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Abstract

Injuries have a great impact on professional soccer, due to their large influence on team per-

formance and the considerable costs of rehabilitation for players. Existing studies in the liter-

ature provide just a preliminary understanding of which factors mostly affect injury risk, while

an evaluation of the potential of statistical models in forecasting injuries is still missing. In

this paper, we propose a multi-dimensional approach to injury forecasting in professional

soccer that is based on GPSmeasurements and machine learning. By using GPS tracking

technology, we collect data describing the training workload of players in a professional soc-

cer club during a season. We then construct an injury forecaster and show that it is both

accurate and interpretable by providing a set of case studies of interest to soccer practition-

ers. Our approach opens a novel perspective on injury prevention, providing a set of simple

and practical rules for evaluating and interpreting the complex relations between injury risk

and training performance in professional soccer.

Introduction

Injuries of professional athletes have a great impact on the sports industry, due to their influ-

ence on the mental state of the individuals and the performance of a team [1, 2]. Furthermore,

the cost associated with a player’s recovery and rehabilitation is often considerable, both in

terms of medical care and missed earnings deriving from the popularity of the player himself

[3]. Recent research demonstrates that injuries in Spain cause about 16% of season absence by

professional soccer players, corresponding to a cost of around 188 million euros per season

[4]. It is not surprising, hence, that injury forecasting is attracting a growing interest from

researchers, managers, and coaches, who are interested in intervening with appropriate actions

to reduce the likelihood of injuries of their players.

Historically, academic work on injury forecasting has been deterred by the limited availabil-

ity of data describing the physical activity of players. Nowadays, the Internet of Things have

the potential to change rapidly this scenario thanks to Electronic Performance and Tracking

Systems (EPTS), new tracking technologies that provide high-fidelity data streams extracted

from every training and game session [5, 6]. These data depict in detail the movements of
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players on the playing field [5, 6] and have been used for many purposes, from identifying

training patterns [7] to automatic tactical analysis [5, 8, 9]. Despite this wealth of data, little

effort has been put on investigating injury forecasting in professional soccer so far [10, 11, 12].

State-of-the-art approaches provide just a preliminary understanding of which variables affect

the injury risk, while an evaluation of the potential of statistical models to forecast injuries is

still poor. A major limit of existing studies is that they are mono-dimensional, i.e., they use just

one variable at a time to estimate injury risk, without fully exploiting the complex patterns

underlying the available data.

Professional soccer clubs are interested in practical, usable and interpretable models as a

decision making support for coaches and athletic trainers [13]. In this perspective the creation

of injury forecasting models poses many challenges. On one hand, injury forecasters must be

highly accurate, as models which frequently produce “false alarms” are useless. On the other

hand, a “black box” approach (e.g., a deep neural network) is not desirable for practical use

since it does not provide any insights about the reason behind the injuries. It goes hence with-

out saying that injury forecasting models must achieve a good tradeoff between accuracy and

interpretability.

In this paper, we consider injury prediction as the problem of forecasting that a player will

get injured in the next training session or official game, given his recent training workload.

We observe that existing mono-dimensional approaches are not effective in practice due to

their low precision (< 5%), and we propose a multi-dimensional, easy-to-interpret and fully

data-driven approach which forecasts injuries with a better precision (50%); we validate this

result by simulating the usage of our forecaster over a season, with new training data available

as the season goes by. Our approach is entirely based on automatic data collection through

standard GPS sensing technologies and can be a valid supporting tool to the decision making

of a soccer club’s staff. This is crucial since the decisions of managers and coaches, and hence

the success of soccer clubs, also depend on what they measure, how good their measurements

are, the quality of predictions and how well these predictions are understood.

Related work

The relationship between training workload and injury risk has been widely studied in the

sports science literature [14, 15, 16, 17, 18]. For example Gabbett et al. [14, 15, 17, 19] investi-

gate the case of rugby and find that a player has a high injury risk when his workloads are

increased above certain thresholds. To assess injury risk in cricket, Hulin et al. [20] propose

the Acute Chronic Workload Ratio (ACWR), i.e., the ratio between a player’s acute workload

and his chronic workload. When the acute workload is lower than the chronic workload,

cricket players are associated with a low injury risk. In contrast, when the acute/chronic ratio

is higher than 2, players have an injury risk from 2 to 4 times higher than the other group of

players. Hulin et al. [20] and Ehrmann et al. [11] find that injured players, in both rugby and

soccer, show significantly higher physical activity in the week preceding the injury with respect

to their seasonal averages.

In skating, Foster et al. [21] measure training workload by the session load, i.e., the product

of the perceived exertion and the duration of the training session. When the session load out-

weighs a skater’s ability to fully recover before the next session, the skater suffers from the so-

called “overtraining syndrome”, a condition that can cause injury [21]. In basketball, Anderson

et al. [18] find a strong correlation between injury risk and the so-called monotony, i.e., the

ratio between the mean and the standard deviation of the session load recorded in the past 7

days. Moreover, Brink et al. [8] observe that injured young soccer players (age< 18) recorded

higher values of monotony in the week preceding the injury than non-injured players.
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Venturelli et al. [12] perform several periodic physical tests on young soccer players

(age< 18) and find that jump height, body size and the presence of previous injuries are signif-

icantly correlated with the probability of thigh strain injury. Talukder et al. [22] create a classi-

fier to predict 19% of the injuries that occurred in NBA. They also show that the most

important features for predicting injuries are the average speed, the number of past competi-

tions played, the average distance covered, the number of minutes played to date and the aver-

age field goals attempted. An attempt to injury forecasting in soccer has been made by

Kampakis [23], although it considers a reduced set of features obtaining an accuracy that is, in

the best scenario, not significantly better than random classifiers.

Material andmethod

Data collection and feature extraction

We set up a study on twenty-six Italian professional male players (age = 26±4 years;

height = 179±5 cm; body mass = 78±8 kg) during season 2013/2014. Six central backs, three

fullbacks, seven midfielders, eight wingers and two forwards were recruited. Participants gave

their written informed consent to participate in the study.

We monitored the physical activity of players during 23 weeks–from January 1st to May

31st, 2014 –using portable 10 Hz GPS devices integrated with a 100Hz 3-D accelerometer, a

3D gyroscope, a 3D digital compass (STATSports Viper). The devices were placed between the

players’ scapulae through a tight vest. We recorded a total of 931 individual training sessions

during the 23 weeks. From the data collected by the devices, we extracted a set of training

workload indicators through the software package Viper Version 2.1 provided by STATSports

2014.

The club’s medical staff recorded 23 non-contact injuries during the study. According to

the UEFA regulations [24], a non-contact injury is defined as any tissue damage sustained by a

player that causes absence in physical activities for at least the day after the day of the onset.

We observed that 19 out of 23 injuries are associated with players who got injured at least once

in the past. In particular, half of the players never get injured during the study, while the others

get injured once (seven players), twice (five players) or four times (one player). For every

player, we collected information about age, body mass index, height and role on the field.

Moreover, for every single training session of a player, we collected information about the play

time in the official game before the training session and the number of official games played

before the training session.

From the players’ GPS data we extract 12 features describing different aspects of the work-

load in a training session [25]. Two features–Total Distance (dTOT) and High Speed Running

Distance (dHSR)–are kinematic, i.e., they quantify a player’s overall movement during a train-

ing session. Three features–Metabolic Distance (dMET), High Metabolic Load Distance (dHML)

and High Metabolic Load Distance per minute (dHML/m)–are metabolic, i.e., they quantify the

energy expenditure of a player’s overall movement during a training session. The remaining

seven features–Explosive Distance (dEXP), number of accelerations above 2m/s2 (Acc2), num-

ber of accelerations above 3m/s2 (Acc3), number of decelerations above 2m/s2 (Dec2), number

of decelerations above 3m/s2 (Dec3), Dynamic Stress Load (DSL) and Fatigue Index (FI)–are

mechanical features describing a player’s overall muscular-scheletrical load during a training

session. In addition, we associated a player’s training session with feature PI, indicating the

number of the player’s previous injuries up to that session. Table 1 and S1 Appendix provides

the description and some statistics of the workload features extracted from the GPS data,

respectively.

Injury forecasting in soccer
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Multi-dimensional and data-driven injury forecaster

We construct a multi-dimensional model to forecast whether or not a player will get injured

based on his recent training workload. The construction of the injury forecaster consists of

two phases. In the first phase (training dataset construction), given a set of features S, a training

dataset T is created where each example refers to a single player’s training session and consists

of: (i) a vector of features describing both the player’s personal features and his recent work-

load, including the current training session; (ii) an injury label, indicating whether (1) or not

(0) the player gets injured in the next game or training session. In the second phase (model

construction and validation), a decision tree learner is used to train an injury classifier on the

training dataset T.

Phase 1: Training dataset construction. From the features extracted from GPS data,

which are described in Table 1, we construct a training dataset T consisting of 55 features and

952 examples (i.e., individual training sessions). S4 Appendix provides an example of the con-

struction of T. These 55 features are:

• 18 daily features: the 12 workload features extracted from the GPS data and the 6 personal

features described in Table 1.

• 12 EWMA features: 12 features computed as the Exponential Weighted Moving Average

(EWMA) of the 12 workload features in Table 1. The EWMA decreases exponentially the

weights of the values according to their recency, i.e., the more recent a value, the more it is

weighted in an exponential function according to a decay α = 2/(span+1). In our experi-

ments we consider a span equal to six (see S5 Appendix).

• 12ACWR features: 12 features consisting of the ACWR of the 12 workload features in

Table 1. Given a feature, the ACWR of a player is the ratio between (i) the player’s acute

Table 1. Training workload features used in our study. Description of the training workload features extracted from
GPS data and the players’ personal features collected during the study. We defined four categories of features: kine-
matic features (blue), metabolic features (red), mechanical features (green) and personal features (white).

dTOT Distance in meters covered during the training session

dHSR Distance in meters covered above 5.5m/s

dMET Distance in meters covered at metabolic power

dHML Distance in meters covered by a player with a Metabolic Power is above 25.5W/Kg

dHML/m Distance in meters covered by a player with a Metabolic Power is above 25.5W/Kg per minute

dEXP Distance in meters covered above 25.5W/Kg and below 19.8Km/h

Acc2 Number of accelerations above 2m/s2

Acc3 Number of accelerations above 3m/s2

Dec2 Number of decelerations above 2m/s2

Dec3 Number of decelerations above 3m/s2

DSL Total of the weighted impacts of magnitude above 2g. Impacts are collisions and step impacts during
running

FI Ratio between DSL and speed intensity

Age age of players

BMI Body Mass Index: ratio between weight (in kg) and the square of height (in meters)

Role Role of the player

PI Number of injuries of the players before each training session

Play
time

Minutes of play in previous games

Games Number of games played before each training session

https://doi.org/10.1371/journal.pone.0201264.t001
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workload, computed as the average of the values of the feature in the last 6 days; (ii) the play-

er’s chronic workload, computed as the average of the values of the feature in the last 27 days

[26].

• 12MSWR features: 12 features consisting of the monotony of the 12 workload features in

Table 1. Given a feature, the monotony of a player is the ratio between the mean and the

standard deviation of the values of the feature in the last week [3, 10, 18].

• 1 previous injury feature: to take into account both the number of a player’s previous inju-

ries and their distance to the current training session we compute feature PI(WF), the EWMA

of feature PI computed with a span equal to six. PI(WF) reflects the distance between the cur-

rent training session and the training session when the player returned to regular training

after an injury. PI(WF) = 0 indicates that the player never got injured in the past; PI(WF)
> 0

indicates that he got injured at least once in the past; PI(EWMA)
> 1 indicate that he got

injured more than once in the past (see S6 Appendix).

We select 30% of T and obtain TTRAIN (step 1 and 2 in Fig 1) to perform a feature selection

process to determine the most relevant features for classification using Recursive Feature Elim-

ination with Cross-Validation (RFECV; we use the publicly available Python package scikit-

learn to perform RFECV and to train and validate the decision tree– http://scikit-learn.org/)

[27]. In RFECV, the subset of features producing the maximum score on the validation data is

considered to be the best feature subset [27]. The feature selection process is aimed at reducing

the dimensionality of the feature space and hence the risk of overfitting, and allowing for an

easier interpretation of the resulting machine learning model, due to the lower number of fea-

tures [28].

The class distribution in training dataset TTRAIN is highly unbalanced since we have 279

non-injury examples and just 7 injury examples. To adjust this imbalance we oversample the

minority class in TTRAIN by using the adaptive synthetic sampling approach (ADASYN; We

use the ADASYN function provided by the publicly available Python package imblearn–

http://scikit-learn.org/imbalanced-learn) [29]. The ADASYN algorithm generates examples of

the minority class to equalize the distribution of classes, hence reducing the learning bias (See

S7 Appendix). Finally, we use TTRAIN to detect the best hyper parameters of a decision tree

classifier DT (Step 2 in Fig 1).

Phase 2: Model construction and validation. We then split TTEST into two folds, f1 and

f2, in order to perform a stratified cross validation (step 3 in Fig 1; we use only two folds in

order to not excessively reduce the minority class size). In this step, we oversample fold f1 by

using ADASYN and test DT on the other fold f2 (which is not oversampled). For cross valida-

tion purposes, we perform again step 3 inverting f1 and f2. The goodness of the forecasting

model is evaluated by four metrics (i.e., precision, recall, F1-score and AUC) described in S8

Appendix. Note that, for injury forecasting purposes, we are interested in achieving high values

of precision and recall on class 1 (injury). Let us assume that a coach makes a decision about

whether or not to “stop” a player based on the suggestion of the injury forecaster, i.e., the

player skips next training session or game every time the forecaster’s prediction associated

with the player’s current training session is 1 (injury). In this scenario, the forecaster’s preci-

sion indicates how much we can trust the predictions: the higher the precision, the more a clas-

sifier’s predictions are reliable, i.e., the probability that the player will actually get injured is

high. Trusting an injury forecaster with low precision is risky as it means producing many

false positives (i.e., false alarms) and frequently stopping players unnecessarily, a condition

clubs want to avoid especially for the key players. The recall indicates the fraction of injuries

the forecaster detects over the total number of injuries: the higher the recall the more injuries

Injury forecasting in soccer
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the forecaster can detect. An injury forecaster with low recall detects just a small fraction of the

injuries, meaning that many players will attend next training session or game and actually get

injured. Trusting a forecaster with a low recall is risky as it would misclassify many actual inju-

ries as non-injuries.

We repeated the entire injury prediction approach (i.e., all the three steps in Fig 1) 10,000

times in order to assess its stability with respect to the choice of the injury examples in the two

folds. For the sake of comparison, we implemented other injury forecasters based on the

ACWR and the monotony (or MSWR) techniques, which are among the two most used tech-

niques for injury risk estimation and prediction in professional soccer (see S2 Appendix and

S3 Appendix for details). Moreover, we compare our injury forecaster with four baselines.

Baseline B1 randomly assigns a class to an example by respecting the distribution of classes.

Baseline B2 always assigns the non-injury class, while baseline B3 always assigns the injury

class. Baseline B4 is a classifier which assigns class 1 (injury) if PI(EWMA)
> 0, and 0 (no injury)

otherwise. We also compare DT with a Random Forest classifier (RF) and a Logit classifier

(LR).

Fig 1. Construction of the training dataset and the forecasting model. In step 1 we split the dataset into two parts: TTRAIN (30% of T) and TTEST (70% of T). We
then oversample the minority class in TTRAIN by using ADASYN, select the most important features and fit the hyper parameters (Step 2). We then split TTEST into
two folds in order to perform a stratified cross validation (step 3).

https://doi.org/10.1371/journal.pone.0201264.g001
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Results

Table 2 compares the performance of DT with the performance of RF, LR, the ACWR and

MSWR forecasters, and the four baselines. The results in Table 2 refer to the mean and the stan-

dard deviation of the evaluation metrics over 10,000 cross validation tasks. We find that DT has

recall = 0.80±0.07 and precision = 0.50±0.11 on the injury class, meaning that the decision tree

can predict almost all the injuries (80%) and that it correctly labels a training session as an injury

in 50% of the cases. This is a significant improvement with respect to both the baselines B1, . . .,

B4, for which the maximum precision is about 6%, and the ACWR- andMSWR-based injury

forecasters, for which the maximum precision is lower than 4%. RF has better recall but worse

precision (recall = 0.87±0.05, precision = 0.41±0.08) that DT, while LR has much lower perfor-

mance than the decision tree (Table 2). These results show that, typically, DT drastically reduces

false alarms and hence scenarios where players are “stopped” unnecessarily before next game or

training session. On the one hand, the distributions of the forecasters’ performances over the

10,000 tests indicate that the quality of the injury forecasting strongly depends on the type of

injuries in the training set, which in turn depends on the different training and test split made

in each trial (Fig 2). On the other hand, the higher performance detected by DT, compared to

several baselines and the ACWR- andMSWR-based injury forecasters, shows that our approach

outperforms state-of-the-art approaches and achieve good results in forecasting injuries. The

results for DT without ADASYN and the oversampling process are presented in S9 Appendix.

As a further test of the forecasting potential of our approach we investigate the benefit of

using our multi-dimensional injury forecaster in a real-world injury prevention scenario,

where we assume that a club equips with appropriate GPS sensor technologies and starts

recording training workload data since the first training session of the season (in other words,

no data are available to the club before the beginning of the season). Assuming that we train

the injury forecaster with new data every week, how many injuries the club can actually pre-

vent throughout the season?

Table 2. Performance of DT compared to RF, LR, the four baselines and the ACWR- andMSWR-based forecasters. For each forecaster we report precision, recall
and F1 on the two classes and the overall AUC.

precision recall F1 AUC

DT NI 0.96±0.05 0.87±0.09 0.91±0.04 0.76±0.12

I 0.50±0.11 0.80±0.07 0.64±0.10

RF NI 0.94±0.06 0.90±0.08 0.93±0.07 0.78±0.15

I 0.41±0.08 0.87±0.05 0.65±0.08

LR NI 0.69±0.11 0.61±0.15 0.65±0.13 0.60±0.03

I 0.18±0.03 0.60±0.08 0.31±0.06

B4 NI 0.98 0.77 0.86 0.60

I 0.04 0.43 0.07

B1 NI 0.98 0.98 0.98 0.51

I 0.06 0.05 0.05

B2 NI 0.98 1.00 0.99 0.50

I 0.00 0.00 0.00

B3 NI 0.00 0.00 0.00 0.50

I 0.02 1.00 0.04

C(ACWR)
DEC NI 1.00 0.43 0.60 0.67

I 0.04 0.91 0.07

C(MSWR)
HML NI 0.98 0.80 0.88 0.57

I 0.04 0.33 0.07

https://doi.org/10.1371/journal.pone.0201264.t002
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To answer this question we group the training sessions by week and proceed from the least

recent to the most recent week. At training week wi we first construct the dataset Ti consisting

of all the training examples collected up to week i, oversampling the injury examples through

ADASYN and reducing the feature space through RFECV. Then, we use Ti to train DTi, RFi,

LRi, B1,i, . . .,B4,i, the ACWR- and MSWR-based forecasters and try to predict the injuries in

week wi+1. At week i, we evaluate the accuracy of our approach by the cumulative F1-score,

i.e., the F1-score computed by considering all the predictions made up to week i by the models

DT6,. . ., DTi. Due to the initial scarcity of data, we start the forecasting task from week w6.

Fig 3 and S7 Table show the evolution of the cumulative F1-score and the feature extracted

by RFECV as the season goes by, respectively. We find that in the first weeks DT has a poor

predictive performance and misses many injuries (the black crosses in Fig 3). The predictive

ability of DT improves significantly throughout the season: as more and more training and

injury examples are collected, the forecasting model predicts most of the injuries in the second

half of the season (the red crosses in Fig 3). We find that DT is the one performing the best,

outperforming all the other models from week w14. In particular, DT detects 9 injuries out of

14 from w6 to the end of the season, resulting in F1-score = 0.60 and precision = 0.56. After an

initial period of data collection, the injury forecaster becomes a useful tool to prevent the inju-

ries of players and, by extracting the rules from the decision tree as we show in the next section,

to understand the reasons behind the forecasted injuries as well as the injuries that are not

detected by the model.

Interpretation of the injury forecaster

A set of simple rules can be extracted from DT build on w21, allowing for the investigation of

the reasons behind the observed injuries. These rules can be seen as a short handbook for

coaches and athletic trainers, which can consult it to modify the training schedule and improve

the players’ fitness.

Fig 4B visualizes DT highlighting two types of node: decision nodes (black boxes) and leaf

nodes (green or red boxes). Each decision node has two branches each indicating the next

node to select depending on the range of values of the feature associated with the decision

node. A leaf node represents the final prediction based on a player’s individual training ses-

sion. There are two possible final decisions: Injury (red boxes) indicates that the player will get

injured in next game or training session; or No-Injury (green boxes) otherwise. Given a feature

Fig 2. Classifiers performances.Distributions of the classifiers—DT, LR and RF—performances obtained testing the algorithms 10,000 times. This figure shows the
performance of the baselines and the ACWR- andMSWR-based injury forecasters as well.

https://doi.org/10.1371/journal.pone.0201264.g002
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vector describing a player’s training session, the prediction associated with it is obtained by fol-

lowing the path from the root of the tree down to a leaf node, through the decision nodes. Fig

4 shows the rules and the tree extracted from the DT built until w21. At the end of the season,

the RFECV process selects just 3 features out of 55: PI(EWMA), dHSR
(EWMA) and dTOT

(MSWR).

The importances of these features in DT, computed as the mean decrease in Gini coefficient,

are 0.71, 0.23 and 0.06, respectively [30].

As a practical example of application of these rules, let us consider a player’s training session

with PI(EWMA) = 0.28, dHSR
(EWMA)

= 126.58 and dTOT
(MSWR) = 1.66, associated with an injury.

This example is associated with rule 2 (Fig 4A), corresponding to the following decision path:

d
HSR

ðEWMAÞ
> 112:35 ! d

TOT

ðMSWRÞ � 1:78 ! PI
ðEWMAÞ

> 0:03 ! PI
ðEWMAÞ � 0:68

! INJURY

From the rules in Fig 4A we summarize three main injury scenarios in DT:

1. a previous injury can lead to a new injury when a player has a HSR(EWMA) (high speed run-

ning distance) lower than 112.35 (rule 1 in Fig 4A). This rule describes 42% of the injuries

in the dataset and it is correct in 100% of the cases.

2. a previous injury can lead to a new injury when a player has a HSR(EWMA) higher than

112.35 and a Dtot
(MSWR) (total distance Monotony) three times lower than 1.78 (rule 2 in

Fig 4A). This rule describes 30% of the injuries and has an accuracy of 100%.

Fig 3. Performance of forecasters in the evolutive scenario.As the season goes by, we plot week by week the cumulative F1-score of the forecasters DT, RF, LR, B1, . . .,
B4 trained on the data collected up to that week. Black crosses indicate injuries that not detect by DT, red crosses indicate injures correctly predicted by DT. For every
week i we highlight in red the number of injuries detected by DT up to week i.

https://doi.org/10.1371/journal.pone.0201264.g003
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3. a previous injury can lead a new injury when a player has a HSR(EWMA) higher than 112.35

and a Dtot
(MSWR) two and half times higher than the player’s average (rules 3 and 4 in Fig

4A). These rules have a cumulative frequency of 28% and a mean accuracy of 75±5%.

These scenarios suggest that coaches and athletic trainers must take care of the total dis-

tance and the distance at high speed running performed by the players who recently returned

to play after an injury.

Discussion

Our experiments produce three remarkable results. First, DT can detect around 80% of the

injuries with about 50% precision, far better than the baselines and state-of-the-art injury risk

estimation techniques (see Table 2). The decision tree’s false positive rate is small, indicating

that it reduces the “false alarms”, i.e., situations where the classifier is wrong in predicting that

an injury will happen. In professional soccer, false alarms are deprecable because the scarcity

Fig 4. Interpretation of the multi-dimensional injury forecaster. (a) The six injury rules extracted from DT. For each rule we show the range of values of every
feature, its frequency (Freq) and accuracy (Acc). (b) A schematic visualization of decision tree. Black boxes are decision nodes, green boxes are leaf nodes for class No-
Injury, red boxes are leaf nodes for class Injury.

https://doi.org/10.1371/journal.pone.0201264.g004
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of players can negatively affect the performance of a team [2]. Our model also produces a mod-

erate false negative rate, meaning that situations where a player that will get injured is classified

as out of risk are infrequent.

Second remarkable results is that, in a real-world scenario of injury prevention where a

club starts collecting the data for the first time and re-train the injury forecaster as the season

goes by, the injury forecaster results in a cumulative F1-score = 0.60 on the injury class (Fig 3),

much better than the baselines, RF and LR (Table 2). Throughout the season, the usage of the

forecasting model allows for the prevention of more than half of the injuries. The forecasting

ability of DT is affected by the initial period where data are scarce. This suggests that an initial

period of data collection is needed in order to gather the adequate amount of data, and only

then a reliable forecasting model can be trained on the collected data. The length of the data

collection period depends on the club’s needs and strategy, including the frequency of training

sessions and games, the frequency of injuries, the number of available players and the tolerated

level of false alarms. Regarding this aspect, in our dataset, we observe that the performance of

the classifiers stabilizes after 14 weeks of data collection (see Fig 3).

Third, in the evolutive scenario the features selected change as the season goes by (see S7

Table). This is probably due to the initial scarcity of data and to the type of injuries that have

occurred up that a given moment. We observed that the just 3 out of 55 features are selected by

the feature selection (PI(EWMA), dHSR
(EWMA) and dTOT

(MSWR)) after 14 weeks of data collection,

and that these set of features remains stable for all subsequent weeks. Feature PI(EWMA), the

most important among the three and the only feature that is always selected as the season goes

by (see S7 Table), reflects the temporal distance between a player’s current training session and

his coming back to regular training after a previous injury. Less than half of the injuries

detected by DT in the evolutive scenario happened immediately after the coming back to regu-

lar training of injured player. Furthermore, 60% of the injuries detected by DT happened long

after a previous injury and are characterized by specific values of dHSR
(EWMA) and dTOT

(MSWR),

which indicate that the a player’s kinematic variability affects his injury risk. It is worth to

notice that the single feature PI(EWMA) alone does not provide a significant predictive power,

as the baseline B4, which is based on it, has a much lower accuracy than DT. It is hence the

combination of the three features which allows us to predict when a player will get injured.

Our results suggest that the club should take particular care of the first training sessions of

players who come back to regular training after a previous injury, as in this conditions they are

more likely to get injured again. In these first days and in the days long after the players return

to regular physical activity, the club should control kinematic workloads, which can lead to

injuries at specific values as well.

Injuries involve a great economic cost to the club, due to the expensive process of recovery

and rehabilitation for the players. Injury prevention can reduce these costs by avoiding the

injuries of players, which means improving the team’s performance and the player’s mental

state as well as reducing the seasonal costs of medical care. We estimate that 139 days of

absence during the seasons are due to injuries, corresponding to 6% of the working days. We

observe that a player returned to regular physical activity within 5 days (i.e., 15 times out of 23

injuries), while only 6 times a player needed more than 5 days to recover. We use a method

proposed in the literature [4] to estimate that the minimum total cost related to injuries that in

this soccer club is 11,583 euros (139x83 euros = days of absence x minimal legal salary per day)

corresponding to 3.81% of the salary cost of the club. If our model was used as the season goes

by to stop the players for which an injury is predicted, the club could had been able to prevent

9 injuries out of 14 and save 8,881 euros (107x83 euros = day of absence x minimal legal salary

per day), that represents a 77% decrease of injury costs.
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Conclusion

In this paper we proposed a multi-dimensional approach to injury forecasting in soccer, fully

based on automatically collected GPS data and machine learning. As we showed, our injury

forecaster provides a good trade-off between accuracy and interpretability, reducing the num-

ber of false alarms with respect to state-of-the-art approaches and at the same time providing a

simple handbook of rules to understand the reasons behind the observed injuries. We showed

that the forecaster can be profitably used early in the season, and that it allows the club to save

a considerable part of the seasonal injury-related costs. Our approach opens a novel perspec-

tive on injury prevention, providing a methodology for evaluating and interpreting the com-

plex relations between injury risk and training performance in professional soccer.

Our work can be extended in many directions. First, we can include performance features

extracted from official games, where the player is exposed to the highest physical and psycho-

logical stress. Second, we can investigate the “transferability” of our approach from a club to

another, i.e., if a forecaster trained on a set of players can be successfully applied to a distinct

set of players, not used during the training process. In this case, it would be possible to exploit

collective information to train a more powerful forecaster which includes training examples

from different players, clubs, and leagues. Third, if data covering several seasons of a player’s

activity are available, a distinct forecaster can be trained for each player by combining GPS

data with other types of health data, such as heart rate, ventilation, and lactate.
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S5 Fig. We plot the AUC and F1-score of EWMA with span = 1, . . ., 10 in CALL. The red

line reflects the best span to injury prediction.

(TIF)
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Sport Data: From Acquisition to Data Modeling and Research Aspects. Data, 2:1, 2, https://doi.org/10.
3390/data2010002, 2017.

7. Rossi A, Savino M, Perri E, Aliberti G, Trecroci A, Iaia M. Characterization of in-season elite football
trainings by GPS features: The Identity Card of a Short-Term Football Training Cycle. 16th IEEE Inter-
national Conference on Data MiningWorkshops, pp. 160–166, https://doi.org/10.1109/ICDMW.2016.
0030, 2016

8. Pappalardo L, Cintia P. Quantifying the relation between performance and success in soccer, Advances
in Complex Systems, 20 (4), https://doi.org/10.1142/S021952591750014X, 2017.

9. Cintia P, Pappalardo L, Pedreschi D, Giannotti F, Malvaldi M. The harsh rule of the goals: data-driven
performance indicators for football teams, In Proceedings of the 2015 IEEE International Conference
on Data Science and Advanced Analytics (DSAA’2015), https://doi.org/10.1109/DSAA.2015.7344823,
2015.

Injury forecasting in soccer

PLOSONE | https://doi.org/10.1371/journal.pone.0201264 July 25, 2018 14 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0201264.s021
http://www.sobigdata.eu/
https://doi.org/10.1136/bjsports-2013-092215
http://www.ncbi.nlm.nih.gov/pubmed/23645832
https://doi.org/10.3389/fpsyg.2016.00807
http://www.ncbi.nlm.nih.gov/pubmed/27375511
https://doi.org/10.3790/aeq.54.1.59
https://doi.org/10.3790/aeq.54.1.59
https://doi.org/10.1145/3054132
https://doi.org/10.3390/data2010002
https://doi.org/10.3390/data2010002
https://doi.org/10.1109/ICDMW.2016.0030
https://doi.org/10.1109/ICDMW.2016.0030
https://doi.org/10.1142/S021952591750014X
https://doi.org/10.1109/DSAA.2015.7344823
https://doi.org/10.1371/journal.pone.0201264


10. Brink MS, Visscher C, Arends S, Zwerver J, Post WJ, Lemmink KA. Monitoring stress and recovery:
new insights for the prevention of injuries and illnesses in elite youth soccer players. Br J Sports Med.
2010; 44: 809–15. https://doi.org/10.1136/bjsm.2009.069476 PMID: 20511621

11. Ehrmann FE, Duncan CS, Sindhusake D, FranzsenWN, Greene DA. GPS and injury prevention in pro-
fessional soccer. J Strength Cond Res. 2015; 30:306–307. https://doi.org/10.1519/JSC.
0000000000001093 PMID: 26200191

12. Venturelli M, Schena F, Zanolla L, Bishop D. Injury risk factors in young soccer players detected by a
multivariate survival model. Journal of Science and Medicine in Sport. 2011; 14:293–298. https://doi.
org/10.1016/j.jsams.2011.02.013 PMID: 21474378

13. Kirkendall DT, Dvorak J. Effective Injury Prevention in Soccer. The physician and sports medicine,
38:1, http://dx.doi.org/10.3810/psm.2010.04.1772, 2010.

14. Gabbett TJ. The development and application of an injury prediction model for noncontact, soft-tissue
injuries in elite collision sport athletes. The Journal of Strength & Conditioning Research. 2010; 24
(10):2593–2603. https://doi.org/10.1519/JSC.0b013e3181f19da4 PMID: 20847703

15. Gabbett TJ, Ullah S. Relationship between running loads and soft-tissue injury in elite team sport ath-
letes. J Strength Cond Res. 2012; 26: 953–960. https://doi.org/10.1519/JSC.0b013e3182302023
PMID: 22323001

16. Rogalski B, Dawson B, Heasman J, Gabbett TJ. Training and game loads and injury risk in elite Austra-
lian footballers. J Sci Med Sport. 2013; 16: 499–503. https://doi.org/10.1016/j.jsams.2012.12.004
PMID: 23333045

17. Gabbett TJ. The training-injury prevention paradox: should athletes be training smarter and harder? Br
J Sports Med. 2016. https://doi.org/10.1136/bjsports-2015-095788 PMID: 26758673

18. Anderson L, Triplett-McBride T, Foster C, Doberstein S, Brice G. Impact of training patterns on inci-
dence of illness and injury during a women’s collegiate basketball season. The Journal of Strength &
Conditioning Research. 2003; 17: 734–738. https://doi.org/10.1519/00124278-200311000-00018

19. Gabbett TJ. Reductions in pre-season training loads reduce training injury rates in rugby league players.
British Journal of Sports Medicine. 2004; 38: 74–749. https://doi.org/10.1136/bjsm.2003.005181

20. Hulin BT, Gabbett TJ, Blanch P, Chapman P, Bailey D, Orchard JV. Spikes in acute workload are asso-
ciated with increased injury risk in elite cricket fast bowlers. Br J Sports Med. 2014; 48:708–712. https://
doi.org/10.1136/bjsports-2013-092524 PMID: 23962877

21. Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc.
1998; 30:1164–1168. https://doi.org/10.1097/00005768-199807000-00023 PMID: 9662690

22. Talukder H, Vincent T, Foster G, Hu C, Huerta J, Kumar A, et al. Preventing in-game injuries for NBA
players. MIT Sloan Analytics Conference. Boston; 2016.

23. Kampakis S. Predictive modeling of football injuries, Phd Thesis, University College London, 2016

24. HagglundM, WaldenM, Bahr R, Ekstrand J. Methods for epidemiological study of injuries to profes-
sional football players: developing the UEFAmodel. British Journal of Sports Medicine, 39:6, 340–346,
https://doi.org/10.1136/bjsm.2005.018267, 2005. PMID: 15911603

25. DuncanMJ, Badland HM, MummeryWK. Applying GPS to enhance understanding of transport-related
physical activity. Journal of Science and Medicine in Sport. 2009; 12: 549–556. https://doi.org/10.1016/
j.jsams.2008.10.010 PMID: 19237315

26. Murray NB, Gabbett TJ, Townshend AD, Blanch P. Calculation acute:chronic workload ratios using
exponential weighted moving averages provides a more sensitive indicator of injury likelihood than roll-
ing averages. Br J Sports Med. 2016. https://doi.org/10.1136/bjsports-2016-097152 PMID: 28003238

27. Guyon I, Weston J, Barnhill S, Vapnik V. Gene Selection for Cancer Classification Using Support Vector
Machines. Machine Learning 46, 2002. https://doi.org/10.1023/A:1012487302797

28. James G,Witten D, Hastie T, Tibshirani R. An Introduction to Statistical Learning. New York, NY:
Springer New York; 2013.

29. He H, Bai Y, Garcia EA, Li S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning.
2008 IEEE International Joint Conference on Neural Networks.

30. Kazemitabar J, Amini A, Bloniarz A, Talwalkar A. Variable Importance using Decision Trees. 31st Con-
ference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Injury forecasting in soccer

PLOSONE | https://doi.org/10.1371/journal.pone.0201264 July 25, 2018 15 / 15

https://doi.org/10.1136/bjsm.2009.069476
http://www.ncbi.nlm.nih.gov/pubmed/20511621
https://doi.org/10.1519/JSC.0000000000001093
https://doi.org/10.1519/JSC.0000000000001093
http://www.ncbi.nlm.nih.gov/pubmed/26200191
https://doi.org/10.1016/j.jsams.2011.02.013
https://doi.org/10.1016/j.jsams.2011.02.013
http://www.ncbi.nlm.nih.gov/pubmed/21474378
http://dx.doi.org/10.3810/psm.2010.04.1772
https://doi.org/10.1519/JSC.0b013e3181f19da4
http://www.ncbi.nlm.nih.gov/pubmed/20847703
https://doi.org/10.1519/JSC.0b013e3182302023
http://www.ncbi.nlm.nih.gov/pubmed/22323001
https://doi.org/10.1016/j.jsams.2012.12.004
http://www.ncbi.nlm.nih.gov/pubmed/23333045
https://doi.org/10.1136/bjsports-2015-095788
http://www.ncbi.nlm.nih.gov/pubmed/26758673
https://doi.org/10.1519/00124278-200311000-00018
https://doi.org/10.1136/bjsm.2003.005181
https://doi.org/10.1136/bjsports-2013-092524
https://doi.org/10.1136/bjsports-2013-092524
http://www.ncbi.nlm.nih.gov/pubmed/23962877
https://doi.org/10.1097/00005768-199807000-00023
http://www.ncbi.nlm.nih.gov/pubmed/9662690
https://doi.org/10.1136/bjsm.2005.018267
http://www.ncbi.nlm.nih.gov/pubmed/15911603
https://doi.org/10.1016/j.jsams.2008.10.010
https://doi.org/10.1016/j.jsams.2008.10.010
http://www.ncbi.nlm.nih.gov/pubmed/19237315
https://doi.org/10.1136/bjsports-2016-097152
http://www.ncbi.nlm.nih.gov/pubmed/28003238
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1371/journal.pone.0201264

