) was adopted

to accommodate the total mechanical strain energy of the
truss as indicated by Odegard et al [18]. The C–C lengths
and thickness of the rods used in the analytical calculations
have been the ones determined through the finite element
minimization technique. For the AMBER case, the loading
along direction 1 leads to the equilibrium C–C bond length
of 1.39 Å, while for the case of mechanical loading along 2
the same length is 1.35 Å, also for the pure shear case. The
Morse case provides a C–C length for loading along direction
1 of 1.45 Å, while for the case on direction 2 the length is
1.35 Å, and for pure shear 1.36 Å. The thickness distribution
provides very different values for the rods a–f and struts g–
n. For loading along direction 1, rods a–f have thickness
ds = 0.565 Å, regardless of the force model used. The same
is valid also for loading along direction 2 and pure shear, with
a thickness value 0.55 Å. Rods g–n thickness have a different
behaviour. For the AMBER case with loading along 1 axis,
the thickness db is 2.24 Å, while for the Morse force model
the same thickness is 1.81 Å. For loading along direction 2,
the two force models provide a thickness of 2.22 Å, while for
pure shear both AMBER and Morse potentials give a db value
of 6.4 Å. All these thickness values are lower than the 6.9 Å
indicated in [18], although in the same reference the maximum
thickness for the braced unit cell under pure shear is reported
as 5.7 Å.

The analytical expressions for the Young’s and shear
modulus (6) and (7) provide a conservative estimation

compared to the values from the finite element simulations
(table 1). The variation in Young’s modulus between the
AMBER analytical and FE results is around 10%, while a
more significant discrepancy is recorded for the shear modulus
(32%). The degree of anisotropy (E1/E2) 0.94 is in line with
the one observed in finite size graphene sheet [23]. On the
other hand, the Morse linearized potential provides a far greater
anisotropy degree (0.71). All force models provide in-plane
Poisson’s ratio around 0.56, higher than the analytical 0.33, as
well as the 0.44 reported in [19].

6.2. Bond thickness and length

The minimization of equation (15) leads to different results
according to the force model used. With the AMBER force
constants, the thickness of the C–C bond would be 0.84 Å,
with a Poisson’s ratio ν of 0.034 for an equilibrium length L
of 1.38 Å. For the linearized Morse potential, the thickness
is decreased to 0.74 Å, while the Poisson’s ratio is 0.043,
for the same equilibrium length of 1.38 Å. The thickness
results are compatible with different results in open literature,
such as the ones of Zhou et al [46] (d = 0.74 Å), Tu
and Ou-Yang [45] (d = 0.75 Å) and Pantano et al [51]
(d = 0.75 Å). The results from the linearized Morse potential
are closer to the values provided by Kudin et al [13] (d =
0.87 Å) and Goupalov [52] (d = 0.85 Å). Moreover, the
thickness and equivalent Poisson’s ratio calculated using the
AMBER force field are the same to the ones calculated by
Scarpa and Sondipon in [35]. For both Poisson’s ratio values,
the C–C bond features a negligible transverse dilation when
mechanically stretched. The equilibrium length of the C–C
bond is different from the one of 1.42 Å used in [35], but within
the range of sizes available in open literature. Reddy et al [23]
have recorded length distributions in finite size graphene sheets
between 1.39 Å (at the middle of the GS), to 1.47 Å (near

7
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Table 2. Force constants for equivalent honeycomb model.

Force field Kr (nN Å
−1

) Kh (nN Å
−1

) Kb (nN Å
−1

) Ks (nN Å
−1

)

AMBER 65.2 31.5 4.96 12.1
Morse 84.7 40.6 5.67 13.1

the corners). Duplock et al [1] report ranges of C–C bond
lengths between 1.37 and 1.54 Å when Stone–Wales defects
are present.

6.3. Equivalent honeycomb model

Table 2 shows the force constants for the stretching, hinging,
beam shear and flexural bending for the EH model according
to the two atomic potentials used. The values of the C–C
lengths L, thickness d and Poisson’s ratio ν are obtained from
the minimization of equation (15). For all cases, the flexural
bending stiffness constant Kb provides the lowest value
between the different deformation mechanisms. Therefore,
an equivalent structural honeycomb model for the grapheme
sheet including all the stiffness terms would have a deformation
dominated by the in-plane bending of the bonds. The
AMBER force field model provides a shear beam stiffness
Ks comparatively higher than the one from the linearized
Morse potential, when considered against the hinging stiffness
constant Kh (Ks/Kh is 0.384 for AMBER, 0.322 for Morse).
The flexural stiffness ratios Kb/Kh are very similar for the
two models, with values between 0.139 and 0.157. The effect
of the honeycomb force constants (18), (20) and (22) over
the analytical mechanical properties of the honeycomb lattice
can be estimated from table 3. When only the stretching–
hinging deformation mechanism is considered, the in-plane
Poisson’s ratio ν21 is between 0.211 and 0.213. The AMBER
model would provide an in-plane Young’s modulus around
3.5 TPa, while for the linearized Morse case there is an
increased stiffness by a factor 1.47. For both cases, the
isotropic in-plane material condition seems satisfied, with
G12 ∼ E1/2/(1 + ν12). We notice that the value of 3.536 TPa
for the AMBER model is approaching the 3.81 TPa calculated
by Huang et al [17] using first generation TB potentials,
although the latter correspond to an in-plane Poisson’s ratio
ν12 of 0.412, almost twice higher than the one provided by our
model. Caillerie [25] and Chang and Gao [50] provide a closed
form solution for the stretching–hinging model, with in-plane
Poisson’s ratios 0.26 and 0.16 respectively, in line with our
predictions. The tensile rigidity Ed for the stretching–hinging
model using the AMBER force field (table 5) is also similar
to the ones calculated by Brenner et al [15] (overestimation
of 21%), Huang et al [17] (overestimate of 18%), and Reddy
et al [23] (overestimate of 23%), while there is a fairly good
agreement with Caillerie et al [25], with a tensile rigidity
6.3% higher. The Morse potential provide an overall stiffening
effect, providing tensile rigidities similar to the ones from Zhou
et al [46], Tu and Ou-Yang [45], Yakobson et al [47], Sakhaee-
Pour [34] and Kudin et al [13]. In those cases, the estimation
errors are respectively 2%, 3%, 5.5%, 8% and 10%, although
the Poisson’s ratios for [45, 34] and [15] are significantly
higher than the ones predicted for this model. Also, although

Table 3. In-plane rigidity for equivalent honeycomb model.

Stretching–hinging (Kb → ∞, Ks → ∞)

Force field E1 (TPa) E2 (TPa) ν12 ν21 G12 (TPa)

AMBER 3.536 3.536 0.211 0.211 1.464
Morse 5.189 5.189 0.213 0.213 2.135

Stretching–hinging-shear beam (Kb → ∞)

Force field E1 (TPa) E2 (TPa) ν12 ν21 G12 (TPa)

AMBER 1.714 1.714 0.617 0.617 0.524
Morse 2.284 2.284 0.653 0.653 0.689

All deformation mechanisms

Force field E1 (TPa) E2 (TPa) ν12 ν21 G12 (TPa)

AMBER 0.762 0.762 0.830 0.830 0.202
Morse 1.000 1.000 0.848 0.848 0.270

Hemmasizadeh et al [24] predict a Young’s modulus of
0.939 TPa in line with Rajendran et al [23], Sakhaee-Pour [34]
and Chang and Gao [50], the tension rigidity is 60% lower,
due to the thickness of 1.317 Å calculated. When considering
the other deformation mechanisms, the effect is to increase
the in-plane Poisson’s ratio, and at the same time decrease the
stiffness. When the shear beam deflection is included in the
model (table 3), the Poisson’s ratio increases by a factor in
the range 2.9–0.617 and 0.653, for the AMBER and Morse
cases, respectively. Although our model predicts higher in-
plane Poisson’s ratio values, it seems to indicate that a further
deformation mechanism other than stretching and hinging
could be considered when dealing in finite size graphene
sheets [23], or using first and second generation Brenner
potentials [17]. In terms of Poisson’s ratios, the high values
from Sakhaee-Pour [34] are closer to the full EHM models,
both with the AMBER and linearized Morse potentials. There
is however a considerable lowering of the in-plane rigidity,
being 58% and 35% lower than the case from Reddy et al [23]
when considering AMBER and Morse potentials respectively.
The in-plane Young’s modulus for the stretching–hinging shear
beam case is similar in terms of order of magnitude to the one
proposed by the FE braced-truss models, while the Poisson’s
ratio from the FE simulations compare well with the EHM
model. The tension rigidities, however, are still lower than
the ones provided by the braced-truss models, the latter being
0.273 TPa nm and 0.420 TPa nm for the AMBER and Morse
cases respectively. The inclusion of all the deformation
mechanisms leads to a more significative decrease of the in-
plane stiffness and increase of the Poisson’s ratio, the latter
tending towards the unity. It must be noted, however, that the
values of the Young’s moduli (0. 762 and 1.0 TPa) are in line
with the ones predicted by the Cauchy–Borne rule from Reddy
et al [23], although the latter use a thickness d of 3.4 Å for their
calculations. Structural honeycombs with regular hexagonal
topology have an in-plane Poissons’ ratio of 1 when only
bending of the ribs is considered [36, 37], while lower values
have to be expected when shear deformation of the bending
beams is considered [43]. Sakhaee-Pour [34] predicts in-plane
Poisson’s ratios varying between 1.129 and 1.441 based on
the chirality of the SLGS. The special orthotropy of hexagonal
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honeycombs also implies that the cross relation E1ν21 = E2ν12

is valid, therefore not putting a specific limit the in-plane
Poisson’s ratio values [36, 37, 43].

The results from the simulations on the finite size
graphene sheets via the finite element models are illustrated in
table 4. When loading along direction 1, the in-plane Young’s
modulus E1 varies between 4.248 and 4.712 TPa, providing
values close to the 4.23 TPa from Huang et al cite17 using
second generation TB potentials, although for the latter the in-
plane Poisson’s ratio is lower (0.397 against 0.517 and 0.546
from our predictions). The average C–C bond length after
minimization of the potential energy during loading is 1.35 Å
and 1.42 Å for the AMBER and Morse case respectively, while
the thickness d (0.82 and 0.86 Å) are also different from the
ones identified from the single C–C bond minimization (15).
It is noteworthy to observe the equivalent Poisson’s ratio ν for
the C–C bond material. While for the Morse potential case the
final ν tends towards the one of an elastomer (0.431), the one
related to the AMBER force model is slightly auxetic [53, 54]
(ν = −0.008), similar to low volumetric compression ratio
foams [55]. When loading along direction 2, the thickness
of the ribs increase to 0.99 and 0.87 Å for the AMBER and
Morse cases, with equilibrium lengths L between 1.35 and
1.36 Å. The equivalent Poisson’s ratios ν for the C–C bonds
are between 0.455 and 0.459. These values of ν suggests that
under these loading conditions, the finite size SLGS has an
equivalent hyperelastic behaviour under small deformations, in
good agreement with equivalent Mooney–Rivlin models used
for the large deformation of single wall carbon nanotubes [56].
The finite size of the SLGS leads to a degree of anisotropy for
the in-plane properties, being equal to 0.81 for the AMBER
case, 0.99 for the Morse one, apparently opposite to what is
recorded for the finite size braced-truss model. The pure shear
loading provides transverse shear values between 1.374 and
1.764 TPa, in line with the braced-truss model predictions. The
equilibrium lengths are 1.35 Å, with thickness of the bonds
of 0.55 Å, similar to the 6.4 Å recorded for the braced-truss
models. The in-plane tension rigidities also correspond to
the ones of Sakhaee-Pour [34] for the AMBER case (0.072–
0.079 TPa nm). The equivalent ν for the C–C bond material is
strongly auxetic (−0.556 and −0.419 for AMBER and Morse
respectively), like for transformed open cell polyurethane
foams [53]. Auxeticity in nanostructures has been recently
identified in carbon nanotube paper sheets with mixed single
and multiwall CNT under bending and stretching [57]. The
in-plane shear modulus (1.374 and 1.764 TPa) are in line with
the ones predicted by the stretching–hinging theoretical model.
The tension rigidities corresponding to pure shear (0.076 and
0.097 TPa nm), compare with the ones from Reddy et al [23]
(0.06 TPa nm for two straight edges finite size SLGS). For
all cases, the identified equilibrium lengths of the C–C bonds
through minimization of the potential energy are at the lower
end of the interval values in open literature.

Comparison of SLGS mechanical properties from models
is usually performed considering data from bulk graphite [58].
The experimental uniaxial tensile rigidity is close to the
stretching–hinging model with the Morse linearized potential,
although the experimental Poisson’s ratio is 33% lower than the

Table 4. Mechanical properties from potential energy minimization
of FE GS.

Loading along direction 1

Force model L (Å) d (Å) ν ν21

Y1

(TPa nm) E1 (TPa)

AMBER 1.35 0.82 −0.008 0.523 0.517 4.248
Morse 1.42 0.86 0.431 0.577 0.546 4.712

Loading along direction 2

Force model L (Å) d (Å) ν ν12

Y2

(TPa nm) E2 (TPa)

AMBER 1.35 0.99 0.455 0.509 0.342 3.433
Morse 1.36 0.87 0.459 0.551 0.408 4.678

Pure shear

Force model L (Å) d (Å) ν ν12

Y12

(TPa nm) G12 (TPa)

AMBER 1.35 0.55 −0.556 N/A 0.076 1.374
Morse 1.35 0.55 −0.419 N/A 0.097 1.764

predicted one. The experimental shear rigidity (0.147 TPa nm)
is also close to the one predicted by the Morse stretching–
hinging model (0.168 TPa nm), although the experimental
shear modulus (440 TPa) is approached only by the stretching–
hinging-shear beam model (table 2), in particular for the
AMBER force field. Direct mechanical measurements of
single graphene sheets are difficult to perform. However,
Frank et al [59] have measured the Young’s modulus and
spring constants of suspended graphene sheets over silicon
dioxide trenches using AFM techniques. The Young’s modulus
measured (0.5 TPa) is half of the one for bulk graphite. Also
considering an interlayer distance of 3.35 between the sheets
stacks, the tension rigidity would amount to 0.167 TPa nm, a
value which is substantially lower compared to all the predicted
tensile rigidities from existing MD and numerical simulations.
However, we observe that the models incorporating all
deformation mechanisms (including bending) provide closer
predictions in terms of Young’s modulus (0.762 TPa for the
AMBER force field case). No data regarding Poisson’s ratio
and shear modulus are available from these experiments.

7. Conclusions

The main novelty of the proposed approach include:

(1) Incorporation of additional deformation mechanisms
(bending and shear deformation) for the homogenized in-
plane mechanical properties of single graphene sheets,
apart from the classical stretching and hinging ones. These
mechanisms were not included in previous works in this
area.

(2) Inclusion of optimum shear correction factors in the
equivalent atomistic-continuum beam model for the C–C
bond. The improved mechanical model allows identifying
via nonlinear optimization a value for the thickness and
equivalent Poisson’s ratio of the C–C bond.
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Table 5. Graphene data from literature and present work.

Author Y1 (TPa nm) Y2 (TPa nm) ν12 ν21 d (Å)

Tu and Ou-Yang [45] 0.348 0.34 0.74
Zhou et al [46] 0.377 0.24 0.74
Yakobson et al [47] 0.363 0.19 0.66
Caillerie et al [25] 0.277 0.26 N/A
Brenner et al [15] 0.235 0.41 0.62
Huang et al [17] 0.243 0.397 0.57
Kudin et al [13] 0.345 0.149 0.84
Chang and Gao [50] 0.360 0.16 3.4
Cho et al [48] 0.386 0.195 3.35
Sakhaee-Pour [34] 0.337–0.354 1.129–1.441 3.4
Hemmasizadeh et al [24] 0.124 0.19 1.317
Blakslee et al [58] 0.342 0.16 3.35
Lee et al [60] 0.335 N/A 3.35
Reddy et al [23] 0.228 0.277 0.43 0.52 3.4
Present FE honeycomb (AMBER) 0.517 0.342 0.523 0.509 0.82–0.99
Present FE honeycomb (Morse) 0.546 0.408 0.551 0.577 0.86–0.87
Present EHM
stretching–hinging (AMBER)

0.297 0.211 0.84

Present EHM
stretching–hinging (Morse)

0.384 0.213 0.74

Present EHM
stretching–hinging-shear (AMBER)

0.144 0.617 0.84

Present EHM
stretching–hinging-shear (Morse)

0.169 0.653 0.74

Present EHM-all deformation
mechanisms (AMBER)

0.064 0.830 0.84

Present EHM-all deformation
mechanisms (Morse)

0.074 0.848 0.74

(3) Derivation of the overall properties of SLGS from the
individual bond properties analytical braced-truss and
structural honeycomb lattice models. This enables
one to bypass detailed FE calculations to estimate
homogenized mechanical properties, to be used as first
approximation for graphene-based composites and GS
natural frequencies.

The analytical models presented allow correlating the
equivalent homogenized mechanical properties of single GS
with the different deformation mechanisms of the C–C bonds
composing the graphene lattice. From a structural mechanics
point of view, the equivalent spring constants associated to
the classical stretching and hinging deformation mechanisms
provide the best agreement with existing models in open
literature derived with other methods. However, the bending
shear force constant can be considered as an equivalent
deformation mechanism to account for higher Poisson’s ratio
values presented in other works. The models presented allow
also correlating SLGS thickness and average C–C bond length
distributions to the mechanical loading exerted on finite size
graphene sheets, providing again general good agreement with
existing values in literature. In conjunction with strain energy
minimization through finite element simulations, the refined
equivalent mechanical properties for the C–C bond presented
in this work allow also to identify peculiar mechanical
deformations of the C–C bonds in the SLGS when represented
as deep beams with axial and bending capabilities. In
particular, pure shear loading seems to imply an equivalent
auxetic behaviour for the bonds, with significant negative

Poisson’s ratio values when considering an equivalent isotropic
bond material.
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