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Abstract: This paper presents an effective improved artificial potential field-based regression 

search (improved APF-based RS) method that can obtain a better and shorter path efficiently 

without local minima and oscillations in an environment including known, partially known or 

unknown, static, and dynamic environments. We redefine potential functions to eliminate 

oscillations and local minima problems, and use improved wall-following methods for the robots 

to escape non-reachable target problems. Meanwhile, we develop a regression search method to 

optimise the planned path. The optimisation path is calculated by connecting the sequential points 

produced by improved APF. The simulations demonstrate that the improved APF method easily 

escapes from local minima, oscillations, and non-reachable target problems. Moreover, the 

simulation results confirm that our proposed path planning approach can calculate a shorter or 

more nearly optimal than the general APF can. Results prove our improved APF-based RS 

method’s feasibility and efficiency for solving path planning. 
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1 Introduction 

During the last few decades, mechatronics and automation 

have become rapidly growing fields affecting almost all 

aspects of daily life. Especially, robotics has become a 

major part of this trend because robotic scientists have 

investigated service mobile robots that can operate within 

human-robot coexistent environments to execute different 

complex tasks, transportation of heavy objects, surveillance, 

rescue, and guidance of people at exhibitions and in 

museums. Autonomous mobile robot path planning and 

navigation, which are important applications for intelligent 

robot control systems, have attracted remarkable attention 

from many researchers. Path planning is aimed at enabling 

robots to have capabilities of automatically ascertaining and 

executing a sequence of collision-free and safe motions to 

achieve certain tasks in a given environment. Therefore, the 

basic function of the path planning problem is to compute a 

valid and feasible solution. Nowadays, path planning 

problems have been transformed into optimisation problems 

with the development of computer technology and modern 

control methodology. A robot searches for an optimal or 

approximately optimal path with respect to the problem 

objectives. As described in many interesting reports, two 

important features that distinguish these algorithms are 

whether the environment is known or unknown and whether 

it is static or dynamic. 

Known environments are those in which all information 

related to obstacles and targets is known a priori. The robot 

motion is subsequently designed based on that given 

information. Examples of algorithms for path planning in 

such environments include sub-goal network, cell 

decomposition, A* and D* algorithm, traditional artificial 

potential field (APF), and many others. Usually, a robot 

under a known environment can calculate an optimal or  

sub-optimal path. However, in unknown environments, a 

robot has no previous knowledge or only partial information 

about the environment. Alternatively, only partial 

information is available in relation to obstacles and targets. 

Therefore, a robot must plan a path based on available 

information or on information that is sensed within the 

range of available sensors. In other words, the robot cannot 

plan a global optimal path in a single attempt. In recent 

years, many researchers have achieved important 

investigation results in such environments using, for 

example, fuzzy logic, neural networks, rapidly exploring 

random tree algorithms, and ant colony optimisation. 

As described above, autonomous intelligent mobile 

robot path planning in a known environment is regarded as 

static. In contrast, the following conditions make 

environments dynamic: environments where the target 

moves continuously during a robot approach, moving 

obstacles, and dynamic obstacles appearing randomly. This 

paper presents a new approach for autonomous mobile robot 

path planning and navigation in an environment including 

known, partially known or unknown, static, and dynamic 

environments. Herein, we propose an improved artificial 

potential field-based regression search methodology 

(improved APF-based RS method) intended for use with 

autonomous mobile robot path planning. It can programme 

a valid, feasible and shorter solution from the robot  

location to the target position. We first modify the  
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potential functions of traditional APFs and improve the 

wall-following method to resolve the intrinsic fatal 

problems of previous methods. Then we use the proposed 

regression search algorithm to shorten the planned path. At 

the end of this paper, the validity and efficiency of our 

proposed methodology are demonstrated with simulation 

experiments. 

The remainder of this paper is organised as follows. The 

next section presents a discussion of related works, classic, 

and heuristic approaches for autonomous mobile robot path 

planning. We specifically present discussion and analysis of 

the problems of traditional and variable APF methods. In 

Section 3, we briefly introduce the conventional APF 

method; then we present our improved artificial potential 

field (improved APF) to address local minima and 

oscillation problems by modifying potential functions and 

by applying improved wall-following methods in unknown 

and partially known environments. Finally, we use 

regression search method (RS method) to shorten the path 

that is planned using our improved APF method. To 

demonstrate our proposed method, some simulations are 

conducted in Section 4, where we prove that the proposed 

improved APF method can resolve the problems of previous 

conventional methods completely. The performance and 

efficiency of our proposed improved APF-based RS method 

and conventional methods are compared under the same 

conditions of static environment, moving target, dynamic 

obstacle, and local sensing information for the robot. In 

Section 5, the influence of parameter setting under our 

method is discussed. Furthermore, we analyse the necessity 

by implementing the bidirectional improved APF method to 

address autonomous mobile robot path planning problems. 

Finally, Section 6 presents conclusions and sketches 

promising avenues along which to pursue future work. 

2 Related works 

A large part of autonomous mobile robot path planning 

pertains to scheduling and routing. It is well known to be an 

NP-hard (NP-complete) problem. Path-planning algorithms 

are classified as classic and heuristic approaches (Masehian 

and Sedighizadeh, 2007). Classic algorithms are designed to 

calculate an optimal solution if one exists, or to prove that 

no feasible path exists. In contrast, heuristic algorithms are 

intended to search for a good quality solution in a short 

time. Classic algorithms are usually computationally 

expensive. However heuristic algorithms can fail to find a 

good solution for a difficult problem. We introduce works 

related to classic and heuristic algorithms. 

2.1 Classic algorithms 

Currently, the classic methods that have been developed are 

variations of a few general approaches such as roadmap, cell 

decomposition, APFs, and mathematical programming. 

Most autonomous mobile robot path planning problems are 

solvable using classic algorithms. These approaches are not 

necessarily mutually exclusive, but their combination is 

often used in developing more reliable paths. In the 

roadmap approach (Oh et al., 2004), feasible paths are 

mapped onto a network of one-dimensional lines; then a 

search for a desired path is conducted in such a network. 

However, the searched path is limited to the network, and 

path planning becomes a graph-searching problem.  

Well-known roadmaps include the visibility graph, Voronoi 

diagram, and sub-goal networks. The visibility graph 

algorithm (Tarjan, 1981) can compute the shortest distance 

or optimal path. This approach does not consider the mobile 

robot size or that a lead robot is too close to the vertex of an 

obstacle, even colliding with obstacles, and the 

computational time for path planning is too long. Voronoi 

diagram (Takahashi and Schilling, 1989) and sub-goal 

network (Avneesh et al., 2008) algorithms are improved 

methods of the visibility graph. Additionally, several 

researchers have demonstrated that cell decomposition  

(Cai and Ferrai, 2009) is the simplest method for mobile 

robot path planning, but they are inefficient for 

computational memory and planning time according to the 

cell size. 

However, most classic approaches, roadmaps, and  

cell decomposition are based on the free configuration space 

(C-space) concept. In addition to their lack of adaptation 

and robustness, conventional approaches are unsuitable for 

dynamic environments because they use a sequential search 

algorithm to generate a single solution that might become 

infeasible when a change in the environment dictates that a 

new solution must be generated from scratch. Moreover, the 

greater the dimensions of free C-space, the more complex 

the path planning problem will be. 

2.2 Heuristic algorithms 

A* algorithm calculates a shortest path (with minimum cost) 

in a given map by keeping track of an open list and a closed 

list (Nilsson, 2000). A* algorithm is a classical heuristic 

search algorithm. Although the applied A* algorithm for the 

robot path planning in the free C-space uses search space 

that is too large, the search efficiency of the A* algorithm is 

low, and the planned path is optimal relative to the cell 

decomposition. The D* algorithm (Stentz, 1995) is almost 

identical to the A* algorithm, but it has no heuristic, so its 

searches expand equally in all directions; the method might 

search a huge area before reaching a goal. For that reason, 

D* is slower than A*, but it performs better with an 

unknown goal. 

Genetic algorithms can obtain the best feasible path for 

mobile robot path planning in an uncertain environment 

after many iterations. Because the genetic algorithm 

structure is very complex, it requires a long time to process 

and affect the real-time performance of the robot during 

path planning (Sedighi et al., 2004). When dealing with a 

dynamic environment most genetic algorithms do not 

control the population diversity because of premature 

convergence. It is very easy to fall into local optimisation. 

Some researchers suggest that combining genetic algorithms 

with simulated annealing (Blackowiak and Rajan, 1995) can 

resolve these problems. In one paper (Elshamli et al., 2004), 
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a genetic algorithm is developed for dynamic path planning 

method which incorporates path safety and smoothness. 

In addition, some scholars have investigated robot 

navigation algorithms based on ant colony optimisation 

algorithms (Garcia et al., 2009) and improved ant colony 

optimisation (Dorigo and Gambardella, 1997) algorithms. 

The convergence speed of both algorithms is far from 

satisfying when intended for use for real-time global 

dynamic planning. One study (Zhua et al., 2011) developed 

a new robot navigation algorithm for dynamic unknown 

environments by dynamic path re-computation and an 

improved scout ant algorithm. The simulation results 

indicate that the algorithm has good effect and high  

real-time performance. The results also indicate that it is 

suitable for real-time navigation in complex and dynamic 

environments. 

Many other heuristic path planning methods, neural 

networks, particle swarm optimisation, fuzzy logic, and 

Tabu search algorithms are implemented. However, the time 

complexity of all heuristic algorithms will increase greatly 

when a larger and more complex environment is considered. 

For example, the path planning algorithm based on the 

genetic algorithm might produce numerous invalid paths 

and might fail when the obstacle number increases. 

Furthermore, deadlock and oscillation occur easily in the 

rolling window method, and stagnation is a general problem 

related to the ant colony optimisation algorithm. 

2.3 Artificial potential field 

The APF was first introduced by Khatib (1986). The 

potential function is definable over free C-space as the sum 

of attractive potential pulling a robot toward the goal 

configuration, and a repulsive potential pushing a robot 

away from obstacles. An APF is an important classic 

method for autonomous mobile robots. Many researchers 

are studying it continually all over the world. An APF has 

often represented a good quality method to achieve a fast 

and reactive response to a dynamic environment. However, 

this method has been widely demonstrated as suffering from 

unavoidable drawbacks which make it very likely that a 

robot will become trapped in a local minimum and 

oscillations. One paper (Sgorbissa and Zaccaria, 2012) 

describes a hybrid approach that integrates a priori 

knowledge of an environment with local perceptions to 

execute the assigned tasks efficiently and safely. The results 

indicate that this method guarantees that the robot can never 

be trapped in deadlocks even when operating within a 

partially unknown dynamic environment. In spite of its 

good properties, the navigation system described in this 

paper includes a typical shortcoming: the system relies on 

local perceptions and navigation strategies. Another 

improved APF has been proposed (Zhang et al., 2011) using 

quantum particle swarm optimisation for rapid global 

searching and realising optimal path planning. They employ 

quantum particle swarm optimisation to modify the 

parameters of the APF to adapt to a different environment 

and dynamic obstacles. To address the local minima 

problem in the traditional APF, a method including robot 

regression and a potential field filling has been proposed  

(Qi et al., 2008; Shi et al., 2010). Similar methods have been 

proposed in other papers (Zhang et al., 2006a; Yu et al., 

2011). Before calculating the resultant force that is put on 

an object in the potential field, they build links among 

closed obstacles to optimise the planned solution. Improved 

APFs of other kinds have been investigated (He et al., 

2011). They introduce the relative distance between a robot 

and target into a repulsive force function and modify the 

repulsion direction to ensure that the global minimum is at 

the target position. Donnart and Meyer (1996) researched 

the learning reactive and planning rules into mobile  

robot path planning. The main thrust of some reports  

(Sheng et al., 2010; Yang et al., 2011) is that application of 

a virtual local target to a guide robot escapes the local 

minimum. 

The approaches described above, including the APF and 

its improved methods, still suffer from many shortcomings 

such as high time complexity in high dimensions that 

prevent these methods from addressing real-time path 

planning, some methods do not completely solve local 

minima, oscillations and non-reachable target problems, 

which renders them inefficient in practice. Moreover, the 

path under previous methods is not optimal or near-optimal, 

but only feasible for an autonomous mobile robot to adapt to 

the given environment. In other words, robots moving along 

the planned path will consume more energy and entail 

higher costs. As described in one report (Elshamli et al., 

2004), the common path planning problem criteria might 

include the distance of the planned path, computational 

time, and the robot travel energy. All these methods are 

therefore incapable of handling common criteria well. 

Herein, we present an effective improved APF-based RS 

method that can obtain a shorter planned path without local 

minima, oscillatory movements, and the non-reachable 

target problem. We use the simplest path planning  

algorithm to plan an effective and shorter distance path for 

autonomous mobile robot very rapidly. 

3 Proposed path planning method 

3.1 Traditional APF 

The basic idea underlying the APF method is the 

assumption that a robot, as a point, moves in an abstract 

artificial force field. The APF in the environment comprises 

the attractive potential of target and the repulsive potential 

of obstacles. The attractive potential is produced by a target 

and increases in a direction to a target point. The repulsive 

potential is that of different obstacles. The direction of the 

synthesised repulsive potential is repellent from obstacles. 

Therefore, the potential function (1) is the APF of a robot, 

defined as a resultant of attractive potential and repulsive 

potential. A robot controls its movement toward the target 

point along the direction of APF. Under the method of the 

APF, a robot can find a collision-free path by seeking a 

route along the direction of the declining potential function. 



 Effective improved artificial potential field-based regression search method 145 

The robot coordinate is q = (x, y)T; thereby the APF is 

defined as shown below. 

( ) ( ) ( )att repU q U q U q= +  (1) 

In that equation, U(q) stands for the APF. Uatt(q) represents 

the attractive potential. Also, Urep(q) denotes the repulsive 

potential. 

The negative gradient of APF is defined as the artificial 

force, which is the steepest descent direction for a guiding 

robot to a target point. The attractive force is the negative 

gradient of the attractive potential. The repulsive force is the 

negative gradient of the repulsive potential. 

Consequently, the artificial force of robot is the 

following. 

( ) ( )

( ) ( )

( ) ( )

att rep

att rep

F q U q

U q U q

F q F q

= −∇
= −∇ −∇

= +

 (2) 

In that equation, F(q) is the artificial force. Fatt(q) denotes 

the attractive force, and Frep(q) is the repulsive force. 

The attractive potential between the robot and the target 

is constructed to pull the robot to the goal area. The 

attractive potential created by the goal is given as shown 

below. 

( )2 21 1
( ) ( )

2 2
gatt goal

q qU q k k qρ−= =  (3) 

In that equation, k is a positive coefficient for the  

APF, and qg = (xg, yg)
T is the location vector of target. 

ρgoal(q) = ||q – qg|| is the Euclidean distance from the robot 

location to the target position. 

The attractive force on the robot is calculated as the 

negative gradient of attractive potential. It takes the 

following form. 

( )21
( ) ( ) ( )

2
gatt att goal

q qF q U q k q kρ −= −∇ = − ∇ = −  (4) 

Therein, Fatt(q) is a vector directed toward qg with 

magnitude that is linearly related to the distance from  

q to qg. The components of Fatt(q) are the minus directional 

derivatives of the attractive potential along the x and y 

directions. Therefore, when the attractive potential  

takes effect, the components can be written as presented 

below. 

( )
( )

( )

( )

gatt x

gatt y

x xF q k

y yF q k

−

−

−= −

−= −
 (5) 

Therein, Fatt–x is the attractive force in the x direction. 

Fatt–y is the attractive force in the y direction. 

Robots should be repelled from obstacles, but when a 

robot is distant from obstacles, we do not want obstacles to 

affect the robot’s motion. Khatib uses equation (6) as the 

repulsive potential field. 

0
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In that equation, η is a positive scaling factor. Letting  

qc = (xc, yc) be a unique configuration in an obstacle closest 

to q, then ρ(q) = ||q – qc|| is the shortest distance between 

the robot and obstacle. ρ0 is the greatest impact distance of a 

single obstacle. No impact occurs for the robot when the 

distance between a robot and obstacle is greater than ρ0. 

Similarly, the repulsive force is the negative gradient of the 

repulsive potential function, as follows. 
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or 
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Frep–x and Frep–y stand for the Cartesian components of the 

repulsive force Frep. When the repulsive potential acting on 

the robot takes effect, the components are expressed as the 

following. 
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The environment has many obstacles, so the total repulsive 

potential field is the sum of all obstacles' repulsive potential 

field. The total APF is 

1

( ) ( ) ( )

n

att rep

i

U q U q U q

=

= +∑  (11) 

where i = 1, 2, …, n (n is the number of obstacles). 

The total artificial force field is the following. 

1

( ) ( ) ( )

n

att rep

i

F q F q F q

=

= +∑  (12) 

Although the traditional APF method can plan a smooth 

path effectively, it has fatal problems. The traditional APF 

method used in the path planning might suffer from the 

local minimum and oscillations problem instead of the 

desired global minimum. We define the local minima and 

oscillations problem as 
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1

| ( ) | ( ) ( )

n

att rep

i

U q U q U q ε
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1

| ( ) | .( ) ( )

n

att rep

i

F q F q F q ε
=
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Equation (13) means that for any small ε greater than zero, 

the resultant attractive potential and repulsive potential at 

point q are smaller than ε. Similarly, equation (14) means 

that, for any small ε greater than zero, the resultant of the 

attractive force and the repulsive force at point q is smaller 

than ε. The robot is regarded as trapped in local minima and 

oscillations if the APF or artificial force field satisfies 

equations (13) or (14): when the attractive potential or force 

and repulsive potential or force is equivalent or almost 

equivalent and collinear reverse or almost collinear reverse, 

then the artificial potential or force field of a robot is almost 

zero. It will cause a robot to be trapped in local minima and 

oscillations [Figures 1(a) and 1(b)]. Furthermore, when the 

target position is very close to obstacles, a robot can not 

reach the target [Figure 1(c)]. 

3.2 Improved APF 

3.2.1 Redefined attractive potential function 

As equations (3) and (4) presented, the attractive potential 

or force is directly related to distance ρgoal(q) [Figure 2(a)]. 

The value of attractive potential or force is determined 

according to the distance between a robot and target, as 

proposed in the traditional attractive potential function. 

When ρgoal(q) is very great, the attractive potential or force 

will become very great as well. In other words, when a 

robot is distant from a target, it easily leads the robot to 

move too close to an obstacle (Amato, 2004). Therefore, in 

the real environment presented in Figure 3, the robot 

confronts the risk of collision with obstacles when we take 

account of the error of path planning (Li et al., 2012). 

Consequently, the attractive potential and attractive force 

are modified as functions (15) and (16). 

21
( ) , ( )
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goal goal
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U q

kd q q d

ρ ρ

ρ ρ

⎧ ≤⎪= ⎨
⎪ ≥⎩

 (15) 

( )
( )

,

( )
,

g g

att g

g

g

q q q qk d

F q q q
q qkd d

q q

⎧ − −− ≤
⎪⎪= −⎨
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Therein, d is a positive coefficient for attractive potential 

and force. 

When distance ρgoal(q) is less than d, then the redefined 

attractive potential and force are the same as in the 

conventional definition. Otherwise, the attractive potential 

and force are a constant presented in Figure 2(b). We 

redefined the attractive potential function as equations (15) 

and (16) to guarantee that a robot avoids collisions with 

obstacles. When the robot moves near an obstacle, the 

repulsive potential or force from obstacles is sufficiently 

greater than kd to push the robot away from obstacles. 

Figure 1 Problems of a traditional APF, (a) and (b) are local minima and oscillations, and (c) is a non-reachable target problem  

(see online version for colours) 

 

(a) (b) (c) 

Notes: (a) When the robot and target positions are collinear or almost collinear, and an obstacle is present between them, it is easy 

to become collinear reverse or almost collinear reverse of the attractive potential or force and repulsive potential or force. 

In such a case, local minima and oscillations occur. (b) When the attractive potential or force and repulsive potential or 

force is equivalent or almost equivalent and collinear reverse or almost collinear reverse, the artificial potential or force 

field of the robot is almost zero. This failure will cause the robot to be trapped in local minima and oscillations.  

(c) When the target position is close to obstacles, the repulsive potential or force will be much greater than the attractive 

potential or force. Under this condition, the robot will never arrive at the target location; it encounters a non-reachable 

target problem. 
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Figure 2 Attractive potential function, (a) traditional attractive potential function (b) improved attractive potential function 

 

(a)      (b) 

Notes: (a) The traditional APF defines the relation between the attractive potential or force and the distance from the robot to the 

target. Consequently, the value of the attractive potential or force increases linearly according to the increasing distance. 

(b) In the improved APF, we assess the risk of collision and real robot path planning error, and modify the attractive 

potential or force function: set a threshold d. If the distance is less than d, then the value of attractive potential or force 

increases linearly according to increasing distance, as in the definition of a traditional APF. Otherwise, the attractive 

potential or force is a constant. 

Figure 3 Attractive potential field, (a) at T = t and (b) at T = t′ (see online version for colours) 

 

(a)      (b) 

Notes: When the target is too distant from a robot, the result in the attractive force is too much greater than that of a repulsive 

force even though a robot is very close to an obstacle. Then at the next step, the robot moves along the direction of the 

resultant force to a closer obstacle. In real path planning, the robot confronts the risk of collision with obstacles, especially 

considering error. 

 
3.2.2 Redefine repulsive potential function 

As many papers have described (Khatib, 1986; Zhang et al., 

2011), when a target is extremely close to obstacle, the 

repulsive potential or force is too much greater than the 

attractive potential or force, as 

1

( ) ( )

n

att rep

i

U q U q

=
∑  (17) 

or 

1

( ) ( )

n

att rep

i

F q F q

=
∑  (18) 

such that a robot will find it impossible to arrive at the 

position of a target in such circumstances. This condition, 

named the non-reachable target problem [shown in  

Figure 1(c)], is undesirable for the robot path planning 

problem. Herein, we redefine the potential function and use 

functions (19) and (20) to resolve the robot non-reachable 

target problem. We named this redefined potential function 
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the repulsive potential or force instantaneous disappearance 

if (a) and (b) are satisfied simultaneously. 

a ρ(q) ≤ dOb 

b ρgoal ≤ dgr. 

Therein, dOb and dgr respectively denote positive 

coefficients. 

Once the robot detecting the distance between the target 

and obstacle is less than dOb, and simultaneously the 

distance between target and robot is less than dgr, then the 

robot only moves along the attractive potential or force 

instead of considering the resultant of attractive potential or 

force and repulsive potential or force until the robot arrives 

at the target location (Figure 4). When (a) and (b) are 

satisfied, no repulsive potential or force remains. The robot 

is attracted only by the target, as 

( ) , ( )   and   
( )

( ) ( ) ,Otherwise

att Ob goal gr

att rep

U q q d d
U q

U q U q

ρ ρ≤ ≤⎧⎪= ⎨ +⎪⎩
 (19) 

and 

( ) , ( )   and   
( )

( ) ( ) ,Otherwise

att Ob goal gr

att rep

F q q d d
U q

F q F q

ρ ρ≤ ≤⎧⎪= ⎨ +⎪⎩
 (20) 

Figure 4 Illustration of redefined APFs (a) at T = t1, (b) at T = t2, (c) at T = t3, and (d) at T = t4 (see online version for colours) 

 

(a)     (b) 

 

(a)     (b) 

Notes: (a) ρ(q) is greater than ρ0. The APF of the robot is only attractive potential. The repulsive potential is zero. The robot 

moves along the direction of the attractive force. (b) ρ(q) is less than ρ0, the APF of robot is the resultant of the attractive 

potential and repulsive potential. The robot moves along the direction of resultant force. (c) ρ(q) is less than ρ0 and dOb, but 

is ρ(q) greater than dgb, which does not satisfy requirements of non-reachable target problem. Consequently, the APF of the 

robot is the resultant of the attractive potential and the repulsive potential. The robot moves along the direction of the 

resultant force: (d) ρ(q) is less than ρ0 and dOb; simultaneously, ρ(q) is less than dgb, the requirements of the non-reachable 

target problem are satisfied. Therefore, the non-reachable target problem emerges. Consequently, in this condition, the 

repulsive potential disappears instantaneously, and the APF of the robot is the only attractive potential. The robot moves 

along the direction of the resultant force to arrive at the target location. This modified APF is extremely effective to 

address such a non-reachable target problem. 
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Figure 5 Repulsive potential of polygonal obstacle, (a) repulsive potential defined by a traditional APF (b) repulsive potential defined by 

our improved APF (see online version for colours) 

 

(a)      (b) 

Notes: (a) The traditional APF defines the repulsive potential of polygonal obstacle as the vertical polygonal side and away from 

the obstacle. Near the vertex, no repulsive potential exists, which is unreasonable. (b) Improved APF, for which we 

redefine the repulsive potential. Its direction is the tangent of the semicircle. 

Figure 6 Repulsive potential of circular obstacle, (a) traditional APF, and (b) our improved APF (see online version for colours) 

 

(a)      (b) 

Notes: (a) The traditional APF defines the direction of the repulsive circular obstacle as vertical and away from the obstacle. Such 

a defined repulsive potential easily causes local minima and oscillations. (b) For improved APF, we change the direction of 

the repulsive potential for the circular obstacle, forming the tangent of the circle. 

Figure 7 Wall-following in a known environment, (a) polygonal obstacle (b) U-shaped obstacle (see online version for colours) 

 

(a)      (b) 

Notes: In complete environments, the robot knows information related to obstacles. When local minima occur, a robot  

compares the distance from the location of itself and two sides of the obstacle. Then it selects the shorter distance side for 

wall-following. 
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No previously proposed APF or improved APF method 

explicitly defines the repulsive potential or force related to 

the vertex of polygonal obstacles. As described by the 

general APF, the direction of repulsive potential or force for 

polygonal obstacles is the perpendicular of the polygon side 

and away from the obstacles, as Figure 5(a) shows, thereby 

it will be unreasonable because no repulsive potential or 

force exists near the area of vertex of polygonal obstacles 

(Zhang et al., 2006b). Therefore, we define the repulsive 

potential or force around the vertex of polygonal  

obstacles as in Figure 5(b). The direction is the tangential 

line of a semicircle (Uyanik, 2010). Similarly, we change 

the direction of the repulsive potential or force that results 

from circular obstacles (Figure 6) to resolve problems of a 

general APF: local minima and oscillatory movements. 

3.3 Improved wall-following 

The APF method used in robot path planning might suffer 

from the local minima and oscillations problem when 

equations (13) or (14) is satisfied as described above. 

During path planning, once local minima and oscillatory 

movements occur as shown in Figures 1(a) and 1(b)  

shown, we use the wall-following method presented by 

Sheng et al. (2010) to guide a robot to escape from local 

minima. This method can resolve oscillations. However,  

the previously proposed wall-following method requires 

detailed information of each obstacle. Moreover, this 

method can only solve local minima and oscillations in a 

known environment. The illustration of wall-following 

method is presented in Figure 7(a). Because the robot has 

information about obstacles, the robot compares the distance 

from the robot location to the two sides of obstacles. If  

b < a, then the robot moves along A–B–C–D toward the 

target position to eliminate local minima and oscillatory 

movements. Similarly, as presented in Figure 7(b), robot 

moves along A–B–C–D–E–F toward the position of the 

target to escape local minima and oscillatory movements. 

The wall-following method can resolve the two key 

problems: local minima and oscillations caused by general 

APF method in a known environment. Nevertheless, for the 

partial or unknown environment, the robot has no complete 

information related to obstacles. Therefore, the robot  

cannot know which side is closer. In other words, the  

wall-following method is unsuitable for use in a partially 

known or unknown environment. We should therefore 

modify the previous wall-following method to adapt to 

partially known and unknown environments. 

Herein, we improve the wall-following method to 

address local minima and oscillation problems of  

improved APF when a robot moves in a partially or entirely 

unknown environment. We use the latest five steps to  

assess the moving tendency of the robot, and combine the 

wall-following method to an assistant robot to move out of 

local minima and oscillatory movements. The orders of our 

proposed improved wall-following method are the 

following. 

a One side of the obstacle is in the sensing range of a 

robot. The robot moves toward the visual side and 

follows the wall of the obstacle until escape from the 

local minima, as shown in Figure 8(a). 

b Both sides of the obstacle are in the sensing range of 

the robot. The robot compares the distances to the two 

sides, moves to the closer side, and follows the wall of 

the obstacle until it escapes from the local minima, as 

shown in Figure 8(b). 

c No side of the obstacle is in the robot sensing range. 

The robot continues to move to the previous moving 

tendency and follows the wall of the obstacle until it 

escapes from the local minima, as shown in  

Figures 8(c) to 8(e). 

d A non-side of obstacle is in the robot sensing range, and 

the previous moving tendency is the perpendicular of 

obstacle side. The robot randomly selects one side to 

move along and follows the obstacle wall until escaping 

from the local minima, as shown in Figure 8(f). 

3.4 Regression search-based method 

Although our improved APF method can resolve local 

minima, oscillations, and non-reachable problems,  

a key problem remaining is that application of all APF 

methods including our method can not plan an optimal or 

near-optimal path in completely known environments, 

partially known environments, or unknown environments. 

This shortcoming severely limits the applications of such 

methods, especially for a time and energy constrained robot. 

Another important contribution of this paper is that we 

developed a RS method to optimise the planned path. The 

optimisation path is calculated by connecting the sequential 

points that were produced based on our improved APF 

method. 

From the robot location to the destination, the inter-start 

point connects with the latter point sequentially as a straight 

line. If the connected line does not cross any obstacle, then 

from the inter-start point re-connects with the next latter 

point as a new straight line until this connected line crosses 

an obstacle or the distance between the connected line and 

the closest point of obstacles becomes less than D0. This 

connected line is saved as a robot local sub-path from the 

inter-start point to the terminative point. Subsequently, the 

system produces the next new straight line from the last 

terminative point as the next inter-start point to the latter 

point as described above. 
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Figure 8 Improved wall-following method, (a) one side in the robot’s sensing range (b) both sides in the robot’s sensing range  

(c) no side in the robot’s sensing range, example 1 (d) no side in the robot’s sensing range, example 2 (e) no side in the robot’s 

sensing range, example 3 (f) no side in the robot’s sensing range, example 4 (see online version for colours) 

 

(a)     (b) 

 

(c)     (d) 

 

(e)     (f) 

Notes: (a) One side is in the robot’s sensing range. The robot does not know the distance from its location to another side. Then 

the robot selects the visual side to wall-following, i.e., A–B–C–D. (b) Both sides are in the robot’s sensing, and the robot 

selects the closer side for wall-following, i.e., A–B–C–D. when there is no side in the sensing range of the robot, the robot 

continues to move to the previous moving tendency and follows the wall of the obstacle. (c) Previous of the latest five-step 

moving tendency is the lower right, where the robot follows A–B–C–D–E–F to move out of local minima. (d) Previous of 

the latest five-step moving tendency is the upper right, where the robot follows A–B–C–D to move out of local minima.  

(e) Previous of the latest five-step moving tendency is the upper right, where the robot follows A–B–C–D–E–F to move 

out of local minima. (f) The latest five previous moving tendencies are vertical to the side of the obstacle. The robot selects 

one side randomly for wall-following. 
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Figure 9 RS method (RS method), (a) planned path by improved APF, (b) Step 1 of RS method, (c) Step 2 of RS method,  

(d) Step i–1 of RS method, (e) Step i of RS method, (f) Step i+1 of RS method, (g) Step i+2 of RS method,  

(h) Step i+3 of RS method, (i) Step n–1 of RS method, (j) Step n of RS method, (k) Step n+1 of RS method,  

and (l) Obtaining the optimal path (see online version for colours) 

 

(a)     (b) 

 

(c)     (d) 

Notes: (a) From the robot location to the target position, using improved APF to produce a sequential point set. According to the 

sequential point set, we use RS method to optimise the planned path by connecting two points as a straight line and judging 

the connected line as crossing any obstacle or not, the shortest distance between this connected line and obstacle is less 

than we set threshold or not. (b) The location of robot T1 as the first inter-start point connects with the next point T2, caused 

by L1,2 is a feasible line; then continues to (c). (c) Connect T1 and T3, and judge whether L1,3 is a feasible line. If it is, then 

continue to (d–e). (f) Because L1,i+1 is crossing an obstacle, L1,i+1 is not a feasible line. Therefore, the first suboptimal path 

is L1,i as (g) shown. (h) Then point Ti as the next inter-start point and connect with its next point Ti+1, and make a similar 

judgment as described above. Through (i) and (j), we can obtain the second suboptimal path as Li,n in (k). (l) Finally, the 

optimal path is planned by our improved APF-based RS method. The distance of the optimised path is much shorter than 

that using improved APF. 
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Figure 9 RS method (RS method), (a) planned path by improved APF, (b) Step 1 of RS method, (c) Step 2 of RS method,  

(d) Step i–1 of RS method, (e) Step i of RS method, (f) Step i+1 of RS method, (g) Step i+2 of RS method,  

(h) Step i+3 of RS method, (i) Step n–1 of RS method, (j) Step n of RS method, (k) Step n+1 of RS method,  

and (l) Obtaining the optimal path (continued) (see online version for colours) 

 

(e)     (f) 

 

(g)     (h) 

Notes: (a) From the robot location to the target position, using improved APF to produce a sequential point set. According to the 

sequential point set, we use RS method to optimise the planned path by connecting two points as a straight line and judging 

the connected line as crossing any obstacle or not, the shortest distance between this connected line and obstacle is less 

than we set threshold or not. (b) The location of robot T1 as the first inter-start point connects with the next point T2, caused 

by L1,2 is a feasible line; then continues to (c). (c) Connect T1 and T3, and judge whether L1,3 is a feasible line. If it is, then 

continue to (d–e). (f) Because L1,i+1 is crossing an obstacle, L1,i+1 is not a feasible line. Therefore, the first suboptimal path 

is L1,i as (g) shown. (h) Then point Ti as the next inter-start point and connect with its next point Ti+1, and make a similar 

judgment as described above. Through (i) and (j), we can obtain the second suboptimal path as Li,n in (k). (l) Finally, the 

optimal path is planned by our improved APF-based RS method. The distance of the optimised path is much shorter than 

that using improved APF. 
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Figure 9 RS method (RS method), (a) planned path by improved APF, (b) Step 1 of RS method, (c) Step 2 of RS method,  

(d) Step i–1 of RS method, (e) Step i of RS method, (f) Step i+1 of RS method, (g) Step i+2 of RS method,  

(h) Step i+3 of RS method, (i) Step n–1 of RS method, (j) Step n of RS method, (k) Step n+1 of RS method,  

and (l) Obtaining the optimal path (continued) (see online version for colours) 

 

(i)     (j) 

 

(k)     (l) 

Notes: (a) From the robot location to the target position, using improved APF to produce a sequential point set. According to the 

sequential point set, we use RS method to optimise the planned path by connecting two points as a straight line and judging 

the connected line as crossing any obstacle or not, the shortest distance between this connected line and obstacle is less 

than we set threshold or not. (b) The location of robot T1 as the first inter-start point connects with the next point T2, caused 

by L1,2 is a feasible line; then continues to (c). (c) Connect T1 and T3, and judge whether L1,3 is a feasible line. If it is, then 

continue to (d–e). (f) Because L1,i+1 is crossing an obstacle, L1,i+1 is not a feasible line. Therefore, the first suboptimal path 

is L1,i as (g) shown. (h) Then point Ti as the next inter-start point and connect with its next point Ti+1, and make a similar 

judgment as described above. Through (i) and (j), we can obtain the second suboptimal path as Li,n in (k). (l) Finally, the 

optimal path is planned by our improved APF-based RS method. The distance of the optimised path is much shorter than 

that using improved APF. 
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We use Figure 9 as an example to illustrate the RS  

method based on our improved APF. Assuming that  

Ti ∈ {T1, T2, T3 ···, Ti, Ti+1, ···, Tn} are the sequential points 

planned by our improved APF [as shown in Figure 9(a)], the 

robot moves along the sequential points and can reach the 

target point without colliding with obstacles. Based on the 

RS method, first, the initial point T1 as inter-start point 

connects the next point T2 as a straight line L1,2 [as shown in 

Figure 9(b)]. Then this method judges L1,2 as crossing any 

obstacles or not, or the shortest distance D between L1,2 and 

obstacle is or not less than D0. If L1,2 does not cross any 

obstacle or if D is greater than D0, then the system  

re-connects T1 with T3 as L1,2, and performs a similar step to 

that described above until line L1,i [as shown in Figures 9(c) 

and 9(e)]. Because of line L1,i+1 is a crossing obstacle  

[as shown in Figure 9(f)]. Therefore, the feasible local  

sub-path is L1,i [as shown in Figure 9(g)], which means that 

Ti is the terminative point. Because Ti+1 is not the last point, 

the next inter-start point is Ti and connects with the next 

point Ti+1 similarly [as shown in Figure 9(h)]. Therefore,  

the optimal path of this example is the line L1,i and Li,n  

[as shown in Figures 9(i) to 9(k)]. In other words, the robot 

movement along L1,i and Li,n will consume the least energy: 

the distance of L1,i and Li,n is the shortest [as shown in 

Figure 9(l)]. 

The entire algorithm of our proposed effective improved 

APF-based RS method is the following. An illustration of 

our proposed method is presented in Figure 10.  

** Improved APF method ** 

1. Compute the artificial force F(q) at the current 

configuration under our proposed improved artificial 

potential field. 

2. Take a small step in the direction indicated by artificial 

force. 

 

3. Save the coordinate as Ti. 

4. Repeat until reaching the goal configuration. 

5. The sequential points Ti ∈ {T1, T2, , Tn} are the planned 

path by improved artificial potential field method. 

** Regression research (RS) method ** 

6. The location of robot T1 as the start point connects with 

the next points. 

7. From Tj·∈ {T2, T3, , Tn}: 

8.  If the connected line L1,j does not cross any 

obstacle, then j = j + 1. Otherwise, go to step 12. 

9.  If the distance from the connected line L1,j toward 

any obstacle is greater than D0, then j = j + 1. 

Otherwise, go to step 12. 

10.  If j is not the last point of Ti, then j =j + 1. 

Otherwise, go to step 19. 

11. Return to step 7. 

12. Tj is the next start point, i.e., the inter-start point, and 

connects with the next point. 

13. From Tk ∈ {Tj+1, Tj+2, , , Tn}: 

14.  If the connected line Lj,k does not cross any obstacle, 

then k = k + 1. Otherwise, go to step 18. 

15.  If the distance from the connected line Lj,k toward 

any obstacle is greater than D0, then k = k + 1. 

Otherwise, go to step 18. 

16.  If k is not the last point of Ti, then k = k + 1. 

Otherwise, go to step 19. 

17. Return to step 13. 

18. j = k, and return to step 12. 

19. End 

20. Obtain the optimal path. 

21. Robot moves along the optimal path. 

Figure 10 Illustration of our proposed method 

 

Notes: In the improved APF-based RS method, first, improved APF is used to calculate a valid path; then RS method is used to 

shorten the planned path distance. 
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4 Experiments and results 

This section presents a description of the results obtained in 

various experiments performed under our proposed 

improved APF-based RS method to resolve the key 

problems of APF method: local minima, oscillatory 

movements and non-reachable target, and shortening of the 

planned path. These experiments confirmed that the 

improved APF method solved all important problems using 

extremely simple orders: redefine attractive and repulsive 

potential function, redefine the APF of nearby vertexes of 

polygonal obstacles, change the direction of repulsive 

potential field for circular obstacles, and improve the 

previous wall-following method to extend this method to be 

applicable for partially known or unknown environments. 

The wall-following method is extremely good at dealing 

with local minima and oscillations in the known 

environments. 

Although our improved APF method can calculate a 

valid path for the robot, as with many conventional APF 

methods, the planned path is not optimal or is sub-optimal 

compared with almost all classic methods and most heuristic 

approaches. This is the vital constraint that such a method 

imposes on robot systems, especially for a real robot system 

when we consider the common path planning problem 

criteria: distance of planned path, computational time and 

robot travelled energy. Therefore, we proposed a RS method 

to reduce the distance of the planned path by our improved 

APF method. The experiment results also prove that the 

final obtained path under our proposed method is a optimal 

or approximate optimal path. That is, we use the simplest 

method to solve the most difficult domains for intelligent 

robot systems. This method is believed to be extremely 

useful for autonomous distributed multiple robot systems 

because the computational time and complexity are the two 

most important problems for such systems. 

4.1 Simulation environment settling 

Numbers of simulation experiments are conducted for 

proving the validity and feasibility of our proposed 

algorithm using VC++, a 2.52 GHz CPU (Core i5; Intel 

Corp.) with the Windows 7 OS (Professional Microsoft 

Corp.). The environment is setting as square with 20 m 

width, a free configuration space (free C-space), shown in 

Figure 11. The coefficient k for calculating the attractive 

potential or force is 0.3. To prevent the planned path from 

being affected by far away obstacles sufficiently, we set the 

positive coefficient d as 3. The positive scaling factor of the 

repulsive potential or force η is 2.0. The largest impact 

distance for a mobile robot from obstacle ρ0 is 0.5. The 

distance dOb between the obstacles and target is 0.4 and dgr 

is 0.6, which is the setting to solve the target non-reachable 

problem. For obtaining an optimal collision-free path based 

on the improved APF method, the D0 = 2 is used. We 

assume that the moving step of the robot is 0.1. Table 1 

presents detailed parameters. Furthermore, the robot is 

omni-directional. 

Figure 11 Simulation environment 

 

Table 1 Parameters of our algorithm 

Free 

configuration 

space 

(C-space) 

k d η ρ0 dOb dgr D0 ΔS 

20 × 20 m 0.3 3.0 2.0 0.5 0.4 0.6 0.2 0.1 

4.2 Improved APF method 

Local minima, oscillations and non-reachable target 

problem are the three fatal problems for the conventional 

APF method. Herein, we presented the results obtained in 

various experiments performed under our improved APF 

method in completely known environments. In the next 

section, we discuss robot path planning in partially known 

or unknown environments. 

As Figure 12 shows, when the attractive potential and 

the repulsive potential are collinear reverse [Figure 12(a)], 

the robot will fall into local minima when using 

conventional methods. This is a kind of undesirable solution 

for autonomous mobile robot. However, the proposed 

improved APF method is very good at handling such a local 

minimum problem using the improved wall-following 

method. Additionally, when the artificial attractive potential 

and repulsive potential satisfy equations (13) or (14), the 

robot will suffer from oscillations and a local minima 

problem that result in the robot never arriving at the desired 

goal position. As Figure 12(b) shows, the improved  

wall-following method can assist a robot in moving out of 

these problems once the difference between attractive 

potential or force and repulsive potential or force is less  

than ε. 
According to the traditional defined artificial potential 

functions, along with the increase of distance from robot to 

target and the increased value of attractive potential or 

force, the closer a robot is to a target, the smaller the 

attractive potential or force is, in the desired position of 

target, the value is zero. By contrast, the repulsive potential 

or force is inversely proportional to the distance between 

robot and obstacles. The value of repulsive potential or 

force exponentially increases along with the distance 
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reduction. That cause when target close sufficient to 

obstacles, the robot never approaches the target, e.g., a  

non-reachable target problem. Figure 12(c) shows that our 

method can plan a safe path to a target even when the target 

is sufficiently close to obstacles. 

We described above that conventional methods did not 

discuss the repulsive field for the vertex of polygonal 

obstacles, which is a normal reason leading a robot to local 

minima and oscillations. In this paper, we implement a 

tangent of semicircle for changing the direction of repulsive 

potential to eliminate it, as shown in Figure 12(d) and 

change the direction of repulsive potential for circular 

obstacle indicated in Figure 12(e). Figure 12(f) shows a 

complete path without local minima, oscillations, non-

reachable target, or any other problem using our proposed 

improved APF method. 

Figure 12 Solving problems by improved APF method, (a) resolving local minima, (b) resolving oscillations, (c) resolving non-reachable 

target problem, (d) resolving repulsive potential for vertex of polygonal obstacle, (e) resolving repulsive potential for circular 

obstacle, and (f) complete planned path (see online version for colours) 

  

(a)     (b) 

  

(c)     (d) 

  

(e)     (f) 

Notes: (a) We use improved wall-following method to address local minima, with the distance from the robot to the right side as 

shorter than the left side. Therefore, the robot follows the right side wall of the obstacle. (b) When both sides of the 

obstacle are out of the robot’s sensing range, the robot determines the previous moving tendency according to the latest 

five steps. Therefore, the robot follows the left side wall to escape oscillations. (c) Because the target is close to the 

obstacle, once the requirements are satisfied, the robot moves along the attractive potential. (d) We redefined the repulsive 

potential for the vertex of the polygonal obstacle. (e) We changed the direction of repulsive potential for the circular 

obstacle. (f) The robot can plan a path with no problems using our improved APF method. 
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4.3 Optimisation of the planned path for a static 

target 

The three most important evaluations of path  

planning method are the distance of the planned path, 

computational time and robot travelled energy. To reduce 

the distance of planned path, many classic and heuristic path 

planning methods are proposed, but the costs of these 

methods are a long time necessary for computations and a 

complex structure. In contrast, APF methods entail less 

computational time and the simplest mechanism, although 

the computed path of APF methods is not optimal or  

near-optimal, which limits these methods to application to 

time-constrained and energy-constrained robots. We 

propose a RS method under improved APF method to 

optimise the planned path. The results are presented in 

Figures 13 to 15. 

 

Figure 13 Planned path obtained using the improved APF-based RS method, (a) path planning in a known environment, example 1  

(b) path planning in a known environment, example 2 (c) path planning in a known environment, example 3  

(d) path planning in a known environment, example 4 (e) path planning in an unknown environment, example 1  

(f) path planning in an unknown environment, example 2 (see online version for colours) 

  

(a)     (b) 

  

(c)     (d) 

  

(e)     (f) 

Notes: Blue line is the path planned using our improved APF method, whereas the red line is the optimal path using RS method. 

(a–d) Path planning in known environments. (e–f) Path planning in partially known or unknown environment. The red path 

distance is based on the improved APF-based RS method. It is shorter than blue path under only improved APF in each 

condition. 
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Figure 14 Distance of planned path (see online version for colours) 

 

Notes: The black rectangle point represents the distance of the planned path by improved APF, with the red circular point 

indicated distance of planned path based on improved APF-based RS method. Each condition, improved APF-based RS 

method can reduce the distance of the improved APF, which means that the improved APF-based RS method can conserve 

more energy for the robot. The right most are the average distance of ten simulations. The average distances of ten cases 

are, respectively, 32.12 m and 20.06 m using the improved APF method and the improved APF-based RS method. 

Figure 15 Computational time (see online version for colours) 

 

Notes: The black rectangle points show the computational time of the planned path by improved APF. The red circular points 

show computational times of the planned path based on improved APF-based RS method. For each condition, the 

improved APF-based RS method needs slightly more computational time than the improved APF. The right most are the 

average distances of ten simulations. The average computational times of ten cases are, respectively, 2.1 ms and 3.6 ms 

using the improved APF method and improved APF-based RS method. 

 

In Figure 13, the blue line shows a path planned using our 

improved APF method, whereas the red line is the optimal 

path using RS method. Figures 13(a) to 13(d) show the path 

planning problem in known environments. The complete 

information of obstacles and environment are known for the 

robot. When the robot encounters local minima and 

oscillations, the robot can select the shorter distance side to 

wall-following. Ultimately, the robot computes a valid and 

safe path. Figures 13(e) and 13(f) show the robot working in 

partially known and unknown environments. The robot only 

knows the positions of itself and the target, whereas the 

information related to obstacles is unknown for the robot. A 

robot senses obstacles and judges whether it is in local and 

oscillatory movements. If it is, then it implements our 

improved wall-following method to guide robots to escape 

these problems. As Figures 13(e) and 13(f) show, the robot 

moves along the tendency of the latest five steps and then 

follows the wall of the obstacle. 
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In the figures, the red paths are markedly shorter than 

the blue paths in conditions of various kinds. Moreover, the 

optimal paths have non-oscillations which can conserve a 

robot’s travelled energy. The experiment results indicate 

that our improved APF-based RS method conforms to the 

important criteria: the planned path distance and the robot 

travel energy. 

Figure 14 shows the distance of the planned path with 

the improved APF method and improved APF-based RS 

method, the black rectangle points show the distance of the 

planned path obtained using the improved APF method, 

while the red circle points show the distance of optimal path 

based on the improved APF-based RS method. As the figure 

shows, it is apparent that in each case, our proposed 

algorithm greatly reduces the distance of the planned path 

from the robot location to the target position, the average 

distances of these ten cases are 32.12 m and 20.06 m, 

respectively, using only improved APF method and 

improved APF-based RS method. Therefore, the result 

demonstrates that the RS method is extremely efficient to 

optimise the planned path using the general APF method. 

Figure 16 Path planning for dynamic target, (*–1) path planning based on improved APF method, (*–2) path planning using  

improved APF-based RS method, (a), (b) and (c) are different trajectories of moving target and the initial robot position  

(see online version for colours) 

  

(a)     (b) 

  

(c)     (d) 

  

(e)     (f) 

Notes: Red represents the trajectory of the moving target, whereas blue represents the robot trajectory. We used the improved APF 

method and improved APF-based RS method to plan path for dynamic target at the same conditions. (a) Initial robot and 

target positions are (19, 16) and (5, 19). (b) Initial robot and target positions are (17, 13) and (10, 19). (c) Initial robot and 

target positions are (1, 1) and (10, 19.5). 
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Because the structure of the improved APF method is very 

compact and the algorithm is not so complex, this method 

only consumes 2.1 ms on average, although our improved 

APF-based RS method required 3.6 ms on average, only  

1.5 ms more computational times (as Figure 15 shown) 

compared to the improved APF method. The short 

computational time also satisfies the common path planning 

problem criterion: computational time, which is extremely 

important for large-scale distributed multi-robot systems. 

4.4 Dynamic target in known environments 

The short computational time of improved APF and 

improved APF-based RS method makes them very suitable 

to plan paths for dynamic targets in a known environment. 

At every step, the target changes its position and the robot 

should re-plan the path to the target. If the computational 

time is very long, almost all classic path planning 

algorithms and most heuristic methods cannot perform  

real-time path planning for the robot. Figure 16 (*–1) shows 

the trajectory that a robot approaches toward moving target 

using the improved APF method, while Figure 16 (*–2) 

shows the trajectory by which a robot approaches a moving 

target using our improved APF-based RS method in the 

same condition. We simulated eight different cases and 

compared the consumed time steps using the two methods. 

The results are presented in Figure 17. The figure clarifies 

that even for a path planning problem for a dynamic target 

in a known environment, our proposed improved APF-based 

RS method distinctly reduced the consumed time steps by 

which the robot approaches the target position compared to 

improved APF method. 

4.5 Dynamic target and moving obstacle in partial 

known environments 

All conventional APF methods and variational methods do 

not fit with partial known environments. Fortunately, the 

proposed method can solve any condition in partial known 

environments using our improved wall-following method. 

As section 3.2.3 shows, we use the latest five steps moving 

tendencies to assist robot approaches to the target location. 

Figure 18 presents results in simulation based on our 

improved APF method and improved APF-based RS 

method, by which information about static obstacles, robot 

and target positions are known for the robot, while the 

information of moving obstacles is unknown. The sensing 

range of robot is 3 m, omni-directional. 

4.6 Local sensing range, dynamic target and moving 

obstacles in unknown environments 

To demonstrate more applications of our proposed method, 

we simulated path planning for a local sensing range of a 

robot, a dynamic target, and moving obstacles in unknown 

environments. Path planning in unknown environments is 

impossible for classic path planning algorithms. It is 

extremely difficult for heuristic path planning algorithms. 

We assumed that the only locations of the robot and target 

are known for the robot, and that the sensing range of a 

robot is 3 m omni-directional. Figures 19 to 21 respectively 

show a local sensing range robot path planning for a static 

target, dynamic target, and a dynamic target with a moving 

obstacle. 

 

Figure 17 Consumed time steps (see online version for colours) 

 

Notes: Black rectangle points represent consumed time steps by improved APF. Red circular points show consumed time steps 

based on improved APF-based RS method. In most conditions, the improved APF-based RS method consumed fewer time 

steps to approach a moving target than improved APF, which means that the improved APF-based RS method can 

conserve more energy for the robot. 
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Figure 18 Path planning for dynamic target and moving obstacle, (a) improved APF method and (b) improved APF-based RS method  

(see online version for colours) 

 

(a) 

 

(b) 

Notes: A partial known environment means information about static obstacles, coordinates of the target and robot are known by 

the robot, but the robot does not know information related to moving obstacles. Red is the trajectory of the moving target, 

whereas blue shows the robot trajectory. The initial robot and target positions are (1, 1) and (12, 19). We used improved 

APF method and improved APF-based RS method to plan a path for a dynamic target at the same conditions. 
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Figure 19 Path planning of local sensing range for a static target (see online version for colours) 

 

Notes: In an unknown environment, the robot only knows its position and the target’s position. Information about obstacles is not 

known by the robot. The robot’s sensing range is 3 m omni-directional. The robot detects its working environment using a 

sensor. The initial robot and target positions are (19, 1) and (8, 19). 

Figure 20 Path planning of local sensing range for a dynamic target (see online version for colours) 

 

Notes: In an unknown environment, the robot only knows its position and the target’s position. Information about obstacles is not 

known by the robot. The robot’s sensing range is 3 m omni-directional. The robot detects its working environment by a 

sensor. Initial positions of the robot and target were (1, 1) and (12, 19). 
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Figure 21 Path planning of local sensing range for a dynamic target and a moving obstacle (see online version for colours) 

 

Notes: In an unknown environment, the robot only knows its position and the target’s position. Information about obstacles is not 

known by the robot. The robot’s sensing range is 3 m omni-directional. The robot detects its working environment using a 

sensor. The initial robot and target positions are (1, 1) and (12, 19). 

 
5 Discussion 

5.1 Influence of parameters setting 

Parameter setting is a troublesome problem for various path 

planning methods. It is crucial for influence of its capability 

and applications. The cell size is the key parameter setting 

for A* algorithm and D* algorithm. When the cell is large, 

the computational time will increase rapidly, although the 

distance of the planned path and robot travelled energy are 

not exactly. An unacceptably long computational time is 

necessary to obtain an optimal path. Similarly, for a genetic 

algorithm, a colony optimisation algorithm, neural network, 

a particle swarm optimisation and many others, the 

parameter setting is the most difficult problem that strongly 

influences these methods’ performance and practicality. To 

reduce the computational time and to obtain the optimal 

planned path, some methods demand the use of a learning 

method to determine the values of parameters before path 

planning. 

As other path planning methods, we must set several 

parameters in advance for our improved APF-based RS 

method. The main parameters which affect the performance 

of our method are k for attractive potential, and η and ρ0 for 

repulsive potential. Other parameters are set to guarantee 

that a robot avoids obstacles and approaches the target. The 

changing of these parameters does not affect the 

performance. Nor do the distance of the planned path, 

computational time or robot travelled energy. Because of 

the very simple characteristics of such methods, the 

changing of parameters has almost no affect on the 

computational time, only changing the distance of the 

planned path and the robot travelled energy. As a result of 

our assumptions for a robot in a simulation experiment as an 

omni-directional robot, we consider that the robot travelled 

energy is the same as the planned path distance. Therefore, 

we analysed how changes of k, η and ρ0 affect the distance 

based on our improved APF method and improved  

APF-based RS method, which are presented in Figures 22 to 

24. The results showed that the changing of the three 

parameters slightly affects the distance of the improved APF 

method, but there is almost no influence of improved  

APF-based RS method. The figures show that although we 

should choose parameters for improved APF method 

carefully to acquire a better path, we need not excessively 

consider how to select suitable parameters for our improved 

APF-based RS method. The facts further demonstrate the 

simplicity and practicality of our proposed method. It is 

easy to extend the use of our method to many other planning 

problems. 
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Figure 22 Influence of k, (a) Case 1, (b) Case 2, and (c) Case 3 (see online version for colours) 

 

(a) 

 

(b) 

 

(c) 

Notes: Other parameters are set as follows: 

Free configuration space (C-space) d η ρ0 dOb dgr D0 ΔS 

20 × 20 m 3.0 2.0 0.5 0.4 0.6 0.2 0.1 

(a) Initial robot and target positions are (4, 19) and (12, 1). (b) Initial robot and target positions are (3, 2) and (17, 17).  

(c) Initial robot and target positions are (2, 10) and (13.2, 4). 
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Figure 23 Influence of η in (a) Case 1, (b) Case 2, and (c) Case 3 (see online version for colours) 

 

(a) 

 

(b) 

 

(c) 

Notes: Other parameters are set as follows: 

Free configuration space (C-space) k d ρ0 dOb dgr D0 ΔS 

20 × 20 m 0.3 3.0 0.5 0.4 0.6 0.2 0.1 

(a) Initial robot and target positions are (4, 19) and (12, 1). (b) Initial robot and target positions are (3, 2) and (17, 17).  

(c) Initial robot and target positions are (2, 10) and (13.2, 4). 
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Figure 24 Influence of ρ0, (a) Case 1, (b) Case 2, and (c) Case 3 (see online version for colours) 

 

(a) 

 

(b) 

 

(c) 

Notes: Other parameters are set as follows: 

Free configuration space (C-space) k d η dOb dgr D0 ΔS 

20 × 20 m 0.3 3.0 2.0 0.4 0.6 0.2 0.1 

(a) Initial robot and target positions are (4, 19) and (12, 1). (b) Initial robot and target positions are (3, 2) and (17, 17).  

(c) Initial robot and target positions are (2, 10) and (13.2, 4). 
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Figure 25 Bidirectional improved APF method (see online version for colours) 

 

Notes: The first path is planned from the robot location to the target position. The second is planned from the target position to the 

robot location. A difference exists between the first and second path in all conditions. Bidirectional improved APF method 

can always select the shorter path. 

Figure 26 Computational time of bidirectional improved APF method 

 

Notes: As described above, improved APF takes only a few milliseconds to plan a valid path, while bidirectional improved APF 

need ten times that of the improved APF to compute a better path. This is an acceptable computational time for small scale 

multiple robots systems, but for real-time middle-scale and large-scale distributed multi-robot systems, an overly long 

computational time is undesirable according to common path planning problem criteria. 

 

5.2 Bidirectional improved APF 

Several researchers (Zhang et al., 2006a; Uyanik, 2010) 

have proposed a bidirectional APF method for robot path 

planning. The bidirectional APF method has three steps: 

First, plan a path from the robot location to the target 

position. Secondly, plan another path from the target 

position to the robot location. Finally, compare the distance 

of the two paths; then select the shorter one as the planned 

path. This method invariably selects a shorter distance path. 

Therefore, in this paper, we use the bidirectional path 

planning method based on our improved APF method to 

assess its performance. Figures 25 and 26 present the 

simulation results. As the figures show, the bidirectional 

improved APF method can select the shorter distance  

path in every condition as earlier reports have described 

(Zhang et al., 2006a; Uyanik, 2010) described. However, 

the computational time is too long to obtain a better path. As 

described earlier (Figure 15), our proposed improved APF 

method only consumes a few milliseconds to compute a 

valid path. In contrast, the bidirectional improved APF 

method spends ten times that computational time to 

calculate a better path compared to the improved APF 

method. This is an acceptable computational time for  

small-scale multiple robots systems, but for real-time 

middle-scale or large-scale distributed multi-robot systems, 

an overly long computational time is undesirable according 

to common path planning problem criteria. 
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6 Conclusions 

Path planning problems are important robotic problems for 

autonomous mobile robots must solve to accomplish given 

tasks. An effective improved APF-based RS method was 

proposed to obtain a global sub-optimal or optimal path 

without local minima, oscillations and non-reachable  

target problems in various environments: completely 

known, partially known, unknown, static, and dynamic 

environments. Redefined potential functions and improved 

wall-following methods were used to eliminate the three 

fatal problems for conventional APF. Because the computed 

path by improved APF method is not the shortest distance, 

we developed a RS method to optimise the planned path, 

and proved through simulation experiments that a safe, 

optimal and collision-free path can be produced for an 

autonomous mobile robot. The results demonstrated that our 

improved APF-based RS method is feasible and efficient to 

solve the mobile robot path planning problem. Moreover, 

we verified that our method is applicable for real-time path 

planning: a dynamic target, moving obstacles, and the local 

robot sensing range. 

In future work, we will attend to smoothing of the 

planned path, improving our method for a more complex 

environments and making it suitable for large-scale 

distributed multi-robot coordination systems. We also 

intend to reduce the consumed computational time of the 

bidirectional improved APF method. Actually, our 

regression research method (RS method) is useful to reduce 

the distance of the planned path, with calculations using 

other path planning methods. 
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