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ABSTRACT

Large sky surveys are increasingly relying on image subtraction pipelines for real-time (and

archival) transient detection. In this process one has to contend with varying point-spread

function (PSF) and small brightness variations in many sources, as well as artefacts resulting

from saturated stars and, in general, matching errors. Very often the differencing is done

with a reference image that is deeper than individual images and the attendant difference in

noise characteristics can also lead to artefacts. We present here a deep-learning approach to

transient detection that encapsulates all the steps of a traditional image-subtraction pipeline –

image registration, background subtraction, noise removal, PSF matching and subtraction – in

a single real-time convolutional network. Once trained, the method works lightening-fast and,

given that it performs multiple steps in one go, the time saved and false positives eliminated

for multi-CCD surveys like Zwicky Transient Facility and Large Synoptic Survey Telescope

will be immense, as millions of subtractions will be needed per night.

Key words: methods: data analysis – techniques: image processing – surveys – supernovae:

general.

1 IN T RO D U C T I O N

Time-domain studies in optical astronomy have grown rapidly over

the last decade with surveys like All Sky Automated Survey for Su-

pernovae (ASAS-SN) (Pojmański 2014), Catalina Realtime Tran-

sient Survey (CRTS) (Mahabal et al. 2011; Djorgovski et al. 2011;

Drake et al. 2009), Gaia (Gaia Collaboration et al. 2016), Palomar-

Quest (Djorgovski et al. 2008), Panchromatic Survey Telescope

and Rapid Response System (Chambers et al. 2016) and Palomar

Transient Factory (PTF) (Law et al. 2009), to name a few. With

bigger surveys like Zwicky Transient Facility (ZTF) (Bellm 2014)

and Large Synoptic Survey Telescope (LSST) (Ivezic et al. 2008)

around the corner, there is even more interest in the field. Be-

sides making available vast sets of objects at different cadences for

archival studies, these surveys, combined with fast processing and

rapid follow-up capabilities, have opened the doors to an improved

understanding of sources that brighten and fade rapidly. The real-

time identification of such sources – called transients – is, in fact,

one of the main motivations of such surveys. Examples of tran-

sients include extragalactic sources such as supernovae and flaring

M-dwarf stars within our own Galaxy, to name just two types. The

main hurdle is identifying all such varying sources quickly (com-

pleteness) and without artefacts (contamination). The identification

process is typically done by comparing the latest image (hereafter

called the science image) with an older image of the same area of

⋆ E-mail: nima@cs.uni-freiburg.de (NS); aam@astro.caltech.edu (AM)

the sky (hereafter called the reference image). The reference image

is often deeper, so that fainter sources are not mistaken as transients

in the science image. Some surveys like CRTS convert the images

to a catalogue of objects using source extraction software (Bertin

& Arnouts 1996) and use the catalogues as their discovery domain,

comparing the brightness of objects detected in the science and ref-

erence images. Other surveys like PTF difference the reference and

science images directly after proper scaling and look for transients

in the difference images.

The reference and science images differ in many ways. (1)

Changes in the atmosphere mean the way light scatters is differ-

ent at different times. This is characterized by the point-spread

function (PSF). (2) The brightness of the sky changes depending

on the phase and proximity to the Moon. (3) The condition of the

sky can be different (e.g. very light cirrus). (4) The noise and depth

(detection limit for faintest sources) are typically different for the

two images. As a result, image differencing is non-trivial and along

with real transients come a large number of artefacts per transient.

Eliminating these artefacts has been a bottleneck for past surveys,

with humans having often been employed to remove them one by

one – a process called scanning – in order to shortlist a set of genuine

objects for follow-up using the scarce resources available. Here we

present an algorithm based on deep learning that eliminates arte-

facts almost completely and is nearly complete (or can be made so)

in terms of the real objects that it finds. In Section 2 we describe

prior work for image differencing and on deep learning in astron-

omy. In Section 3 we describe the image differencing problem in

greater detail, in Section 4 we present our method and a generative
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Figure 1. Our CNN-based encoder–decoder network, TransiNet, produces a difference image without an actual subtraction. It does so through training, using

a labelled set of transients as the ground truth.

encoder–decoder network – called TransiNet hereafter – based on

convolutional networks (hereafter ConvNets or CNNs), in Section 5

we detail the experiments we have carried out and in Section 6 we

discuss future directions.

2 R E L AT E D WO R K

For image differencing, some of the programs that have been used

include those of Alard & Lupton (1998), Bramich (2008), and PTFIDE

(Masci et al. 2017). A recent addition to the list is ZOGY (Zackay,

Ofek & Gal-Yam 2016), which apparently has lower contamination

by more than an order of magnitude. It is to be used with the ZTF

pipeline and at least in parts of the LSST pipeline. The main task

of such an algorithm is to identify new point sources (convolved

with the PSF). The problem continues to be challenging because it

has to take many complicating factors into consideration. Besides

maximizing real sources found (true positives), generating as clean

an image as possible (fewest false positives) is the quantifiable goal.

Please refer to Zackay et al. (2016) for greater detail.

Neural networks in their traditional form have been around since

as early as the 1980s (e.g. LeCun 1985; Rumelhart & Hinton 1986).

Such classical architectures have been used in astronomical appli-

cations in the past. One famous example is the star–galaxy classifier

embedded into the SEXTRACTOR package (Bertin & Arnouts 1996).

The advent of convolutional neural networks (ConvNets: LeCun

et al. (1990, 1998)), followed by advances in parallel computing

hardware (Raina, Madhavan & Ng 2009), has started a new era in

‘deep’ convolutional networks, specifically in the areas of image

processing and computer vision. The applications span from pixel-

level tasks such as denoising to higher-level tasks such as detection

and recognition of multiple objects in a frame (see e.g. Krizhevsky,

Sutskever & Hinton 2012; Simonyan & Zisserman 2014).

Researchers in the area of astrophysics have also very recently

started to utilize deep learning-based methods to tackle astronomical

problems. Deep learning has already been used for galaxy classifi-

cation (Hoyle 2016), supernova classification (Cabrera-Vives et al.

2017), light-curve classification (Charnock & Moss 2017; Mahabal

et al. 2017), identifying bars in galaxies (Abraham et al. 2017), sep-

arating near-Earth asteroids from artefacts in images (Brian Bue,

private communication), transient-selection post-image differenc-

ing (Morii et al. 2016), gravitational wave transient classification

(Mukund et al. 2017) and even classifying noise characteristics

(Abbott 2017; George, Shen & Huerta 2017; Zevin 2017).

One aspect of ConvNets that has not received enough attention

in the astrophysical research community is the ability to generate

images as output (Rezende, Mohamed & Wierstra 2014; Bengio

et al. 2013). Here, we provide such a generative model to tackle

the problem of contamination in difference images (see Fig. 1) and

thereby simplify the transient follow-up process.

3 PRO B L E M F O R M U L AT I O N

We cast the transient-detection problem as an image-generation

task. In this approach, the input is composed of a pair of images

(generally with different depth and seeing, aka full width at half-

maximum (FWHM) of the PSF) and the output is an image contain-

ing, ideally, only the transient at its correct location and with a proper

estimation of the difference in magnitudes. In this work, we define

a transient as a point source appearing in the second/science input

image and not present in the first/reference image. A generative

solution such as we propose naturally has at its heart registration,

noise-removal, sky subtraction and PSF matching.

In computer vision literature, this resembles a segmentation task,

where one assigns a label to each pixel of an image, e.g. transient

versus non-transient. However, our detections include information

about the magnitude of the transients and the PSF they are convolved

with, in addition to their shape and location. Therefore the pixels of

the output are real-valued (or are in the same space as the inputs),

making the problem different from simple segmentation (see Fig. 2).

To this end, we introduce an approach that is based on deep learning

and train a ConvNet to generate the expected output based on the

input image pair.

We formulate the problem as follows. Let us consider (I1, I2) as

the reference–science pair:

I1 = I0 ∗ φ1 + S1 + N1, (1)

I2 = (I0 + It ) ∗ φ2 + S2 + N2, (2)

Figure 2. Examples of the reference (left) and science (centre) images. The

image on the right is the ground-truth output defined for this image pair. It

contains the image of a single transient, completely devoid of background

and noise. The profile of the transient is the best match to reality our model

can produce.
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where I0 is the underlying unconvolved image of the specific region

of the sky; φ1 and φ2 represent the PSF models; S1 and S2 are the

sky levels and N1, N2 represent the noise. Note that, for the sake

of readability, we have illustrated the effect of noise as a simple

addition operation. However, in reality the noise is ‘applied’ per

pixel throughout the workflow.

It is the ideal model for the transient and can be seen as an empty

image with an ideal point source on it. Based on our formulation

of the problem, the answer we seek is It∗φ2, which represents the

image containing the transient in the same seeing conditions as

the science image. This involves PSF matching, for taking the first

image from I0∗φ1 to I0 and then to I0∗φ2, for the subtraction to

work.

Note that in equations (1) and (2), for the sake of clarity, the two

images are assumed to be registered. In the real problem that the

network is trying to solve, 2 is replaced by

I2 = D{(I0 + It ) ∗ φ2} + S2 + N2, (3)

in which D{} represents spatial inconsistency, which in its simplest

form consists of one or more of small rotation, translation and

scaling.

4 M E T H O D

We tackle the problem using a deep-learning method, in which an

encoder–decoder convolutional neural network is responsible for

inferring the desired difference image based on the input pair of

images.

4.1 Network architecture

We illustrate TransiNet in Fig. 3. Such architectures have tradition-

ally been used to learn useful representations for the input data in

the encoder network, by training the encoder and decoder in an

end-to-end fashion, forcing the generative network to reconstruct

the input – i.e. auto-encoders such as described by Vincent et al.

(2008).

However, in our case we use a fully convolutional encoder–

decoder architecture inspired by the one introduced in Sedaghat,

Zolfaghari & Brox (2017) to map the input image pair to the de-

sired difference image. 10 convolutional layers are responsible for

the contraction throughout the encoder and learn features with vary-

ing levels of detail in a hierarchical manner. The expansion compo-

nent of the network consists of six up-convolutional layers, which

decode the learned features, step by step, and generate estimates

of the output with different resolutions along the way. We compute

and back-propagate errors computed based on all different reso-

lutions of the output during training. However, in the end and for

evaluation purposes, we only consider the full-resolution output.

This multi-scale strategy helps the network learn better features

with different levels of detail. We use an L1 loss function at each

output:

E =
1

N

N
∑

n=1

|ŷn − yn|, (4)

where ŷ and y represent the prediction and the target (ground truth),

respectively, and N is the number of samples in each mini-batch –

see Section 4.3. The reason behind the choice of L1 loss over its

more popular counterpart, L2 or Euclidean loss, is that the latter

introduces more blur into the output, ruining pixel-level accuracy:

see Mathieu, Couprie & LeCun (2015) and Sedaghat et al. (2017).

4.2 Data preparation

Deep neural networks are in general data-greedy and require a

large training data set. TransiNet is not an exception and in view

of the complexity of the problem – and equivalently the architec-

ture – needs a large number of training samples: reference–science

image pairs as well as their corresponding ground-truth images.

Real astronomical image pairs with transients are not readily avail-

able. The difficulty of providing proper transient annotations makes

them even scarcer. The best one can do is to annotate image pairs

manually (or semi-automatically) and find smart ways to estimate

a close-to-correct ground-truth image: a clean difference image

with background-subtracted gradients. Although, as explained in

Section 4.2.1, we implement and prepare such a real training set,

it is still too small (∼ 200 samples) and, if used as is, the network

would easily overfit it.

One solution is to use image-augmentation techniques, such

as spatial transformations, to increase the size of the training set

Figure 3. Our suggested fully convolutional encoder–decoder network architecture. The captions at the top/bottom of each layer show the kernel size, followed

by the number of feature maps. Each arrow represents a convolution layer with a kernel size of 3 × 3 and stride and padding values of 1, which preserves the

spatial dimensions. Dotted lines represent the skip connections. Low-resolution outputs are depicted on top of each up-convolution layer, with the corresponding

loss. After each (up-)convolution layer there is a ReLU layer, which is not displayed here.
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virtually. This trick, though necessary, is still not sufficient in our

case with only a few hundred data samples – the network eventually

discovers common patterns and overfits to the few underlying real

scenes.

An alternative solution is to generate a large simulated (aka syn-

thetic) data set. However, relying only on synthetic data makes the

network learn features based on the characteristics of the simu-

lated examples, making it difficult to transfer knowledge to the real

domain.

Our final solution is to feed the network with both types of data:

synthetic samples mixed with real astronomical images of the sky

with approximate annotations. This, along with online augmenta-

tion, makes a virtually infinite training set, which has the best of both

worlds. We describe details of the data sets used and the training

strategy in the following subsections.

4.2.1 Real data

For real examples, we make use of data from the Supernova Hunt

project (SN Hunt: Howerton 2017) of the CRTS survey. In this

project, image subtraction is performed on pairs of images of galax-

ies in search of supernovae. While this may bias the project towards

finding supernovae rather than generic transients, that should not af-

fect the end result, as we mark the transients found and the ground-

truth images contain just the transients. If anything, finding such

blended point sources should make finding point sources in the

field (i.e. away from other sources) easier. Unlike most other sur-

veys, the CRTS images are obtained without a filter, but that too is

not something that concerns our method directly. We gathered 214

pairs of publicly available JPEG images from SN Hunt and split

this data set into training, validation and test subsets of 102, 26

and 86 members respectively. The reference images are typically

made by stacking ∼20 older images of the same area. The science

image is a single 30-sec exposure. The pixels are 2.5 × 2.5 arcsec2

and thus comparable to or somewhat bigger than the typical PSF.

Individual images are 120 × 120 pixels and at times not perfectly

registered.

To prepare the ground truth, we developed an annotation tool.

The user needs to define the location of the transient roughly in

the science image, by comparing it with the reference image, and

to put a circular aperture around it. Then the software models the

background and subtracts it from the aperture to provide an estimate

of the transient’s shape and brightness. Simple annulus-based esti-

mates of the local background (Davis 1987; Howell 1989) or even

the recent Aperture Photometry Tool (Laher et al. 2012) are not

suitable for most of the samples of this data set, since the transients,

often supernovae, naturally overlap their host galaxies. Therefore

we use a more complex model and fit a polynomial of degree 8 to a

square-shaped neighbourhood of size 2r × 2r around the aperture,

where r is the radius of the user-defined aperture. Note, however,

that model fitting is performed only after masking out the aperture

to exclude the effect of the transient itself – the points are liter-

ally excluded from model fitting – rather than the aperture being

masked and replaced with a value such as zero. This method works

reasonably well even when the local background is complex. Fig. 4

illustrates the process.

The annotations on real images are not required to be accurate,

as the main responsibility of this data set is to provide the network

with real examples of the sky. This lack of accuracy is compensated

for by synthetic samples with precise positions.

Figure 4. An exemplar transient annotation case: (a) input reference im-

age; (b) input science image; (c) 2r × 2r neighbourhood of the transient;

(d) masked-out user-defined aperture; (e) polynomial model fitted to the

‘masked neighbourhood’ (note that, since the blank aperture is excluded

from the fitting process, there is no dark region in the results); (f) estimated

background subtracted from the masked neighbourhood to form a measure

of how well the background has been modelled (the more uniform and dark

this image is, the better the polynomial has modelled the background); (g)

the estimated background subtracted from the neighbourhood with the tran-

sient standing out; (h) the transient cropped out of (g) using the user-defined

aperture.

4.2.2 Synthetic data

To make close-to-real synthetic training samples, we need realistic

background images. Existing simulators, such as Skymaker (Bertin

2009), do not yet provide a diverse set of galaxy morphologies and

therefore are not suitable for our purpose. Instead, we use images

from the Kaggle Galaxy Zoo data set,1 based on the Galaxy Zoo 2

1 https://www.kaggle.com/c/galaxy-zoo-the-galaxy-challenge
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data set (Willett et al. 2013), for our simulations. To this end, we

pick a single image as the background image and create a pair of

reference–science images based on it.

This method also makes us independent of precise physical sim-

ulation of the background, allowing us to focus on simulations only

at the image level – even for the ‘foreground’, i.e. transients. This

may result in some samples that do not resemble a ‘normal’ astro-

nomical scene exactly, in terms of the magnitude and location of

the transient or the final blur of the objects. However, that is even

better in a learning-based method, as the network will be trained

on a more general set of samples and less prone to overfitting to

specific types of scenes. Fig. 5 illustrates the details of this process.

We first augment the background image using a random spatial

transformation:

R ∼ U (0, 2π), (5)

T ∼ N

(

μ = 0, � =

[

0.03 0

0 0.03

])

, (6)

here R and T represent rotation and translation (shift), respectively.

U shows a uniform distribution and N is a 2D normal distribution.

T is then a 2D vector and its values show a translation proportional

to the dimensions of the image.

At the next step, simulated transients are added to the science

(second) image as ideal point sources, with random locations and

magnitudes, to form I0 + It. The transient locations are again sam-

pled from a 2D Gaussian distribution. The distribution parameters

are adjusted such that transients, although scattered all around the

image, happen mostly in the vicinity of galaxies at the centre of the

image, to resemble real supernovae:

(Xt , Yt ) ∼ N

(

μ = 0, � =

[

0.1 0

0 0.1

])

. (7)

In most of our experiments we simulated only a single transient.

However, in cases where we had more of them, we made sure they

were apart from each other by at least half of the bigger dimension of

the image. The amplitude of the simulated source is also randomly

chosen as

At ∼ N (μ = 10, σ = 0.3). (8)

This value, after being convolved with the (sum-normalized) PSF,

will constitute the flux of the transient (Ft). We can select a specific

range of At for training – to fine-tune the network – based on the

range of transients (and their relative brightening) that we expect to

find for a given survey.

The two images are then convolved with different Gaussian PSFs,

generated based on random kernel parameters, with a random ec-

centricity, limited by a user-defined maximum:

σφ,x ∼ U (σφ,m, σφ,M ), (9)

σφ,y = σφ1,x

√

1 − ecc2, (10)

ecc ∼ N (μ = 0, σ = eccmax), (11)

where σ φ, x and σ φ, y are the standard deviations of the 2D Gaussian

function along the x and y directions respectively and [σ φ, m, σ φ, M]

is the range from which σ φ, x is uniformly sampled. The PSF is then

rotated using a random value, θφ , uniformly sampled from [0, 2π].

This should also help to catch asteroids that would leave a very

short streak.

Modelling the difference between reference and science images

precisely and adjusting the PSF parameter distributions accordingly

would be achievable. However, as stated before, we prefer to keep

the training samples as general as possible. Therefore, in our ex-

periments [σ φ, m, σ φ, M] is set to [2,5] for both images. These num-

bers are larger than typically encountered and real images should

fare better. The eccmax value is set to 0.4 and 0.6 for reference and

science images, respectively, to model the more isotropically blurred

seeing of reference images.

The sky and noise levels are different for the reference and science

images. We choose to model these differences in our simulations,

since, in contrast to the previous parameters, ignoring them would

make learning easier for the network and that is exactly what we

want to avoid. We model the sky level, S, as a constant value, add it

to the image and only after that ‘apply’ the Poisson noise to every

pixel:

In(x, y) = Poisson(λ = I (x, y) + S), (12)

where Poisson is a function returning a sample from a Poisson

distribution with the given λ parameter, S is the sky model and In is

the noisy version of input I.

Then we perform a pairwise augmentation (rotation, scaling and

translation), such that the two images are not perfectly registered.

This forces the network also to learn the task of registration on the

fly.

The ground-truth image is then formed by convolving the ideal

transient image, It, with the same PSF as applied to the science

image. No constant sky value or noise are applied to this image.

This way, the network learns to predict transient locations and their

magnitudes in the same seeing conditions as the science image, in

addition to noise removal and sky subtraction.

4.3 Training details

We train two versions of the network. The first one is trained solely

on synthetic data, while the other uses both synthetic and real data.

To this end, we initially train both networks for 90K iterations, on

synthetic images of size 140 × 140, grouped in batches of size

16. Then, in the second network only, we continue training on a

mixture of real and synthetic data of size 256 × 256 for another 8K

iterations. We put 12 real images and four synthetic images in each

batch during this second round of training to prevent overfitting to

the small-sized (∼100) real SN Hunt samples.

We use ADAM for optimization using the Caffe framework (Jia

et al. 2014). We start with a learning rate of 3e−4 and drop it in

the second round by a factor of 0.3 every 20K iterations. On an

NVIDIA GTX 1070 along with 16 CPU cores, the whole training

process takes a day and half to complete.

The attention trick

In this specific type of application, the target images consist mainly

of black regions (i.e. zero-intensity pixels), with non-zero regions

taking only a small number of pixels. Therefore mere use of a simple

L1 loss does not generate and propagate large enough error values

back to the network, especially when the network has just learned to

remove the noise and generates blank images. The network therefore

spends too long a time focusing on generating blank images instead

of the desired output and in some cases fails to even converge.

The trick we use to get around this issue is to boost the error in

the interesting regions conditionally. The realization of this idea is
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Figure 5. The synthetic sample generation procedure. The notations used here are described in equations (1) and (2).

simply to apply the mapping [0, 1] → [0, K] on the ground-truth

pixel values. K represents the boosting factor and we set it to 100

in our experiments. This effectively boosts the error in non-zero

regions of the target, virtually increasing the learning rate for those

regions only. The output of the network is later downscaled to lie

in the normal range. Note that increasing the total learning rate is

not an alternative solution, as the network would go unstable and

would not even converge.
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5 E X P E R I M E N T S A N D R E S U LT S

We now have two versions of TransiNet at hand: one trained only

with synthetic data based on the Kaggle Zoo and another fine-tuned

on samples from the real CRTS SN Hunt data set. The former is the

experimental, but more flexible network, in which one can evaluate

the performance of the network while varying different parameters

of the input/transients. However, the latter is the one showing the

performance of TransiNet in a real scenario. In theory, four groups

of experiments can be reported, based on two trained models, (a)

synthetic and (b) synthetic+real, and two different test sets, (a)

synthetic and (b) real. However, training on the synthetic+real model

and testing on synthetic only does not make much sense and has

been left out. The three experiments we report on are as follows: (a)

Synthetic: training on synthetic data, testing on synthetic data; (b)

Transfer: training on synthetic, testing on real; (c) Real or CRTS:

training on synthetic+real, testing on real. We report the results of

the Transfer experiment just to show the necessity for a small real

training subset.

The network weights take up about 2 GB of memory. Once read,

on the NVIDIA GTX 1070 the code runs fast: 39 ms per sample,

which can be reduced to 14 ms if samples are passed to the network

as batches of 10. The numbers were calculated by running tests on

10 000 images three times.

Fig. 6 depicts samples from running TransiNet on the CRTS

test subset – the ‘Real’ experiment. The advantage of TransiNet

is that the ‘image differencing’ produces a noiseless image which,

with the correct threshold, ideally consists of just the transient. It is

robust to artefacts and removes the need for human scanners. At the

same time, by tweaking the threshold one can choose to optimize

precision or recall based on one’s needs.

With increasing CCD size it is much more likely than not that

there will be multiple transients in a single image. Since the SN Hunt

images and the zoo images used rarely have multiple transients, the

networks may not be ideal when looking for such cases. However,

because of the way the network is trained – with the output as pure

PSF-like transients – it is capable of finding multiple transients.

This is demonstrated in Fig. 7, which depicts an exemplar sample

from the zoo subset. Here we introduced four transients and all were

correctly located. Another positive side effect is that the network

rejects non-PSF-like additions, including cosmic rays. In addition

to the four transients, we had also inserted 10 single-pixel cosmic

rays into the science image shown in Fig. 7 and all were rejected.

An example from the SN Hunt set is shown in Fig. 8, which happens

to have two astrophysical objects – the second is likely an asteroid.

Here too the network has detected both transients. Locating new

asteroids is as useful as locating transients to help make the asteroid

catalogue more complete for future linking and position prediction.

5.1 Quantitative evaluation

We provide below quantitative evaluations of TransiNet perfor-

mance.

5.1.1 Precision-recall curve

Precision-recall curves are the de facto evaluation tool for detectors.

They capture True Positives (TP or ‘hits’, i.e. the number of correctly

detected objects), False Positives (FP or ‘false alarms’) and False

Negatives (FN or ‘misses’, the number of missed real objects) versus

various confidence levels. In the following, we detail the steps taken

to produce these curves for our experiments:

Precision =
T ruePositive

T ruePositive + FalsePositive
, (13)

Recall =
T ruePositive

T ruePositive + FalseNegative
. (14)

Low-SNR detections and blank outputs

The output of TransiNet is an image with real-valued pixels. There-

fore each pixel is more likely to contain a non-zero real value,

even in the ‘dark’ regions of the image or when there is no tran-

sient to detect at all. Thus, we consider low signal-to-noise ratio

(SNR) detection images as blank images. The outputs of the net-

work (detection images) that have a standard deviation (σ ) lower

than 0.001 were marked as blank images during our experiments

and not considered thereafter.

Binarization and counting of objects

Evaluation at a series of thresholds is the essence of a precision-

recall curve and helps reveal low SNR contaminants, while digging

for higher completeness (see Fig. 9).

The thresholding

Ŷij =

{

0 ŷij < τ,

1 ŷij ≥ τ,
(15)

results in the binary image, Ŷ , on which we obtain ‘connected

regions’ to count detected objects with full connectivity (Fiorio &

Gustedt 1996; Wu, Otoo & Shoshani 2005). For this specific kind of

evaluation, we also convert the ground-truth image (y) to a similar

binary-valued image, Y, using a fixed threshold.

Let P be the set of all positives, i.e. the objects in Ŷ , and G the

set of all objects in Y. Then we have

TP = P ∧ G, (16)

where ∧ is used here to denote spatial intersection, such that TP

is the set of objects in P that have a spatial intersection with a

member of G. TP is the set of True Positives. We conversely define

TP′ = G ∧ P , which is of the same cardinality as TP and includes

the set of objects in G that have been detected. Then we also have

FP = P − TP, (17)

FN = G − TP′, (18)

in which FP and FN stand for False Positives and False Negatives,

respectively. Now we can rewrite equations (13) and (14) in a more

compact and formal form as

Precision =
|TP|

|TP| + |FP|
, (19)

Recall =
|TP|

|TP| + |FN|
, (20)

where | · | represents the cardinality of the set. We also define

completeness and contamination measures as follows:

Completeness =
|TP|

|TP| + |FN|
= Recall, (21)

Contamination =
|FP|

|TP| + |FP|
= 1 − Precision. (22)
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Figure 6. Image subtraction examples using ZOGY and TransiNet for a set of CRTS Supernova Hunt images. The first column has the deep reference images;

the second column contains the science images, which have a transient source and are a shallower version of the reference images. The third column contains

the ZOGY D images and the fourth has the ZOGY Scorr images, i.e. ‘the matched filter difference image corrected for source noise and astrometric noise’

(Zackay et al. 2016). The fifth column has the thresholded versions of ZOGY SCORR, as recommended in that article. The sixth column shows the difference

image obtained using TransiNet. All images are mapped to the [0,1] range of pixel values, with a gamma correction on the last column for illustration purposes.

TransiNet has a better detection accuracy and is also robust against noise and artefacts. It is possible that ZOGY could be tuned to perform better and, on a

different data set, provide superior results – the reason for the comparison here is simply to show that TransiNet does very well.
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Figure 7. An exemplar multi-transient case from the zoo data set: the

reference image (left), science image (middle) with 10 single-pixel Cosmic

Ray events, indicated by red circles, and four transients and the network

prediction (right) with all transients detected cleanly and all CRs rejected.

Figure 8. An exemplar multi-transient case from the CRTS SN Hunt data

set. The science image (middle) has two transients and the network predic-

tion (right) finds them both, though it was never trained explicitly to look

for multiple transients.

Fig. 10 depicts the precision-recall curves corresponding to our three

experiments. Each curve is obtained by sweeping the threshold (τ )

in the pixel-value domain. Starting from the minimum (0), Ŷ is set

to 1 everywhere, resulting in 100 per cent recall (everything that is

to be found is found) with a close-to-zero precision (too many false

positives), which is equivalent to total contamination. However, as

we increase τ , fewer pixels in Ŷ ‘fire’, generally resulting in a lower

recall (some misses) and higher precision (far fewer contaminants)

– see Fig. 9. To generate the curves, we sampled 101 logarithmically

distributed values for τ from the range [10−4σ , 100σ ], where σ is the

standard deviation of the pixel values in each detection image (ŷ).

Also, the ground-truth images were binarized with a fixed threshold

of 10−3.

The sharp and irregular behaviour of the curve at around

75 per cent recall in the CRTS experiment is due to the low con-

tamination levels in the output: transients are detected with a high

significance. Contaminants, if any, have a much lower intensity and

their number goes up only when one pushes for high complete-

ness to lower significance levels. Similar behaviour can be seen in

the other two experiments also. This allows one to choose a fixed

threshold in this region of the curve for the final deployed detector

based on requirements.

5.1.2 Relative magnitude of the transient

Thanks to the freedom inherent in generation of synthetic sam-

ples with different parameters, we can evaluate the performance

of the network with transients of different magnitudes. However,

for this evaluation we use relative magnitudes, as opposed to the

absolute intensities used during training. This would make it eas-

ier to determine quantitatively the ability of the network to detect

faint transients without contamination. In the future, we hope to

incorporate similar process during training as well.

We define the relative magnitude as the difference of magnitudes

at the location of the transient, with and without the transient:

magrel = −2.5 log10(Frel), (23)

Frel =
Ft + Flocal

Flocal

, (24)

where Ft is the absolute flux of the transient and Flocal represents

the flux of the background before having the transient. The latter

is measured inside an FWHM-sized square neighbourhood around

the location of the transient.

Fig. 11 depicts the performance of the detector for several relative

magnitudes, in terms of the precision-recall curve. With higher visi-

bility, the curve approaches the ideal form. Considering that, during

the training phase, the network has rarely seen transients with such

low magnitudes as the ones in the lower region of this experiment,

it is still performing well. We expect it to gain much better results

by broadening the range of simulated transient amplitudes during

training.

5.1.3 Robustness to spatial displacements

We analyse the robustness of TransiNet to pairwise spatial inconsis-

tencies between the science and reference images. That way small

rotations, World Coordinate System (WCS) inconsistencies, etc.,

do not give rise to yin–yang like ‘features’ and lead to artefacts. To

this end, for a subset of image pairs, we exert manual shift, rotation

and scaling on one of the images in each pair and pass them through

the network. Fig. 12 depicts the results of these experiments as plots

Figure 9. Visualization of the thresholding process used for generation of precision-recall curves. Each row illustrates exemplar levels of thresholding of a

single detection image: the first row is chosen from the synthetic subset and the second row from CRTS. Outputs of the network are normally quite clean and

contaminants appear only after taking the threshold down below the noise level. This is particularly visible in the second row, where the transient has been of

a low magnitude and so the detection image has a low standard deviation (σ ). Thus σ/100 is still too low and below the noise level.
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Figure 10. Plots showing precision-recall curves (top row) and their dependence on the threshold (bottom row) for TransiNet. The column on the left shows

the Synthetic experiment, in which the train and test sets are both taken from synthetic data. In the middle column we depict the performance drop in the

experiment in which the network is trained only on synthetic data, but is tested on real data. In the right column (CRTS), we leverage the real training subset

to boost the performance on real data. Not unexpectedly, the performance is close to ideal for the synthetic images. For CRTS, we never go above a recall

(completeness) of 80 per cent, but all those detections are clean and the ones we miss are the really low significance ones below the threshold of 0.001. Thus a

threshold can be picked where 80 per cent of transients are detected with high precision (little contamination).

Figure 11. Precision-recall curves for a range of magnitudes. These are for

the synthetic transients, where we had control over the relative magnitudes.

The network misses more transients as the relative magnitude goes lower.

This is not unexpected, as the network has not seen such faint samples

during training. The sharp vertical transitions reflect the clean nature of the

detection images.

of completeness and contamination versus manual perturbation.

5.1.4 Numerical performance of TransiNet

Table 1 summarizes the testing results for the TransiNet networks,

with chosen fixed thresholds. For new surveys, one can start with

the generic network and, as events become available, fine-tune the

network with specific data.

Figure 12. Robustness of the network to shift (top left), rotation (top right)

and scaling (bottom) between the reference and science images for CRTS.

Ideally there will be no misalignments, but some can creep in through

improper WCS, changes between runs, etc.

5.2 Comparison with ZOGY

Given the generative, and hence very different, nature of our

‘pipeline’, it is difficult to compare it with direct image differ-

encing pipelines. We have done our best by comparing the output of

TransiNet and ZOGY for synthetic as well as real images. We used

the publicly available MATLAB version of ZOGY and almost certainly

used ZOGY in a sub-optimal fashion. As a result, this comparison
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Table 1. Hits and misses for TransiNet for the synthetic and SN Hunt

networks. TransiNet does very well for synthetics. One reason could be that

there is not enough depth variation in the reference and science images.

However, for CRTS too the output is very clean for the recall of 76 per cent

that it achieves. The lower (than perfect) recall could be due to a smaller

sample, larger pixels, large shifts in some of the cutouts, etc. Fine-tuning

with more data can improve performance further. The fixed threshold used

in the first two rows was 20, while it was set to 40 for the last row, consistent

with Fig. 10.

Network Tran TP FP FN Prec. Recall

Synthetic 100 100 0 0 100.0 100.0

Transfer 86 47 6 39 88.7 54.6

CRTS 86 65 1 21 98.4 75.5

should be taken only as suggestive. More direct comparisons with

real data (PTF and ZTF) are planned for the near-future. Fig. 6

depicts the comparison for a few of the SN Hunt transients.

Both pipelines could be run in parallel to choose an ideal set of

transients, since the overhead of TransiNet is minuscule.

6 FU T U R E D I R E C T I O N S

We have shown how transients can be detected effectively using

TransiNet. In using the two networks we described, one with Kag-

gle Zoo images and another with CRTS, we cover all broad aspects

required and yet for this method to work with any specific project,

e.g. ZTF, appropriate tweaks will be needed, in particular labelled

examples from image differencing generated by that survey. Also,

the assumptions during simulations can be improved upon by such

examples. Using labelled sets from surveys accessible to us is defi-

nitely the next step. Since the method works on the large pixels that

CRTS has, we are confident that such experiments will improve the

performance of TransiNet.

The current version produces convolved transients to match the

shape and PSF of the science image. One can modify the network

to produce just the transient location and leave the determination

of other properties to the original science and reference images, as

they contain more quantitative detail.

Further, the network could be tweaked to find variable sources

too. However, for that a much better labelled non-binary training

set will be needed. In the same manner, it can also be trained to look

for drop-outs, objects that have vanished in recent science images

but were present in the corresponding reference images. This is in

fact an inverse of the transients problem and somewhat easier to

perform.

In terms of reducing the number of contaminants even further, one

can provide as input not just the pair of science and reference images

but also pairs of the rotated (by 90◦, 180◦, 270◦) and flipped (about

the x- and y-axes) versions. The expectation is that the transient will

still be detected (perhaps with a slightly different peak extent), but

the weak contaminants, at least those that were possibly conjured

by the weights inside the network, will be gone (perhaps replaced

by other – similarly weak – ones at a different location) and the

averaging of detections from the set will leave just the real transient.

Another way to eliminate inhomogeneities in network weights is

to test the system with image pairs without any transients. While

most image pairs do not have any transient except in a small number

of pixels, such a test can help streamline the network better.

In order to detect multiple transients, one could cut the image into

smaller parts and provide these subimages for detection. Another

possibility is to mask the ‘best’ transient and rerun the pipeline to

look for more transients iteratively until none is left. An easier fix

is to train the network for larger images and for multiple transients

in each image pair.

Another way to improve the speed of the network is to experiment

with the architecture and, if possible, obtain a more lightweight net-

work with a smaller footprint that performs equally well. Finally, the

current network used JPEGs with limited dynamic range as inputs.

Using non-lossy FITS images should improve the performance of

the network.

7 C O N C L U S I O N S

We have introduced a generative method based on convolutional

neural networks for image subtraction to detect transients. It is

superior to other methods, as it has a higher completeness at lower

thresholds and at the same time has fewer contaminants. Once the

training is carried out with appropriate labelled data sets, execution

on individual images is fast. It can operate on images of any size

(after appropriate training) and can easily be incorporated into real-

time pipelines. While we have not tested the method explicitly

on high-density fields (e.g. closer to the plane of the Galaxy), it

will be possible to obtain good performance once a corresponding

labelled data set is used for training. We hope that surveys like

ZTF and LSST, as well as those with larger pixels like ASAS-SN

(Shappee et al. 2014) and Evryscope (Law et al. 2015), will adapt

and adopt the method. It is also possible to extend the method to

other wavelengths like radio and use it for surveys including Square

Kilometer Array and its pathfinders.
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