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EFFECTIVE EQUATIONS FOR TWO-PHASE FLOW WITH
TRAPPING ON THE MICRO SCALE∗

C. J. VAN DUIJN† , A. MIKELIĆ‡ , AND I. S. POP†

SIAM J. APPL. MATH. c© 2002 Society for Industrial and Applied Mathematics
Vol. 62, No. 5, pp. 1531–1568

Abstract. In this paper we consider water-drive for recovering oil from a strongly heterogeneous
porous column. The two-phase model uses Corey relative permeabilities and Brooks–Corey capillary
pressure. The heterogeneities are perpendicular to the flow and have a periodic structure. This
results in one-dimensional flow and a space periodic absolute permeability, reflecting alternating
coarse and fine layers. Assuming many—or thin—layers, we use homogenization techniques to derive
the effective transport equations. The form of these equations depends critically on the capillary
number. The analysis is confirmed by numerical experiments.

Key words. homogenization, porous media flow, degenerate parabolic equations, Buckley–
Leverett equation
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1. Introduction. A widely used technique for removing oil from reservoirs is
water-drive. Water is pumped through injection wells into the reservoir, driving the
oil to the production wells.

The presence of rock heterogeneities in the reservoir generally has an unfavorable
effect on the recovery rate. For instance, when preferential paths (high permeability
regions) exist from injection to production wells, much oil will be bypassed, and
consequently the oil recovery rate will be small. Conversely, when rock heterogeneities
occur perpendicular to the flow from injection to production wells (so-called cross-
bedded or laminated structures), oil may be trapped at the interface between high
and low permeability and become inaccessible to the flow, leading again to a reduction
in recovery rate. This latter case was studied by Kortekaas [20], van Duijn, Molenaar,
and de Neef [14], and more recently by van Lingen [22], who performed laboratory
experiments using a porous column with periodically varying permeability; see Figure
1.1. In the same context, steady state solutions as well as an averaging procedure were
considered by Dale and colleagues [10], [11].
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Fig. 1.1. Periodically varying porous medium with high (coarse) and low (fine) permeability
layers.

The main purpose of this paper is to derive in a rational way the effective flow
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equations corresponding to Figure 1.1 when the ratio of the micro scale (periodicity
length) to the macro scale (column length) is small.

To this end we consider a one-dimensional flow of two immiscible and incom-
pressible phases (water being the wetting phase, oil the nonwetting phase) through a
heterogeneous porous medium characterized by a constant porosity Φ and a variable
absolute permeability k = k(x). The underlying equations describe the mass balance
for the phases

Φ
∂Sα

∂t
+

∂qα
∂x

= 0 (α = o, w),(1.1)

the momentum balance for the phases (Darcy law)

qα = −k(x)
krα(Sα)

µα

∂pα
∂x

,(1.2)

and the complementary conditions

So + Sw = 1,(1.3)

po − pw = pc(x, Sw).(1.4)

Here Sα, qα, krα, µα, and pα denote, respectively, the saturation, specific discharge,
relative permeability, viscosity, and pressure of phase α. Throughout, we assume that
the phase saturations are normalized, i.e., 0 ≤ Sα ≤ 1. Condition (1.3) expresses
the presence of only two phases. The phase pressures differ due to interface tension
on the pore scale. This is expressed by (1.4), where pc denotes the induced capillary
pressure. In petroleum engineering it is usually described by the Leverett model (see
Leverett [21] or Bear [2]):

pc(x, Sw) = σ

√
Φ

k(x)
J(Sw),(1.5)

where σ denotes the interfacial tension and J the Leverett function. The relative
permeabilities krα : [0, 1] → [0,∞) and the Leverett function J : (0, 1] → [0,∞)
are assumed to be smooth generalizations of power law functions (see Corey [9] and
Brooks and Corey [7]) satisfying the structural properties:

A1: krα strictly increasing in [0, 1] with krα(0) = 0,

A2: J(0+) =∞, J(1) > 0, and J ′ < 0 in (0, 1],

where the prime denotes differentiation.

Here we explicitly assume J(1) > 0. Physically this means that a certain pressure,
the capillary entry pressure given by pc(x, 1), has to be exerted on the oil before it
can enter a fully water-saturated medium.

Equation (1.1) and condition (1.3) imply that the total specific discharge q :=
qo + qw is constant in space. Throughout this paper we consider the discharge to be
constant in time as well. With q > 0 given, (1.1), (1.2) and conditions (1.3), (1.4)
can be combined into a single transport equation for a single saturation. Since we
are primarily interested in the oil flow, we use the oil saturation for that purpose. In
doing so, it is convenient to redefine krw, pc, and J in terms of So. Setting

u = So (Sw = 1− u),
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we now write

krw(u) : = krw(1− u),

pc(x, u) : = pc(x, 1− u),

J(u) : = J(1− u).

In terms of u, assumptions A1−2 become

Ã1 :

{
krw strictly decreasing in [0, 1] with krw(1) = 0,

kro strictly increasing in [0, 1] with kro(0) = 0,

Ã2 : J(1−) =∞, J(0) > 0, and J ′ > 0 in [0, 1).

Remark 1.1. In most cases of practical interest the blow-up of J and J ′ near u = 1
is balanced by the behavior of krw near that point, in the sense that krw(u)J

′(u)→ 0
as u → 1. The consequence of this behavior and its possible failure is investigated
by van Duijn and Floris [13]. Though important for the well-posedness of the math-
ematical formulation, no additional assumptions are required for the purpose of this
paper.

Applying the scalings

x :=
x

Lx
, t :=

t q

ΦLx
, and k :=

k

K
,(1.6)

where Lx is a characteristic macroscopic length scale and K a characteristic perme-
ability value, we find for the oil saturation the balance equation

∂u

∂t
+

∂F

∂x
= 0,(1.7a)

where

F = f(u)− Nck(x)λ(u)
∂

∂x
pc(x, u).(1.7b)

Here

f(u) =
kro(u)

kro(u) +Mkrw(u)
(1.8)

denotes the oil fractional flow function, and

λ(u) = krw(u)f(u), pc(x, u) =
J(u)√
k(x)

.(1.9)

The two dimensionless numbers involved are the capillary numberNc and the viscosity
ration M . They are given by

Nc =
σ
√

KΦ

µwqLx
and M =

µo

µw
.(1.10)
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Remark 1.2. (i) Assumptions Ã1−2 imply

f(0) = 0, f(1) = 1, and f strictly increasing in [0, 1],

λ(0) = λ(1) = 0 and λ(u) > 0 for 0 < u < 1.

(ii) Depending on the specific application, the value of the capillary number may
vary considerably. For instance, adding surfactants or polymers may substantially
alter σ or µw. Likewise, the flow rate q can have different values. Therefore we
investigate in section 2 the consequences of having a moderate and a small value for
Nc.

(iii) Petroleum engineers define the capillary number (1.10) in the reciprocal way,
i.e., Nc =

µwqLx

σ
√
KΦ

. Here we do not adopt this convention, because we want to emphasize

the direct proportionality between the capillary number and the interface tension σ.

pc

u

1u*0

fine 

k = k-

coarse

k = k+

Fig. 1.2. Dimensionless capillary pressure in terms of oil saturation: the top (bottom) curve
reflects fine (coarse) material.

Two typical capillary pressures pc = pc(x, u) are shown in Figure 1.2. They relate
to fine (k = k−) and to coarse (k = k+) material, where k− < k+.

We consider (1.7) in the domain Σ = R and for t > 0, subject to the initial
condition

u(x, 0) = u0(x) for x ∈ Σ.(1.11)

When k is constant and u0 : Σ → [0, 1] is such that
∫ u0

0
λ(s)J ′(s)ds is uniformly

Lipschitz continuous in Σ, problem (1.7), (1.11) admits a unique weak solution u :
Σ × [0,∞) → [0, 1]. This follows from the work of Alt and Luckhaus [1], van Duijn
and Ye [15], Gilding [17], [18], or Benilan and Toure [3]. This weak solution is smooth
whenever u ∈ (0, 1), and has the usual regularity for degenerate equations across
possible free boundaries near u = 0 and u = 1. When k is piecewise constant, in
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particular,

k(x) =

{
k+, x < 0,

k−, x > 0,
(1.12)

(1.7) cannot always be interpreted across the interface at which k is discontinuous.
This is due to a possible discontinuity in capillary pressure. Using a regularization pro-
cedure, this was demonstrated by van Duijn, Molenaar, and de Neef [14] for (1.7), and
rigorously proven by Bertsch, Dal Passo, and van Duijn [5] for a simplified equation.
Instead, one considers (1.7) only in the subdomains where k is constant, together with
matching conditions across k-discontinuities. For k given by (1.12), with k− < k+,
the matching conditions read, for all t > 0,

(i) [F (t)] = 0,(1.13)

(ii) u(0+, t)[pc(t)] = 0, [pc(t)] ≥ 0,(1.14)

where [F (t)] = F (0+, t)− F (0−, t) and [pc(t)] likewise. The first condition expresses
continuity of flux and is obvious. The second condition tells us that the capillary pres-
sure is only continuous if both phases are present on both sides of the k-discontinuity.
This is to be expected from Darcy law (1.2), since then both phase pressures are
continuous. If oil is absent for x > 0, i.e., in the fine material, the entry pressure for
oil leads to a discontinuous capillary pressure.

With reference to Figure 1.2, the pressure condition (1.14) can be formulated as

(ii′)




u(0−, t) < u∗ implies u(0+, t) = 0,

u(0−, t) ≥ u∗ implies
J(u(0−, t))√

k+
=

J(u(0+, t))√
k− ,

(1.15)

where u∗ is uniquely defined by

J(u∗)√
k+

=
J(0)√

k− .(1.16)

The occurrence of oil trapping at the transition from coarse to fine material is directly
explained by conditions (1.13), (1.15). Let k be given by (1.12), and consider a steady
state flow (u = u(x)) satisfying

u(±∞) = 0,(1.17)

i.e., injection and production of water, with oil possibly present near x = 0. Then, by
(1.7a),

F = constant = 0 on R

or

f(u)

{
1− Nc

√
k(x)krw(u)J

′(u)
du

dx

}
= 0 on R\{0},

with (1.15) at x = 0. Since f(u) > f(0) = 0 for u > 0, we have

u = 0 or
du

dx
=

1

Nc

√
k(x)krw(u)J

′(u)
> 0(1.18)
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for x ∈ R\{0}. Since u(+∞) = 0, we find

u(x) = 0 for all x > 0(1.19)

and, by (1.15),

u(0−) ≤ u∗.(1.20)

Using (1.20) as the initial condition for (1.18) on (−∞, 0), one easily constructs a
family of nontrivial steady states describing the saturation of the trapped oil in the
coarse material. The initial condition in an actual displacement process determines
which of the steady states is selected. This is discussed by Bertsch, Dal Passo, and
van Duijn [5].

Note that the nonuniqueness results from (1.19). Considering u(±∞) = û ∈ (0, 1],
one finds a unique steady state satisfying (1.15) (continuity of pressure) at x = 0. Such
solutions were considered by Yortsos and Chang [29] for smooth k.

We now turn to the problem with microstructure, as indicated in Figure 1.1, where
trapping occurs at all transitions from high to low permeability. As a result we expect
to find a trapping-related threshold saturation (irreducible oil saturation) below which
the oil becomes immobile. We consider the case of a periodic as well as a random
medium. In section 2 we assume a periodic microstructure of coarse (k = k+) and fine
(k = k−) material, each of length Ly  Lx; see Figure 1.3. This leads to a natural
choice of the small expansion parameter ε = Ly/Lx. We outline the homogenization
procedure, study the resulting auxiliary problems, and derive the effective (upscaled
or averaged) equations for the limit ε ↘ 0. In doing so, the magnitude of the capillary
number Nc is important. We work out two cases, as follows.

k

0 x2L y−L y−2L y Ly

k
+

k
−

Fig. 1.3. Periodic permeability (unscaled coordinate).

Capillary limit, Nc = 0(1). This case is relatively straightforward because the
auxiliary problem has only constant state solutions (compare steady state solutions
on (−ε, 0)). As a consequence the effective equation is found explicitly. It is again of
convection-diffusion type, and it involves weighted harmonic means of the fractional
flow and capillary terms. Both convection and diffusion vanish from the equation if
the averaged oil saturation drops below 1

2u∗.
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Balance, Nc = O(ε). This case is much more involved. Now the diffusion term
disappears in the homogenization procedure, and one is left with a first order con-
servation law of Buckley–Leverett type. This follows from a detailed study of the
auxiliary problem. We show that the upscaled oil-fractional flow function is different
from a k-weighted version of f and contains, quite surprisingly, some elements of the
small scale diffusion. Again it vanishes if the averaged oil saturation drops below a
certain value. This irreducible oil saturation is related to a specific solution of the
auxiliary problem.

These cases correspond to different flow regimes. In section 3 we discuss their
relevance and, in particular, the transition from one to the other, by considering
Nc = O(εγ), γ ≤ 1. Our approach fails when Nc = O(εγ) with γ > 1, yielding
Nc = O(ε) as a critical case.

In section 4 we consider the case of a random microstructure with respect to
both the location of the permeability jumps and the value of the permeability. The
effective oil flux is obtained only for the capillary limit (Nc = O(1)) and again involves
the weighted harmonic means of the fractional flow and capillary pressure terms. The
homogenized equation has coefficients depending on the realization, but we prove that
average saturation, defined by the homogenized parabolic problem, is a deterministic
function. Consequently, it is sufficient to solve the effective equation for a single
realization.

Section 5 contains some numerical results. There we take power law relative
permeabilities and a Brooks–Corey capillary pressure. We compute the effective frac-
tional flow and diffusivity for the capillary limit Nc = O(1) and the effective fractional
flow for the balance Nc = O(ε).

Some concluding remarks are given in section 6.

Dale et al. [10] studied a similar multiphase flow problem. They considered steady
state flow in a periodic porous column, allowing each periodicity cell to have more
sub-layers with different relative permeabilities and Leverett functions. Without us-
ing the homogenization approach, they derived upscaled expressions for the relative
permeabilities. In this paper we present a rigorous analysis of the auxiliary problems,
resulting in a fairly complete description of the upscaled equations. In particular, the
effect of microscopic trapping, as a result of the different entry pressures, is investi-
gated explicitly.

2. Homogenization procedure for periodic layers. A simplified version of
problem (1.7), (1.11), involving only a single permeability discontinuity (or trap), was
studied by Bertsch, Dal Passo, and van Duijn [5]. They established the existence and
uniqueness of a solution satisfying the usual porous-media equation regularity away
from the trap. In particular, the solution is nonnegative and bounded. Moreover, the
corresponding flux was shown to be continuous in x for almost all t > 0.

In this paper we silently assume the same properties for the saturation and flux
in the case of multiple traps at arbitrary distances. In particular, 0 ≤ u ≤ 1. In our
problem we deal with two natural length scales: a macroscopic length scale Lx and a
microscopic scale (the characteristic length scale of the layers) Ly. This disparity in
length scales is what provides us with our expansion parameter ε = Ly/Lx. For fixed
but small characteristic layer length Ly, the solutions will in general be complicated,
having a different behavior on the two length scales. Closed-form solutions are un-
achievable, and numerical solutions will be nearly impossible to calculate. It is our
object to derive a flow equation at the macro scale, keeping information about the
trapping only through some averaged quantities.
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To simplify our considerations we now suppose a periodic structure with the traps
located at the points {εi : i ∈ Z}. The corresponding permeability kε(x) is defined
by kε(x) = k(x/ε), where

k =

{
k+ on (2i − 1, 2i),

k− on (2i, 2i+ 1).
(2.1)

Without loss of generality we assume 0 < k− < k+ < ∞. We distinguish two kinds
of matching conditions: one going from k+ to k−, and vice versa; see also (1.15).

At x = 2iε we impose the following:

if u(2iε − 0) < u∗, then u(2iε+ 0) = 0,

if u(2iε − 0) ≥ u∗, then
J(u(2iε − 0))√

k+
=

J(u(2iε+ 0))√
k− .

(2.2)

At x = (2i+ 1)ε we impose the following:

if u((2i+ 1)ε+ 0) ≥ u∗, then
J(u((2i+ 1)ε+ 0))√

k+
=

J(u((2i+ 1)ε − 0))√
k− ,

if u((2i+ 1)ε+ 0) < u∗, then u((2i+ 1)ε − 0) = 0.

(2.3)

We now replace k by kε in (1.7a–b). Clearly this equation holds in the domain
Σε = R\Tε, where Tε = ε

⋃
i∈Z

i. Let uε be a solution of (1.7a) satisfying the matching
conditions (2.2) and (2.3). Using the uniform L∞ bound for uε, we consider the
following two-scale asymptotic expansion:

uε(x, t) = u0(x, y, t) + εu1(x, y, t) + ε2u2(x, y, t) + · · · ,(2.4)

where functions uj are periodic in y = x/ε, representing the fast scale. Substituting
this expansion into (1.7) and equating terms of the same order of ε gives equations
for u0, u1, . . . . As established for many linear problems containing periodic nonho-
mogeneities (see, for instance, Bensoussan, Lions, and Papanicolaou [4] or Sanchez-
Palencia [27]), we expect that

U(x, t) =
1

2

+1∫
−1

u0(x, y, t)dy(2.5)

is the weak limit of uε, and that u0(x, x
ε , t) is the approximation to uε in some norm.

Proving convergence of the homogenization procedure for nonlinear flow problems in
nonhomogeneous geometries poses difficulties, as shown by Hornung [19] and Mikelić
[25]. Given the nonlinear nature of (1.7) and the matching conditions in (2.2)–(2.3),
we shall therefore make no attempt at proving convergence as ε ↘ 0. The purpose of
this paper is merely to derive the upscaled equations and to study the corresponding
auxiliary problems.

Clearly our results depend strongly on the scaling of the capillary number Nc.
The main cases of interest are Nc = O(1) and Nc = O(ε). We will deal with each of
them separately.
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2.1. Capillary limit: Nc = O(1). Introducing the oil flux

F ε = f(uε)− Nc

√
kε(x)D(uε)

∂uε

∂x
,(2.6)

where

D(uε) = krw(u
ε)f(uε)J ′(uε),(2.7)

equation (1.7a) becomes

∂uε

∂t
+

∂F ε

∂x
= 0 in Σε × (0,∞).(2.8)

We now apply expansion (2.4) to F ε, which gives

F ε = −NcD(u
0)

∂u0

∂y

√
kε−1

+ f(u0)− Nc

√
k

{
D(u0)

(
∂u1

∂y
+

∂u0

∂x

)
+D′(u0)u1 ∂u0

∂y

}

+

{
f ′(u0)u1 − Nc

√
k

[
D(u0)

(
∂u2

∂y
+

∂u1

∂x

)

+D′(u0)u1

(
∂u1

∂y
+

∂u0

∂x

)

+

(
D′′(u0)

(u1)2

2
+D′(u0)u2

)
∂u0

∂y

]}
ε+O(ε2)

=: F 0ε−1 + F 1 + F 2ε+O(ε2).

(2.9)

Using this in (2.8) results in the following equations:

ε−2 :− Nc
∂

∂y

(√
kD(u0)

∂u0

∂y

)
= 0;

thus, by continuity of F ε,

−Nc

√
kD(u0)

∂u0

∂y
= F 0 = F 0(x, t),(2.10)

which holds for every x, y ∈ R and for all t > 0. Note that this observation is expected
because of the continuity of the flux. We also have the following:

ε−1 : 0 =
∂F 0

∂x
+

∂F 1

∂y
=

∂

∂x

{
−Nc

√
kD(u0)

∂u0

∂y

}

+
∂

∂y

{
f(u0)− Nc

√
k

[
D(u0)

(
∂u1

∂y
+

∂u0

∂x

)
+D′(u0)u1 ∂u0

∂y

]}
,(2.11)

ε0 : 0 =
∂u0

∂t
+

∂F 2

∂y
+

∂F 1

∂x
.(2.12)

We look for y-periodic solutions of (2.10) satisfying (2.2) and (2.3), with x and t as
given parameters. Our goal is to prove that F 0 = 0. We argue by contradiction.
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Suppose F 0 < 0. Let

w(y) := J(u0(y)), λ(w) := krw(J
−1(w))f(J−1(w))

and

Λ(w) =

w∫
J(0)

λ(s)ds,

the last function being strictly increasing. Then (2.10) reads

λ(w)
√

k
dw

dy
= −F 0

Nc
=: F > 0.

Hence, for −1 < y < 0,

Λ(w(0−))− Λ(w(−1 + 0)) =
F√
k+

,

giving

w(0−) ≥ w(−1 + 0) +
F√
k+

1

||λ||∞ .(2.13)

Similarly, for 0 < y < 1,

w(1− 0) ≥ w(0+) +
F√
k−

1

||λ||∞ .(2.14)

Now we apply matching conditions (2.2) and (2.3) in terms of w. First, suppose
w(0−) ≤ J(u∗). Then w(0+) = J(0) and, by (2.14), w(1− 0) > J(0). Hence w(−1 +
0) > J(u∗), giving—by (2.13)—w(0−) > J(u∗), which contradicts the assumption.
Next suppose w(0−) > J(u∗). In this case we obtain w(0+) =

√
k−/k+ w(0−) <

w(0−). By (2.14) and (2.13) we have

w(1− 0) ≥
√

k−

k+
w(0−) + F√

k−
1

||λ||∞

≥
√

k−

k+
w(−1 + 0) +

F

||λ||∞

{√
k−

k+
+

1√
k−

}
.

(2.15)

If w(−1+0) > J(u∗), then w(−1+0) =√k+/k−w(1−0). Substituting this into (2.15)
yields w(1− 0) > w(−1− 0), which contradicts the periodicity. If w(−1+0) ≤ J(u∗),
then w(1 − 0) = J(0), which contradicts (2.14). Hence F 0 ≥ 0. A similar argument
gives F 0 ≤ 0, implying

F 0 = 0.

This conclusion allows us to solve (2.10) with the matching conditions. We find

u0(y) =

{
C > u∗ for − 1 < y < 0,

C for 0 < y < 1,
(2.16)
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where C = J−1(
√

k−/k+J(C)), or

u0(y) =

{
C ≤ u∗ for − 1 < y < 0,

0 for 0 < y < 1.
(2.17)

Now we consider the ε−1-equation (2.11). Since F 0 = 0 and the flux is continuous,
we find

F 1 = F 1(x, t).

Using (2.16) and (2.17), the local form of F 1 is

F 1 = f(C)− Nc

√
k+D(C)

{
∂C

∂x
+

∂u1

∂y

}
(2.18)

for −1 < y < 0, and

F 1 =


 f(C)− Nc

√
k−D(C)

{
∂C

∂x
+

∂u1

∂y

}
for C > u∗,

0 for C ≤ u∗,
(2.19)

for 0 < y < 1. Clearly we have to consider only the nontrivial case C > u∗. From
(2.18) and (2.19) we deduce

∂u1

∂y
=




f(C)− F 1

√
k+NcD(C)

− ∂C

∂x
=: B1(x, t) for − 1 < y < 0,

f(C)− F 1

√
k−NcD(C)

− ∂C

∂x
=: B2(x, t) for 0 < y < 1.

After integration we observe that B1 +B2 = 0. Hence we can solve for F 1 to find

F 1 =

f(C)√
k+D(C)

+ f(C)√
k−D(C)

1√
k+D(C)

+ 1√
k−D(C)

− Nc

∂C
∂x +

∂C
∂x

1√
k+D(C)

+ 1√
k−D(C)

.

Finally we use the ε0-equation in (2.12). Since F 2 is continuous in the fast scale, we
find for the averaged oil saturation U = 1

2 (C + C) the effective convection-diffusion
equation

∂U

∂t
+

∂

∂x

{
F(U)− NcD(U)∂U

∂x

}
= 0,(2.20)

where −∞ < x < ∞ and t > 0. One easily verifies

F(U) =




0 for 0 ≤ U ≤ 1

2
u∗,

strictly increasing for
1

2
u∗ < U < 1,

1 for U = 1

and

D(U) =




0 for 0 ≤ U ≤ 1

2
u∗,

> 0 for
1

2
u∗ < U < 1,

0 for U = 1.
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In section 5 we show the graphs of F and D based on power law relative permeabilities
and a Brooks–Corey capillary pressure.

The effective equation (2.20) is written in terms of the averaged oil saturation
U = U(x, t). The oscillatory zeroth order approximation u0(x, x

ε , t) in the asymptotic
expansion (2.4) can be reconstructed from U in a straightforward way, by using U =
1
2 (C + C̄) and expressions (2.16) and (2.17).

2.2. Balance: Nc = O(ε). Writing Nc := Ncε, the oil flux (2.6) becomes

F ε = f(uε)− Ncε
√

kε(x)D(uε)
∂uε

∂x
.(2.21)

Clearly expansion (2.9) changes due to the additional ε factor. It now takes the form

F ε = f(u0)− Nc

√
kD(u0)

∂u0

∂y

+

{
f ′(u0)u1 − Nc

√
k

[
D(u0)

(
∂u0

∂x
+

∂u1

∂y

)
+D′(u0)u1 ∂u0

∂y

]}
ε+O(ε2)(2.22)

= : F 0 + F 1ε+O(ε2).

Using this expansion in (2.8) gives

∂u0

∂t
+
1

ε

∂F 0

∂y
+

∂F 0

∂x
+

∂F 1

∂y
= O(ε),

resulting in the equations

ε−1 :
∂F 0

∂y
= 0,

or, by the continuity of F ε,

f(u0)− Nc

√
kD(u0)

∂u0

∂y
= F 0 = F 0(x, t),(2.23)

which holds for every x, y ∈ R and for all t > 0, and

ε0 :
∂u0

∂t
+

∂F 0

∂x
+

∂F 1

∂y
= 0.(2.24)

First (2.23) needs to be considered. It leads to the following auxiliary problem.
Problem Au. Given F ∈ R, find u : [−1, 0) ∪ (0, 1]→ [0, 1] satisfying

f(u)− Nc

√
kkrw(u)f(u)J

′(u)
du

dy
= F in (−1, 0) ∪ (0, 1)(2.25)

subject to the matching condition (y = 0)


if u(0−) < u∗, then u(0+) = 0,

if u(0−) ≥ u∗, then
J(u(0−))√

k+
=

J(u(0+))√
k− ,

(2.26)
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and the periodicity condition (y = ±1)


if u(−1 + 0) < u∗, then u(1− 0) = 0,

if u(−1 + 0) ≥ u∗, then
J(u(−1 + 0))√

k+
=

J(u(1− 0))√
k− .

(2.27)

This problem is considered in detail in the following sections. We prove existence for
0 ≤ F ≤ 1 and uniqueness for F > 0. Moreover, we show the monotone dependence
and differentiability of u with respect to F . After that, (2.24) is averaged over the
cell (−1, 0) ∪ (0, 1) to obtain the scaled-up (macroscopic) transport equation. This
equation turns out to be of Buckley–Leverett type.

2.3. Auxiliary problem. To simplify the analysis, we introduce, as in section
2.1, the function w = J(u) and set

γ(w) = krw(J
−1(w)) and ϕ(w) = f(J−1(w)).

In terms of w, the auxiliary problem Au becomes the following.
Problem Aw. Given F ∈ R, find w : [−1, 0) ∪ (0, 1]→ [J(0),∞) satisfying

ϕ(w)

{
1− Nc

√
kγ(w)

dw

dy

}
= F in (−1, 0) ∪ (0, 1)(2.28)

such that (at y = 0)


if w(0−) < J(u∗), then w(0+) = J(0),

if w(0−) ≥ J(u∗), then w(0+) =

√
k−

k+
w(0−),

(2.29)

and (at y = ±1)


if w(−1 + 0) < J(u∗), then w(1− 0) = J(0),

if w(−1 + 0) ≥ J(u∗), then w(1− 0) =

√
k−

k+
w(−1 + 0).

(2.30)

We first demonstrate existence and some qualitative properties for 0 = f(0) ≤ F ≤
f(1) = 1.

Lemma 2.1. Let F > 1. Then there are no solutions to Problem Aw.
Proof. Since f is strictly increasing, we have

F

ϕ(w)
− 1 ≥ F

f(1)
− 1 > 0,

and consequently, by (2.28), dw/dy < 0 on (−1, 0) ∪ (0, 1). Now suppose w(0−) <
J(u∗). Then w(0+) = J(0), and thus w < J(0) on (0, 1), contradicting w ≥ J(0) from
the definition. If w(0−) ≥ J(u∗), then clearly w(−1 + 0) > w(0−) ≥ J(u∗), yielding

w(0+) =

√
k−

k+
w(0−), w(1− 0) =

√
k−

k+
w(−1 + 0).

This implies w(1− 0) > w(0+), contradicting dw/dy < 0 on (0, 1).
Lemma 2.2. Let F < 0. Then there are no solutions to Problem Aw.
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Proof. Equation (2.28) now gives dw/dy > 0 on (−1, 0) ∪ (0, 1). Now suppose
w(0−) ≤ J(u∗). Then w(0+) = J(0) and w(1 − 0) > J(0). Hence w(−1 + 0) >
J(u∗), contradicting w(0−) ≤ J(u∗). Next let w(0−) > J(u∗). Then w(0+) =√

k−/k+w(0−), and w(1 − 0) > w(0+) =
√

k−/k+w(0−) >
√

k−/k+J(u∗) =

J(0). Thus w(−1 + 0) ≥ J(u∗) and, from the w-monotonicity,
√

k−/k+w(0−) >√
k−/k+w(−1 + 0) or w(0+) > w(1− 0), contradicting dw/dy > 0 on (0, 1).

Corollary 2.3. Let F = 1. Then u = 1 uniquely solves Problem Au.

Proof. We use the u-formulation in Problem Au. Clearly u = 1 is a solution.
To show uniqueness, suppose there exists a solution u such that u(y0) < 1 for some
y0 ∈ (−1, 0) ∪ (0, 1). Since du/dy < 0 whenever u < 1, we have the following two
possibilities: either we have u < 1 everywhere and strictly decreasing, or there exists
y1 < y0 such that u(y1) = 1. The first possibility leads to a contradiction, using the
monotone relations imposed by the matching conditions, since u(0+) > u(1) implies
u(0−) > u(−1). The second possibility implies u(y) = 1 for all y ≤ y1, in particular
u(−1) = 1, which contradicts the periodicity.

Lemma 2.4. Let F = 0. Then Problem Au admits the following family of solu-
tions (for all 0 ≤ l ≤ u∗):

φ(u(y)) =




[
y

Nc

√
k+

+ φ(l)

]
+

for − 1 < y < 0,

0 for 0 < y < 1,

where

φ(s) =

s∫
0

krw(v)J
′(v)dv.

Proof. Equation (2.27) implies that any solution must be a combination of

u ≡ 0 and
d

dy
φ(u(y)) =

1

Nc

√
k
.(2.31)

One immediately deduces that u(y) = 0 for 0 < y < 1 is the only possibility. Any
other choice contradicts the periodicity. Then clearly u(0−) ≤ u∗, and (2.31) provides
the required structure.

Now we consider the case 0 < F < 1. To understand the structure of the solutions
of Problem Aw, we first introduce the following.

Definition 2.5. Given F ∈ (0, 1), let ξ0(F ) ∈ (J(0), ϕ−1(F )) be the unique root
of

ξ0(F )∫
J(0)

V (s, F )ds =
1

Nc

√
k− ,(2.32)

where V (·, F ) : (J(0), ϕ−1(F )) ∪ (ϕ−1(F ),∞)→ R
+ is given by

V (s, F ) =
γ(s)ϕ(s)

|F − ϕ(s)| .(2.33)
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−1 0 1 y

w

w(0 )−

J(0)

ϕ−1
(F)

ξ (F)
0

w(0 )+

k+

k−
w(0 )+=

Fig. 2.1. Sketch of the behavior of solution w.

Clearly ξ0(0+) = J(0), ξ0 ∈ C1((0, 1)), and dξ0/dF > 0 for F > 0. We are now
in a position to prove the following structure for solutions of Problem Aw (see also
Figure 2.1).

Proposition 2.6. Let 0 < F < 1. Then any solution of Problem Aw satisfies
(i) dw

dy < 0 on (0, 1), with ξ0(F ) ≤ w(0+) < ϕ−1(F );

(ii) dw
dy > 0, w > ϕ−1(F ) on (−1, 0).

Proof. By a uniqueness argument for (2.28), we note that either w ≡ ϕ−1(F ) or
w �= ϕ−1(F ) on the intervals (−1, 0) and (0, 1). Furthermore, w ≶ ϕ−1(F ) implies
dw/dy ≶ 0. Using this monotonicity and conditions (2.29), (2.30), the result w(0+) <
ϕ−1(F ) follows directly, giving dw/dy < 0 on (0, 1). Integrating (2.28) on (0, 1) gives

w(0+)∫
w(1)

V (s, F )ds =
1

Nc

√
k− .

Since w(1) ≥ J(0), we find

w(0+)∫
J(0)

V (s, F )ds ≥ 1

Nc

√
k− ,

implying w(0+) ≥ ξ0(F ). Since w(0+) > w(1), conditions (2.29), (2.30) give w(0−) >
w(−1), proving the second statement of the proposition.

We shall now demonstrate solvability for Problem Aw. We start with the simplest
case, where a solution satisfies w(1) = J(0) and w(0+) = ξ0(F ). By Definition 2.5,
such local solutions exist on (0, 1). Using again (2.29), (2.30), we find for the left
interval

w(−1) ≤ J(u∗) and w(0−) =
√

k+

k− ξ0(F ).(2.34)
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By Proposition 2.6(ii) we need ϕ−1(F ) < J(u∗), or

F < f(u∗),

for such solutions to exist. Integrating (2.28) over (−1, 0) and using (2.34) once more
yields the nonlinear algebraic equation

√
k+

k− ξ0(F )∫
w(−1)

V (s, F )ds =
1

Nc

√
k+

,(2.35)

where
√

k+/k−ξ0(F ) >
√

k+/k−J(0) = J(u∗).
If this equation can be solved for w(−1) ∈ (ϕ−1(F ), J(u∗)), we have found a

solution of Problem Aw satisfying w(1) = J(0). To investigate the solvability we
define, for 0 ≤ F < f(u∗),

G(F ) =

√
k+

k− ξ0(F )∫
J(u∗)

V (s, F )ds.(2.36a)

One easily verifies

G(0) = 0, G(f(u∗)) =∞, and dG/dF > 0 on (0, f(u∗)).

Hence there exists a unique F ∗ ∈ (0, f(u∗)) such that

G(F ∗) =
1

Nc

√
k+

.(2.36b)

As a consequence, integral equation (2.35) can be uniquely solved, provided 0 < F ≤
F ∗: the left-hand side of (2.35) decreases monotonically in w(−1), becomes unbounded
when w(−1) ↘ ϕ−1(F ), and attains a value ≤ 1

Nc

√
k+

when w(−1) ↗ J(u∗). Thus
we have shown the following (see also Figure 2.2).

Theorem 2.7. Let 0 < F ≤ F ∗ < f(u∗), where F ∗ is defined by (2.36b).
Further, let ξ0(F ) be given by Definition 2.5. Then Problem Aw admits a solution w
satisfying

w(1) = J(0), w(0+) = ξ0(F ), and w(0−) =
√

k+

k− ξ0(F ).

Next we consider F ∗ < F < 1. Since now G(F ) > 1

Nc

√
k+

, there are no solutions

possible in the class w(1) = J(0). For convenience we introduce

ζ := w(1) ∈ (b, ϕ−1(F )),(2.37)

where b = max{J(0),
√

k−/k+ϕ−1(F )} and z := w(0+) ∈ (ζ, ϕ−1(F )). Below we
construct solutions satisfying w(1) > b and w(−1) > J(u∗). Then the problem of
existence for Problem Aw is reduced to the following system of algebraic equations
(integrating (2.28) on (−1, 0) and on (0, 1), and using (2.29), (2.30), and (2.33)):

z∫
ζ

V (s, F )ds =
1

Nc

√
k− ,(2.38a)



EFFECTIVE EQUATIONS FOR TWO-PHASE FLOW 1547

−1 0 1 y

w

J(0)

ϕ−1
(F)

J(u )*

k+

k−

ξ (F)
0

ξ (F)
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w
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J(u )*

ϕ−1
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Fig. 2.2. Sketch of behavior of w for three ranges of F .

√
k+

k− z∫
√

k+

k− ζ

V (s, F )ds =
1

Nc

√
k+

.(2.38b)

To study the solvability of this system, we introduce

ψ : (b, ϕ−1(F )) ∪
(

ϕ−1(F ),

√
k+

k−ϕ−1(F )

)
→ R,

ψ(v) =




v∫
b

V (s, F )ds for b < v < ϕ−1(F ),
√

k+

k− ϕ−1(F )∫
v

V (s, F )ds for ϕ−1(F ) < v <
√

k+

k− ϕ−1(F ).

Note that ψ is strictly increasing on (b, ϕ−1(F )), respectively strictly decreasing on
(ϕ−1(F ),

√
k+/k−ϕ−1(F )); see Figure 2.3 for a sketch. By the monotonicity of ψ,

the function

z = z(ζ) = ψ−1

(
ψ(ζ) +

1

Nc

√
k−

)
(2.39a)
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 b vζ

Ψ

ϕ−1
(F) ϕ−1

(F)
k+

k−
 z

k−Nc

1 {
Fig. 2.3. Sketch of ψ and construction of z = z(ζ).

is well defined on (b, ϕ−1(F )), satisfying dz/dζ > 0. Now system (2.38) reduces to
the map W : (b, ϕ−1(F ))→ R given by

W (ζ) = ψ

(√
k+

k− ζ

)
− ψ

(√
k+

k− z

)
− 1

Nc

√
k+

.(2.39b)

We first formulate the theorem.
Theorem 2.8. For F ∗ < F < 1, there exists a solution to (2.38); i.e., the

auxiliary Problem Aw admits a solution.
Proof. Since z(ϕ−1(F )−) = ϕ−1(F ), we have

W (ϕ−1(F )−) = − 1

Nc

√
k+

< 0.

To investigate the behavior near ζ = b, we use z > ξ0(F ) and consider

√
k+

k− ξ0(F )∫
√

k+

k− b

V (s, F )ds =

{
+∞ for f(u∗) ≤ F < 1,

> 1

Nc

√
k+

for F ∗ < F < f(u∗).

The first follows from
√

k+/k−b = ϕ−1(F ) for F ≥ f(u∗), the second from
√

k+/k−b =
J(u∗) and (2.36a) for F ∗ < F < f(u∗). As a consequence we find W (ζ) > 0 for ζ
close to b. Since W is continuous, the equation W (ζ) = 0 has at least one root, which
provides the existence for (2.38).

2.4. Continuity, monotonicity, and uniqueness. To construct an effective
equation for U , we need to show that the solution of the auxiliary problem is unique,
continuous, and monotone in F for 0 < F ≤ 1. The F -dependence is denoted by u =
u(y, F ), w = w(y, F ), or simply u(F ), w(F ). We treat F ∈ (0, F ∗) and F ∈ (F ∗, 1)
first, and then consider the behavior near F = 0+, F = F ∗, and F = 1.
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F ∈ (0, F ∗). Since uniqueness has not yet been demonstrated, we consider here
the solution w(F ) given by Theorem 2.7. It satisfies

w(y,F )∫
J(0)

V (s, F )ds =
1− y

Nc

√
k− for 0 < y ≤ 1,(2.40a)

√
k+

k− ξ0(F )∫
w(y,F )

V (s, F )ds = − y

Nc

√
k+

for − 1 ≤ y < 0.(2.40b)

The smoothness of ξ0 and V (s, ·) implies w(y, ·) ∈ C1((0, F ∗)) for each y ∈ [−1, 0) ∪
(0, 1]. Let ξ(F ) = dw/dF . Differentiating (2.40a) with respect to F yields

−
w(y,F )∫
J(0)

γ(s)ϕ(s)

(F − ϕ(s))2
ds+ V (w(y, F ), F )ξ(y, F ) = 0.

Hence

ξ(y, F ) > 0 for 0 < y < 1(2.41)

and

ξ(0+, F ) =
dξ0

dF
> 0, ξ(1, F ) = 0.

From (2.40b) we find

√
k+

k− ξ0(F )∫
w(y,F )

γ(s)ϕ(s)

(ϕ(s)− F )2
ds+ V

(√
k+

k− ξ0(F ), F

)√
k+

k−
dξ0

dF

= V (w(y, F ), F )ξ(y, F ),

implying

ξ(y, F ) > 0 for − 1 ≤ y < 0(2.42)

with

ξ(0−, F ) =

√
k+

k−
dξ0

dF
> 0.

F ∈ (F ∗, 1). Then any solution of Problem Aw satisfies

w(y,F )∫
w(1,F )

V (s, F )ds =
1− y

Nc

√
k− for 0 < y ≤ 1,
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with w(1, F ) > J(0). Hence

−
w(y,F )∫

w(1,F )

ϕ(s)γ(s)

(F − ϕ(s))2
ds+ V (w(y, F ), F )ξ(y, F )

= V (w(1, F ), F )ξ(1, F ),

(2.43)

implying the following statements:

if ξ(1, F ) > 0, then ξ(y, F ) > 0 for 0 < y < 1,

if ξ(0+, F ) < 0, then ξ(1, F ) < 0.
(2.44a)

Similarly we deduce on (−1, 0) the following:

if ξ(0−, F ) > 0, then ξ(y, F ) > 0 for − 1 < y < 0,

if ξ(−1, F ) = 0, then ξ(0−, F ) < 0.
(2.44b)

The conditions at y = 0± and y = ±1 translate into

ξ(0−, F ) =

√
k+

k− ξ(0+, F ),

ξ(−1, F ) =
√

k+

k− ξ(1, F ).

(2.45)

Next we combine (2.44) and (2.45). Suppose there exists F̂ ∈ (F ∗, 1) such that
ξ(1, F̂ ) = 0. Then ξ(−1, F̂ ) = 0, ξ(0−, F̂ ) < 0, ξ(0+, F̂ ) < 0, giving ξ(1, F̂ ) < 0, a
contradiction.

Hence either ξ(1, F ) > 0 or ξ(1, F ) < 0 for all F ∈ (F ∗, 1). We rule out the
second possibility. By (2.45), ξ(1, F ) < 0 gives ξ(−1, F ) < 0, implying that w(−1, F )
is strictly decreasing in (F ∗, 1). However, Proposition 2.6 gives w(−1, F ) > ϕ−1(F )→
∞ as F → 1, a contradiction. Hence ξ(1, F ) > 0, and by (2.44)

ξ(y, F ) > 0 for y ∈ [−1, 0) ∪ (0, 1].(2.46)

Remark 2.1. Note that the monotonicity result (2.46) applies to any solution of
Problem Aw satisfying w(1, F ) > J(0). We use this to show uniqueness for Problem
Aw and hence for Problem Au.

Theorem 2.9. The auxiliary problem (Au) has a unique solution u(F ) for each
F ∈ (0, 1]. We have

(i) u(1) = 1;
(ii) u(F ) = J−1(w(F )), where w(F ) is given by

w(y,F )∫
w(1,F )

V (s, F )ds =
1− y

Nc

√
k− for 0 < y ≤ 1,

√
k+

k− w(0+,F )∫
w(y,F )

V (s, F )ds = − y

Nc

√
k+

for − 1 ≤ y < 0,
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with w(1, F ) = J(0), w(0+, F ) = ξ0(F ) for 0 < F ≤ F ∗, and w(1, F ) > J(0)
satisfying W (w(1, F ), F ) = 0 for F ∗ < F < 1.

Proof. In section 2.3 we have shown that for F ∗ < F < 1 no solutions are
possible with w(1, F ) = J(0). Furthermore for 0 < F ≤ F ∗, Problem Aw is uniquely
solvable in the class w(1, F ) = J(0). What remains is to rule out solutions satisfying
w(1, F ) > J(0) for 0 < F ≤ F ∗ and to show uniqueness for F ∗ < F < 1 in the class
w(1, F ) > J(0).

With W given by (2.39b), let us consider the equation

W (ζ(F ), F ) = 0 with ζ(F ) = w(1, F ) > J(0).

Differentiating with respect to F and denoting ∂/∂ζ by a prime gives

W ′ dζ

dF
+

∂W

∂F
= 0.

Since ∂ζ/∂F > 0, as explained in Remark 2.1, we have

W ′(ζ(F ), F ) < 0(2.47)

whenever ∂W/∂F > 0. The definition of W involves z = z(ζ, F ), given by

ψ(z, F ) = ψ(ζ, F ) +
1

Nc

√
k− .

Hence

ψ′(z, F )
∂z

∂F
=

∂

∂F
(ψ(ζ, F )− ψ(z, F )),

implying ∂z/∂F > 0. Using this we find directly

∂W

∂F
=

∂

∂F

(
ψ

(√
k+

k− ζ, F

)
− ψ

(√
k+

k− z, F

))

−
√

k+

k−ψ′
(√

k+

k− z, F

)
∂z

∂F
> 0.

Thus (2.47) holds for any solution of (Aw) with ζ(F ) = w(1, F ) > J(0).
Next we consider W (b, F ). In section 2.3 we showed W (b, F ) > 0 for F > F ∗ and

W (ϕ−1(F ), F ) = − 1

Nc

√
k− < 0. In fact, for F < f(u∗) we have

W (b, F ) =

√
k+

k− ξ0(F )∫
J(u∗)

V (s, F )ds − 1

Nc

√
k−

= G(F )− 1

Nc

√
k− (see 2.36a).

(2.48)

Hence

W (b, F ) =




> 0 for F > F ∗,

0 for F = F ∗,

< 0 for F < F ∗.



1552 C. J. VAN DUIJN, A. MIKELIĆ, AND I. S. POP

Combining these inequalities with (2.47) gives uniqueness for F > F ∗ and non-
existence for F ≤ F ∗.

Let u : [−1, 0) ∪ (0, 1]→ [0, 1], defined by (see Lemma 2.4)

φ(u(y)) =



[

y

Nc

√
k+

+ φ(u∗)
]
+

for − 1 ≤ y < 0,

0 for 0 < y ≤ 1,

denote the maximal solution corresponding to F = 0.
We are now in a position to formulate the following continuity and monotonicity

results.
Theorem 2.10. The solution u(F ) satisfies the following:
(i) u(·) ∈ C1((0, F ∗) ∪ (F ∗, 1)) and ∂u

∂F (·, F ) > 0 on [−1, 0) ∪ (0, 1], except for

0 < F < F ∗, where ∂u
∂F (1, F ) = 0;

(ii) limF↗1 u(y, F ) = 1;
(iii) limF↗F∗ u(y, F ) = limF↘F∗ u(y, F ) = u(y, F ∗);
(iv) limF↘0 u(y, F ) = u(y).

The convergence in (ii)–(iv) is uniform in the subintervals [−1, 0) and (0, 1].
Proof. Monotonicity follows directly from the previous results. Therefore we only

need to demonstrate the continuity properties (ii)–(iv).
(ii) By Proposition 2.6 we have

w(y, F ) > ϕ−1(F ) for − 1 ≤ y < 0,

and consequently

w(y, F ) ≥ w(1, F ) =

√
k−

k+
w(−1, F ) >

√
k−

k+
ϕ−1(F )

for 0 < y ≤ 1 and F > F ∗. Since ϕ−1(F ) → ∞ as F ↗ 1, the uniform convergence
of u(·, F ) follows.

(iii). The result for F ↗ F ∗ is a direct consequence of the continuity of ξ0(F ).
To establish the result for F ↘ F ∗, we consider the function W (ζ, F ) for F near F ∗

and ζ near b = J(0). Direct computation shows

W ′(b, F ) = −
√

k+

k−
f(u∗)krw(u∗)
f(u∗)− F

< 0.(2.49)

Since W (ζ, F ) and W ′(ζ, F ) are uniformly continuous in {(ζ, F ) : b ≤ ζ ≤ b+ δ, F ∗ ≤
F ≤ F ∗ + δ} for δ sufficiently small, we use (2.48) and (2.49) to find

ζ(F ) = w(1, F )↘ J(0) as F ↘ F ∗.

The uniform convergence on both intervals now follows from the w(y, F ) expressions
in Theorem 2.9.

(iv). The uniform convergence in (0, 1] results from ξ0(F ) ↘ 0 as F ↘ 0. To
establish the result in [−1, 0), we note that the monotonicity and boundedness of
u(·, F ) imply

lim
F↘0

u(y, F ) = ũ(y), pointwise in [−1, 0),
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with ũ(0−) = u∗. Moreover, since

0 < Nc

√
k+krw(u)f(u)J

′(u)
du

dy
= f(u)− F < 1

on [−1, 0), u(·, F ) is uniformly continuous in F . Hence, by Dini’s theorem, the con-
vergence is uniform in [−1, 0) and ũ ∈ C([−1, 0)). Let y0 ∈ [−1, 0) with ũ(y0) > 0.
For F > 0, the integral equation for u(F ) can be written as

φ(u(0−, F ))− φ(u(y, F )) + F

u(0−,F )∫
u(y,F )

krw(s)J
′(s)

f(s)− F
ds = − y

Nc

√
k+

.

Let y = y0. Then, for F sufficiently small,

0 < F

u(0−,F )∫
u(y0,F )

krw(s)J
′(s)

f(s)− F
ds < F Const

u(0−,F )∫
ũ(y0)

1

f(s)− F
ds → 0

as F ↘ 0. Hence

φ(u∗)− φ(ũ(y0)) = − y

Nc

√
k+

,

implying ũ(y0) = u(y0).

2.5. The effective equation. Let u = u(F ) denote the unique solution of
Problem Au. As in section 2.2, we write F 0 = F 0(x, t) and set

u0(x, y, t) = u(y, F 0(x, t))

for x ∈ R, y ∈ [−1, 0) ∪ (0, 1], and t > 0. The equation for the averaged saturation

U(x, t) =
1

2

1∫
−1

u0(x, y, t)dy

results from (2.24). Integrating this equation in y and using the continuity of F 1(x, ·, t),
we find

∂U

∂t
+

∂F 0

∂x
= 0 for x ∈ R, t > 0.(2.50)

From here on we drop the superscript and write F = F 0. As a consequence of
Theorem 2.10, we note that the cell-averaged saturation U = U(F ) satisfies

U ∈ C([0, 1]) ∩ C1((0, F ∗) ∪ (F ∗, 1)),

with

dU

dF
> 0 on (0, F ∗) ∪ (F ∗, 1).

Moreover,

U(0+) = U, U(1) = 1,
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where

U =
1

2

0∫
−1

u(y)dy.

The continuity and monotonicity allow us to define the inverse F : [0, 1] → [0, 1]
satisfying, with F (U∗) = F ∗,

F ∈ C([0, 1]) ∩ C1((U,U∗) ∪ (U∗, 1))

and

dF

dU
> 0 on (U,U∗) ∪ (U∗, 1).

Further,

F (U) = 0 for 0 ≤ U ≤ U and F (1) = 1.

Taking F = F (U) as a nonlinear flux function in (2.50) results in an effective equation
that is a first order conservation law for U , with U as macroscopic irreducible oil
saturation.

Under additional (but usual) assumptions on kro, krw, and J , we show that (2.50)
is of Buckley–Leverett type in the following sense.

Theorem 2.11. For αo, αw > 1 and β > 0, let

kro(s)

sαo
= O(1),

krw(s)

(1− s)αw
= O(1),

and

(1− s)βJ(s) = O(1).

Then F ∈ C1([0, 1]) (implying F ′(U) = 0) and F ′(1) = 0.
Proof. We first consider the behavior near U = U . Writing (2.40a) in terms of

u = J−1(w) and differentiating with respect to F yields

∂u

∂F
=

F − f(u)

krw(u)f(u)J ′(u)

u∫
0

krw(s)f(s)J
′(s)

(F − f(s))2
ds.

We now use (2.25) twice to rewrite this expression into

∂u

∂F
= −∂u

∂y

1∫
y

1

F − f(u(s, F ))
ds.

Next we integrate in y. Setting U+(F ) =
∫ 1

0
u(y, F )dy and a(F ) = J−1(ξ0(F )), we

find

dU+

dF
=

1∫
0

a(F )− u(s, F )

F − f(u(s, F ))
ds >

1

F
(a(F )− U+(F )).
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Thus

d

dF
(F U+(F )) > a(F ),

implying

U+(F ) >
1

F

F∫
0

a(s)ds for 0 < F ≤ F ∗.

Since

U(F ) > U +
1

2
U+(F ),

we have

U(F ) > U +
1

2F

F∫
0

a(s)ds for 0 < F ≤ F ∗.(2.51)

We need to estimate a(F ) = u(0+, F ) from below. For this we use Definition 2.5, i.e.,

a(F )∫
0

krw(s)f(s)J
′(s)

F − f(s)
ds =

1

Nc

√
k− ,

which gives

1

F − f(a(F ))

a(F )∫
0

krw(s)f(s)J
′(s)ds >

1

Nc

√
k− ,

and further

0 < F − f(a(F )) < Ca(F )f(u(F )) for 0 < F < F ∗,

where C (here and below) denotes a suitably chosen positive constant.
Now using f(s)/sα0 = O(1) (implied by the asymptotic behavior of kro), we find,

for small F,

a(F ) > CF 1/α0 .

Combining this with (2.51) gives

F (U) < C(U − U)α0

in a right neighborhood of U .
Next we consider the differentiability of F (U) at U = U∗. For F < F ∗ we use

(2.40). Differentiating the equations with respect to F and using the continuity of
w(y, F ) gives the existence of ξ(y, F ∗−) directly for each y ∈ [−1, 0) ∪ (0, 1]. For
F > F ∗ we first observe that ξ(1, F ) is bounded in a right neighborhood of F ∗. This
follows from the proof of Theorem 2.10(iii). Hence, in (2.43),

V (w(1, F ), F )ξ(1, F )→ 0 as F ↘ F ∗,
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and thus, again using (2.43), ξ(y, F ∗+) = ξ(y, F ∗−) for y ∈ (0, 1). A similar argument
holds in (−1, 0). As a consequence, F is differentiable at U∗.

To prove F ′(1) = 0, we construct an upper bound for U(F ) near F = 1. For
−1 < y < 0 we have, as in (2.43),

w(0−,F )∫
w(y,F )

γ(s)ϕ(s)

(ϕ(s)− F )2
ds+ V (w(0−, F ), F )ξ(0, F )

= V (w(y, F ), F )ξ(y, F ).

Hence

∂u

∂F
>

f(u)− F

krw(u)f(u)J ′(u)

u(0−,F )∫
u(y,F )

krw(s)f(s)J
′(s)

(f(s)− F )2
ds,

which can be written as

∂u

∂F
>

∂u

∂y

0∫
y

1

f(u(s, F ))− F
ds.

Consequently, U−(F ) =
∫ 0

−1
u(y, F )dy satisfies

dU−

dF
>

0∫
−1

u(s, F )− u(−1, F )
f(u(s, F ))− F

ds >
1

1− F
{U− − u(−1, F )},

which implies

U−(F ) <
1

1− F

1∫
F

u(−1, s)ds.(2.52)

Next we estimate u(−1, F ) from above near F = 1. Since u(1, F ) < f−1(F ), the
periodicity condition implies

u(−1, F ) < J−1

(√
k+

k− J(f−1(F ))

)
.

Using 1−f(s)
(1−s)αw = O(1) and (1− s)βJ(s) = O(1), we find

u(−1, F ) < 1− C(1− F )
1

αw near F = 1.

Substituting this estimate into (2.52) and using U+(F ) < 1, we deduce

F (U) > 1− C(1− U)αw

in a left neighborhood of U = 1.
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3. Different scaling for Nc. In this section we explain why the general case
Nc = O(εγ) reduces to the special cases Nc = O(1) and Nc = O(ε).

The effective behavior of two-phase flow with trapping on the micro scale is de-
termined by the size of the capillary number Nc. It is analogous to studying filtration
of a viscous fluid through a porous medium. It is known that for moderate Reynolds
numbers the effective filtration velocity is given by Darcy’s law. For high Reynolds
numbers inertia effects are important, and the filtration laws are nonlinear. Finally,
for very high Reynolds numbers effective flow is turbulent. Rigorous studies of the
effective filtration laws of viscous flows through porous media, with Reynolds numbers
being a power of the characteristic pore size ε, are carried out in [24], [6], and [23].
Review [25] contains a detailed discussion of the effective behavior. If the power of
ε exceeds a critical value, the effective filtration is described by Darcy’s law. In the
critical case, a nonlinear and nonlocal effective filtration law arises; see [24] and [23].
Below the critical power, the viscosity forces are negligible compared to the inertial
term, and the effective filtration becomes turbulent. Furthermore, when the power of
ε approaches the critical value from above, there is an important nonlinear correction
to Darcy’s law. Then the effective filtration law is polynomial [6], and the transition
from linear to nonlinear filtration is continuous [23]. In our situation, all possible
cases would be covered if we studied Nc as a function of ε. Therefore we suppose
that the capillary number takes the form Ncε

γ . Analogous to the discussion above,
we identify the following regimes.

γ < 0. This means that capillary effects, caused by the surface tension, dominate

transport. In this case the expression for ∂u1

∂y doesn’t contain f , and (2.20) changes
to

∂U

∂t
− Nc

∂

∂x

{
D(U)∂U

∂x

}
= 0.(3.1)

When γ approaches 0 from below, transport becomes important, and for γ ≈ 0− we
end up with

∂U

∂t
− Nc

∂

∂x

{
D(U)∂U

∂x

}
+ ε−γ ∂

∂x
F(U) = O(ε).(3.2)

Here D(U) and F(U) are calculated as in the case Nc = O(1).
0 < γ < 1. In this regime capillary effects are still dominating, but the influence

of transport increases with γ. The resulting effective equation is

∂U

∂t
− Ncε

γ ∂

∂x

{
D(U)∂U

∂x

}
+

∂

∂x
F(U) = O(ε).(3.3)

Again D(U) and F(U) are determined as in the case Nc = O(1). In deriving (3.3) we
used the asymptotic expansion

uε = u0
(
x,

x

ε
, t
)
+ ε1−γu1

(
x,

x

ε
, t
)
+ εu2

(
x,

x

ε
, t
)
+ · · · ,(3.4)

where u0 is obtained as mentioned at the end of section 2.1, but now (2.18) for ∂u1

∂y
reduces to

F 1 = f(C)− Nc

√
k+D(C)

∂u1

∂y
, −1 < y < 0.(3.5)



1558 C. J. VAN DUIJN, A. MIKELIĆ, AND I. S. POP

When γ ≈ 1−, we approach the asymptotic expansion corresponding to the balance
case, Nc = O(ε).

γ > 1. Now transport is the dominating mechanism. Asymptotic expansion (2.4)
leads to an auxiliary problem which has no solution. In analogy with the theory of
the effective filtration laws [25], we call this case turbulent trapping.

Based on the above observations, we conclude the following. Interpreting Nc =
O(εγ), we find for γ < 1 an effective equation of degenerate parabolic type, in which
diffusion dominates when γ < 0 and convection dominates when γ > 0. In section
2.1 we analyze the typical case γ = 0. When γ > 1 (turbulent trapping), no effective
equation can be obtained. The critical case γ = 1, in which viscous and capillary forces
balance on the micro scale, leads to a nonlinear conservation law. This situation is
analyzed in section 2.2. Under the assumption Nc = O(εγ), this exhausts all flow
regimes.

4. Randomly layered media in the capillary limit. In this section we drop
the periodicity assumption and suppose a stationary ergodic geometrical structure.
It is characterized by a probability space (Ω, µ), with an ergodic dynamical system
T (x), x ∈ R (see, e.g., [26] or [12] for details). For a µ-measurable subset P ⊂ Ω, we
introduce P = P (ω) ⊂ R by

P (ω) = {x ∈ R : T (x)ω ∈ P},(4.1)

and we call it a random stationary set.
In our application we suppose that P (ω) has the following form:

P (ω) =
⋃
i∈Z

(y2i−1, y2i),(4.2)

where the random variables yi ∈ R are strictly increasing with respect to i.
A representative example is a Poisson process Π in R with constant rate γ > 0. In

this case the number of points of Π in an interval A = (a, b) has expectation γ(b− a).
The number of points of Π in any bounded interval is then finite with probability 1,
and Π has no finite limit points. On the other hand, the number in (0,+∞) is infinite,
so that the points in (0,+∞) can be written in order as

0 < y1 < y2 < y3 < · · · .
Similarly the points in (−∞, 0) can be written in order as

· · · < y−3 < y−2 < y−1 < 0.

These exhaust the points of Π, since the probability that 0 ∈ Π is equal to 0. The
yn are random variables, and the subsequences {yn, n ≤ −1} and {yn, n ≥ 1} are
independent, with the same joint distributions. Furthermore, the random variables
:1 = y1, :n = yn − yn−1 (n ≥ 2), :−1 = −y−1, l−n = y−n+1 − y−n (n ≥ 2) are
independent, and each has probability density g(y) = γe−γ|y|. The number of points
N(0, t] of Π in (0, t] satisfies the law of large numbers:

lim
t→+∞

1

t
N(0, t] = γ with probability 1.

Finally, the process of Poisson is ergodic. Another example is that of hardcore pro-
cesses (Gibbs processes, Matérn processes, etc.). We construct them from a Poisson
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point process by eliminating all points having a distance to their neighbors smaller
than a prescribed value. They satisfy the mixing property, and the ergodicity is
assured.

By Birkhoff’s ergodic theorem there exists a density (fraction of high permeability
layers) of P , given by

ϕ+ := µ(P ) = lim
N,M→∞

1

y2M+1 − y−2N−1

M∑
−N

|y2i(ω)− y2i−1(ω)|(4.3)

for almost all ω ∈ Ω, satisfying

0 ≤ ϕ+ ≤ 1.

The corresponding random permeability is given by

k(x, ω) = k(T (x)ω) =

{
k+(ω) if x ∈ P,

k−(ω) if x ∈ R\P ,
(4.4)

and it is a stationary random variable. Then

kε(x, ω) = k(T (x/ε)ω).(4.5)

As a consequence, u∗ = u∗(ω) through (1.16).
Next we turn to the two-scale expansion for the saturation and the flux, adapted

to the stochastic case. We write

F ε = ε−1F 0 + ε0F 1 + εF 2 + · · · ,(4.6)

where F k are stationary ergodic random fields and

uε = u0 + εu1 + ε2u2 + · · · .(4.7)

From these expansions and (2.8) we obtain directly

dF 0

dy
= 0, implying F 0 = F 0(x, t),(4.8)

with the random variable u0 satisfying (2.10). We reconsider this equation for a given
realization ω; see Figure 4.1. As before, we want to show F 0 = 0. Suppose F 0 < 0.
Introducing w and λ as in section 2.1, we again obtain

λ(w)
√

k
dw

dy
= −F 0

Nc
=: F > 0.(4.9)

We argue below that this inequality does not permit us to construct a global nonnega-
tive solution satisfying the matching conditions at the interfaces. Suppose w(y2i−0) ≤
J(u∗). By (4.9), implying strict monotonicity of w, we have w(y2i−1 + 0) < J(u∗),
giving w(y2i−1 − 0) = J(0). This contradicts the monotonicity of w in (y2i−2, y2i−1).
Next suppose w(y2i − 0) > J(u∗). Then w (y2i + 0) =

√
k−/k+w(y2i − 0) and

w(y2i+1 − 0) ≥ w(y2i+0)+
F

||λ||∞
1√
k− |y2i+1 − y2i|. Therefore we have w(y2i+1+0) =√

k+/k−w(y2i+1 − 0) ≥ w(y2i−1 + 0) + F
||λ||∞

{√
k+

k− |y2i+1 − y2i|+ 1√
k+

|y2i − y2i−1|
}
.
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y

k+(ω) k−(ω) k+(ω) k−(ω) k+(ω)

2i−1(ω)y 2i(ω)y 2i+1(ω)y 2i+2(ω)y 2i+3(ω)y 2i+4(ω)y

Fig. 4.1. Random distribution of layers.

Repeating this reasoning backwards in i shows that w will drop below J(u∗) at
the right side of a certain transition, again yielding a contradiction. Hence F 0 ≥ 0.
A similar argument gives F 0 ≤ 0, and so F 0 = 0.

This implies for u0, with i ∈ Z,

u0(y, ω) =




C(ω) > u∗ for y2i−1(ω) < y < y2i(ω),

J−1
(√

k−
k+ J(C(ω))

)
for y2i(ω) < y < y2i+1(ω),

or

u0(y, ω) =

{
C(ω) ≤ u∗ for y2i−1(ω) < y < y2i(ω),

0 for y2i(ω) < y < y2i+1(ω).

Now consider the ε−1-equation (2.11). Since F 0 = 0, the ergodicity of F 1 implies
F 1 = F 1(x, t), which is given by

F 1 = f(u0)− Nc

√
k(ω)D(u0)

(
∂u1

∂y
+

∂u0

∂x

)
.

Suppose C(ω) ≤ u∗. Then F 1 = 0 on (y2i−1(ω), y2i(ω)) implies F 1 = 0 for all x ∈ R

and t > 0. If C(ω) > u∗, then we have on (y2i−1(ω), y2i(ω))

∂u1

∂y
=

f(C(ω))− F 1√
k+(ω)NcD(C(ω))

− ∂C(ω)

∂x
=: B1(ω).

On (y2i(ω), y2i+1(ω)) we have

∂u1

∂y
=

f(C(ω))− F 1√
k−(ω)D(C(ω))

− ∂C(ω)

∂x
=: B2(ω),

with C as in (2.16). Since ∂u1

∂y is the local representation of a stationary random
variable with zero mean, we have that the mean value of

χ{k=k+}B1(ω) + χ{k=k−}B2(ω)

is zero. Here χ denotes the characteristic function. Hence

ϕ+√
k+(ω)

f(C(ω))− F 1

NcD(C(ω))
+

1− ϕ+√
k−(ω)

f(C(ω))− F 1

NcD(C(ω))

= ϕ+ ∂C(ω)

∂x
+ (1− ϕ+)

∂C(ω)

∂x
.
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Solving for F 1 gives (dropping the ω-dependence), for C(ω) > u∗,

F 1 =

ϕ+

√
k+

f(C)
D(C) +

1−ϕ+

√
k−

f(C)

D(C)

ϕ+√
k+

1
D(C) +

1−ϕ+√
k−

1
D(C)

− Nc

ϕ+ ∂C
∂x + (1− ϕ+)∂C∂x

ϕ+√
k+

1
D(C) +

1−ϕ+√
k−

1
D(C)

.(4.10)

Averaging (2.12) and using the ergodicity of F 2 yields the effective transport equation

∂U

∂t
+

∂F 1

∂x
= 0 for −∞ < x < ∞, t > 0,(4.11)

where U denotes the averaged oil saturation

U = ϕ+C + (1− ϕ+)C.

We note that for ϕ+u∗ ≥ U > 0, F 1 = 0. In the periodic case ϕ+ = 1
2 . Hence for

each realization ω we obtain an equation of the “periodic” form (2.20).
We stress that the averaged saturation U is deterministic. This is implied by

(4.11) and by the deterministic initial condition. Consequently, it suffices to consider
only one realization to determine U and its corresponding flux F 1.

Remark 4.1. In the case of the balance Nc = O(ε), we could proceed analogously.
Now we should solve the problem (2.25)–(2.26) on the real line for every realization.
The periodicity condition (2.27) is replaced by the condition that u take values be-
tween 0 and 1 on R. We note that the matching condition is now posed at every
point yi, i ∈ Z. Solving the auxiliary problem Au in the stochastic case is much more
complicated than in the periodic case. The analysis of the periodic case was already
quite lengthy, and in the proofs of Proposition 2.6 and Theorem 2.7 periodicity was
essential. Also the unboundedness of J complicates proofs. Using arguments from
this section we are able to conclude that F ∈ [0, 1], but the complete construction
is still an open problem. We expect to consider randomly layered media in the limit
Nc = O(ε) in a future publication.

5. Numerical results. Since we have no convergence proof, we are going to
verify the homogenization procedure numerically for the periodic case. Both the
capillary limit and the balance will be considered. We will use the Leverett model with
Corey relative permeabilities and Brooks–Corey capillary pressure [9], [7]. Specifically,
the following functions and parameters are used:

kro(u) = u2, krw(u) = (1− u)2, J(u) = 10(1− u)−
1
2 , M = 1, k+ = 1, k− = 0.5,

with Nc being either 1 or ε, depending on the case. In the asymptotic expansion, we
assumed that both the fractional flow f and the diffusivity D were of order 1. To
maintain this assumption in the numerical experiments, we include the factor 10 in
the Leverett function.

Tests are done on the interval (−1, 1), i.e., Lx = 1. For both cases we compute the
full problem with a periodic micro structure, as shown in Figure 1.3; i.e., k(x) = k+

in the coarse layers, and k(x) = k− in the fine layers. The thickness Ly of the layers
is related to the number of cells and determines the expansion parameter ε = Ly/Lx.
The matching conditions defined in (1.13) and (1.14) or (1.15) are imposed at the
interfaces separating the two types of materials. The resulting solution is averaged
on each micro cell consisting of two adjacent layers. This average is compared with
the numerical solution of the effective equations.
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In the tests, we consider a medium originally saturated by oil (u(x, 0) = 1, x ∈
(−1, 1)), with water injection from the left (u(−1, t) = 0). At x = 1 the Neumann
condition is chosen not to affect the flow. To demonstrate convergence, we take for ε
the values 1/20, 1/40, and 1/80. In the capillary limit the differences are only notice-
able near the injection point x = −1, which is a direct consequence of the thickness
of the layers. Away from the injection point the averaged saturations are nearly in-
distinguishable. Therefore we present in Figure 5.2 the capillary limit computations
only for ε = 1/40, showing excellent agreement with the upscaled saturation. In the
balance case, letting ε ↘ 0, we observe a more significant improvement. Therefore we
compare in Figure 5.5 the upscaled saturation with the averaged saturations obtained
for the three selected values of ε.

5.1. Capillary limit (Nc = O(1)). In this case we take Nc = 1. Inside each
layer of constant permeability we apply a first order explicit discretization scheme
with upwind finite volumes. With un

i denoting the approximate oil saturation at
tn = nτ inside the volume centered at xi = (i − 1/2)h (τ being the time-step and h
the grid size), the solution at the next time-step follows from

un+1
i = un

i − τ

h

(
Fn
i+1/2 − Fn

i−1/2

)
.(5.1)

Here Fn
i+1/2 approximates the flux at t = tn and x = xi+h/2 = ih, the edge between

the volumes centered in xi and xi+1. Likewise, F
n
i−1/2 approximates the flux at t = tn

and x = xi − h/2 = (i − 1)h.
Assume first that x = ih lies inside a homogeneous microlayer. Following [16], we

rewrite (1.7a) by means of the Kirchhoff transform

β(u) =

∫ u

0

krw(v)f(v)J
′(v)dv.(5.2)

Note that β is strictly increasing and smooth due to the properties of krw, f , and
J . In general, the integration cannot be carried out explicitly. Therefore, we need
to construct a table of pairs (u, β(u)). In doing so we apply an adaptive quadrature
method.

By this transform, the flux in (1.7b) becomes

F = f(u)− Nck(x)
∂

∂x
β(u).(5.3)

Since the flow is from left to right, a first order upwind approximation is

Fn
i+1/2 = f(un

i )− Nc

√
k(xi)

β(un
i+1)− β(un

i )

h
,(5.4)

where the permeability k(xi) is either k+ or k−, depending on the type of the material.
Computing the flux at a position where the permeability and saturation are dis-

continuous requires more attention. Let us assume that this position is located at
x = ih, thus separating the control volumes centered in xi and xi+1. Moreover, let
k(xi) = k+ and k(xi+1) = k−. As in [8] and [14], we introduce two sets of dummy
variables at ih, un

i+, and un
i− for all n = 0, 1, 2, . . ., which satisfy the pressure condition

in (1.15),

un
i− < u∗ implies un

i+ = 0, or

un
i− ≥ u∗ implies

J(un
i−)√
k+

=
J(un

i+)√
k− ,

(5.5)
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and for which the numerical flux is continuous at xi+1/2 = ih.
Given a pair un

i± as above, the flux at the interface is calculated analogously to
(5.4): in the coarse sublayer

Fn
i+1/2 = f(un

i )− Nc

√
k+

β(un
i−)− β(un

i )

h/2
,(5.6)

and in the fine sublayer

Fn
i+1/2 = f(un

i+)− Nc

√
k− β(un

i+1)− β(un
i+)

h/2
.(5.7)

These fluxes are equal due to the assumptions on un
i±. Knowing all fluxes, the oil

saturation un+1
i at all interior points follows from (5.1).

To determine the dummy variables un+1
i± at t = tn+1, we proceed as follows.

Knowing un+1
i and un+1

i+1 , we use (5.6) and (5.7) to obtain

f(un+1
i )− Nc

√
k+

β(un+1
i− )− β(un+1

i )

h/2
= f(un+1

i+ )− Nc

√
k− β(un+1

i+1 )− β(un+1
i+ )

h/2
.

Defining g : [0, 1]2 −→ R by

g(u, v) =
h

2
f(v) +Nc

√
k+β(u) +Nc

√
k−β(v),

we write equivalently

g(un+1
i− , un+1

i+ ) =
h

2
f(un+1

i ) +Nc

√
k+β(un+1

i ) +Nc

√
k−β(un+1

i+1 ) =: T.(5.8)

The CFL restriction implies 0 ≤ T ≤ h/2 + Nc(
√

k− +
√

k−)β(1). Note that g is
continuous and strictly increasing in both variables.

To solve (5.8) subject to the pressure condition (5.5), we distinguish two cases.
Assume first that 0 ≤ T ≤ (h/2)f(u∗) +Nc

√
k−β(u∗). Clearly there exists a unique

u ∈ [0, u∗] so that g(u, 0) = T . Since 0 ≤ u ≤ u∗, un+1
i− = u and un+1

i+ = 0 are

choices fulfilling both continuity of flux and the pressure condition. For any pair un+1
i±

satisfying (5.5) with un+1
i+ > 0 we have g(un+1

i− , un+1
i+ ) > (h/2)f(u∗) +Nc

√
k−β(u∗) ≥

T ; hence no other solutions are possible.
If (h/2)f(u∗) +Nc

√
k−β(u∗) < T ≤ h/2 +Nc(

√
k− +

√
k−)β(1), the same argu-

ment shows that (5.8) has no solution of the form (u, 0), with 0 ≤ u ≤ u∗. Recalling
(5.5), the pressure becomes continuous in this case and

un+1
i+ = J−1(

√
k−/k+J(un+1

i− )) > 0.(5.9)

Monotonicity and continuity of g and J ensure the existence of a unique un+1
i− ∈ (u∗, 1]

satisfying g(un+1
i− , un+1

i+ ) = T , with un+1
i+ > 0 given by (5.9).

In this way we obtain a unique pair of dummy variables at transitions from coarse
to fine. A similar procedure is applied at fine to coarse transitions. Details are omitted.

As explained in section 2.1, the effective equation is known explicitly in the cap-
illary limit. Figure 5.1 shows the effective diffusivity D and convection F in terms of
the cell-averaged oil saturation U . Here we use the relative permeabilities and Lev-
erett function as proposed for this section. This equation is of degenerate parabolic
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Fig. 5.1. Effective diffusion (left) and convection (right) for the Brooks–Corey model. Note
that D(U) = F(U) = 0 for 0 ≤ U ≤ 1/2u∗ = 0.25.
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Fig. 5.2. Effective and averaged oil saturation at t = 0.3 and t = 1.0.

type, since the effective diffusion D(U) vanishes for 0 ≤ U ≤ 1
2u∗ and at U = 1.

Several numerical methods can be applied to this kind of problem. Here we use the
explicit upwind scheme (see [28]) for the convergence analysis:

Un+1
i = Un

i − τ

h

(
Fn
i+1/2 − Fn

i−1/2

)
,

Fn
i+1/2 = F(Un

i )−D
(

Un
i + Un

i+1

2

)
Un
i+1 − Un

i

h
.

Figure 5.2 shows the solution of the effective equation (solid line) and the average
of the solution of the full problem (dashed line) at t = 0.3 and t = 1.0. Here we
used ε = 1/40. Smaller values give results that cannot be distinguished on the scale
of the figure. Since oil is being displaced from the column, both solutions are above
the macroscopic irreducible oil saturation corresponding to the maximum amount of
trapped oil: U = 1/2u∗ = 0.25. Since diffusion dominates, a long time is needed for
reaching this value.

The solution of the original problem is shown in Figure 5.3, together with its
cell-average. A part of the flow domain is enlarged in the graph on the right. Note
the good agreement with the theoretical results: the profile is highly oscillatory on
the macro scale and quite flat within the micro structure. Further note that even
though the original problem is of a degenerate type, free boundaries do not occur
inside the homogeneous sublayers. As a consequence the solution behaves in a fairly
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Fig. 5.3. Full problem; averaged and oscillatory oil saturation at t = 1.0, full (left) and zoomed
view (right).

nondegenerate manner and thus smoothly. Therefore a relatively coarse grid was
used: h = Ly/20 ≡ εLx/20. Since the numerical method is explicit, the time-step τ
is restricted by a CFL condition.

5.2. Balance (Nc = O(ε)). To compute the solution for the full problem with
Nc = ε, we proceed as in the previous section. However, the effective equation requires
more attention. As shown in section 2.5, this equation is of the Buckley–Leverett type,
but the fractional flow function is not known explicitly. In this case a table of values
for the pairs (U,F) has to be constructed, where F ranges from 0 to 1. For a given
F value from this table, we compute the solution u(F) of the auxiliary problem (Au)
defined in section 2.2 and calculate its cell-average as the corresponding U value in
the table. For the purpose of this paper we took Fi = i∆F , with ∆F = 10−3 and
i = 0, 103. As stated in Lemma 2.4, we take F(U) = 0 for all U ∈ [0, Ū ], Ū being the
average of the maximal steady state solution corresponding to l = u∗.

To find accurate solutions of Problem Au, we first modify the differential equation
through the Kirchhoff transform defined in (5.2). Thus, instead of solving Problem
Au, we consider the equivalent, as given next.

Problem Aθ. Given Fi, find θ : [−1, 0) ∪ (0, 1]→ R satisfying

f(β−1(θ))− Nc

√
k
dθ

dy
= Fi in (−1, 0) ∪ (0, 1),(5.10)

together with the corresponding matching and periodicity conditions defined in (2.26)
and (2.27).

The matching and periodicity conditions can be viewed as boundary conditions for
(5.10) on the two subintervals. To find a solution u(Fi) we have applied the following
shooting procedure. Choose θ(1) ≥ 0 and use this value as the initial condition for
(5.10) on (0, 1). This yields the corresponding θ(0+) and, by the matching conditions,
θ(0−). Use this value as the initial condition for (5.10) on (−1, 0). Then adjust θ(1)
so that θ(1) and θ(−1) satisfy the periodicity condition. In carrying out this shooting
procedure several technical difficulties had to be resolved. We omit the details in this
paper.

Figure 5.4 shows the effective oil fractional flow function for the specific model
considered in this section. Observe that indeed we have recovered a Buckley–Leverett
model in which the fractional flow has only one inflection point. Note that the theo-
retical analysis resulted only in F ′(U) = F ′(1) = 0. No statements about inflection
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Fig. 5.4. Effective oil fractional flow for the Brooks–Corey model. Note that F(U) = 0 for
0 ≤ U ≤ U ≈ 1.846 · 10−1.
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Fig. 5.5. Effective and averaged oil saturation at t = 0.4 and t = 1.0.

points could be given. Also note that the upscaled fractional flow contains details of
the small scale capillary forces. This effect does not appear explicitly but it is present
due to Problem Au. Finally, note that the macroscopic irreducible oil saturation U is
smaller than the one obtained in the capillary limit. This is to be expected because
the capillary forces are now O(ε), leading to nonconstant steady states.

Once the effective convection is known, the oil saturation equation is solved by
the first order explicit upwind scheme

Un+1
i = Un

i − τ

h

(F(Un
i )−F(Un

i−1)
)
.

Figure 5.5 shows the solution of the effective equation (solid line) and the cell-
average of the solution of the full problem (dashed lines) at t = 0.4 and t = 1.0. The
graph on the left provides numerical evidence of convergence as ε ↘ 0. As expected,
a rarefaction part is followed by a shock in the structure of the solutions. Note the
good agreement between the effective solution and the averaged one computed for
ε = 1/80.

The solution of the full problem together with its average is shown in Figure 5.6,
with a zoomed view in the graph on the right. Note the highly oscillatory profile on
both scales. Large gradients occur inside almost every homogeneous sublayer as a
consequence of the small diffusivity (O(ε)). In this case the computational grid has to
be sufficiently fine to approximate accurately both the local solution and macroscopic
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Fig. 5.6. Full problem; averaged and oscillatory oil saturation at t = 1.0, full (left) and zoomed
view (right).

irreducible oil saturation. We used h = Ly/30 ≡ εLx/30 and τ again restricted by a
CFL condition.

6. Conclusions. The results of this paper lead to the following conclusions.

• For Nc = O(1) (capillary limit) the effective equation is explicitly known and
of degenerate parabolic type. The diffusion and convection vanish up to the
macroscopic irreducible oil saturation Ū = 1

2u∗.
• For Nc = O(ε) (balance) the scaled-up equation is of Buckley–Leverett type,
with effects of the local capillary forces in the fractional flow function.

• The macroscopic irreducible oil saturation depends strongly on the value of
the capillary number.

• The solution of the auxiliary problem in the capillary limit has two constant
states connected by the pressure condition at the interface.

• The solution of the auxiliary problem in the balance is unique and can be
classified completely.

• The choice of the characteristic values in (1.6) is important for deciding which
of the two cases (capillary limit or balance) applies in a real situation.

• Random layers are considered only in the capillary limit. The effective equa-
tion is similar to the periodic one.

• The method used in this paper can be applied to heterogeneous media in
which the porosity, relative permeabilities, and Leverett function are periodic
as well.
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