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Abstract

Using boson-vortex duality, we formulate a low-energy effective theory of a two-dimen-

sional vortex lattice in a bosonic Galilean-invariant compressible superfluid. The exci-

tation spectrum contains a gapped Kohn mode and an elliptically polarized Tkachenko

mode that has quadratic dispersion relation at low momenta. External rotation breaks

parity and time-reversal symmetries and gives rise to Hall responses. We extract the

particle number current and stress tensor linear responses and investigate the relations

between them that follow from Galilean symmetry. We argue that elementary particles

and vortices do not couple to the spin connection which suggests that the Hall viscosity

at zero frequency and momentum vanishes in a vortex lattice.
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1 Introduction

Since the discovery of superfluidity in 4He, superfluids provide a never-ending source of in-

spiration for experimental and theoretical research in low-energy physics. Although a regular

superfluid flow is necessarily irrotational, superfluids can carry finite angular momentum in

the form of topological defects known as quantum vortices, which nucleate naturally in re-

sponse to external rotation. Under slow rotation, the density of bosons is much larger than

that of the topological defects and the quantum vortices form a regular vortex lattice, which

has been observed in superfluid He [1] and more recently also in cold atomic BECs [2]. At

larger rotation frequencies, the vortex cores start to overlap, and at a certain point the vortex

lattice is expected to undergo a melting transition into an incompressible bosonic quantum

Hall regime [3].

The physics of a quantum vortex lattice in bosonic superfluids attracted considerable inter-

est in the past (for reviews see Refs. [4–7]). In a series of beautiful papers, Tkachenko laid the

theoretical foundations of this field. In the incompressible limit, he demonstrated analytically

that the triangular arrangement of vortices has the lowest energy [8] and determined low-

energy linearly-dispersing collective excitations [9,10], known today as Tkachenko waves. In

later years, the hydrodynamics of Tkachenko waves in incompressible superfluids was devel-

oped in Refs. [11–13]. With the advent of cold atom experiments, the main interest in this field

shifted towards vortex lattices in compressible superfluids. These support a soft Tkachenko

mode with a low-energy quadratic dispersion [14,15], whose signatures were experimentally

observed in Ref. [16]. The hydrodynamics of such lattices were investigated by Baym [15,17]

and later, in Ref. [18], Watanabe and Murayama proposed a low-energy effective field theory

of this quantum state.1 Finally, it is worth mentioning that a rotating superfluid in a harmonic

trap maps directly to a problem of bosons in a constant magnetic field proportional to the

rotation frequency.

The discrete time-reversal T and parity P symmetries of a two-dimensional bosonic super-

fluid are broken by external rotation (while its product PT is preserved). In this work, we

focus on consequences of the violation of these symmetries, which, to the best of our knowl-

edge, has not been investigated before in a vortex lattice phase of a continuum superfluid.2

Using the boson-vortex duality [24–26], we write down a low-energy effective theory of an

infinite vortex lattice in a bosonic superfluid. It will be argued below that this dual formu-

lation, where the Goldstone mode is parametrized by a gauge field, has certain advantages

compared to the effective theory of Ref. [18]. After discussing the symmetries of the theory,

we compute the U(1) particle number and stress tensor linear responses to external sources.

In addition to P and T -invariant responses, we extract the Hall conductivity and Hall viscosity.

We also investigate relations between particle number and geometric responses which follow

from Galilean symmetry of the bosonic superfluid.

1An effective field theory of individual vortices was investigated recently in [19–21].
2We note that the Hall response was studied in a hard-core lattice model in [22,23].
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In this paper, we concentrate on the bulk properties of two-dimensional vortex lattices,

and thus consider infinite uniform systems, where momentum is a good quantum number. We

expect that our results should be relevant to cold atom experiments with large vortex lattices

(where the angular frequency of rotation Ω approaches the transverse trapping frequencyω⊥)

and numerical simulations, where periodic boundary conditions are used. Investigation of

edge physics is deferred to a future work. The effective field theory developed in this paper is

not applicable in the quantum Hall regime.

2 Dual effective theory

Boson-vortex duality [25,26] opened an interesting perspective on the physics of two-dimen-

sional superfluids and quantum vortices. In the dual formulation, a U(1) superfluid is identi-

fied with the Coulomb phase of a two-dimensional compact u(1) gauge theory without instan-

tons [27, 28]. The dual photon has only one polarization and corresponds to the Goldstone

boson of the spontaneously broken particle number symmetry. In this language, vortices are

point-like charges coupled minimally to the dual u(1) gauge field aµ. The latter has a finite

background magnetic field fixed by the superfluid density that gives rise to the transverse

Magnus force acting on vortices. In this section, we use the vortex-boson duality and formu-

late the low-energy effective theory of an infinite two-dimensional vortex lattice in a bosonic

superfluid rotating with an angular frequency Ω. In this formulation, the vortex lattice is a

two-dimensional bosonic Wigner crystal—a triangular lattice of point charges embedded into

a static u(1)-charged background that neutralizes the system, see Fig. 1. The theory is defined

by the following Lagrangian

L (ei , b, ui;Aµ) =
me2

2b
− ǫ(b)−mΩbεi ju

i Dtu
j + 2mΩeiu

i −Eel(u
i j)− εµνρAµ∂νaρ . (1)

Here m denotes the mass of the elementary Bose particle, Dt = ∂t + vk
s ∂k is the convective

derivative, and we have introduced the dual electric and magnetic fields ei = ∂t ai − ∂iat and

b = εi j∂ia j that are related to the coarse-grained superfluid number density ns and coarse-

grained superfluid velocity v i
s ,

ns = b, v i
s = −

εi je j

b
. (2)

The first two terms in the Lagrangian (1) represent the Galilean-invariant coarse-grained

superfluid characterized by the internal energy density ǫ(ns) (see, for example, Ref. [29]).

The fields ui represent the Cartesian components of the coarse-grained displacements of the

vortices from their equilibrium lattice positions. As will become explicit later, these fields

are the Goldstone bosons of the translations which are spontaneously broken by the vortex

lattice ground state. The third term in the Lagrangian (1) is the Magnus term that produces a

force acting in the direction perpendicular to the velocity of vortices relative to the superfluid.

Since the vortices are charged with respect to the dual field aµ, the term ∼ eiu
i in Eq. (1)

represents the dipole energy density of displaced lattice charges in the presence of a static

neutralizing background. The Lagrangian also contains the elastic energy density Eel(u
i j) of

the vortex lattice which depends on the deformation tensor ui j = (∂ iu j + ∂ jui − ∂kui∂ ku j)/2.

Its functional form is fixed by the geometry of the lattice. For a triangular vortex lattice, the

elastic energy density, up to quadratic order in deformations, is [12,15,30]

E (2)
el
(∂ u) = 2C1(∂iu

i)2 + C2

�

(∂xux − ∂yuy)2 + (∂yux + ∂xuy)2
�

, (3)
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Figure 1: Dual Wigner crystal: point charges (red dots) form a triangular lattice

in a homogenous neutralizing background (cyan). Microscopic displacements and

photons of the dual gauge field are represented by green springs and violet wavy

lines, respectively. Degrees of freedom ui and aµ of the effective theory (1) are coarse-

grained averages over large number of unit cells.

where C1 and C2 denote the compressional and shear modulus, respectively.3 Notice that

the bulk modulus C1 does not have to be non-negative to insure the stability of the vortex

lattice [12,15]. Finally, the last term in the Lagrangian (1) takes into account the coupling of

the global U(1) coarse-grained current

jµs = −
δS

δAµ
= εµνρ∂νaρ = (ns, nsv

i
s) (4)

to an external U(1) source field Aµ. Here the source is defined to vanish (up to a gauge

transformation) in the ground state and thus is associated with the deviation of the external

rotation frequency from its ground state value Ω. For an infinite vortex lattice, the ground

state is a state with ui = 0, b = n0 = const, ei = 0, where the ground state particle density n0

is fixed by the condition dǫ/d b = 0.

We emphasize that the form of the effective theory (1) is not merely a guess, but is closely

related to the previous work of Watanabe and Murayama [18]. In that paper, starting from a

microscopic theory of a rotating weakly-interacting Bose gas, the low-energy effective theory

of the vortex lattice was derived. As we demonstrate in Appendix A, for a special choice of

the energy density ǫ(b), the Lagrangian (1) is dual to the effective theory derived in Ref. [18].

Moreover, the dual electric and magnetic fields are related to the regular part of the super-

fluid phase and displacement vectors via Eqs. (2) and (42). Despite being equivalent to the

original theory of Ref. [18], the dual formulation (1) has an important conceptual advantage:

3The elastic properties of a two-dimensional triangular lattice are characterized by only two elastic moduli C1

and C2 and thus, in this respect, the lattice is indistinguishable from an isotropic medium [30]. As a result, although

continuous rotation symmetry is broken spontaneously to a discrete subgroup, the theory and all observables

computed in this paper respect continuous rotation symmetry. The violation of this symmetry is expected to arise

from higher-derivative terms not included here.
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as shown in Sec. 3, in contrast to the effective theory of Ref. [18], the linearized form of the

dual theory fits naturally into a derivative expansion. This allows us to order different terms in

the dual Lagrangian according to their relevance at low energies and long wave-lengths and

systematically construct corrections to the leading-order theory. Later in this paper we will

also construct the diffeomorphism-invariant version of the theory (1) and discuss the fate of

some higher-deriviative terms not considered in [18].

Now we turn to the discussion of symmetries of the theory (1). Generically, the action of

a low-energy effective theory should inherit all symmetries (irrespective of whether they are

spontaneously broken and not) of the microscopic model.

First, under discrete parity and time reversal, the fields and sources transform as follows:

P x ↔ y, at →−at , ax ↔−ay ux ↔ uy , Ax ↔Ay ,

T : t →−t, at →−at , Ai →−Ai .
(5)

We find that the Lagrangian (1) is not invariant separately under P and T since the terms

proportional to Ω change sign under these transformations. The Lagrangian is invariant, how-

ever, under the combined PT symmetry. Note that if one flips the sign of the rotation frequency

Ω→ −Ω under parity and time-reversal, then the theory is separately invariant under P and

T .

Second, we consider spatial translations. In a microscopic theory of a rotating Bose

superfluid, the angular frequency Ω is equivalent to an effective constant magnetic field

Beff = −2mΩ, and thus the action should be invariant under magnetic translations [18]. In

an infinite vortex lattice, the ground state breaks this symmetry spontaneously. Since in the

dual formulation, the fields b, ei and ui transform trivially under particle number U(1) global

symmetry, magnetic translations of the vortex lattice are implemented as usual translations

on these fields. Under an infinitesimal constant spatial translation x i → x i + l i , the fields

transform as δlΦ = −lk∂kΦ, where Φ = (ei , b,Aµ), but δlu
i = −lk∂kui + 2l i . As expected for

a Goldstone boson of broken translations, the field ui transforms inhomogeneously. Using the

Bianchi identity εµνρ∂µ∂νaρ = 0, it is straightforward to check that the action S =
∫

d t d2 xL
is invariant under spatial translations.

Finally, we investigate Galilean boosts. Once again, we use the fact that b, ei and ui are

neutral under the particle number U(1) symmetry, and thus an infinitesimal Galilean boost

with the velocity β i is realized on these fields as a time-dependent spatial diffeomorphism

x i → x i + β i t:

δβ b = −β k t∂k b,

δβ ei = −β k t∂kei + bεikβ
k,

δβui = −β k t∂kui + 2β i t.

(6)

On the other hand, the electric and magnetic fields constructed from the U(1) source should

transform as

δβEi = −β k t∂kEi + εi jβ
i(B − 2mΩ),

δβB = −β k t∂kB ,
(7)

where we have defined Ei = ∂tAi − ∂iAt and B = εi j∂iA j . The action built from the La-

grangian (1) is invariant under Galilean transformations. As we will see in the following,

Galilean invariance has important consequences for the spectrum of excitations and transport

properties.
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3 Excitations and particle number transport

In this section, we work out some physical properties of the effective theory (1). In particular,

we analyze its excitations and extract the U(1) particle number transport coefficients such as

longitudinal and Hall conductivities. To this end, it is sufficient to expand the Lagrangian (1)

around the ground state b = n0 +δb and keep only terms quadratic in fields and sources,

L (2) = m

2n0

e2

︸ ︷︷ ︸

NLO

−
mc2

s

2n0

δb2 − n0mΩεi ju
i u̇ j + 2mΩeiu

i −E (2)
el
(∂ u)− εµνρAµ∂νaρ

︸ ︷︷ ︸

LO

, (8)

where overdot denotes the time derivative and cs =
p

n0ǫ
′′/m is the speed of sound. This La-

grangian naturally fits into a derivative expansion within the following power-counting scheme

ai , ui ,Ai ∼ O(ε0), at , ∂i ,At ∼ O(ε1), ∂t ∼ O(ε2), (9)

where ε ≪ 1. In particular, one finds that all terms in Eq. (8), except the first one, scale

as O(ε2); these terms will be referred to as leading-order (LO) terms in the following. On

the other hand, the electric term ∼ e2 scales as O(ε4) and thus contributes to the next-to-

leading order (NLO) in this power-counting scheme. In the following, we will first work with

the leading order Lagrangian and subsequently analyze the next-to-leading order corrections

produced by the electric term.

3.1 Leading order

We first extract the excitations above the ground state from the LO part of the Lagrangian

(8) in the absence of the source Aµ. In the LO theory Galilean symmetry is broken and the

dual gauge field is not dynamical. The Gauss law δSLO/δat = 0 implies ∂iu
i = 0 and thus

displacements are transverse. In other words, the vortex lattice is incompressible and the

vortex density nv is constant in position space. The remaining four field equations are

c2
s ε

i j∂ jδb+ 2n0Ωu̇i = 0,

2mΩei − 2n0mΩεi j u̇
j + ∂ j

∂ E (2)
el

∂ ∂ ju
i
= 0.

(10)

From now on, we work in the temporal gauge at = 0, where ei = ȧi and, without loss of

generality, look for plane-wave solutions that propagate along the x direction, i.e., where δb,

ei and ui do not depend on y . As a result, the Gauss law now implies ux = 0. In Fourier space,

the field equations, written in matrix form, are





0 c2
s k2 −2in0Ωω

−iω 0 iωn0

0 −iω − C2

mΩk2









ax

ay

uy



 = 0. (11)

The linear system has a nontrivial solution only if the determinant vanishes, which fixes the

dispersion relation

ω =

√
√
√ C2c2

s

2mn0Ω
2

k2. (12)

It is known that a vortex lattice in a compressible superfluid (c−1
s 6= 0) supports the Tkachenko

mode which has the dispersion (12) at small momenta [14, 15]. Moreover, since the vortex
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lattice is incompressible in the LO theory, the dispersion depends only on the shear elastic

modulus C2, but not on the bulk modulus C1. In the next subsection we will find that the

inclusion of the NLO electric term gives rise to quartic corrections to the Tkachenko dispersion

relation.

We now turn to the computation of the U(1) particle number linear response. To this end

one has to determine how the particle number current j
µ
s = ε

µνρ∂νaρ responds to variations

of the U(1) sourceAµ. In particular, the density susceptibility χ , the longitudinal conductivity

σ and the Hall conductivity σH are defined in Fourier space as

χ(ω, k) =
δns

δAt

�
�
�
ω,k

,

σ(ω, k) = σx x(ω, k) =
i

ω

δ j x
s

δAx

�
�
�
ω,k
=

i

k

δ j x
s

δAt

�
�
�
ω,k

,

σH(ω, k) = σx y(ω, k) = − i

ω

δ j
y
s

δAx

�
�
�
ω,k
= − i

k

δ j
y
s

δAt

�
�
�
ω,k

.

(13)

In order to extract these functions from the LO effective theory, we first solve the linearized

field equations in the presence of the U(1) source, substitute the solutions into the particle

number current (4), and finally apply the definitions (13). As a result, we get

χ(ω, k) =
C2k4

2m2Ω2

1

ω2 − C2c2
s

2mn0Ω
2 k4

,

σ(ω, k) =
iC2k2ω

2m2Ω2

1

ω2 − C2c2
s

2mn0Ω
2 k4

,

σH(ω, k) =
n0ω

2

2mΩ

1

ω2 − C2c2
s

2mn0Ω
2 k4

.

(14)

In the static regime ω = 0, we find χ(k) = − n0

mc2
s
, which satisfies the compressibility sum rule

χ(k = 0) = −∂ n/∂ µ= − n0

mc2
s
. We observe that the gapless Tkachenko excitation saturates the

transport of particle number at low energies and long wavelengths.

3.2 Beyond the leading order

We now go beyond the LO. We will not try to construct the most general NLO Lagrangian,

but only include the NLO electric term, which has important physical consequences. First, it

will become manifest later that the Galilean symmetry, lost at leading order, is now restored.

Second, the Gauss law now reads

∂i

�

ui +
1

2n0Ω
ei
�

= 0, (15)

and thus the vortex lattice becomes compressible and the displacement field ui is not transverse

anymore.

The calculation of the dispersion of excitations is straightforward, but tedious; here we

present only the main results, see also Fig. 2. In the presence of the electric term one finds two

physical modes. The first mode is the Tkachenko mode, which is now elliptically polarized4

ux

uy
= i

√
√
√ C2c2

s

8mn0Ω
4

k2 +O(k4), (16)

4As before, in this subsection we consider a plane-wave ansatz with momentum k= (k, 0).
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and has the dispersion

ω =

√
√
√ C2c2

s

2mn0Ω
2

�

k2 −
2C2 +mn0c2

s

8mn0Ω
2

k4 +O(k6)

�

. (17)

In addition, one finds the gapped Kohn mode with the dispersion

ω = 2|Ω|
�

1+
4 (C1 + C2) +mn0c2

s

8mn0Ω
2

k2 +O
�

k4
�
�

. (18)

At zero momentum this mode is circularly polarized. We observe that the Galilean symmetry

of the problem is restored by the NLO electric term and ensures that the high-energy Kohn

mode is properly captured by the low-energy effective theory.

Figure 2: Sketch of dispersions and polarizations of Tkachenko and Kohn excitations.

The computation of the particle number linear response follows the same steps as described

in the Sec. 3.1. The analytical expressions for χ , σ and σH are cumbersome. For this reason,

here we limit our discussion of the U(1) response functions to a few special regimes.

We start with the density susceptibility χ which vanishes in the homogeneous case k = 0,

ω 6= 0. This makes sense since particle density should not change under variations of a uni-

form time-dependent electrostatic potential. In the static regime, the compressibility sum rule

χ(k→ 0) = −∂ n/∂ µ= − n0

mc2
s

is satisfied.

Now we turn to the conductivities. In the static regime ω = 0, we find that the vortex

lattice behaves as an insulator, i.e., σ(k) = σH(k) = 0. Consider now the regime of finite ω,

but small k. Expanding conductivities in momentum around k = 0, one finds5

σ(ω, k) = i
n0ω

m(ω2 − 4Ω2)
+ i

mn0ω
2c2

s + 2C2

�

ω2 + 4Ω2
�

+ 4C1ω
2

m2ω (ω2 − 4Ω2)2
k2 +O
�

k4
�

,

σH(ω, k) = − 2n0Ω

m(ω2 − 4Ω2)
−

2Ω
�

mn0c2
s + 4 (C1 + C2)
�

m2 (ω2 − 4Ω2)2
k2 +O
�

k4
�

.

(19)

5 In general, the conductivities depend on the frequency ω and the momentum vector k. In the light of our

ansatz, the expressions (19) are only valid for momenta k = (k, 0). Generalization of this result to arbitrary, but

small momentum k will be found in Sec. 7.
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The first terms in the Taylor expansion are exact conductivities in the homogeneous k = 0

regime and their form is fully fixed by the Kohn theorem. In Sec. 7 it will turn out to be conve-

nient to combine the longitudinal and Hall conductivities into the leading order conductivity

tensor

σ
(0)

i j
(ω) =

n0

m(ω2 − 4Ω2)

�

iωδi j − 2Ωεi j

�

. (20)

We will show in Sec. 7 that the finite-momentum quadratic corrections in Eq. (19) are tied to

the geometric response very much in the spirit of Refs. [31,32].

Formally, it is possible to extract the leading order result (14) from the response functions

discussed here. To this end, we introduce a small parameter δ and replace ω → δ2ω and

k→ δk in response functions. The leading order of the Taylor expansion in δ of the functions

χ , σ and σH gives exactly (14).

Finally, it is important to remark again that, in this paper, we do not attempt to construct

the most general theory that includes all NLO terms that are consistent with symmetries. As

a result, the subleading corrections to observables [such as the quartic term in the Tkachenko

dispersion (17) and the quadratic terms in conductivities (19)]might be modified by the omit-

ted NLO terms. A systematic investigation of the most general NLO theory is postponed to a

future study.

4 Difeomorphism-invariant formulation of the effective theory

One might be not fully satisfied with the effective theory (1) for the following reason: Al-

though the displacement field ui carries a spatial index, it does not transform as a vector field

under spatial general coordinate transformations (diffeomorphisms) because it is the Gold-

stone mode of spontaneously broken magnetic translations. Hence, the generalization of the

theory (1) to a form valid in general curvelinear coordinate is not straightforward. In order

to circumvent this problem, we introduce here an alternative formalism used previously to

describe solids [33–35]. Instead of displacements, we introduce a set of scalar fields X a(t,x),

with a = 1,2, that represent the Lagrange coordinates frozen into the vortex lattice. In other

words, any vortex has a constant coordinate X a along its worldline. Imagine now a two-

dimensional curved surface parametrized by a general set of spatial coordinates x i with a

geometry given by a metric tensor gi j . In these coordinates, the effective action of the vortex

lattice is given by S =
∫

d td2 x
p

gL , with the scalar Lagrangian

L =
mg i jeie j

2b
− ǫ(b)−πnvǫ

µνρεabaµ∂νX a∂ρX b −Eel(U
ab)− ǫµνρAµ∂νaρ, (21)

where g = det gi j , b = εi j∂ia j/
p

g, ǫµνρ = εµνρ/
p

g and Uab = g i j∂iX
a∂ jX

b. The vortex

number current j
µ
v ∼ ǫµνρεab∂νX a∂ρX b couples to the dual gauge field aµ. In contrast to the

theory introduced in Sec. 2, in this formulation, the U(1) source Aµ has a finite background

magnetic field B = εi j∂iA j = −2mΩ. There is no unique way how the Lagrange coordinates are

defined in a solid, which leads to global symmetries that act in internal space. In particular, the

action must be invariant under constant internal shifts X a → X a + la. In addition, the theory

is also invariant under discrete internal rotations that map the triangular lattice to itself. This

symmetry constraints the form of the elastic term Eel(U
ab). With nv transforming as a scalar,

the action is invariant under spatial general coordinate transformations and is thus an ideal

starting point for the computation of geometric responses.

The non-linear theory (21) fits naturally into a derivative expansion with the following

power-counting scheme (ε≪ 1)

ai , X a, Ai ∼ O(ε−1), at , At ∼ O(ε0), ∂i ∼ O(ε1), ∂t ∼ O(ε2). (22)
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The difference in the scaling of space and time originates from the quadratic dispersion of the

soft Tkachenko mode. In this power counting, the first term in the Lagrangian (21) is of order

O(ε2) and becomes the next-to-leading order correction to the remaining terms in Eq. (21) that

all scale as O(ε0) and thus constitute the leading-order part. In Appendix B, we demonstrate

that in Cartesian coordinates of flat space, where ui = x i−δi
aX a, the Lagrangian (21) reduces

to the original theory (1). In that case, in the ground state nv = −B/(2π) = mΩ/π and thus

nv represents the ground state number density of vortices in flat space.

The Maxwell equations that follow from the Lagrangian (21) are

B̃ +πnvǫ
i jεab∂iX

a∂ jX
b = 0, (23)

Ẽ j + 2πnvεab Ẋ a∂ jX
b − ǫ′′(b)∂ j b = 0, (24)

where we have introduced B̃ = B−mǫi
j
∂i v

j
s and Ẽ j = E j −m

�

v̇s j + gmnvm
s ∂ j v

n
s

�

. By taking the

variation of the action with respect to X a we find

πnvǫ
µνρεab∂µaν∂ρX b − 1

p
g
∂ j

�p
g
∂ Eel

∂ Uab
g i j∂ jX

b
�

= 0. (25)

5 Stress tensor and geometric response

In this section, we extract from the Lagrangian (21) the stress tensor and evaluate its linear re-

sponse to an external metric perturbation. Our main aim here is to compute the viscosity tensor

ηi jkl which can be extracted from the linear response formula δT i j = −λi jklδgkl −ηi jklδ ġkl .

First, following Refs. [33,34], we express the elastic energy density as

Eel(U
ab) =

p
Uǫel(U

ab), (26)

where U = det Uab. In this parametrization, the ground state is fixed by the expression

∂ ǫel/∂ Uab = 0. It is straightforward now to compute the stress tensor

T i j =
2
p

g

δS

δgi j

= P g i j +ρv i
s v j

s
︸ ︷︷ ︸

T
i j

ideal

−2
p

U
∂ ǫel

∂ Uab
∂ iX a∂ jX b

︸ ︷︷ ︸

T
i j

el

, (27)

where its ideal part comes from the superfluid terms in the action, while the elastic part orig-

inates from the elastic energy. Notice that the Magnus term (the third term in the Lagrangian

(21)) is topological and does not contribute to the stress tensor.

Consider now the linear response of the stress tensor to a metric source gi j = δi j + hi j .

First, we have to linearize the equations of motion (23), (24), (25). We write X a = δa
i
x i − ua

and b = b0 +δb and get

1

b0

∂ie
i + 2Ω∂iu

i = 0,

m

b0

ε jk ėk + 2mΩε jau̇a − ǫ′′(b0)∂ jδb = 0,

−mΩεab(b0u̇b + εi bei) +
∂ Eel

∂ Uab

�

∆ub − 1

2
δi j∂ bhi j +δ

bc∂ ihic

�

− ∂ 2Eel

∂ Uab∂ U cd
∂ bU cd = 0,

(28)
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where h= hi
i

and

∂ Eel

∂ Uab
=

∂

∂ Uab

�p
Uǫel(U

ab)
�

=
ǫel

2
p

U

∂ U

∂ Uab
+
p

U
∂ ǫel

∂ Uab
. (29)

In the homogeneous regime (k = 0), we find that that all hi j-dependent terms drop out from

the linearized equations of motions. As a result, the on-shell stress tensor does not depend

on time derivatives of the metric source hi j and thus the AC viscosity tensor ηi jkl(ω) vanishes

trivially in our theory. If in addition one assumes that in the ground state ǫel = 0, the expression

(29) vanishes resulting in a stronger result ηi jkl(ω,k) = 0.

The absence of the bulk and shear viscosity coefficients is completely expected since an

effective theory defined by a real action cannot dissipate energy at zero temperature. It is well-

known however that two-dimensional systems with broken time-reversal and parity symme-

tries (such as quantum Hall fluids, chiral superfluids, etc) generically exhibit a non-dissipative

viscous Hall response [36–39]. Notwithstanding, we found here that the effective theory de-

fined by the Lagrangian (21) has zero Hall viscosity. Since the theory (21) might be incomplete

at the next-to-leading order, it is natural to wonder if the Hall viscosity actually vanishes in the

vortex lattice phase of a bosonic superfluid. In the next section we provide some arguments

in favor of that.

6 Hall viscosity and coupling to spin connection

In effective theories of quantum fluids the coupling of currents to the spin connection is as

a rule quantized and gives rise to a finite Hall viscosity at zero frequency and momentum

[40,41]. The spin connection ωµ is built from the orthonormal spatial vielbein ea
i

as follows

ωt =
1

2
εabea j∂t e

b
j , ωi =

1

2
εabea j∇ie

b
j . (30)

It transforms as an abelian gauge field under local rotations in the internal vielbein space

(indices a, b = 1,2). The magnetic field constructed from this gauge field is proportional to

the Ricci curvature of the two-dimensional surface

Bω = ǫ
i j∂iω j =

1

2
R. (31)

In our problem there could be NLO terms (omitted above) that couple particle or vortex cur-

rents to the spin connection

Lω = sωµ jµs + svωµ jµv , (32)

where s, sv are constant coefficients. For a finite density of particles j t
s = ns or vortices j t

v = nv ,

Eq. (32) introduces in the effective action a term that is linear in ωt that generates a finite

Hall viscosity. In this section we determine the values of s and sv .

In chiral fermionic superfluids P and T are spontaneously broken and there (in the ab-

sence of a vortex lattice) the coupling (32) completely determines the Hall viscosity. This was

analyzed in detail in [29, 42]. Note however that in a non-rotating bosonic superfluid (and

also in a fermionic s-wave superfluid) the coupling to the particle current is forbidden by time

reversal invariance, thus s = 0. A physical interpretation of this is that elementary bosons in a

bosonic superfluid (Cooper pairs in s-wave superfluids) do not have internal spin. This should

not change in the vortex lattice phase, and thus we can set s = 0.

The term that couples the vortex current to the spin connection, on the other hand, is

both P and T invariant. In principle it could be non-vanishing in the present problem and

would give rise to a non-zero Hall viscosity of the vortex lattice. We expect that this term
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fully determines the Hall viscosity, but a full analysis of all NLO terms would be necessary to

be completely certain. In addition, if sv is non-zero, the Magnus force acting on a vortex in

curved space is modified from the flat space result [43, 44] by a term that is proportional to

the spatial curvature (see Appendix C).

Even though it is not forbidden by symmetries, in this section we provide arguments that

in a spinless bosonic superfluid the vortex current does not couple to the spin connection and

thus we expect the Hall viscosity of the vortex lattice to be zero. To see this, one has to compute

the Berry phase accumulated by a single vortex traversing a closed loop in parameter space on

a spatial surface where a finite background of the spin connection source is present. Simple

examples of such processes are (i) a static vortex in flat space under periodic homogeneous

shear deformations which give rise to a finite temporal component of the spin connection, (ii)

a vortex traversing a closed loop on a time-independent curved surface (such as a sphere).

We start from the Gross-Pitaevskii mean-field theory, where the Berry phase accumulated

by a vortex over a closed loop in parameter space is given by the action

SBerry = i

∫ T

0

d t

∫

dx
p

gψ†
↔
D tψ = −
∫ T

0

d t

∫

dx
p

gnsDtφ, (33)

where the order parameter is ψ =
p

nse
iφ , the convective derivative is Dt = ∂t + V i∂i and

↔
Dt = (

→
Dt −

←
Dt)/2. Here V i is a regular background velocity field which can be found by re-

moving the contribution from the vortex defect. The Berry phase defined above is general

coordinate invariant and thus one can work in any coordinate system to compute it. Now

we can rewrite the Berry phase (33) in the dual language. Using the relations ns = ǫ
i j∂ia j ,

j i
s = −ǫi j(∂t a j−∂ jat) and the definition of the vortex current j

µ
v =

1
2πǫ

µνρ∂ν∂ρφ it is straight-

forward to find

SBerry = −2π

∫ T

0

d t

∫

dx
p

gaµ jµv − self-energy dynamical contribution. (34)

The self-energy subtraction is needed because this term generates the dynamical part of the

phase (which is proportional to the time T) and thus does not contribute to the Berry phase.

Since Eq. (33) is the only term in the Gross-Pitaevskii functional that contributes to the Berry

phase, we have just demonstrated that vortex defects of a bosonic superfluid in the mean-field

theory couple only to the gauge field aµ, but not to the spin connection. The Magnus force

calculation is consistent with this result (see Appendix C). Notice however that the Gross-

Pitaevskii theory only takes into account the macroscopically occupied condensate and misses

corrections originating from microscopically occupied Bogoliubov quasiparticles. This implies

that the above argument only rules out the contribution to the coupling sv which scales as the

total number of particles N .

In order to compute the Berry phase with accuracy of order unity in the particle number

one has to go beyond the Gross-Pitaevskii approximation and include Gaussian fluctuations

around the mean-field vortex state. This results in the Bogoliubov-corrected ground state

(vacuum of Bogoliubov quasiparticles) instead of just the coherent mean-field ground state.

This approximation was used in Ref. [45] to compute the Berry phase of a vortex6 traversing a

closed loop in a Bose superfluid defined on a sphere. For an infinitesimal loop, the Berry phase

was found to be proportional to the total number N of bosons on the sphere times the solid

angle swept by the loop. The Berry phase on a sphere is thus in essence identical to the Berry

6To be precise, since only one elementary vortex cannot be defined on a sphere, the authors of Ref. [45] con-

sidered an antipodal vortex-antivortex pair configuration. They calculated the Berry phase collected by the vortex

and antivortex that traverse two small loops close to the poles. Every loop contributes the same amount to the

total Berry phase.
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phase of a vortex moving on a plane [43]. The absence of a term in the Berry phase of order

unity (i.e. independent of N) that is proportional to the curvature of the sphere thus suggests

that vortices do not couple to the spin connection in a bosonic superfluid. This implies that in

a bosonic superfluid vortices do not carry internal spin.

There is one possible loophole to the argument presented above. What we have just com-

puted is the coupling of a single vortex to the spin connection in an effective theory where

the coordinate of the vortex is a degree of freedom. On the other hand, Eq. (32) is written

for a theory where the individual vortices have been smoothed over so that the degrees of

freedom are now the fields X a. Whether coupling to spin connection appears or not during

this transition from one description to another is, strictly speaking, an open question.

7 Relations between elasticity, viscosity and conductivity

Galilean invariance gives rise to remarkable relations between particle number and geometric

responses. In quantum fluids these relations were put forward in Refs. [31, 32]. Here we

investigate these relations in the context of a vortex lattice in a Galilean-invariant bosonic

superfluid.

The relations that we want to discuss here are valid in flat space and can be obtained as

follows. First, one expands the conductivity tensor σi j(ω,k) in a Taylor series in momentum

σi j(ω,k) = σ
(0)

i j
(ω) +σ

(2)

i j
(ω,k) + . . . . (35)

It was shown in [32] that Galilean invariance implies the following relation

σ
(2)

in
(ω,k) = −σ(0)

i j
(ω)

1

n0

kkχ
k jlm(ω)

1

n0

klσ
(0)
mn, (36)

where n0 is the particle number density and the tensor χk jlm is given by

χk jlm(ω) =
1

iω

∂ T k j

∂ ulm

+ηk jlm. (37)

In the case of fluids [32], the first term in Eq. (37) reduces to iκ−1δk jδlm/ω, where

κ−1 = −V (∂ P/∂ V ) is the inverse compressibility. In our problem the stress tensor contains

also the elastic part

T i j = Pδi j +ρv i
s v j

s − 4C1δ
i jukk − 2C2(δ

ikδ jl +δ jkδil −δi jδkl)ukl , (38)

which substituted into Eq. (37) gives

χk jlm(ω) =
i

ω

�

[mn0c2
s + 4C1]
︸ ︷︷ ︸

κ−1

δk jδlm + 2C2[δ
klδ jm +δ jlδkm −δk jδlm]

�

+ηk jlm. (39)

Putting now this result into Eq. (36) and using ηk jlm = 0 and Eq. (20), it is straightforward

to check that the quadratic terms in conductivities (19) satisfy the relation (36) for k= (k, 0).

This calculation confirms the validity of Eq. (36) in quantum solids.

8 Discussion and outlook

In this paper we constructed an effective theory of a quantum vortex lattice in a bosonic

Galilean-invariant compressible superfluid. We note that our theory (21) does not have the
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most general form consistent with symmetries. Even at leading order, based only on symme-

tries, the energy E could be any function of the dual magnetic field b, the strain Uab and the

background magnetic field B̃ that was introduced in Sec. 4. This function does not need to

have the form of the sum ǫ(b) + Eel(U
ab) as was assumed in Eq. (21). At next-to-leading

order we analyzed the fate of some terms, but did not construct all possible terms allowed by

symmetry. Despite these shortcomings, we believe that our theory captures properly the exci-

tations and linear response of the quantum vortex lattice. In the future it would be important

to perform a systematic construction of the effective theory in its most general form.

Since the parity and time-reversal symmetries are broken in the vortex lattice phase, the

Hall viscosity is not prohibited by symmetries. Moreover, the Hall viscosity was found to be

nontrivial in a somewhat related problem of chiral vortex fluids [46, 47]. Nevertheless, the

effective theory analyzed in this paper gave rise to a vanishing Hall viscosity at zero frequency

and momentum. As we discussed, neither particles nor vortices couple to the spin connection,

so we expect the Hall viscosity to be zero even though we cannot make a definitive statement as

we did not analyze all NLO corrections in the effective theory. A systematic NLO construction

is deferred to a future work.

In addition to the Hall viscosity, time-reversal breaking crystals exhibit an independent

viscoelastic response known as the phonon Hall viscosity [48]. In contrast to the Hall viscosity,

which quantifies the response of the stress tensor to a time-dependent background metric, the

phonon Hall viscosity fixes the response to a time-dependent strain.7 In this paper we did not

attempt to extract the phonon Hall viscosity and it is an open problem for the future.

Regular vortex lattices were also observed in cold atom experiments with rotating fermionic

s-wave superfluids [49]. It would be interesting to apply the effective theory of this paper to

these systems. Moreover, vortex lattices should also be formed in rotating chiral superflu-

ids and it would be interesting to construct effective theories of these states and apply these

theories to rotating 3He-A superfluids.

The physics of vortices on curved surfaces is fascinating, for review see e.g. [50]. It would

be very interesting to apply our effective theory to vortex lattices that live on curved substrates.

Finally, one may wonder if the effective theory developed here can be directly applied to a

thin superconducting film in an external perpendicular magnetic field. It is known that in this

systems in the absence of disorder the triangular vortex lattice is stable under perturbations

[51] and is a good candidate for the ground state. In addition, due to inefficient screening the

vortices interact logarithmically [52] up to the Pearl lengthΛ = 2λ2
L/d, where λL is the London

penetration length and d is the width of the film. For thin films (λL ≫ d) the Pearl length can be

very large. Nevertheless, it was shown in [51] that the dispersion relation of lattice vibrations

scale at low momenta as ω ∼ k3/2 which differs from the quadratic Tkachenko dispersion.

Fractional dispersion at low momenta originates from the coupling to the electromagnetic

field that propagates in three spatial dimensions. We thus expect that our effective theory of

the vortex lattice can be employed also in clean thin superconducting films after dynamical

electromagnetism is included.
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A Relation to the effective theory of Watanabe and Murayama

In Ref. [18] Watanabe and Murayama started from the microscopic Lagrangian of a two-

dimensional weakly-coupled repulsive Bose gas that rotates with the angular frequency Ω and

is trapped in a harmonic potential of frequency ω which is larger but very close to Ω

L = iψ†
↔
∂tψ−

1

2m

�
�
�(∂i − imΩεi j x

j)ψ

�
�
�

2

− Veff(x)ψ
†ψ− 1

2
g(ψ†ψ)2, (40)

where
↔
∂t = (

→
∂t−

←
∂t)/2 and Veff(x) = m(ω2−Ω2)x2/2. In a series of steps they arrived to a low-

energy non-linear effective theory of an (essentially) infinite vortex lattice. In the presence of

the U(1) sourceAµ their theory is encoded in the Lagrangian

LWM =
1

g

�

µ0− ϕ̇−At −mΩεi ju
i u̇ j − 1

2m

�

∂iϕ+Ai +2mΩεi ju
j +mΩεklu

k∂iu
l
�2
�2
−Eel(u

i j),

(41)

µ0 is the chemical potential and ϕ is the regular part of the superfluid phase. The superfluid

density ns and the current j i
s are easy to compute

ns = −
δSWM

δAt

=
2

g

�

µ0 − ϕ̇ −At −mΩεi ju
i u̇ j − 1

2m

�

∂iϕ +Ai + 2mΩεi ju
j +mΩεklu

k∂iu
l
�2
�

,

j i
s = −

δSWM

δAi

=
ns

m
δi j
�

∂ jϕ +A j + 2mΩε jkuk +mΩεklu
k∂ ju

l
�

.

(42)

In this Appendix we demonstrate that for a special choice of the internal energy ǫ(b) the

Lagrangian (1) is dual to the Lagrangian LWM. The two theories are related by the Legendre

transformation

L (b, ei) =LWM(ϕ̇,∂iϕ) + ϕ̇b− εi j∂iϕe j . (43)

Using now ns = b and j i
s = −εi je j in Eq. (42) we find

∂iϕ = −m
εi je

j

b
−Ai − 2mΩεi ju

j −mΩεklu
k∂iu

l ,

ϕ̇ = µ0 −
g b

2
−At −mΩεi ju

i u̇ j − me2

2b2
.

(44)

With the help of these expressions we can eliminate now the derivatives of the phase ϕ from

the right-hand-side of Eq. (43). As a result, we arrive at the Lagrangian (1) with the energy

density ǫ(b) = g b2/2−µ0 b.

B Equivalence of the Lagrangians (1) and (21) in Cartesian coor-

dinates

In this appendix we demonstrate that the diffeomorphism-invariant theory defined by the La-

grangian (21) reduces in Cartesian coordinates to (1). In this case, gi j = δi j and Eq. (21)

simplifies to

L =
mδi jeie j

2b
− ǫ(b)−πnvε

µνρεabaµ∂νX a∂ρX b −Eel(U
ab)− εµνρAµ∂νaρ. (45)
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In addition, in these coordinates we can choose X a = δa
i
(x i − ui) which implies

−πnvε
µνρεabaµ∂νX a∂ρX b→−mΩbεi ju

i Dtu
j + 2mΩeiu

i − 2mΩat , (46)

where we dropped surface terms and used nv = mΩ/π. Now the last term in Eq. (46) is

compensated by the contribution from the last term in Eq. (45) since the source Aµ has a finite

background magnetic field B = −2mΩ. This results in a simple shift of the source Aµ → Aµ
which now has zero background magnetic field. Finally, in Cartesian coordinates

Uab = δi j∂iX
a∂ jX

b = δab −
�

∂ aub + ∂ bua − ∂ cua∂ cub
�

︸ ︷︷ ︸

2uab

, (47)

and thus Uab is fully determined by the deformation tensor uab.

C Coupling to spin connection and Magnus force

Let us consider the terms in the effective action that couple the vortex current to the gauge

field aµ and the spin connection ωµ

S = −
∫

d t d2 x
p

g
�

qvaµ + svωµ
�

jµv , (48)

where qv and sv are constant charges. Consider now the current produced by a point-like

vortex

jµv =
1
p

g

∫

dτ ẋµv δ
(3)(x − xv(τ)), (49)

where x
µ
v (τ) = (τ,xv(τ)). Then, the action is

S = −
∫

dτ ẋµv

�

qvaµ(xv) + svωµ(xv)
�

. (50)

We can compute the force from the variation of the action with respect to the position of the

vortex

Fi =
δS

δx i
v

= −
�

ẋµv

�

qv∂iaµ + sv∂iωµ
�

− d

dτ
(qvai(xv) + svωi(xv))

�

= − ẋµv

�

qv(∂iaµ − ∂µai) + sv(∂iωµ − ∂µωi)
�

= (qvei + sv Eω i)− ǫi j v
j
v(qv b+ svBω),

(51)

where vv = d xv/dτ, Eωi = ∂tωi − ∂iωt and Bω = ǫ
i j∂iω j . Using now the relation to the

superfluid density and current

b = ns, ei = ǫi j j j
s = nsǫi j v

j
s (52)

the force becomes

Fi = qvnsǫi j(v
j
s − v j

v) + sv

�

Eω i − ǫi j v
j
vBω
�

. (53)

The first term is the usual Magnus force. If sv 6= 0, the term proportional to Bω =
1
2R acts as a

curvature correction to the part of the Magnus force that depends on the vortex velocity.
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Generalizing [43,44], we can compute the Magnus force from the Berry phase of a vortex

describing a closed trajectory in curved space (that is asymptotically flat). The motion is along

the boundary Γ = ∂ A of a neighborhood A of the origin. The Berry phase is

γΓ = −Im

∮

Γ

dxv ·
¬

Ψv

�
�
�
∂

∂ xv

Ψv

¶

, (54)

with Ψv being the many-body wavefunction for a vortex at position xv . The Berry phase can

be written as

γΓ =

∫

d2 x
Æ

g(x)

∮

Γ

d x i
vεi j

∂

∂ x
j
v

log |x− xv | ns(x;xv). (55)

Here we have generalized to curved space the expression given in [43].

Let us consider now the dual gauge field corresponding to a static density ns(x,xv) with a

vortex at a fixed position xv , the gauge potential is

ai(x) = −
1

2π

∫

d2 x ′
Æ

g(x′)εi j∂ j log |x− x′|ns(x
′;xv). (56)

Indeed, using that

∂ 2 log |x− x′|= 2πδ(2)(x− x′), (57)

one gets

b =
1
p

g(x)
εi j∂ia j = ns(x;xv). (58)

Imagine now that vortices do not couple to the spin connection, i.e., sv = 0. The phase shift

of a vortex when it’s moved around a closed path Γ in position space is

γ′
Γ
= −qv

∮

Γ

d x i
vai(xv) =

qv

2π

∮

Γ

d x i
v

∫

d2 x
Æ

g(x)εi j

∂

∂ x
j
v

log |xv − x|ns(x,xv). (59)

Since in a bosonic superfluid the vortex charge qv = 2π, one can see that γ′
Γ
= γΓ . There-

fore, the coupling to aµ accounts for the total Berry phase and thus the coupling to the spin

connection should vanish, i.e., sv = 0.
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