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Abstract-Memory latency and bandwidth are progressing at a 
much slower pace than processor performance. In this paper, we 
describe and evaluate the performance of three variations of a 
hardware function unit whose goal is to assist a data cache in 
prefetching data accesses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAso that memory latency is hidden as 
often as possible. The basic idea of the prefetching scheme is to 
keep track of data access patterns in a Reference Prediction Table 
(RPT) organized as an instruction cache. The three designs differ 
mostly on the timing of the prefetching. In the simplest scheme 
(basic), prefetches can be generated one iteration ahead of actual 
use. The lookahead variation takes advantage of a lookahead pro- 
gram counter that ideally stays one memory latency time ahead of 
the real program counter and that is used as the control mecha- 
nism to generate the prefetches. Finally the correlated scheme uses 
a more sophisticated design to detect patterns across loop levels. 

These designs are evaluated by simulating the ten SPEC 
benchmarks on a cycle-by-cycle basis. The results show that 
1) the three hardware prefetching schemes all yield significant 
reductions in the data access penalty when compared with regu- 
lar caches, 2) the benefits are greater when the hardware assist 
augments small on-chip caches, and 3) the lookahead scheme is 
the preferred one cost-performance wise. 

Index Terms-Prefetching, hardware function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAunit, reference 
prediction, branch prediction, data cache, cycle-by-cycle simulations. 

I. INTRODUCTION 

ROCESSOR performance has increased dramatically over P the last few years and has now surpassed the 100 MIPS 

level. Memory latency and bandwidth have also progressed but 

at a much slower pace. Caches have been shown to be an ef- 

fective way to bridge the gap between processor cycle and 

memory latency times. However, caches, while eliminating 

many main memory accesses, do not reduce the memory la- 

tency. It is therefore essential that we investigate techniques to 

reduce the effects of the imbalance between processor and 

memory cycle times. 

There have been several techniques that have been used or 

proposed for tolerating high memory latencies. Among the 

hardware-based, we can list: 
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Cache hierarchies [2] (now present in many medium to 

high-performance systems) and cache assists [ 111 (write 
buffers, victim caches); 

Lock-up free caches [13], [5] (with various degrees of 

sophistication); 

Hardware-based prefetching [24], [ 13, [7]; 

Relaxed memory consistency models in the case of 

shared-memory multiprocessors (outside the scope of this 

paper). 

On the software side, we can mention: 

Prefetching and poststoring [12], [18], [21]; 

Software cache coherence schemes; 

Data placement (increasing locality and reducing false 

with the last two items being of importance for multipro- 

cessors. 

In this paper we focus on one of these techniques, namely 

hardware-based prefetching. As we briefly discuss in Sec- 

tion 11, both hardware and software prefetching schemes have 

their advantages and their drawbacks. The intent of this paper 

is to demonstrate that a simple hardware assist, on-chip, can 

reap important benefits in reducing the data access penalty 

between an on-chip data cache and the next level in the mem- 

ory hierarchy when a miss in the first level and a hit at the sec- 

ond-level has a penalty of roughly one order of magnitude. 

Any mechanism that is meant to reduce the latency between 

these two lowest levels of the memory hierarchy should be 

non-intrusive. This calls for a hardware scheme that is not on 

the critical path and that does not “steal” cycles from the exe- 

cution of the instruction stream. 

Any prefetching scheme has for goal to reduce the proces- 

sor stall time by bringing data into the cache before its use SO 

that it can be accessed without delay. However, if data were 

prefetched too far in advance we would run the risk of pollut- 

ing the cache. Ideally, a perfect prefetching scheme would 

totally mask the memory latency time; practically the latency 

can only be reduced since there are many impediments that 

prevent a perfect prediction of both the instruction stream, e.g., 

imperfect branch prediction, and of the data stream, e.g., data 

dependent addresses. The basic idea of the hardware-based 

prefetching scheme that we introduced in [ l ]  is to keep track 

of data access patterns-effective address and stride-in a 

Reference Prediction Table (RPT). The design strives for 

simplicity. It combines the simplest look-up approach found in 

direct-mapped caches and an unsophisticated two-bit (four 

states) state transition mechanism as implemented in branch 

sharing); 
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- 
Pattern Description Examples 

scalar simple variable refer- index, count 

zero zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE LP, with subscript AII1, 14 in LP,, 

stride expression unchanged TAB [IJoff in LP,> 

constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr E LP, with subscript A[I,] in LP, 

ence 

w.r.t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  

target buffers. In Section 111, we describe three variations on 

this basic design. They differ mostly on the timing of the pre- 

fetching. In the simplest scheme, called basic, prefetches can 

be generated one iteration ahead of actual use. The lookahead 
variation takes advantage of a lookahead program counter that 

stays as much as possible one memory latency time, i.e., po- 
tentially several iterations, ahead of the real program counter. 

The lookahead program counter serves as the control mecha- 

nism to generate the prefetches. Finally, the correlated scheme 

uses a more sophisticated design to detect patterns across loop 

levels. 

These three variations are evaluated by simulating the ten 

SPEC benchmarks cycle-by-cycle. The evaluation methodol- 

ogy as well as the parameters of the simulated processor and 

memory architectures are described in Section IV. The results, 

analyzed in Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, show that 1) the three hardware pre- 

fetching schemes all yield significant reductions in the data 

access penalty when compared with regular caches, 2) the 

benefits are greater when the hardware assist augments small 

on-chip caches, and 3) the lookahead scheme is the preferred 

one cost-performance-wise. 

Finally, concluding remarks are given in Section VI. 

irregular none of the above A[B[I]] in LP, 
A[I, 11 in L? 

Li Linked List 

11. RELATED WORK 

Obviously, standard caches work well for scalar and zero 
stride references. Caches with large block sizes can slightly 

improve the performance for the constant stride category if the 

stride is small but will be of no help if the stride is large. The 

goal of prefetching techniques is to generate prefetches in ad- 

vance for uncached blocks in the scalar, zero stride, and con- 
stant stride access categories independently of the size of the 

stride. At the same time, erroneous prefetches for irregular 
accesses as well as overhead caused by prefetches for already 

cached data should be avoided. 

Prefetching can be triggered either by a hardware mecha- 

nism, or by a software instruction, or by a combination of both. 

The hardware approach detects accesses with regular patterns 

and issues prefetches at run time, whereas the software ap- 

proach relies on the compiler to analyze programs and to insert 

prefetch instructions. Most of the hardware solutions proposed 

in the literature require little compiler support. 

A. Hardware-Based Prefetching 

Hardware-based approaches can be classified into two cate- 

gories: Spatial, where access to the current block is the basis 

for the prefetch decision, and temporal, where lookahead de- 

coding of the instruction stream is implied. 

In the spatial schemes, prefetches occur when there is a miss 

on a cache block. Smith [24] studied variations on the one 

block lookahead (OBL) policy, Le., when block i is refer- 

enced, block i + 1 could be prefetched. Jouppi [ 111 proposed 

an extension to OBL where several consecutive data streams 

are prefetched in FIFO stream buffers. In OBL and extensions, 

miss rates can be reduced, mostly for direct-mapped caches, at 

the expense of some increase in memory traffic. These 

schemes take advantage of limited (sequential) spatial locality 

by prefetching data separated by small constant strides but are 

not able to deal with large strides. The use of stride informa- 

tion carried by vector instructions led Fu and Pate1 [7] to pro- 

pose prefetch strategies for vector processors. They subse- 

quently derived a similar approach for scalar processors [8]. 

The major mechanism is to record the previous memory ad- 

dress in a history table and to generate prefetch requests by 

calculating a stride between the current address and the previ- 

ous address if the stride is nonzero. The approach, which lacks 

the control of preventing unnecessary prefetches on irregular 

accesses, corresponds to a degenerated version of our basic 
scheme, Le., one without state transition mechanism. Sklenar 

[23] has presented the same general idea of a hardware assist, 

but without any performance or cost evaluation. Note that in 

spatial schemes, the opportune time to initiate a prefetch is not 

linked closely to the time of next use. 

Temporal mechanisms attempt to have data be in the cache 

“just in time” to be used. Data prefetching by instruction 

lookahead [ 161 and the implicit prefetching used in decoupled 

architectures [25] fetch speculatively those data operands most 

likely needed in the near future. The time window where this 

prefetching can occur is limited by the instruction decoding 

buffer size and is not wide enough for large memory latencies. 

Also, the address of the data to be prefetched is based on the 

values of the speculated operands and is not related to either 



61 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACHEN AND BAER: EFFECTIVE HARDWARE-BASED DATA PREFETCHING FOR HIGH-PERFORMANCE PROCESSORS 

the current locality in the cache or the patterns described 

above. 

As will be seen, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlookahead scheme that we describe 

combines the advantages of both the spatial and temporal ap- 

proaches. The spatial mechanism is .realized by capturing dy- 

namically the data access patterns in a Reference Prediction 

Table (RPT). A lookahead program counter (LA-PC, Section 

1II.C) dynamically controls the arrival time of the prefetched 

data. A branch prediction mechanism is used in lieu of a more 

complex lookahead instruction decoding. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Software-Directed Prefetching 

A totally different approach to prefetching is to use soft- 

ware-directed techniques that rely on static program analysis to 

detect regular data access patterns. An intelligent compiler 

inserts data prefetch instructions several cycles before their 

corresponding memory instructions. These prefetch instruc- 

tions are explicitly executed by the processor to initiate pre- 

fetch requests. 

Porterfield 1211 examined the effect of prefetching all array 

references in the inner loop inserting prefetches one iteration 

ahead. He recognized that this led to too much overhead since 

many prefetch instructions were directed to data already in the 

cache. Gornish et al. [lo] proposed an algorithm to find the 

earliest point before a loop that an entire subarray could be 

prefetched. The approach focuses on fetching block data, 

rather than a single cache line at a time. Klaiber and Levy [12] 

showed that the time to prefetch should depend on memory 

latency and loop execution time, a feature present in the hard- 

ware lookahead scheme. They proposed prefetching into a 

separate fetch buffer instead of a unified cache. A study of 

software prefetching for non-scientific code by Chen et al. [6] 

found that it is more difficult to generate prefetch addresses 

early when the access patterns are irregular. Mowry and Gupta zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ 171 showed (by manually inserting prefetch instructions) that 

prefetching can be effective for tolerating large memory la- 

tencies in a shared-memory multiprocessor environment. They 

considered prefetch instructions for both read and write ac- 

cesses. They further developed a compiler algorithm [ 181 that 

automatically inserts the prefetch instructions. The algorithm is 

based on locality analysis and on loop transformations with 

proper prefetch predicates. Prefetches are inserted selectively 

for those references in the constant stride pattern that are likely 

to cause cache misses. 

Hardware-based techniques and software-directed ap- 

proaches are both successful in identifying prefetches of data 

with simple constant stride patterns. Both schemes require 

lockup-free caches as architectural support. The only other 

architectural requirement of the software approach is the avail- 

ability of a prefetch instruction. In efficient hardware schemes, 

a non-trivial hardware mechanism is needed to detect the items 

to be prefetched and to initiate the prefetching. 

From a performance viewpoint, the software approach can 
identify more prefetches for accesses with complex patterns, 

primarily on loop-domain references. In addition, software 
prefetching in a multiprocessor environment can take into ac- 

count factors such as data coherence, task scheduling, and task 

migration. On the other side of the ledger, software prefetch 

instructions introduce an overhead, at the very least the execu- 

tion of the prefetch instruction and possibly other computa- 

tions for the effective addresses and the prefetch predicates. 

Code often needs to be expanded, e.g., by loop unrolling, so 

that the prefetch can occur sufficiently in advance. Side- 

effects, such as increased register pressure, can result from 

these prefetch optimizations. Although an intelligent compiler 

may be able to reduce much of the unnecessary overhead, the 

remainder could still be significant, especially when the mem- 

ory latency is not too large. Moreover, the software approach 

does not cater to the prefetching of data that has been replaced 

because of conflict or capacity cache misses that can be fre- 

quent if the cache size is small. Similarly, estimates of execu- 

tion time for loops calling subroutines may not be uncovered 

at compile time, thus preventing prefetch at the right time. 

Finally, the optimizations are language and compiler depend- 

ent while the hardware schemes do not require any change in 

the executable code. 

The references cited above make the case for software pre- 

fetching. The goal of this paper is to show that a hardware-based 

prefetch mechanism can be a cost and performance efficient 

mechanism when placed in the context of a (small) on-chip 

cache and a not too large memory latency. It is not the intent of 

this paper to compare hardware-based and software-directed 

prefetching techniques. A report of a preliminary study of this 

type, for shared-data in multiprocessor environments, can be 

found in the dissertation of the first author zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4]. In addition, it is 
clear that compiler interaction can help the hardware scheme [9] 

and that a combination of hardware and software approaches 

should certainly be investigated thoroughly. 

HI. HARDWARE-BASED DATA PREFETCHING SCHEMES 

A. Motivation 

Sequential prefetching can be successful for the optimiza- 

tion of I-caches, but much less so for D-caches. In this section, 

we describe three variations, in increasing order of complexity 

basic, lookahead, and correlated of a hardware-based pre- 

fetching scheme for D-caches. The common basis of these 

schemes is to predict the instruction execution stream and the 

data access patterns far enough in advance, so that the required 

data can be prefetched and be in the cache when the “real” 
memory access instruction is executed. 

The three schemes have in common the following goals: 

generate prefetches in advance for uncached blocks in the 

scalar, zero stride, and constant stride access categories 

independently of the size of the stride; 

avoid unnecessary prefetching for the irregular accesses; 

incur no execution time penalty for prefetch requests for 

data that is already cached; 

design the hardware assist so that it does not increase the 

processor cycle time, i.e., does not interfere with critical 

path timing. 

The basis for the three designs is an RPT that holds data ac- 

cess patterns of loadstore instructions. The RPT is organized 
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as an instruction cache. Minimally, each entry in the table will 

contain a tag related to the instruction address, fields to record 

the memory operand address and its stride, and a state transi- 

tion field. 

To illustrate the concept, we consider the usual matrix mul- 

tiplication loop (for more detail, see Section III.B.3) and the 

pseudo-assembly RISC-like code version of the computational 

part of the inner loop shown in Fig. 1. In the code we assume 

that the subscripts are kept in registers. At steady state, the 

RPT will contain entries for the three load zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlw and the store w 
instructions. Since each iteration of the inner loop accesses the 

same location of A[i, j] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(zero stride), no prefetch will be re- 

quested for it. Depending on the block size, references to 

B[i, k] (constant stride) will either be prefetched at every it- 

eration (block size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4), or every other iteration (block size 

= 8), and so on. Load references to C[k, j] (constant stride 
with a stride larger than the block size) will generate a prefetch 

instruction every iteration. 

int A[100,100],B[100,100],C[100,1001 
for i  = 1 to 100 

for j = 1 to 100 
fork = 1 to 100 

A[ijJ += B[i,k] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy C[kj] 

(a) A Mamx Multiplication 

& 
500 
504 
508 
512 
516 
520 
524 
528 
532 
536 

instruction 
lw r4,O(r2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Iw r5,O(r3) 
mu1 r6,r5,r4 
lw r7,0(rl) 
addu r7, r7, r6 
sw r7,0(rl) 
addu r2,r2,4 
addu r3, r3.400 
addu r l l , r l l ,  1 
bne 11 1, r13,500 

comment 
; load B[i,k] 

; load C[kJ] 
; B[i,k] x C[kj] 

; load A[ij] smde 0 
; += 
; store A[iJ] stride 0 
;ref B[i,k] 
; ref C[kJ] 
; increase k 

; loop 

stride 4 B 
smde 400 B 

(b) assembly code 

Fig. I .  Example of matrix multiplication 

Although a compiler has no difficulty identifying those ac- 

cess patterns for prefetching, the hardware scheme provides 

the advantages of dynamic prefetching detection and code 

compatibility. In particular, as can be shown in the following 

sections, our scheme will be most appropriate for high- 

performance processors with small first-level caches with a 

small block size, where software-directed approaches may 

have significant instruction overhead. 

B. Basic Reference Prediction 

The basic idea of reference prediction is to predict future 

references based on the past history for the same memory ac- 

cess instructions. The most intuitive prediction scheme is to 

have prefetches for the ( i  + 1)'" iteration be generated when the 

ith iteration is executed. Thus, when the program counter (PC) 

decodes a load/store instruction, a check is made to see if there 

is an entry corresponding to the instruction in the RPT. If not, 

it is entered. If it is there and if the reference for the next itera- 

tion is predictable (as defined below), a prefetch is issued. 

This basic scheme involves only the PC and the RPT. As 

shown in Fig. 4, the hardware requirement for the basic design 

is a subset of the more complex lookahead variation that will 

be described in Section 1II.C. We now introduce the design 

and use of the RPT under the basic scheme. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. I .  Reference Prediction Table-RPT 

The RPT, organized as an instruction cache, keeps track of 
previous reference addresses and associated strides for load 

and store instructions. The RPT entry, indexed by the instruc- 

tion address, not only includes the effective address of data 

access and the stride information, but also the regularity status 

for the instruction. Each entry has the following format (see 

Fig. 2) :  

0 tag: corresponds to the address of the LoadIStore in- 

struction 

0 prev-addr: the last (operand) address that was referenced 

when the PC reached that instruction. 
0 stride: the difference between the last two addresses that 

were generated. 

0 state: a two-bit encoding (four states) of the past history; 

it indicates how further prefetching should be generated. 

The four states are: 

-initial: set at first entry in the RPT or after the entry 

experienced an incorrect prediction from steady state. 

-transient: corresponds to the case when the system 

is not sure whether the previous prediction was good 

or not. The new stride will be obtained by subtracting 

the previous address from the currently referenced 

address. 

-steady: indicates that the prediction should be sta- 

ble for a while. 

-no prediction: disables the prefetching for this en- 

try for the time being. 

(update sddc) 
effective addrrss 

(a) reference prediction table 
(b) state transition by F'C 

Fig, 2. Reference prediction 

B.2. RPTMechanism 

The basic mechanism in the RPT is to record the effective 

address of the memory operand, compute the stride for that 

access, and set a state controlling the prefetching by compar- 

ing the previously recorded stride with the one just computed. 

The stride information is obtained by taking the difference 

I 
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tag zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ prev addr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
500 1 50,004 
504 , 90,400 

I 

between the effective addresses of the two most recent ac- 

cesses for the same instruction. 

When a load/store instruction is encountered for the first 

time, the instruction is entered in the RPT in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinitial state. 

When the stride is obtained for the first time, Le., at the second 

access, the state is set to transient since it is not known yet 

whether the pattern will be regular or irregular. When a further 

stride is computed and, if it is equal to the one previously re- 

corded, Le., if the same stride has occurred twice in a row, 

then the entry will be set to the steady state. It will remain in 
the steady state until a different stride is detected, e.g., at the 

end of an inner loop. At that point, the state is reset to initial. 
If a different stride is computed ,while in the transient state, the 

entry is set in the no-prediction state since the pattern is not 

regular and we want to prevent erroneous prefetching. In the 

presence of irregular patterns, the state of the entry will either 

stay in the no-prediction state or oscillate between the tran- 
sient and no-prediction states until a regular stride is detected. 

Hence, when the PC encounters a loadstore instruction with 

effective operand address addr, the RPT is updated as follows: 

(To make it clear, we denote correct by the condition: 

addr = @rev-addr + stride) and incorrect by the condition: 
addr # @rev-addr + stride).) 

A. l .  There is no corresponding entry. The instruction is 

entered in the RPT, the prev-addr field is set to addr, the 

stride to 0, and the state to initial. 
A.2. There is a corresponding entry. Then: 

a) Transition - 
When incorrect and state = initial: 
Set prev-addr to addr, stride to (addr - prev-addr), 
and state to transient. 
b) Moving tobeing in steady state - 
When correct and (state = initial, transient, or 

steady): 
Set prev-addr to addr, leave stride unchanged, and 

set state to steady. 
c) Steady state is over; back to initialization - 
When incorrect and state = steady: 
Set prev-addr to addr, leave stride unchanged, and 

set state to initial. 
d) Detection of irregular pattern - 
When incorrect and state = transient: 
Set prev-addr to addr, stride to (addr - prev-addr), 
and state to no prediction. 
e) No prediction state is over; back to transient - 
When correct and state = no prediction: 
Set prev-addr to addr, leave stride unchanged, and 

set state to transient. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f) Irregular pattern - 
When incorrect and state = no prediction: 
Set prev-addr to addr, stride to (addr - prev-addr), 
and leave state unchanged. 

Following the update, a prefetch request can be generated 
based on the presence and state of the entry. Note that the gen- 

eration of a prefetch does not block the execution of the in- 

struction stream and, in particular, the increment of the PC. 

stnde 1 state 
4 ’ transient 

400 1 transient 
I 

There are two mutually exclusive possibilities: 

0 B.l.  No action. 

There is no existing entry or the entry is in state no 
prediction. 

There is an entry in init, transient, or steady state. A data 

block address @rev-addr + stride) is generated. A pre- 

fetch is initiated if the block is uncached and the address 

is not found in an Outstanding Request List (ORL) (see 

Section 1II.C). This implies sending a request to the next 

level of the memory hierarchy, or buffering i t  if the 

communication channel is busy. The address of the re- 

quest is entered in the ORL. 

B.2. Potential prefetch. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B.3. Example and Discussion 

Fig. 3 illustrates how the RPT is filled and used when the 

inner loop of the matrix multiplication code shown previously 

is executed. We restrict our example to the handling of the 

three load instructions at addresses 500, 504, and 512. We 

assume that the base addresses of matrices A, B, and C are, 

respectively, at locations 10,000, 50,000, and 90,000. 

tag prev zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAad& smde state 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf htially (a) empty 

1 512 ’ 10,000 ’ 0 i steady 1 
After iteration 2 

(c) 

1 , 

1 512 10,000 , 0 , lnlt 
I I 

After iteration 1 
(b) 

tag prev-ad& stnde 1 state 
1 500 ~ 50,008 ’ 4 ’ steadF- 
I 504  

I 
90,800 1 400 1 steady 

I 
1512 1 10,000 1 0 , steady 

After iteration 3 

Fig. 3. Example: filling RPT entries 

Before the start of the first iteration, the RPT can be consid- 

ered empty since there will not be any entry corresponding to 

addresses 500, 504, and 512 (Fig. 3(a)). Let us assume also 
that no element of A, B, or C has been cached. 

When the PC executes for the first time the load instruction 

at address 500, there is no corresponding entry. Therefore, the 

instruction is entered in RPT with its tag (500), the prev-addr 
field set to 50,000, the address of the operand, the stride set to 

0, and the state to initial (A.l above). Similar actions are taken 

for the other two load instructions (Fig. 3(b)). In all three 

cases, there will be cache misses and no prefetches. 

When the PC executes the load instruction at address 500 at 

the beginning of the second iteration, we are in the situation 

described as “transition” (A.2.a). The following three actions 

take place: 

1) Normal reference access to address 50,004. This results 

in a cache hit if the block size is larger than four and in a 

miss otherwise. 

I 
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2) Update of the entry in the RPT. The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprev-addr field be- 

comes 50,004, the stride is set to 4, and the state to 

transient. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3) Potential prefetch of the block at address (50,004 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 4) 

= 50,008. A prefetch occurs if the block size is less than 

eight. 

Similar actions take place for the load at address 504 with, 

in this instance, the certainty that a prefetch will be generated 

(Fig. 3(c)). For the load at instruction 512, we are in the situa- 

tion “moving to steady state” (A.2.b). The prev-uddr and 

stride fields are unchanged and the state becomes steady. Of 

course, we have a cache hit and no prefetch. 

During the third iteration, all three loads should result in 

cache hits, or in indications that prefetches for the referenced 

items are in progress. The RPT entries are updated as shown in 

Fig. 3(d) (note the transient to steady transitions); prefetches 

are generated for blocks at addresses 50,012 (if needed) and 

9 1,200. Subsequent iterations follow the same pattern. 

As can be observed in Fig. 2, scalar and zero stride refer- 

ences will pass from initial to steady state in one transition 

(instruction 5 12). The constant stride references will pass 

through the transient state to “obtain” the stride and then stay in 

steady state (instructions 500 and 504). References with two 

wrong predictions in a row (not shown in the example) will be 

prevented from being prefetched by passing to the no prediction 
state; they could re-enter the transient state, provided that the 

reference addresses become predictable. For instance, accesses 

to elements of a triangular matrix may follow such a pattern. 

Note that the stride field is not updated in the transition from 

steady to initial when there is an incorrect prediction. 

C. Lookahead Reference Prediction 

The basic scheme has a potential weakness associated with 

the timing of the prefetch, that is, the hiding of the memory 

latency by prefetching depends on the execution time of one 

loop iteration. If the loop body is too small, the prefetched 

data may arrive too late for the next access, and if the loop 

body is too large, an early arrival of prefetched data may re- 

place (or be replaced by) other useful blocks before the data is 

used. Although a compiler may easily solve the former prob- 

lem by loop unrolling, we assume that the hardware scheme 

does not rely on software support and preserves code com- 

patibility across various hardware implementations. The 

lookahead reference prediction scheme seeks to remedy the 

drawback of the basic scheme. 

Assuming no contention in the interconnect or in access to 

the cache, the ideal time to issue a prefetch request is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 cycles 

ahead of the actual use, where 6 is the latency to access the 

next level in the memory hierarchy. The data would then arrive 

‘‘just in time” to prevent a cache miss and would not displace 

potentially useful data. Instead of prefetching one iteration 

ahead, the lookahead prediction will approximate this ideal 

prefetch time with the help of a pseudo program counter, 

called the Look-Ahead Program Counter (LA-PC), that will 

remain as much as possible 6 cycles ahead of the regular PC 

and that will access the RPT to generate prefetches. The 

LA-PC is incremented as the regular PC. It is used with a 
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Branch Prediction Table (BPT) to take full advantage of the 

look-ahead feature. 

A block diagram of the target processor is shown in Fig. 4. 

The bottom part of the figure abstracts a common high- 

performance processor with on-chip data and instruction 

caches. The upper-left part shows the RPT and the ORL that 

keeps track of the addresses of fetches in progress and of out- 

standing requests. Under the basic scheme, the RPT is ac- 

cessed by the PC. To implement the lookahead mechanism, a 

LA-PC and its associated logic are added to the top part (on 

the right in the figure). The LA-PC is a secondary PC used to 

predict the execution stream. In addition, we assume that a 
BPT such as a branch target buffer (BTB), a branch prediction 

mechanism for the PC in a high-performance processor, is 

used for modifying the LA-PC. 

Lookahead Pred - - - - - - - - - - - - - - - -  
I 

;GenelieFred I 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Block diagram of data prefetching. 

Entries in the RPT and BPT, are initialized and updated 

when the PC encounters the corresponding instruction. In the 

lookahead scheme, in contrast to the basic prediction, it is the 

LA-PC rather than the PC that triggers potential prefetches 

according to rules B.l and B.2 of the previous section. At each 

cycle, the LA-PC is simply incremented by one. When the 
LA-PC finds an entry in the BPT, it indicates that the LA-PC 

points to a branch instruction. In that case, the prediction result 
of the branch entry in the BPT is provided to modify the LA- 

PC. Note that, unlike the instruction prefetch structure in [ 151 

or decoupled architectures [25], the LA-PC does not need to 

decode the predicted instruction stream. Instead, the lookahead 

mechanism is based on the history information of the execu- 

tion stream, since the LA-PC is just a pointer to detect the pre- 

fetching in the RPT. 

C.l. Lookahead Program Counter (LA-PC) and RPT 

In the basic prediction scheme, prefetching can occur only 

one iteration ahead and thus, as mentioned earlier, the pre- 

fetched data might not yet be in the cache when the real access 

takes place. This situation will occur when the loop iteration 

time is smaller than the memory latency. With the help of the 

lookahead mechanism, the LA-PC may wrap around the loop 

and revisit the same load instruction when the execution time 

of a loop iteration is smaller than the memory latency. In this 

way, we may have multiple iterations lookahead. 

An extra field (times) in the entries of the RPT will keep 
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track of how many iterations the LA-PC is ahead of the PC 

(Fig. 5). In the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlookahead design, the LA-PC detects and gen- 

erates prefetch requests and the PC accesses the RPT when an 

effective address is obtained. As a result, the RPT should be 

dual-ported, which allows simultaneous accesses of PC and 

LA-PC. Now, when the LA-PC hits an instruction with a cor- 

responding entry in the RPT, the address of a potential pre- 

fetch is determined by computing @rev-addr + stride x 
times). The times field is incremented‘ whenever the LA-PC 

hits the entry, while it is decremented when the PC catches up 

with the entry. The times field is reset when it is found that the 

reference prediction of the corresponding entry is incorrect. 

- When bit by the F‘C : 
If the reference vrediction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1s 

I !  

Correct - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArimes- - -  
F C w  

effective address 
Incorrect - times = 0 

Fig. 5. RPT with Lookahead mechanism. 

C.2. Lookahead Distance and Limit 

The ideal Look Ahead distance (LA-distance), Le., the time 

between the execution of the instruction pointed to by the PC 

and that of the instruction pointed to by the LA-PC, is equal to 

the latency 6 of the next level in the memory hierarchy. Clearly 

this can only be approximated since the LA-distance is vari- 

able. Initially, and after each wrong branch prediction, the LA- 

distance will be set to one, with the LA-PC pointing to the 

instruction following the current PC. When a real cache miss 

occurs or when a prefetch is not completed by the time the 

data is needed, the current execution is stalled; the value of PC 

does not change, while the LA-PC can still move ahead and 

generate new requests (recall the role of the ORL). 

As shown in Fig. 4, the LA-PC is maintained with the help 

of a branch prediction mechanism BPT. BPT designs have 

been thoroughly investigated [14], [20] and we will not repeat 

these studies here. In our experiments we use the Branch Tar- 

get Buffer (BTB) with two-bit state transition design described 

in [14] and we assume that the BTB has been implemented in 

the core processor for other purposes. 

As the LA-distance increases, the data prefetch can be is- 

sued early enough so that the memory latency can be com- 

pletely hidden. However, the further PC and LA-PC are apart, 

the more likely the prediction of the execution stream will be 

incorrect because the LA-distance is likely to cross over more 

than one basic block. Moreover, we do not want some of the 

prefetched data to be cached too early and displace other 

needed data. Therefore, we introduce a system parameter 

called Look Ahead Limit (LA-limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd) to specify the maximum 

distance between PC and LA-PC. Thus, the LA-PC is stalled 
(until the normal execution is resumed) in the following situa- 

tions: 1) The LA-distance reaches the specific limit d, or 2) the 

ORL is full. 

C.3. Handling Cache Misses 

On a cache read miss, the cache controller checks the ORL. 

If the block has already been requested, a “normal,” but less 

lengthy, stall occurs. We call hit-wait cycles those cycles dur- 

ing which the CPU waits for the prefetched block to be in the 

cache. If the ORL has no such block entry either, a regular 

load is issued with priority over the buffered prefetch requests. 

Since we are using a write-back, write-allocate strategy, a 
write miss in the data cache will cause the system to fetch the 

data block and then update the desired word. If the block size 

is larger than a single word, we can initiate prefetching as for a 

read miss. When the block size is one word, no prefetch needs 

to be issued but a check of the ORL is needed for consistency 

purposes. If there is a match, the entry in the ORL must be 

tagged with a discard status so that the data will be ignored 

when it arrives. 

When the LA-PC has to be reset because of an incorrect 

branch prediction, the buffered prefetch requests are flushed. 

Finally, when a prefetch raises an exception, e.g., a page fault 

or an out-of-range violation, we ignore the prefetch. The 

drawbacks of a wrong page fault prediction would far out- 

weigh the small benefits of a correct prefetch. 

D. Correlated Reference Prediction 

In the previous two designs, reference prediction was based 

on the regularity between adjacent data accesses. In general, 

the schemes work well for predicting references in inner loops. 

However, the results are less significant for those execution 

segments with small inner-loop bodies or triangle-shaped loop 
patterns because of the frequent stride change in the outer it- 

erations. For example, let us look at Livermore Kernel Loop 6 

as shown in Fig. 6. 

l ,o 1,l 
2,o 2.1 2,2 

int B[100,100], W[1001 
DO 6 i=l,n 
DO 6 k=Oj 3,O 3,l  3,2 3,3 

W(i) = W(i) + B(i,k)*W(i-k) 4,O 4,l 4,2 4.3 4.4 
6 CONTINUE 

(a) Code (b) Access pattem of Matrix B 

Fig. 6. Livermore Loop 6 

While executing the inner loop, accesses to the B matrix 

have regular strides; for example, B[3, 01, B[3, I], B[3, 21, and 

B[3, 31 have a stride of 4. This pattern will be picked up by the 

two schemes presented above. However, an incorrect predic- 

tion will occur each time the k loop is finished, e.g., when ac- 

cessing B[4, 01 after B[3, 31. We can observe though that there 

is a correlation between the accesses at the termination of the 

inner loop (B[1, 01, B[2, 01, B[3, 01, etc. have a stride of 400). 

Correlation that has led to the design of more accurate branch 

prediction [19], [26] can be equally applied to data reference 

prediction. 

The key idea behind correlated reference prediction thus is 

to keep track not only of those adjacent accesses in inner 

loops, like in the above two schemes, but also of those 

I 
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correlated by changes in the loop level. Since branches in the 

inner loop are taken until the last iteration, a nontaken branch 

will trigger the correlation to the next level up. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D.1. Implementation of Correlated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARPT 

The implementation of a correlated scheme would bring 

two additions to the lookahead mechanism: a shift register to 

record the outcome of the last branches and an extended RPT 

with separate fields for computing the strides of the various 

correlated accesses. In the most general case, an N-bit shift 

register can be used to keep track of the results of the last 

N branches and to serve as a mask to address the various fields 

in the extended RPT. 

Since prefetching too far in advance might be detrimental, 

we restrict ourselves to the correlation in two-level nested 

loops. The RPT is extended (Fig. 7), with a second pair of 

prev-addr and stride fields for recording the access patterns of 

the outer loop. (Note that at the outer loop level the times and 

state fields are no longer relevant.) We also have now a two-bit 

shift register for recording the outcome of loop-only branches. 

We assume that a bit ‘1’ encodes a taken branch; then the steady 

state encoding while executing the inner loop will be ‘ I  1.’ In 

that case prefetching will be based on the entry in the RPT cor- 

responding to the inner loop (the “right” part in the figure). 

When the branch is not taken, the shift register will contain ‘10’ 

(because a nontaken inner-loop branch has been followed by a 
taken outer-loop branch) and prefetching will be based on the 

part of the entry corresponding to the outer loop (the “left” part). 

Updating of the left prev-addlo and stride0, as well as of the 

right prev-uddrl, fields will take place at the beginning of an 

outer iteration (when the shift register contains ‘10’ or ‘00’) 
while all the right fields will be updated for consecutive inner 

iterations (when the register contains ‘ 1 1 ’ or ‘01 ’). 

effective ~ 

address I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-7 

Branch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
History & 

Fig. 7. Correlated RPT 

Fig. 8 shows how the RPT entry for B[i, k] would be filled 

and updated during execution of the first three iterations of the 

outer loop of Kernel Loop 6. We have left out the times field 

for ease of explanation. Without loss of generality, we can 

assume that the initial content of the shift register is ‘10’ and 

that the entry in the RPT is empty. At the initial access of 

B[l ,  01, all fields are filled as in the previous schemes (first 

row of left table in Fig. 8). At the second access (first row of 

right table) only the right fields are modified as they would be 

in the previous schemes (the shift register contains ‘11’). At 

the beginning of the second outer iteration, Le., first access to 

B[2, 01, the shift register will again contain ‘10’ (branch non- 

taken). Thus, prefetching of B[3, 01 and B[2, 11, if needed, 

will be done for accesses in both levels of the loop, and updat- 
ing of the first pair of fields and of prev-addrl will be per- 

formed (second row of top table). On subsequent accesses to 

B[2, i], prefetching and updating will be based on the right 

fields (second row of bottom table). At the beginning of the 

third outer iteration, we are in steady state (last row of the ta- 

ble). By that time B[3, 01 should have been prefetched (at the 

end of the second iteration). A prefetch to B[3, 11 would be 

generated and most likely not activated if the line size is large 

enough, i.e., if B[3, 01 and B[3, 11 are in the same line. 

1 st i ~ e r  iteration 2nd m e r  iteration - 
1preV prev 

~- 
outer prev ’ prev 

iteration addtU smde0 addrl smdel state 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaddro smdeO,~ addrl smdel state 

B [ 2 , 0 I ~ B [ 2 , 0 1  4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfmnsienf,l “B[2.0] 400 ~~B[2,1] 4 

____( 

1 B [ 1 , 0 l B [ 1 , 0 ]  0 inif TB[l,O] 0 “B[1,1] 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArrunsienr 

2 
3 ,B[3,01 400 (B13,Ol v B [ 3 , 1 ]  4 sready 

Fig. 8. Example: correlated RPT entries. 

Three issues regarding the implementation of a correlated 

reference prediction scheme need to be addressed. In all three 

cases, we make reasonable assumptions to keep the design as 

simple as possible. The first assumption is that since it is easy 

for a compiler to distinguish between end of loop branches and 

other branches, the former will be flagged, e.g., in the branch 

prediction table, and the shift register will be modified only 

when they are encountered. This assumption could be removed 

by letting the shift register be modified on every branch as in 

[ 191. While some predictable patterns might emerge the com- 

plexity of implementation might not be warranted. Second, we 

assume that the loop iterations are controlled by backward 

branches.’ Third, we assume that prefetches for the correlated 

references, across outer iterations, are issued as in the basic 
case, since the LA-PC will be the same as the PC on the incor- 

rect branch prediction. Those prefetches are generated without 

any attempt to control the prefetch issue 6 cycles ahead of data 

use. This last assumption is reasonable since accesses in the 

outer loop are separated by the execution of all the iterations 

of the inner loop which, in most likelihood, will take longer 

than 6 cycles. 

IV. EVALUATION METHODOLOGY 

A. Trace-Driven Simulation 

We evaluated our proposed architectures using cycle-by- 
cycle trace generation combined with on-the-fly simulation. 

For comparison purposes, a baseline architecture consisting of 

a processor with perfect pipelining and direct-mapped D-cache 

with 32K bytes and a block size of 32 bytes, unless otherwise 

specified, was also simulated. Benchmarks were instrumented 

1. A backward branch always passes execution control to a location that is 
before the address of the branch instruction. A transformation by a compiler 
is required for these programs in which forward conditional branches are used 
to control the loop iterations [3]. 
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on a DECstation 5000 (R3000 MIPS CPU) using the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApixie 
facility. Traces include data and instruction references so that 

the simulator can emulate the detail behavior of overlapping 

computation with data access. The experiment results were 

collected at the clock cycle level from the individual 

configurations. 

We used 10 applications from the SPEC2 Benchmark, 

compiled with the MIPS C compiler and the MIPS F77 com- 

piler, both with optimization options. The traces captured at 

the beginning of the execution phase of the benchmarks were 

discarded because they are traces of initial routines that gen- 

erate the test data for the benchmarks. No statistical data was 

recorded while the system simulated the first 500,000 data 

accesses. However, these references were used to fill up the 

cache, the BPT, and the RPT to simulate a warm start. After 

the initialization phase and the warm-start period, simulations 

results were collected for the first 100 million instructions for 

all programs. 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 shows the dynamic characteristics of the workload. 

These statistics were collected by simulating the program with 

an infinitely large RPT. The columns below datu references 
show the proportions of data references (weighted by their 

frequency) that belong to the categories mentioned previously. 

They are one indication of the reference predictability of the 

10 programs. Scalar or zero stride references are beneficial to 

the data cache; the prefetching schemes can be useful to bring 

back in advance blocks that were displaced because of a small 

cache size (capacity misses) or a small associativity (conflict 

misses). Constant stride references, which may substantially 

contribute to cache misses, should be helped by the RPT 
schemes. Prefetching should be avoided for unpredictable ir- 

regular references. The column brunch prediction miss ratio 
shows the outcome of branch predictions with a 512-entry 

BPT, that functions like a 2-state-bit Branch Target Buffer 

[ 141. This is a second indication of the reference predictability, 

illustrating the possible benefits exploited by the lookahead 

approach. 

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 
CHARACTERISTICS OF BENCHMARKS 

Name 

Tomcatv 

FPPPP 
Matrix 
Spice 
Doduc 
Nasa 

Eqntott 
Espresso 

Gcc 
Xlisp 

data references 

scalar, constant irregular 

0.312 0.682 0.006 
0.981 0.006 0.014 
0.059 0.921 0.021 
0.581 0.239 0.180 
0.692 0.154 0.154 
0.006 0.989 0.003 
0.338 0.574 0.088 
0.460 0.424 0.116 
0.516 0.120 0.365 
0.440 0.078 0.482 

zero stride stride 

branch 
pred. 

miss ratio 

0.005 
0.1 10 
0.073 
0.060 
0.120 
0.008 
0.069 
0.055 
0.204 
0.156 

We experimented with the three architectural choices, and 

2. SPEC is a trademark of the Standard Performance Evaluation Corporation. 

varying architectural parameters, described previously. The 

results of the experiments are presented with the “cycle per 

instruction contributed by memory accesses” (MCPI) as the 

main metric. Since we assume that the processor can execute 

each instruction in one cycle (perfect pipelining) and that we 

have an ideal instruction cache, the only extra contribution of 

CPI stems from the data access penalty. Hence, the MCPI 

caused by the data access penalty is obtained as: 

- total data access penalty 

number of instructions executed MCP1duta zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuccess - 

The reason for choosing MCPI as a metric instead of the 

miss rate or the average effective access time is that MCPI can 

reflect the actual stall time observed by the processor, taking 

both processor execution and cache behavior into account. In 

the figures, we also give the percentage of the data access 

penalty reduced by the prefetching scheme. This percentage 

number is computed as: 

data penalty,,, -data penalty,refe,ch 

data penalty,, 
% of penalty reduced = x 100 

B. Memory Models 

Data bandwidth is an important consideration in the design 

of an architecture that allows overlap of computation and data 

accesses since several data requests, such as cache misses or 

prefetching requests, can be present simultaneously. Thus, we 

have associated an ORL with the prefetching caches. A re- 

quirement for this list is that it can be searched associatively. 

We will assume, conservatively, that a fetch in progress cannot 

be aborted. However, a demand cache miss will be given pri- 

ority over buffered prefetch requests. 

Three memory interfaces with increasing capabilities of 

concurrency were simulated. They are (see Fig. 9 for timing 
charts and block diagrams): 

-Nonoverlapped (1): As soon as a request is sent to the 

next level, no other request can be initiated until the (sole) 

request in progress is completed. This model is typical of an 

on-chip cache backed up by a second level cache. 

This interface supports only one cache request at a time. 

-Overlapped (C, N): The access time for a memory re- 

quest can be decomposed into three parts: request issue cy- 
cle, memory latency, and transfer cycles. We assume that 

during the period of memory latency other data requests can 

be in their request issue or transfer phases. However, no 

more than one request issue or transfer can take place at the 

same time. 

This model represents split buses and a bank of C inter- 

leaved memory modules or secondary caches. An ORL with 

N entries is associated with each module. 

-Pipelined (N): A request can be issued at every cycle. 

This model is representative of processor-cache pairs being 

linked to memory modules through a pipelined packet- 

switched interconnection network. We assume a loud 
through mechanism [24], Le., the desired word is available 

as soon as the first data response arrives. An N-entry ORL is 

associated with the cache. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 
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70% 

Pipelined 

Timing of data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ccess 

Fig. 9. Three memory models 

The configurations of the ORLs used in our experiment are 

Nonoverlapped (l), Overlapped (8, 2), and Pipelined (8), 
respectively. The memory latency zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 is usually equal to 30. The 

Overlapped model is the default model to show general results 

since it is the most likely implementation for future high per- 

formance processors. The cycle time of the three phases 

(requesting, accessing memory, and transferring) are 2, 20, and 

8 cycles, respectively. 

V. SIMULATION RESULTS 

In this section, we present experimental results that show 
the benefits of the prefetching schemes. We first compare an 

architecture with a baseline cache with the same architecture 

augmented by each of the three prefetching schemes. These 

comparisons are performed on all 10 SPEC benchmarks. In the 

remainder of the section, for brevity's sake, we restrict our- 

selves to reporting on benchmarks with the most salient fea- 

tures. We examine the impact of the memory models and as- 

sociated latencies, the effect of block size variations, and 

means to improve the efficiency of the RPT. Finally, we dis- 

cuss the setting of the Lookahead Limit d that is relevant to the 

lookahead prefetching scheme. 

A. General Results 

Figs. 10(a) and 10(b) show the results of the simulation of 

the four architectures with the data access penalty MCPI as a 

function of the cache size. The Overlapped memory model is 

used, the block size is 32 bytes, and the RPT and the BPT in 

the prefetching schemes have 512 entries. The results show 

that the prefetching organizations are always superior to the 

pure cache scheme since they have the same amount of cache 

and, in addition, the prefetching component. When the cache is 

too small to contain the working set of the application, the best 

prefetching scheme can reduce the data access penalty from 
16% up to 97%. The additional cost paid for prefetching is 

justified by the significant performance improvement. This 

additional cost (RPT and logic) is approximately equivalent to 

a 4K-byte D-cache (Section V.D). 

We examine further the performance curves by dividing the 

ten benchmarks into three groups: 1) prefetching performs 

extremely well, 2) prefetching yields a good or moderate im- 

provement to the performance, and 3) prefetching's contribu- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 10(a). Simulation results for 6 = 30 (Overlapped) 

tion to the reduction in data access penalty is slight. 

The first group is formed by the Matrix and Espresso 

benchmarks, in which the data access penalty has been reduced 

by over 90%. For all practical purposes, the MCPI is almost 

completely eliminated. With good reference predictability in 

these two programs, the flat performance curves of the pre- 

fetching illustrate that a cache of small size is sufficient to 

capture most of the locality when compulsory cache misses 

have been eliminated by the prefetching. 

The second group includes Tomcatv, Nasa, Eqntott, and 

Xlisp in which the prefetching yields a good performance im- 
provement, a reduction in data access penalty in the range of 

35% to 70%. In Eqntott and Xlisp, the MCPI penalty is about 
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a quarter of a cycle even for a very small cache. Seeking fur- 

ther improvement is not worthwhile. In Tomcatv and Nasa, as 

the cache size increases, the miss penalty of both the pure and 

prefetching caches is minimized until the working set is cap- 

tured (32K for Tomcatv). Notice that the absolute reduction in 

the MCPI is significant, over one cycle in both cases, and in- 

dependent of the cache size. Based on the results of the first 

two groups, it can be seen that the performance data at mod- 

erate cache size, 16K and 32K, argues forcefully for spending 

some cache real estate on the RPT and BPT rather than in- 

creasing the cache size. 

Spice 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.0 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. IO(b). Simulation results for 6 = 30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Overlapped) 

The third group consists of Spice, Doduc, Gcc, and Fpppp. 

For Spice and Doduc prefetching is still valuable: The data 

access penalty is reduced by about 30%. For Fpppp, and to a 

lesser extent Gcc, a pure cache of 16K has almost captured the 

working set; prefetching cannot help much. Several factors are 

responsible for the small advantage brought by prefetching. 

First, because the fraction of references in scalar or zero stride 

categories dominates (98% in Fpppp and over 50% in the 

other three benchmarks, Table 11), the performance contribu- 

tion by prefetching accesses with nonzero strides become less 

significant. Second, the significant branch prediction miss ra- 

tio, e.g., 20% in Gcc, precludes successful prefetching. And, 

third, the RPT may not be capable to hold all active memory 

instructions at the same time because of either its limited as- 

sociativity or its small number of entries. We examine this last 

issue later in this section. 

Finally we compare the relative performances of the three 
reference prediction schemes. As could be expected, the in- 

creased level in hardware complexity pays off. However, the 

difference between the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlookahead and correlated variations is 

always small, less than 2%, with Eqntott being the only excep- 

tion with one data point showing a 10% improvement. The 

difference between lookahead and basic is more significant. It 

is most notable, differences of over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA40%, in the benchmarks 

Tomcatv (large loop body so in the basic scheme the pre- 

fetched data will arrive too early displacing other useful data 

or being replaced before its use) and Espresso (small basic 

block so in the basic scheme the data will arrive too late, gen- 

erating hit-wait cycles). These results show that the lookahead 
logic is worth implementing since it allows the flexibility to 

prefetch at the correct time while the complexity required to 

help data accesses in outer loops as in the correlated scheme 

plays a much less significafit role. 

In summary, the prefetching schemes are effective in reduc- 

ing the data access penalty. A prefetching hardware unit is 

particularly worthwhile when the chip area is limited and a 

choice has to be made between the added unit and increasing 

slightly the on-chip cache capacity. 

B. Effect of Memory Models and Latencies 

Fig. 11 presents the data access penalties of the baseline 

cache and the lookahead scheme for the three memory models 

and memory latency varying from 10 to 50 cycles for four of 

the benchmarks (Tomcatv, Espresso, Eqntott, and Xlisp). Each 

bar corresponds to one architecture and one memory latency, 

with the MCPI for the Pipelined access and the overhead 

coming from the Overlapped and Nonoverlapped models 

stacked on top of each other. The two numbers inside the bars 

of the lookahead prefetching give the percentages of the pen- 

alties reduced by the prefetching for the Nonoverlapped model 

(worst) and the Pipelined model (best), respectively. The 
overhead in the case of the baseline cache comes from the 

waiting time incurred by a cache miss when a write back is in 

progress since we assume that a request in progress cannot be 

aborted. Similarly, the overhead in the prefetching scheme 

includes the stall time of a “real” demand cache miss waiting 

for prefetching or write-back requests in progress. Note that it 

is not meaningful to have a large access time, say 50 cycles, 

for the Nonoverlapped model and a small latency of 10 cycles 

for the Pipelined model. We simply intend to show the effect 

of the stall penalty for a large spectrum of memory bandwidth. 

As could be expected, a memory interface with restricted 

bandwidth like that of the Nonoverlapped model will result in 

poorer relative performance improvements with longer mem- 

ory latencies. This is noticeable in the benchmarks Espresso 

and even more so in Tomcatv, where the MCPIs are larger 

than in the other benchmarks. A large portion of busy time is 

eliminated when passing from the Nonoverlapped model to the 

Overlapped model and then even more with the Pipelined 
model. For all four benchmarks, the difference between the 

latter two models is less significant than that between the first 

two models. This is because much of the required parallelism 

can be exploited by the Overlapped model. The results shown 

in Fig. 11 indicate that an adequate interface is necessary to 

meet the memory bandwidth demand of prefetching techniques 

that exploit the parallelism among several memory requests. 

Cache miss reduction by itself is not sufficient to assess the 

value of a prefetching scheme. 

As the memory latency increases, the relative access penalty 

of the prefetching scheme in all three models also increases. 

I 
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Fig. 11. Effect of memory models and latencies 

The main reason in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANonoverlapped model is the lack of 

concurrency in the requests, resulting both in hit-wait cycles 

and in the ORL being full more often. Another reason, com- 

mon to all three models, is that the lookahead scheme relies on 

the branch prediction for the LA-PC. The correctness of the 

prediction is sensitive to a large latency (see also Section V.E) 

and therefore wrong prefetches using the interface can occur 

more often with larger latencies. The better results obtained 

with small memory latencies reinforce our previous claim that 

the lookahcad scheme is beneficial to high-performance proc- 

essors with a limited on-chip cache. Such benefits do not de- 

grade too much even with an interface to a secondary cache 

with limited concurrency such as the Nonoverlapped model. 

C. Effect of Block Size 

It is well known that for a cache of given capacity and as- 

sociativity, the block size that leads to the best hit ratio is a 

compromise between large sizes to increase the spatial locality 

and small sizes to reduce conflict misses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 22 ] .  Given that a 

prefetching scheme will increase the spatial locality, we can 

predict that the best block size for a prefetching scheme should 

be smaller than or equal to that of the pure cache. 

Fig. 12 presents the performance of the various architec- 

tures as a function of the block size. The baseline is a 

32K-byte direct-mapped cache. The prefetched blocks are of 

the same size as the blocks fetched on real misses. Our ex- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 12. MCPI vs. block size for 32K cache (Overlapped). 

periments are based on the Overlapped model with a transfer 

rate of eight bytes per cycle, and request and memory latency 

of two and 20 cycles, respectively. As can be seen in the fig- 
ure, the best block size for the baseline architecture is either 32 

or 64 bytes and the choice can lead to significant improve- 

ments, for example a reduction in MCPI by a factor of three in 

Matrix and a factor of two in Eqntott when passing from a 
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Fig. 13. Hit ratio and attempted prefetch of RPT. 

block size of eight to a block size of 32. By contrast, the pre- 

fetching scheme is much less sensitive to the block size and the 
best results are obtained for a block size of 32 or less. This 

result one more time argues for the hardware prefetching being 

associated with an on-chip cache since limited bandwidth 

(small number of pins, Le., small block size) is not an impedi- 

ment to its performance. 

D. Organizing the Reference Prediction Table 

As discussed in Section V.A, the benefits incurred by the 

prefetching schemes depend primarily on program behavior, 

more specifically on the amount of predictable references. A 
second factor is the organization of the RPT, i.e., its size and 

its associativity. 

We have stated earlier that the cost of the 512-entry RPT 

used in our experiments was equivalent to that of 4K-byte data 

cache. In each entry of the basic scheme, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprev-addr and 

stride fields need four bytes each, and the tag and state transi- 

tion bits require the same amount of memory as the tag direc- 

tory and status bits in a cache. For a lookahead scheme, we 

have to add a few bits per entry for the times field. The corre- 

lated scheme requires significantly more space (maybe 50% 

more). Therefore, the memory cost of a 512-entry RPT for the 

lookahead scheme is roughly equivalent to that of a 4K-byte 

data cache with block size of eight bytes. The RPT requires a 

comparator for the tag, as in a cache, an adder and shifter for 

the computation of the stride and of the effective address to be 

prefetched, and minimal logic for the state transition table. 

However, there is no need to implement write strategies when 

there is a conflict in the RPT nor is there a need to differentiate 

between clean and dirty blocks. Thus, the RPT logic might be 

slightly more complex than in a cache but it uses standard 

techniques. Similarly, the logic needed to implement the LA- 
PC is simple although its presence requires that the D-cache, 

BTB, and RPT be dual-ported. 

The hit ratio of instructions referencing the RPT is over 

90% in seven out of the 10 SPEC benchmarks. In an eighth 

benchmark, Fpppp, the hit ratio is very low, as low as lo%, 

even when we double the size of the RPT. This is primarily 

because the main part of the program consists of a large loop 

body with a long sequence of scalar accesses. Most of the ref- 

erences recorded in the RPT have been replaced when the loop 

starts its next iteration. For the two remaining benchmarks, 

Gcc and Doduc, Fig. 13 shows the fractions of instructions that 

hit in the RPT as a function of the size and associativity of the 

Doduc 

$i% 128 256 5 12 1024 

11 .1  12.9 14.4 

RPT. In addition, the line entitled “prefetch attempt %” (below 

the number of RPT entries) shows the percentage of accesses 

hitting entries not in the no-prediction state and with a nonzero 

stride for which prefetching was attempted. 

Increasing the associativity of the RPT has minimal effect 

(Fig. 13). The sequential nature of instructions is the reason for 

this lack of improvement. On the other hand, increasing the 

size of the RPT improves the hit ratio since a small RPT can- 

not hold the referencing instructions of the most frequently 

executed loops in these two benchmarks. Note also, that the 

“prefetch attempt %” increases with the larger hit ratio. It is 

because it takes two or three accesses to regain the necessary 

stride information for those instructions that have been re- 

placed. When an adequate hit ratio is obtained, the percentage 

of accesses with prefetches is roughly equal to that of data 

accesses in the constant stride category (Table 11). 

A question that might arise is given extra chip capacity, 

should it be devoted to a larger or more complex D-cache or a 

larger or more complex RPT. On one hand, a good hit ratio in 

the RPT may not be directly translated into a smaller miss ratio 

in the data cache (depending on the fraction of nonzero stride 

accesses). On the other hand, adding complexity to the data 

cache may yield a better performance, but care should be taken 

not to increase the basic cycle time of the cache, for example 

because of extra gate delays from comparators and multiplex- 

ors. However, on the basis of our experiments we would not 

argue for a larger or more sophisticated RPT. A possible solu- 

tion for improving the RPT hit ratio without enlarging the ta- 

ble is to not replace those entries with nonzero strides. While 

useful patterns might be preserved, we are needlessly locking 

in the RPT entries corresponding to instructions that will be 

never executed again. A better approach is to enter in the RPT 

only those instructions that may have a nonzero stride. A 
compiler can easily provide this information. In an experiment 

on the DECstation 5000, we simply excluded memory instruc- 

tions that use the stack pointer or a general register (sp or g p )  
from being entered in the RPT, since in general a non-scalar 

reference does not use these two registers as base register. The 

hit ratios for Fpppp and Doduc were increased up to 91% for 

an RPT of 512 entries. 

In summary, in most cases, a moderate sized RPT, of the 

order of 512 entries, is sufficient to capture the access patterns 

for the most frequently executed instructions. A possible op- 

timization that would be useful for programs with large basic 

blocks is to be selective in storing entries in the RPT. 

1 
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E. Varying the Lookahead Limit 

In the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlookahead and correlated schemes, the LA-PC con- 

trols the timing of the prefetches. Its forward progress is 

bounded by the Lookahead limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, the maximum number of 
cycles allowed between LA-PC and PC. Setting d must take 

into account two opposite effects. We should certainly issue 

prefetches early enough and therefore d must be greater than 6 
so that the number of hit-wait cycles is reduced. This is even 

more crucial when the data misses are clustered and the mem- 

ory model is restrictive like in the Nonoverlapped and to a 

lesser extent the Overlapped model. On the other hand, d 
should not be too large and cross over too many basic blocks 

because the branch prediction mechanism loses some of its 

reliability with increased d. Also, we do not want prefetched 

data to replace (or to be replaced by) other useful blocks. 

Fig. 14 shows the performance of the lookahead scheme 

under the Overlapped model as a function of the Lookahead 

limit d for two representative programs. When d is less than 

the memory cycle time 6 (30 cycles in the figure), each access 

to the prefetched block in progress will be a hit-wait access 

and thus contributes hit-wait cycles to the total access penalty. 

The contributed hit-wait cycles are decreasing as d approaches 

6. A local minimum for the MCPI happens around d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 35. A 

further increase in d will result in a slight MCPI increase be- 

cause of the two aforementioned factors (incorrect branch 

prediction and data replacement). For the Overlapped model, 

it appears that setting d to a value slightly above 6 will give the 

best results. 

Tomcatv Espresso 

L ”’1 \ 

Fig. 14. MCPI vs. LA-limit for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 = 30 (Overlapped) 

VI. CONCLUSIONS 

In this paper we have described and evaluated a design for a 

hardware-based prefetching scheme. The goal of this support 

unit is to reduce the CPI contribution associated with data 

cache misses. The basic idea of data prefetching is to predict 
future data addresses by keeping track of past data access pat- 

terns in a Reference Prediction Table. Based on the various 

times when a prefetch is issued, we have investigated three 

variations: basic, lookahead, and correlated prefetching 

schemes. 

We have evaluated these three schemes by comparing them 
with a pure cache design at various cache sizes. We performed 

these comparisons using cycle by cycle simulations of the ten 

SPEC benchmarks. The results show that the prefetching 

schemes are generally effective in reducing the data access 

penalty. The cost of the hardware unit is not prohibitive; a 

moderately sized RPT, of cost equivalent to that of a 4K 
D-cache, can capture the access patterns for the most fre- 

quently executed instructions. We observed that the lookahead 

scheme is moderately superior to the basic scheme, while the 

performance difference between the lookahead and correlated 

schemes is small. 

We have also examined the performance of the prefetching 

scheme when we vary architectural parameters such as block 

size, memory latency, and memory bandwidth. The main re- 

sults are that the performance of the lookahead prefetching is 

best for small blocks (eight or 16 bytes) and that its effective- 

ness is significant with a small memory latency even when 

assuming a restricted bandwidth interface to the next level of 

the memory hierarchy. These observations lead us to argue that 

a hardware-based prefetching scheme would be valuable and 

cost-effective as an assist to an on-chip data cache backed-up 

by a second-level cache with an access time an order of magni- 

tude larger. 

We advocate an effective prefetching hardware support unit, 

which is designed close to the processor without introducing 

extra gate delays to the critical path. However, hardware pre- 

fetching schemes will not be as effective in higher levels of the 

memory hierarchy. In that case, when the latencies are two or- 

ders of magnitude larger than the processor cycle time, prefetch- 

ing data by software-directed techniques may be more benefi- 

cial. The software approach might also lend itself better to mul- 

tiprocessor environments. Our future research will look at pos- 

sible ways to combine hardware and software prefetching. 
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