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Assuming the presence of physics beyond the Standard Model (SM) with a characteristic scale
M ∼ O(10) TeV, we investigate the naturalness of the Higgs sector at scales below M using an
effective field theory (EFT) approach. We obtain the complete set of higher dimensional effective
operators (at any dimension n ≥ 5) that give the leading 1-loop EFT contributions to the Higgs
mass with a Wilsonian-like hard cutoff, and discuss the (fine) tuning between these terms and the
SM 1-loop contribution, which is required in order to alleviate the little hierarchy problem. We
then show that this tuning can be translated into a condition for naturalness in the underlying new
physics; a condition we denote by “EFT-naturalness”, and which we express as constraints on the
corresponding higher-dimensional operator coefficients up to the scale of the effective action Λ < M .
We also determine the types of physics that can lead to EFT-naturalness and discuss the current
experimental constraints on the relevant operator coefficients. We show that these types of new
physics are best probed in vector-boson and multiple-Higgs production.

a. Introduction

The recent LHC discovery of a light 126 GeV scalar particle [1] brought us one step closer to understanding
the mechanism of electroweak symmetry breaking. Indeed, the measurements of its production and decays to the
SM’s gauge-bosons [2] are consistent (within large errors) with the SM. Moreover, in view of the fact that no evidence
for new physics has been observed yet up to energies of ∼ 1 − 2 TeV and that the SM with a 126 GeV Higgs seems
to be a consistent theory up to the Planck scale (favoring a metastabe EW vacuum [2–4]), this discovery exacerbates
the long-standing fundamental difficulty of the SM known as the hierarchy problem. Simply put, the presence of a
fundamental Higgs with an EW-scale mass appears unnatural, since if the SM is the only physics present up to some
high scale Λ, it is then hard to see why the Higgs boson mass mh does not receive large corrections of O(Λ). This
technical difficulty is also known as the naturalness or fine-tuning problem of the SM. It becomes evident when one
calculates the SM’s leading O(Λ2) 1-loop corrections to the Higgs mass squared with a hard cutoff:

δm2
h(SM) =

Λ2

16π2

[

24x2t − 6
(

2x2W + x2Z + x2h
)]

∼ 8.2
Λ2

16π2
, xi ≡

mi

v
(v ≃ 246GeV) , (1)

where the dominant contribution is generated by the top-quark loop. This gives δm2
h(SM) ≈ m2

h already for Λ ∼ 550
GeV when mh ∼ 125 GeV and the Higgs mass is then said to be unnatural above this scale.
In Wilson’s approach [5], the hard cutoff Λ in Eq. 1 corresponds to the scale of the effective action - in the following

we will use this picture to investigate the behavior of δm2
h in the presence of new physics (NP) with a mass scaleM > Λ.

Indeed, this approach (Eq. 1) have been the underlying rationale for intensive theoretical studies of physics beyond
the SM over the past four decades [6–8]. In particular, although the cutoff dependent δm2

h(SM) is an unobservable
quantity, the question of naturalness in the Higgs sector becomes meaningful if one suspects that there is an actual
physical cutoff at high energy. In such a case, the insight provided by Eq. 1 is regularization scheme independent,
since even within dimensional regularization a new heavy mass threshold M will yield an additive (1-loop) correction
to the Higgs mass of O

(

M2/(16π2)
)

[7, 9], which in Eq. 1 is represented by Λ2/(16π2).

The first to address the naturality consequences of the quadratic cutoff behaviour in δm2
h(SM) was Veltman [6], who

suggested that a conspiracy/symmetry (possibly supersymmetry) leads to the cancellation 24x2t−6
(

2x2W + x2Z + x2h
)

=
0 in Eq. 1. Our approach in this work bares some similarity to Veltman’s concept.
In particular, let us imagine the presence of NP with a characteristic scale M > Λ > v. As mentioned above, in

this case Eq. 1 will be modified as the heavy excitations will generate new contributions to δm2
h. These contributions

can be derived within specific models such as little-Higgs and supersymmetric theories or within phenomenological
extensions of the SM which contain additional heavy scalars and/or fermions [9–12]. In such a case, one assumes full
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knowledge of the physics up to a yet higher scale (i.e., larger than M), above which the selected model breaks down
(or is subsumed by a more fundamental theory); accordingly, in model dependent studies the scale of the effective
action, Λ, can be extended beyond M , i.e., beyond the typical mass scale of the new particles of a specific theory.
Alternatively, one can adopt a model-independent approach using an effective field theory (EFT). The EFT approach

refrains from selecting a specific model but allows a reliable calculation of δm2
h only when the cutoff is below M ; this

approach can be used to impose general restrictions on the parameters of the unknown underlying theory by imposing
the condition that the EFT remains natural for all scales Λ < M .
In this paper we wish to investigate naturalness using this EFT approach, following Wilson’s prescription with

a hard cutoff and assuming also that the NP is weakly coupled and renormalizable (or, alternatively, that all non-
renormalizable terms in the theory are suppressed by inverse powers of a much higher scale ≫ M). Thus, at scales
belowM the NP is not directly observable1 but it can have important virtual effects that generate both renormalization
of the SM parameters and an infinite tower of effective operators with dimension ≥ 5.
We find the complete set of higher dimensional effective operators (at any dimension n ≥ 5) that can yield O(Λ2)

contributions to δm2
h and classify the underlying heavy theories that can generate these operators at tree-level. We

then evaluate their effect on δm2
h and discuss the tuning between these EFT terms and the SM contribution that

is required in order to obtain “EFT-naturalness” conditions. Namely, the conditions and relations among the EFT
parameters for which naturalness in the SM Higgs sector can be ameliorated, i.e., addressing the little hierarchy
problem of the SM Higgs sector up to the scale of the effective action Λ;2 if the tuning needed is of O(10−4) or worse,

then we implicitly assume that there is an underlying symmetry responsible for our EFT-naturalness conditions.

Let us denote the higher dimensional operators by O
(n)
i (n denotes the dimension and i all other distinguishing

labels), which are local, gauge and Lorentz invariant combinations of SM fields and their derivatives. They result
from integrating out the heavy degrees of freedom of the heavy NP theory that underlies the SM, and expanding in
inverse powers of M after appropriate renormalization of the SM parameters.3

The effective Lagrangian then takes the form [16–19]:

Leff =

∞
∑

n=5

1

M (n−4)

∑

i

f
(n)
i O

(n)
i . (2)

Different types of NP can generate the same operators, but, in general, with different coefficients, so that the
SM renormalization constants and the operator coefficients parameterize all possible types of NP. Moreover, some of
the O’s are necessarily generated by loops involving only heavy particles [17, 19] and we label such operators ‘loop-
generated’ (LG); this is a useful distinction because graphs involving LG operators and ℓ SM loops are considered to
be at least ℓ+ 1 loop diagrams.

FIG. 1: The 1-loop graphs generating δm2
h. The internal lines represent bosons or fermions from either the SM or the heavy

NP.

1 At scales above M the NP becomes manifest, and naturalness issues related to quadratic divergences may arise in connection with new
heavy scalar particles that might be present, but such complications will not affect the conditions under which heavy new physics may
tame the little hierarchy problem at scales below Λ, which is our only concern in this paper. Note that fermionic solution(s) do not
suffer from this difficulty.

2 We note in passing that higher dimensional NP operators in the SM Higgs sector may also have a significant effect on the stability of
the EW vacuum [13].

3 We adopt the minimal coupling scheme in constructing the higher dimensional effective operators below, which is consistent with the
assumption of a weakly coupled and renormalizable underlying NP, see e.g., [14]; the compatibility of minimal coupling with EFT was
recently discussed in the literature (see [14, 15]).
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b. EFT and the one-loop Higgs mass corrections

In general, all (SM and NP) one-loop corrections to m2
h are generated by the graphs in Fig. 1. In the sce-

narios we are interested in here, these corrections can be separated into 3 categories:

δm2

h(SM): When all internal lines are the light SM fields. The contributions from this category are given in Eq. 1.

δm2

h(Hvy): When all internal lines are heavy fields of the underlying NP. The contributions from this category are
contained in the renormalization of the parameters of the SM that follows upon integration of the heavy particles.
This is included in what we denote here as “tree-level” parameters, i.e., m2

h(tree) = m2
h(bare) + δm2

h(Hvy).

δm2

h(eff): When one line is heavy and the other is light (in graphs (b) and (c) in Fig. 1). The contributions in this
category are generated by the effective Lagrangian in Eq. 2 and are the ones we are interested in here.

As noted earlier, the little hierarchy problem of the SM refers to the fact that δm2
h(SM) > m2

h(tree) when Λ &
500 GeV, assuming mh(tree) is close to the observed value mh(tree) ≃ mh ≃ 125 GeV. Our aim here is only to
address this problem at scales below Λ, viewed as the scale of the Wilsonian effective action; we will not be concerned
with the issues related to the UV-completion of the SM or EW-Planck hierarchy, or with any details of the underlying
theory giving rise to Eq. 2. Specifically, we will study the role that the effective interactions in Eq. 2 may play in
restoring naturalness to the Higgs sector at any given intermediate scale v < Λ < M ,4 and determine the conditions
under which δm2

h(SM) + δm2
h(eff) . m2

h when mh ≪ Λ ≤M . We now proceed to the calculation of δm2
h(eff).

To illustrate the manner in which the effective operators contribute to δm2
h we consider the contributions to the

Higgs mass generated by the diagrams in Fig. 2. Expanding the heavy propagator in powers of its (large) mass M ,
one generates an infinite series of vertices suppressed by inverse powers of M (see Fig. 2 for a schematic depiction).
As mentioned above, we will evaluate loop graphs using a cutoff prescription (with Λ being the cutoff) so that this
expansion remains valid for the graphs in Fig. 2 (recall that M ≥ Λ) and the effective vertices correspond to those
generated by the effective operators in Eq. 2. We therefore need the set of operators O which are not LG, and
contribute to graph Fig. 1(a), where the vertex is generated by the effective operator.

FIG. 2: Description of the manner in which the effective Lagrangian in Eq. 2 generates graphs in category δm2
h(eff) defined in

the text.

The non-LG operators that give O(Λ2) contributions to δm2
h can be characterized using the following arguments:

the internal lines in the graphs on the right hand side of Fig. 2 (with the O-generated vertices) can be either the
SM scalar, fermions or vectors. For the first case, O must contain at least 4 SM scalar doublets; but if it contains
more than 4 such scalar fields the corresponding contributions to δm2

h are suppressed by powers of (v/M) and are,
therefore, subdominant. Thus, leading contributions with a scalar internal line are generated by effective operators
with precisely 4 scalar doublets. Similarly, if the internal lines are fermions or vectors, the operators must contain
2 SM scalar doublets. Lastly, it is straightforward to show [17, 19] that operators with 2 SM scalar doublets, no
fermions and any number of vectors are LG and are also subdominant.
Summarizing: the operators that generate 1 loop O(Λ2) contributions to δm2

h can be of only two types:

• Type I: O contains 4 scalar fields, any number of derivatives and is not LG.

• Type II: O contains 2 fermions and 2 scalar fields, any number of derivatives and is not LG.

4 It is important to note that Eq. 2 can be used to calculate such NP effects provided all energies (including those that appear within
loop calculations) are kept below M so the cutoff must obey Λ < M .
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FIG. 3: Tree-level graphs that generate the effective operators of type I (diagram a) and II (diagrams b and c), that can produce
leading corrections to δm2

h. φ and ψ denote the SM scalar doublet and fermions, respectively and all vertices are understood to
be invariant under SM gauge transformations.

The simplest way to determine the form of the operators of types I and II is by recalling that these operators are
generated at tree-level in the underlying heavy theory by the graphs in Fig. 3, where the relevant O is obtained by
expanding the propagators in inverse power of the internal heavy mass and imposing gauge invariance. We can also
eliminate operators with derivatives that act on scalar fields connected to the external legs, since δm2

h is evaluated at
zero momentum.5

A further simplification follows from a more careful study of the diagram shown in Fig. 3(c), which contributes
to δm2

h only through graphs of the type depicted in Fig. 1(c), for which the heavy boson must be a scalar. This
heavy scalar must also be an SU(2) triplet or singlet (since it couples to two SM isodoublets), which implies that
the fermions must have the same chirality (since a pair of fermions with different chirality cannot form a singlet or
a triplet). It then follows that the loop in Fig. 1(c) must involve a chirality flip, so that its contribution to δm2

h will
be suppressed by a factor of mψ/Λ and is, therefore, also subdominant. We thus conclude that we can neglect the
effective operators associated with Fig. 3(c).
With the above comments it is a straightforward exercise to obtain the relevant set of effective operators of interest.

Those generated by heavy scalar exchanges in Fig. 3(a) are

O
(2k+4)
S =

1

2
|φ|2�k|φ|2 , O(2k+4)

χ =
1

2
(φ†τIφ)D

2k(φ†τIφ) , O
(2k+4)
χ̃ =

1

4
(φ†τI φ̃)D

2k(φ̃†τIφ) , (3)

which correspond to the cases where the heavy scalar is a SM gauge singlet (labeled S) or an isotriplet of hypercharge
0 or 1 (labeled χ and χ̃, respectively). There are no other operators of this type since S, χ and χ̃ are the only
possible three states that can be formed with two SM scalar isodoublets. In the following we denote these heavy
scalars collectively by Φ.
Similarly the operators generated by heavy vector exchanges in Fig. 3(a) are

O(2k+6)
v =

1

2
jµ�

kjµ , O
(2k+6)
ṽ = j̃†µ�

kj̃µ , O
(2k+6)
V

=
1

6
JIµD

2kJµI , (4)

where the currents are

jµ = iφ†Dµφ+H.c. , j̃µ = iφ̃†Dµφ , JµI = iφ†τIDµφ+H.c. , (5)

and the labels in Eq. 4 refer to heavy vector isosinglets (v, ṽ) of hypercharge 0 or 1, respectively, and a heavy vector
isotriplet (V) of hypercharge 0. In the following we will collectively denote these heavy vectors by X .6

Finally, the graph in Fig. 3(b) involves an exchange of a heavy fermion Ψ which may or may not be colored and has

the same quantum numbers as φψ or φ̃ψ. That is, Ψ can be an isosinglet, doublet or triplet heavy lepton or quark of
hypercharge yΨ = yψ ± 1/2 (yr denotes the hypercharge of r). These Ψ-generated operators are

O
(2k+4)
Ψ−ψ = |φ|2 ψ̄ (i 6D)

2k−1
ψ, (k ≥ 1) , (6)

5 If δm2
h
is evaluated at some other low scale, e.g. at µ = mh, then vertices where a derivative acts on an external leg are also subdominant

since their contribution will be suppressed by a factor of mh/Λ.
6 There is a fourth current that can be constructed using 2 scalar fields, namely J̃

µ = iφ̃†
τDµφ; however, since J̃

µ = Dµ
P with

P ≡ (i/2)φ̃†
τφ holds identically, and since vector bosons do not have tree-level couplings to total derivatives, there are no tree-level

operators involving J̃. None of the other currents in Eq. 5 can be written as derivatives of scalar operators.
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where ψ is any SM fermion.7 Another type of operator that may be generated by the heavy-fermion exchange is
(φ†τIφ) (ψ̄τI 6D2k−1ψ), where ψ is an isodoublet. However, this operator will yield a contribution to δm2

h which is
suppressed by a factor of m2

ψ/Λ
2 and is, therefore, also subdominant.

Note that the graphs in Fig. 3 represent the possible types of NP that can generate the effective operators in Eqs. 3,
4 and 6 at tree-level. There are other types of NP that can also generate these operators, but only via loop diagrams.
It then follows that the coefficients of the operators associated with the same heavy particle are correlated; we return
to this point below.
Calculating the 1-loop quadratic corrections to m2

h which are generated by the operators in Eq. 3, 4 and 6, we
obtain:

δm2
h(eff) = −

Λ2

16π2
F (eff) , (7)

where (Φ = S, χ, χ̃ and X = v, ṽ, V)8

F (eff) =

∞
∑

k=0

(Λ/M)2k

k + 1

∑

Φ

f
(2k+4)
Φ −

∞
∑

k=0

(Λ/M)2k+2

k + 2

∑

X

f
(2k+6)
X −

∞
∑

k=1

(−1)k(Λ/M)2k

k + 1

∑

Ψ,ψ

f
(2k+4)
Ψ−ψ . (8)

Defining the measure for fine-tuning to be ∆h ≡ |δm2
h|/m

2
h, where δm

2
h = δm2

h(SM) + δm2
h(eff) and m2

h is the
physical mass, m2

h = m2
h(tree) + δm2

h, we have:9

∆h =
Λ2

16π2m2
h

∣

∣

∣F (eff) − 8.2
∣

∣

∣ . (9)
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FIG. 4: Regions in the F (eff)−Λ plane where naturalness can be restored with no fine-tuning (∆h = δm2
h/m

2
h = 1, in black) and

with fine-tuning at the level of 10% (dark gray) and 1% (light gray), corresponding to ∆h = δm2
h/m

2
h = 10 and 100, respectively.

See also text.

7 It is, in principle, possible to eliminate the operator in Eq. 6 using the “equivalence theorem” of [19]. However in a cut-off scenario like
the one we consider, this procedure involves a non-trivial Jacobian that will generate terms of the form |φ|2Λ2, which will reproduce
the contributions to δm2

h
generated by OΨ−ψ.

8 When evaluating the contributions associated with the heavy vectors (sum over X) it is convenient to use a renormalizable gauge.
The calculation in the unitary gauge is more involved since, in this case, the longitudinal component of the vector propagators are
proportional to 1/v2, and this complicates isolating the leading contributions.

9 Our measure for naturalness corresponds to what is known as the Barbieri-Giudice criteria [20]: ∆ = |∂lnO|/|∂lnf |, for O = m2
h
and

f = F (eff) − 8.2.
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It is evident from Eq. 9 that in order to restore naturalness at the effective action scale Λ < M , there must be a
cancellation10 between the O(Λ2) one-loop expressions generated in the SM (Eq. 1) and those produced by the effective
operators (Eq. 7); this cancellation can be partial or exact (e.g., due to a model/symmetry), leading to δm2

h = O(v2)
– in this case the tree-level contribution m2

h(tree) will be of this order as well. It should be emphasized again that

F (eff) is the 1-loop contribution to the Higgs mass calculated only from effective operators which are generated at
tree-level in the underlying NP (the ones given in Eqs. 3, 4 and 6); it is, thus, a dimensionless function of the NP
parameters and the ratio Λ/M , so that the cancellation conditions will depend on Λ as well. Our requirement that Λ
be the scale below which the SM little-hierarchy problem is solved is consistent within our EFT-naturalness scenario
because of the requirement M > Λ.
Re-writing the above defined fine-tuning condition as |m2

h(tree)/δm
2
h+1| = 1/∆h, it is evident that this cancellation

must occur to a precision of 1/∆h, so that a larger ∆h corresponds to a less natural theory. Therefore, a theory (i.e.,
F (eff)) for which ∆h = 1 is natural, while one with ∆h = 10(100) suffers from fine-tuning of 10%(1%).
In Fig. 4 we plot regions in the F (eff)−Λ plane that correspond to an effective action which is natural (i.e., enclosed

within the ∆h = 1 region) and those that suffer from fine-tuning of no worse than 10% and 1%, corresponding to
∆h = 10 and ∆h = 100, respectively. This figure illustrates the (fine) tuning between the EFT and SM 1-loop
terms which is required to alleviate the little hierarchy problem, following Eq. 9. For example, theories for which
8.17 . F (eff) . 8.23 are natural at Λ ∼ 10 TeV, while theories with 7.95 . F (eff) . 8.45 or 5.73 . F (eff) . 10.67
will suffer from 10% or 1% fine-tuning, respectively, at Λ ∼ 10 TeV. Note also that, if the scale of EFT-naturalness is

Λ ∼ 5 TeV, then a much wider range of theories, those giving 0<∼ F (eff) <
∼ 18, are allowed if one is willing to tolerate

1% fine-tuning. It should also be noted that the EFT-naturalness regions shown in Fig. 4 may in general be subject
to additional constraints (e.g., from perturbativity), depending on the details of the specific underlying theory.

10 If no cancellation occurs between the radiative corrections then δm2
h
= O(Λ2), which must be balanced by an O(Λ2) tree-level contri-

bution to the Higgs mass in order to explain the experimentally observed value of the physical mass m2
h
= O(v2).
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FIG. 5: Upper plot: regions in the Λ − M plane, corresponding to 1 < M/Λ < 1.5 (black), 1.5 < M/Λ < 2 (dark gray),
2 < M/Λ < 2.5 (gray) and 2.5 < M/Λ < 3 (light gray), for a naturalness scale 3 TeV < Λ < 10 TeV and M being the typical
NP mass scale. Lower plots: scatter plots in the ξ − η plane (see Eq. 12) corresponding to the regions in the Λ −M plane
(corresponding shading colors), where the NP (with scale M) restores naturalness (left plot) or suffers from 10% fine-tuning
(right plot).

Given the specific form of the graphs in Fig. 3 which generate the leading operators in Eqs. 3, 4 and 6, it is possible
to express the EFT coefficients f in terms of some of the couplings of the heavy particles to the SM. Specifically,
defining uΦ, gX and yΨ−ψ to be the couplings of a heavy scalar Φ = S, χ, χ̃ to φ2 (i.e., uΦφ

†Φφ), of a heavy vector

boson X = v, ṽ, V to the currents JX = j, j̃, JI in Eq. 5 (i.e., gXXµJ
µ
X), and of a heavy fermion Ψ to ψφ (i.e.,

yΨ−ψψ̄Ψφ), respectively, and allowing for the (generic) case of different scales of NP: MΦ,Ψ,X & Λ corresponding to
the mass scale of the heavy scalars, vectors and fermions, respectively, we find:

f
(2k+4)
Φ (uΦ,MΦ,M) =

∣

∣

∣

∣

uΦ
MΦ

∣

∣

∣

∣

2 (
−M2

M2
Φ

)k

,

f
(2k+4)
Ψ−ψ (yΨ−ψ ,MΨ,M) =

1

2
IΨ|yΨ−ψ|

2

(

M2

M2
Ψ

)k

,

f
(2k+6)
X (gX ,MX ,M) = IX |gX |

2

(

−M2

M2
X

)k+1

, (10)

where Iζ = 1, 2, 3 when the field ζ = Ψ or X is an isosinglet, doublet or triplet, respectively. Thus, inserting Eq. 10
in Eq. 8 and performing the sum over k, we obtain

F (eff)(Λ) =
∑

Φ

|uΦ|
2

M2
Φ

A

(

Λ2

M2
Φ

)

+
1

2

∑

Ψ,ψ

IΨ|yΨ−ψ|
2

[

1−A

(

Λ2

M2
Ψ

)]

+
∑

X

IX |gX |
2

[

1−A

(

Λ2

M2
X

)]

, (11)

where A(x) = ln(1 + x)/x, so that 1 > A(x) ≥ 0, from which it follows that F (eff) > 0.
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Assuming that the heavy masses are clustered around a value M , the above expression simplifies to

F (eff)(Λ) = (ξ − η)A

(

Λ2

M2

)

+ η ; ξ =
∑

Φ

|uΦ|
2

M2
Φ

, η =
1

2

∑

Ψ,ψ

IΨ|yΨ−ψ|
2 +

∑

X

IX |gX |2 , (12)

where we expect ξ, η ∼ O(1− 10), e.g., uΦ ∼ 3MΦ and/or a triplet heavy vector like (colored) quark with yΨ−ψ ∼ 1
will give ξ, η ∼ 10.
In Fig. 5 we plot the regions in the ξ−η plane which correspond to ∆h = 1 (natural) and ∆h = 10 (10% fine-tuning),

for an EFT naturalness scale in the range 3 TeV < Λ < 10 TeV and NP scale Λ < M < 3Λ. The shaded region in the
ξ − η scatter plots correspond to the shaded regions in the Λ−M plane (matching colors). In particular, we can find
the values of (ξ, η) for which the EFT corrections to ∆m2

h can restore naturalness in the Higgs sector at a certain Λ
for some value M of the NP threshold. For example, extensions of the SM with a typical mass scale of M ∼ 7 TeV
that give ξ ∼ 9 and η ∼ 5, will yield an effective action which is natural up to Λ ∼ 5 TeV (an order of magnitude
improvement over the pure SM).

c. Signals of EFT-naturalness

Let us briefly discuss the potential signals of our EFT-naturalness operators, or equivalently, of the tail of
the NP that can restore naturalness at energy scales which are accessible to current and future high energy colliders.
In particular, apart from their contribution to δm2

h, these operators also shift the SM Higgs self couplings h3 and h4,
the SM Higgs couplings to the gauge bosons hV V and h2V 2 (V =W or Z) and the Higgs Yukawa couplings hψψ (ψ
being a SM fermion). In addition, they also give rise to new higher dimensional contact terms such as h3V 2, h4V 2

and h2ψ2.

Operator h3 h4 hWW h2W 2 h3W 2 h4W 2 hZZ h2Z2 h3Z2 h4Z2 hψψ h2ψ2

O
(2k+4)
S X X

O
(2k+4)
χ X X X X X X

O
(2k+4)
χ̃

X X X X X X X X X X

O
(2k+6)
v X X X X

O
(2k+6)
ṽ X X X X

O
(2k+6)
V

X X X X X X X X

O
(2k+4)
Ψ−ψ X X

TABLE I: Vertices involving the Higgs, gauge-bosons and fermions which are generated by the operators in Eqs. 3, 4 and 6. A
check mark is used to indicate that the vertex is affected by the specific operator.

In Table I we list the expected deviations in the SM couplings and the new contact terms which are generated by
each of the operators in Eqs. 3, 4 and 6. Evidently, the tail of the NP generating the EFT-naturalness operators can
be searched for in multi-boson scattering processes of the form ψψ̄/V V → n · h+m · V +X , where n,m = 0, 1, 2, ....
In particular,, one can search for correlations in the various channels or look for differences between W-boson versus

Z-boson associated production processes. For example, while O
(2k+4)
χ will effect Wh production at the LHC, i.e.,

pp→ Wh+X , the operator O
(2k+6)
v is expected to contribute only to Z-boson associated production processes such

as pp→ Zh+X .
Clearly, though, the search for the tail of these NP effects in Higgs – gauge-boson processes will require a sensitivity

to these couplings at the percent level, to be probed at Λ ∼ O(5 − 10 TeV). This will be challenging even at the
high-luminosity LHC and may require future colliders at the high-energy/high-luminosity frontiers, such as a future
30 or 100 TeV hadron collider and/or an O(TeV) e+e− collider. Nonetheless, from our considerations we expect
better prospects for detection of NP at the LHC in the low-multiplicity Higgs – gauge-bosons production processes,
e.g., pp→ hW, hZ +X , and in processes involving the new contact terms listed in Table I - this will be studied in a
future work.

d. Constraints from EW precision data and Higgs signals

Let us now examine the limits that the current data impose on the coefficients of our effective operators.
Since the most important effects are generated by the lowest-dimensional operators, we will only investigate the

limits on the dimension 6 coefficients f
(6)
Φ,Ψ−ψ,X , which are mainly of two types [to simplify the expressions we define

ǫ = (v/M)2]:
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1. A shift to the ρ parameter:

The scalar-triplet operators O
(6)
χ,χ̃ and the vector operators O

(6)
X modify the SM gauge-boson masses according

to:

δM2
Z

M2
Z

= ǫ

(

f (6)
v +

1

3
f
(6)
V

− f
(6)
χ̃

)

,
δM2

W

M2
W

= ǫ

(

1

2
f
(6)
ṽ +

1

3
f
(6)
V

− f (6)
χ −

1

2
f
(6)
χ̃

)

, (13)

which shift the ρ parameter accordingly:

δρ = ǫ

(

1

2
f
(6)
ṽ − f (6)

v +
1

2
f
(6)
χ̃ − f (6)

χ

)

. (14)

This is the strongest constraint from precision EW observables; it is suppressed by a factor of ǫ because the
heavy physics being considered here (the heavy Φ, X and Ψ states) does not break the SM gauge invariance
(this happens only at the EW scale v). If we assume that the operator coefficients f are O(1) and that there

are no cancellations, then the constraint |δρ| < 0.0007 [21] implies M >
∼ 9.3 TeV; but this can be considerably

reduced if some cancellations do occur.

2. A shift of the Higgs boson couplings to fermions and SM gauge-bosons:
This effect can be divided into three:

• The scalar operatorsO
(6)
Φ modify the Higgs kinetic term. Thus, in order to recover a canonically normalized

Higgs field we need to rescale h → [1 + (ǫ/2)
∑

f
(6)
Φ ]h. This modifies the Higgs couplings to all other SM

fields (denoted by x):

δΦ ≡
δghxx
gSMhxx

=
ǫ

2

∑

Φ

f
(6)
Φ , (15)

and changes all Higgs decay widths into any final state x by the same factor (so that branching ratios

remain the same): δΓ(h→ xx) ≈ ǫ
∑

f
(6)
Φ ΓSM (h→ xx) (to lowest order in Λ).

• The fermion operators O
(6)
Ψ−ψ modify the Higgs Yukawa coupling to the SM fermions (ψ):

δΨ−ψ ≡
δghψψ

gSMhψψ
= −ǫ

∑

Ψ

f
(6)
Ψ−ψ . (16)

Note that this shift in the htt coupling also modifies the top-quark loop contribution in the gluon-fusion
Higgs production cross section as well as in the 1-loop decays h→ γγ and h→ Zγ.

• The scalar-triplet operators O
(6)
χ,χ̃ and the vector operators O

(6)
X modify the couplings of the Higgs to the

vector bosons:

δW ≡
δghWW

gSMhWW

= ǫ

(

f
(6)
ṽ +

2

3
f
(6)
V

−
1

2
f (6)
χ −

1

4
f
(6)
χ̃

)

, (17)

δZ ≡
δghZZ
gSMhZZ

= ǫ

(

2f (6)
v +

2

3
f
(6)
V

−
1

2
f
(6)
χ̃

)

, (18)

and therefore changes the Higgs decay width to a pair of SM gauge-bosons.

Turning now to the overall effect of the above modifications on the Higgs couplings to the SM fermions and gauge-
bosons, let us analyze the constraints that can be imposed from the recently measured Higgs signals (see also [22]).
In particular, defining:

wxx ≡
Γ(h→ xx)

Γ(hSM → xx)
, RTotal ≡

ΓTotalh

ΓTotalhSM

, (19)

the normalized branching ratios for each channel are given by:

RBRxx ≡
BR(h→ xx)

BR(hSM → xx)
=

wxx
RTotal

. (20)
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The “signal strength” for each Higgs production and decay mode is then given by:

µiixx ≡
σ(ii→ h→ xx)

σ(ii→ hSM → xx)
=
wiiwxx
RTotal

, (21)

so that:

Higgs signal gg → γγ gg → ZZ⋆ gg →WW ⋆ gg → Zγ gg → τ+τ− V V → γγ qq̄ → V h→ V bb̄ qq̄ → V1h→ V1V2V
⋆
2

µiixx · R
Total wggwγγ wggwZZ wggwWW wggwZγ wggwττ wV V wγγ wV V wbb wV1V1wV2V2

(22)

Note that, since the 1-loop hgg coupling is controlled primarily by the top-quark Yukawa coupling, we have wgg =
wtt. To lowest order in ǫ, we then find:

wψψ ≈ 1 + 2δ̃ψ , wgg ≈ wtt , wWW ≈ 1 + 2δ̃W , wZZ ≈ 1 + 2δ̃Z , wγγ ≈ 1 + 2.56δ̃W − 0.56δ̃t , wZγ ≈ 1 + 2.1δ̃Z − 0.1δ̃t ,
(23)

and

RTotal ≈ 1 + 2



BRWW
SM δ̃W +BRZZSM δ̃Z +BRggSM δ̃t +

∑

ψ

BRψψSM δ̃ψ



 , (24)

where BRxxSM ≡ BR(hSM → xx) are the SM branching ratios, δ̃ψ ≡ δΦ + δΨ−ψ, δ̃W ≡ δΦ + δW , δ̃Z ≡ δΦ + δZ and
δΦ, δΨ−ψ, δW , δZ are given in Eqs. 15-18.

We see that, if the coefficients of the higher dimensional operators f
(6)
Ψ , f

(6)
Φ and f

(6)
X are of O(1), then the

typical correction to the Higgs signal strengths is of O(ǫ). Thus, given that the LHC is expected to probe the Higgs
couplings to at most 10% accuracy (this includes the high luminosity run of the LHC [23]), a rather weak bound of
M & O(1 TeV), can be imposed on the scale of the new heavy physics that can lead to EFT-naturalness in the Higgs
sector. A future e+e− collider may be able to improve the accuracy to O(0.01) [23], in which case EFT-naturalness
can be probed up to Λ ∼ 2 − 3 TeV. We conclude that precision Higgs measurements are not expected to impose
significant constraints on our EFT-naturalness scenario.

Finally, we note that none of the operators in Eqs. 3, 4 and 6 breaks any of the global symmetries of the SM, so no
strong limits can be obtained from CP, flavor or lepton and baryon number conservation experiments.

e. Summary

We have used EFT techniques to study the little hierarchy problem of the SM Higgs sector assuming the presence
of weakly-coupled and decoupling heavy physics with scale M . Following Wilson’s approach, we calculate the 1-loop
contribution to the Higgs mass in the EFT as a function of the scale of the effective action Λ (Λ ≫ mW ), and discuss
the tuning between these EFT terms and the SM 1-loop contribution, which is required in order to alleviate the
little hierarchy problem. In particular, we determine the conditions under which these quadratic new heavy-physics
contributions can balance those generated by the SM at the scale Λ, where we implicitly assume that there is an
underlying symmetry responsible for that, especially if the needed tuning is of O(10−4) or worse.
We analyze the complete set of higher dimensional effective operators (at any dimension n ≥ 5) that can yield

O(Λ2) contributions to δm2
h in the EFT and classify the underlying heavy theories that can generate these operators

at tree-level. In particular, we find that heavy new physics theories that can lead to EFT-naturalness (i.e., that can
restore naturalness in the effective action at e.g., Λ ∼ 5− 10 TeV) must contain one or more singlet or triplet heavy
bosons or else a singlet, doublet or triplet fermions, all heaving typical masses larger than Λ. We then estimate the
coefficients of the EFT-naturalness higher dimensional operators using the relevant phenomenological interactions of
these heavy particles.
We have also studied the constraints that precision electroweak data and the recently measured Higgs signals impose

on our EFT-naturalness setup and find that heavy scalar singlets and/or heavy fermions (singlets, doublets or triplets)
are more likely to play a role in softening the fine-tuning in the SM Higgs sector, if the scale of the new heavy physics
is below ∼ 10 TeV.
Finally, we have discussed the expected signatures that the tail of the NP (responsible for EFT-naturalness) can

have at the LHC and at future colliders. In particular, we find that signals of EFT-naturalness are likely to be manifest



11

as deviations in processes involving Higgs + gauge-boson production, e.g., pp or e+e− → hh, hW, hZ,WW,ZZ +X
and/or processes with higher Higgs/gauge-boson multiplicities in the final state.
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