
Effective Integration of Declarative Rules with External
Evaluations for Semantic-Web Reasoning

Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits

Institut für Informationssysteme, Technische Universität Wien
Favoritenstraße 9-11, A-1040 Vienna, Austria

{eiter, ianni, roman, tompits}@kr.tuwien.ac.at

Abstract. Towards providing a suitable tool for building the Rule Layer of the
Semantic Web, hex-programs have been introduced as a special kind of logic
programs featuring capabilities for higher-order reasoning, interfacing with ex-
ternal sources of computation, and default negation. Their semantics is based on
the notion of answer sets, providing a transparent interoperability with the Ontol-
ogy Layer of the Semantic Web and full declarativity. In this paper, we identify
classes of hex-programs feasible for implementation yet keeping the desirable
advantages of the full language. A general method for combining and evaluating
sub-programs belonging to arbitrary classes is introduced, thus enlarging the va-
riety of programs whose execution is practicable. Implementation activity on the
current prototype is also reported.

1 Introduction

For the realization of the Semantic Web, the integration of different layers of its con-
ceived architecture is a fundamental issue. In particular, the integration of rules and
ontologies is currently under investigation, and many proposals in this direction have
been made. They range from homogeneous approaches, in which rules and ontologies
are combined in the same logical language (e.g., in SWRL and DLP [16, 13]), to hybrid
approaches in which the predicates of the rules and the ontology are distinguished and
suitable interfacing between them is facilitated, like, e.g., [10, 8, 25, 15] (see also [1] for
a survey). While the former approaches provide a seamless semantic integration of rules
and ontologies, they suffer from problems concerning either limited expressiveness or
undecidability, because of the interaction between rules and ontologies. Furthermore,
they are not (or only to a limited extent) capable of dealing with ontologies having differ-
ent formats and semantics (e.g., RDF and OWL) at the same time. This can be handled,
in a fully transparent way, by the approaches which keep rules and ontologies separate.
Ontologies are treated as external sources of information, which are accessed by rules
that also may provide input to the ontologies. In view of the well-defined interfaces,
the precise semantic definition of ontologies and their actual structure does not need to
be known. This in particular facilitates ontology access as a Web service, where also
privacy issues might be involved (e.g., a customer taxonomy in the financial domain).

In previous work [8], hex-programs were introduced as a generic rule-based language
fostering a hybrid integration approach towards implementing the Rule Layer of the
Semantic Web (“hex” stands for higher-order with external atoms). They are based on

Y. Sure and J. Domingue (Eds.): ESWC 2006, LNCS 4011, pp. 273–287, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

274 T. Eiter et al.

nonmonotonic logic programs, which support constructs such as default negation, under
the answer-set semantics, which underlies the generic answer-set programming (ASP)
paradigm for declarative problem solving. The latter has proven useful in a variety of
domains, including planning, diagnosis, information integration, and reasoning about
inheritance, and is based on the idea that problems are encoded in terms of programs such
that the solutions of the former are given by the models (the “answer sets”) of the latter.
The availability of default negation allows an adequate handling of conflict resolution,
non-determinism, and dealing with incomplete information, among other things.
hex-programs compensate limitations of ASP by permitting external atoms as well

as higher-order atoms. They emerged as a generalization of dl-programs [10], which
themselves have been introduced as an extension of standard ASP, by allowing a cou-
pling with description-logic knowledge bases, in the form of dl-atoms. In hex-programs,
however, an interfacing with arbitrary external computations is realized. That is to say,
the truth of an external atom is determined by an external source of computation. For
example, the rule triple(X, Y, Z) ← &rdf [url](X, Y, Z) imports external RDF theories
taking values from the external predicate &rdf . The latter extracts RDF statements from
a given set of URLs (encoded in the predicate url) in form of a set of “reified” ternary
assertions. As another example, C(X) ← triple(X, Y, Z), (X, rdf :type,C), not filter(C)
converts triples to facts of a respective type, unless this type is filtered. Here, C(X) is a
higher-order atom, where C ranges over predicates constrained by not filter(C).
hex-programs are attractive since they have a fully declarative semantics, and allow

for convenient knowledge representation in a modular fashion without bothering about
the order of rules or literals in the bodies of rules of a program. However, the pres-
ence of external and higher-order atoms raises some technical difficulties for building
implemented systems, given the following design goals which should be kept:

Full declarativity. This would mean that the user must be enabled to exploit external
calls ignoring the exact moment an evaluation algorithm will invoke an external
reasoner. So external calls must be, although parametric, stateless.

Potentially infinite universe of individuals. Current ASP solvers work under the as-
sumption of a given, finite universe of constants. This ensures termination of eval-
uation algorithms (which are based on grounding), but is a non-practical setting if
actual external knowledge must be brought inside the rule layer. Therefore, suit-
able methods must be devised for bringing finite amounts of new symbols into play
while keeping decidability of the formalism.

Expressive external atoms. Interfacing external sources should support (at least) the
exchange of predicates, and not only of constants (i.e., individuals). However, the
generic notion of an external atom permits that its evaluation depends on the inter-
pretation as a whole. For a practical realization, this quickly gets infeasible. There-
fore, restricted yet still expressive classes of external atoms need to be identified.

These problems are nontrivial and require careful attention. Our main contributions
are briefly summarized as follows.

We consider meaningful classes of hex-programs, which emerge from reasonable
(syntactic and semantic) conditions, leading to a categorization of hex-programs. They
include a notion of stratification, laid out in Section 3.1, which is more liberal than pre-
vious proposals for fragments of the language (e.g., as for HiLog programs [21]), as

Effective Integration of Declarative Rules with External Evaluations 275

well as syntactic restrictions in terms of safety conditions for the rules, as discussed in
Section 3.2. Furthermore, we consider restricted external predicates with additional se-
mantic annotation which includes types of arguments and properties such as monotonic-
ity, anti-monotonicity, or linearity.

Section 3.3 introduces a method of decomposing hex-programs into separate modules
with distinct features regarding their evaluation algorithm, and Section 3.4 discusses
strategies for computing the models of hex-programs by hierarchically evaluating their
decomposed modules.

Finally, we have implemented a prototype of hex-programs. The current implemen-
tation features dl-atoms and RDF-atoms for accessing OWL and RDF ontologies, re-
spectively, but also provides a tool kit for programming customized external predicates.
The prototype actually subsumes a prototype for dl-programs [10] we built earlier.

Our results are important towards the effective realization of a fully declarative lan-
guage which integrates rules and ontologies. While targeted for hex-programs, our
methods and techniques may be applied to other, similar languages and frameworks
as well. Indeed, hex-programs model various formalisms in different domains [8], and
special external atoms (inspired by [10]) are important features of other recent declara-
tive rule formalisms for the Semantic Web [25, 15, 24].

2 hex-Programs

In this section, we briefly recall hex-programs; for further background, see [8].
Before describing syntax and semantics, we consider an example to give the flavor

of the formalism. An interesting application scenario where several features of hex-
programs come into play is ontology alignment. Merging knowledge from different
sources in the context of the Semantic Web is a crucial task. To avoid inconsistencies
which arise in merging, it is important to diagnose the source of such inconsistencies
and to propose a “repaired” version of the merged ontology. In general, given an entail-
ment operator |= and two theories T1 and T2, we want to find some theory rep(T1 ∪T2)
which, if possible, is consistent (relative to |=). Usually, rep is defined according to
some customized criterion, so that to save as much knowledge as possible from T1 and
T2. Also, rep can be nondeterministic and admitting more than one possible solution.
hex-programs allow to define the relation |= according to a range of possibilities;

as well, hex-programs are a useful tool for modeling and customizing the rep operator.
How hex coding can achieve these goals is sketched in the following program, Pex:

triple(X, Y, Z)← url(U),&rdf [U](X, Y, Z); (1)

proposition(P)← triple(P, rdf :type, rdf :Statement); (2)

pick(P) ∨ drop(P)← proposition(P); (3)

pick(P)← axiomatic(P); (4)

C(rdf :type, X)← picked(X, rdf :type,C); (5)

D(rdf :type, X)← picked(C, rdf :subClassOf ,D),C(rdf :type, X); (6)

276 T. Eiter et al.

picked(X, Y, Z)← pick(P), triple(P, rdf :subject, X), (7)

triple(P, rdf :predicate, Y), (8)

triple(P, rdf :object, Z), not f ilter(P); (9)

← &inconsistent[picked]. (10)

Pex illustrates some features of hex programs, such as:

Importing external theories. Rule (1) makes use of an external predicate &RDF in-
tended to extract knowledge from a given set of URLs.

Searching in the space of assertions. Rules (2) and (4) choose nondeterministically
which propositions have to be included in the merged theory and which not. These
rules take advantage of disjunction in order to generate a space of choices.

Translating and manipulating reified assertions. E.g., it is possible to choose how
to put RDF triples (possibly including OWL assertions) in an easier manipulatable
and readable format, making selected propositions true as with rules (5) and (7).

Defining ontology semantics. The operator |= can be defined in terms of rules and
constraints expressed in the language itself, as with rule (6) or constraint (10). The
external predicate &inconsistent takes for input a set of assertions and establishes
through an external reasoner whether the underlying theory is inconsistent.

hex-programs are built on mutually disjoint sets C, X, and G of constant names,
variable names, and external predicate names, respectively. Unless stated otherwise,
elements fromX (resp., C) are denoted with first letter in upper case (resp., lower case);
elements from G are prefixed with “ & ”.1 Constant names serve both as individual and
predicate names. Importantly, C may be infinite.

Elements from C ∪ X are called terms. A higher-order atom (or atom) is a tuple
(Y0, Y1, . . . , Yn), where Y0, . . . , Yn are terms; n ≥ 0 is its arity. Intuitively, Y0 is the pred-
icate name; we thus also use the familiar notation Y0(Y1, . . . , Yn). The atom is ordinary,
if Y0 is a constant. For example, (x, rdf :type, c) and node(X) are ordinary atoms, while
D(a, b) is a higher-order atom. An external atom is of the form

&g[Y1, . . . , Yn](X1, . . . , Xm), (11)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input list and output list,
respectively), and &g ∈ G is an external predicate name. We assume that &g has fixed
lengths in(&g) = n and out(&g) = m, respectively. Intuitively, an external atom pro-
vides a way for deciding the truth value of an output tuple depending on the extension
of a set of input predicates.

Example 1. The external atom &reach[edge, a](X) may compute the nodes reachable
in the graph edge from the node a. Here, in(&reach)= 2 and out(&reach)= 1. �

A hex-program, P, is a finite set of rules of form

α1 ∨ · · · ∨ αk ← β1, . . . , βn, not βn+1, . . . , not βm, (12)

1 In [8], “ # ” is used instead of “ & ”; we make the change to be in accord with the syntax of the
prototype system.

Effective Integration of Declarative Rules with External Evaluations 277

where m, k ≥ 0, α1, . . . , αk are atoms, and β1, . . . , βm are either atoms or external atoms.
For a rule r as in (12), we define H(r) = {α1, . . . , αk} and B(r) = B+(r) ∪B−(r), where
B+(r) = {β1, . . . , βn} and B−(r) = {βn+1, . . . , βm}. If H(r) = ∅ and B(r) � ∅, then r is a
constraint, and if B(r) = ∅ and H(r) � ∅, then r is a fact; r is ordinary, if it contains
only ordinary atoms, and P is ordinary, if all rules in it are ordinary.

The semantics of hex-programs generalizes the answer-set semantics [12], and is
defined using the FLP-reduct [11], which is more elegant than the traditional reduct
and ensures minimality of answer sets.

The Herbrand base of a hex-program P, denoted HBP, is the set of all possible
ground versions of atoms and external atoms occurring in P obtained by replacing vari-
ables with constants from C. The grounding of a rule r, grnd(r), is defined accordingly,
and the grounding of program P is grnd(P) =

⋃
r∈P grnd(r).

For example, for C = {edge, arc, a, b}, ground instances of E(X, b) are, for instance,
edge(a, b), arc(a, b), and arc(arc, b); ground instances of &reach[edge,N](X) are
&reach[edge, edge](a), &reach[edge, arc](b), and &reach[edge, edge](edge), etc.

An interpretation relative to P is any subset I ⊆ HBP containing only atoms. We say
that I is a model of atom a ∈HBP, denoted I |= a, if a ∈ I. With every external predicate
name &g ∈ G we associate an (n+m+1)-ary Boolean function f&g (called oracle func-
tion) assigning each tuple (I, y1 . . . , yn, x1, . . . , xm) either 0 or 1, where n = in(&g),
m = out(&g), I ⊆ HBP, and xi, y j ∈ C. We say that I ⊆ HBP is a model of a
ground external atom a = &g[y1, . . . , yn](x1, . . . , xm), denoted I |= a, iff f&g(I, y1 . . .,
yn, x1, . . . , xm)= 1.

Example 2. Associate with &reach a function f&reach such that f&reach(I, E, A, B) = 1
iff B is reachable in the graph E from A. Let I = {e(b, c), e(c, d)}. Then, I is a model of
&reach[e, b](d) since f&reach(I, e, b, d) = 1. �

Let r be a ground rule. We define (i) I |=H(r) iff there is some a ∈ H(r) such that I |= a,
(ii) I |= B(r) iff I |= a for all a ∈ B+(r) and I
|= a for all a ∈ B−(r), and (iii) I |= r iff I |=H(r)
whenever I |= B(r). We say that I is a model of a hex-program P, denoted I |= P, iff I |= r
for all r ∈ grnd(P).

The FLP-reduct [11] of P with respect to I ⊆HBP, denoted fPI , is the set of all
r ∈ grnd(P) such that I |= B(r). I ⊆HBP is an answer set of P iff I is a minimal model
of fPI . By AS(P) we denote the set of all answer sets of P.

Example 3. Consider the program Pex from the above, together with the set F of facts
{url(“http://www.polleres.net/foaf.rdf”), url(“http://www.gibbi.com/foaf.rdf”)}.

Suppose that the two URLs contain the triples (gibbi, hasHomepage, url) and (gibbi,
hasHomepage, url2), respectively, and that &inconsistent is coupled with an external
reasoner such that the property hasHomepage is enforced to be single valued. Then,
Pex ∪ F has two answer sets, one containing the fact picked(gibbi, hasHomepage, url)
and the other the fact picked(gibbi, hasHomepage, url2). Note that the policy for pick-
ing and/or dropping propositions can be customized by changing the hex-program at
hand. ��

278 T. Eiter et al.

3 Decomposition of hex-Programs

Although the semantics of hex-programs is well-defined, some practical issues remain
and need further attention:

1. It is impractical to define the semantics of each external predicate by means of a
Boolean function. Also, most of the external predicates encountered do not depend
on the value of the whole interpretation but only on the extensions of predicates
specified in the input. We thus introduce a model in which external predicates are
associated with functions whose input arguments are typed.

2. Many external predicates have regular behavior. For instance, their evaluation func-
tion may be monotonic with respect to the given input, like for most of the dl-atoms
introduced in [10]. These kinds of behaviors need to be formalized so that they can
be exploited for efficient evaluation of hex-programs.

3. It is important to find a notion of mutual predicate dependency and stratification
that accommodates the new sorts of introduced constructs, in order to tailor efficient
evaluation algorithms.

4. Although the semantics of hex-programs fosters a possibly infinite Herbrand uni-
verse, it is important to bound the number of symbols that have to be actually taken
into account, by means of adequate restrictions. In any case, the assumption that
oracle functions are decidable is kept, but they may have an infinite input domain
and co-domain.

To take the first two points into account, we introduce the following concept:

Definition 1. Let &g be an external predicate, f&g its oracle function, I an interpreta-
tion, and q ∈ C. Furthermore, we assume that:

– in(&g) = n and out(&g) = m;
– &g is associated with a type signature (t1, . . . , tn), where each ti is the type associ-

ated with position i in the input list of &g. A type is either c or a nonnegative integer
value. If ti is c, then we assume the i-th input of F&g is a constant, otherwise we
assume that the i-th input of F&g ranges over relations of arity ti.

– For a ≥ 0, Da is the family of all sets of atoms of arity a and Dc = C; and
– Πa(I, q) is the set of all atoms belonging to I having q as predicate name and arity
a, whereas Πc(I, q) = q.

Then, F&g : Dt1 × · · · × Dtn → Dm−1 is an extensional evaluation function iff (a1, . . . ,
am) ∈ F&g(Πt1 (I, p1), . . . , Πtn (I, pn)) precisely if f&g(I, p1, . . . , pn, a1, . . . , am) = 1.

We will call the external predicates associated with an extensional evaluation func-
tion and a type signature typed. Unless specified otherwise, we will assume in what
follows to deal with typed external predicates only.

An evaluation function is a means for introducing an explicit relationship between
input and output values of an external atom, and for expressing restrictions on the type
of input values. Actual parameters inside external atoms express how, in the context of
a given rule, input arguments are given in order to compute the output relation.

Effective Integration of Declarative Rules with External Evaluations 279

Example 4. Associate with predicate &reach an evaluation function F&reach and a type
signature (2, 0) such that F&reach(Π2(I, E), A) = B, where B is the set of nodes reachable
in the graph E from node A in the current interpretation. Let I = {e(b, c), e(c, d)}. The
set of values for X such that I is a model for the atom &reach[e, b](X) is {c, d} since
F&reach({e(b, c), e(c, d)}, b) = {(c), (d)}. �

Example 5. The evaluation function of the external predicate &rdf is such that the
atom &rdf [u](X, Y, Z) is bounded to all triples (X, Y, Z) which are in the output of
F&rdf (Π1(I, u)), for the current interpretation. The type of u is 1. E.g., if the current
interpretation I is {u(“http://www.polleres.net/foaf.rdf”), u(“http://www.gibbi.com/
foaf.rdf”)}, then F&rdf (Π1(I, u)) will return a set of triples extracted from the two spec-
ified URLs. �

Definition 2. Let &g be a typed external predicate and F&g its extensional evalua-
tion function. Let x̄ = x1, . . . , xn be a ground input list, and let Π(J, x̄) = Πt1 (J, x1),
. . . , Πtn (J, xn), for any interpretation J. Then: (i) &g is monotonic, if F&g(Π(I′, x)) ⊆
F&g(Π(I′′, x)), for any I′, I′′ and any x̄, whenever I′ ⊆ I′′; (ii) &g is anti-monotonic, if
F&g(Π(I′, x)) ⊆ F&g(Π(I′′, x)), for any I′, I′′ and any x̄, whenever I′ ⊇ I′′; and (iii) &g
is linear, if F&g(Π(I′ ∪ I′′, x)) = F&g(Π(I′, x))∪ F&g(Π(I′′, x)) for any I′, I′′ and any x̄.

Example 6. Intuitively, the &reach predicate is monotonic. Indeed, if we add some edge
to G′ = {e(b, c), e(c, d)} so that we have, e.g., G′′ = {e(b, c), e(c, d), e(c, h)}, the set of
values for X such that G′′ is a model of the atom &reach[e, b](X) will grow. In particular,
F&reach(G′, b) = {〈c〉, 〈d〉} and F&reach(G′′, b) = {〈c〉, 〈d〉, 〈h〉}. �

Many external predicates of practical interest can be classified as being monotonic. For
instance, in most of the cases, dl-atoms as defined in [10] are monotonic.

Example 7. The &rdf predicate is linear. Indeed, let U′ = {u(“http://www.gibbi.com/
foaf.rdf”)} and U ′′ = {u(“http://www.polleres.net/foaf.rdf”)}. Then, F&rd f (U ′, u))∪
F&rdf (U ′′, u)) = F&rdf (U ′ ∪ U ′′, u)), i.e., the two requested RDF sources are simply
merged by union.2 ��

3.1 Dependency Information Treatment

Taking the dependency between heads and bodies into account is a common tool for
devising an operational semantics for ordinary logic programs, e.g., by means of the no-
tions of stratification or local stratification [18], or through modular stratification [20]
or splitting sets [17]. In hex-programs, dependency between heads and bodies is not the
only possible source of interaction between predicates. In particular we can have:

Dependency between higher order atoms. For instance, p(A) and C(a) are strictly
related. Intuitively, since C can unify with the constant symbol p, rules that de-
fine C(a) may implicitly define the predicate p. This is not always the case: for
instance, rules defining the atom p(X) do not interact with rules defining a(X), as
well as H(a, Y) does not interact with H(b, Y).

2 Note that we are assuming a simple &rdf predicate where entailment is not performed. hex-
programs offer the possibility to implement RDF semantics either in the language itself or by
means of a different external predicate bounded to a suitable reasoner.

280 T. Eiter et al.

Dependency through external atoms. External atoms can take predicate extensions
as input: as such, external atoms may depend on their input predicates. This is the
only setting where predicate names play a special role.

Disjunctive dependency. Atoms appearing in the same disjunctive head have a tight
interaction, since they intuitively are a means for defining a common nondetermin-
istic search space.

Note that the above dependency relations relate non-ground atoms to each other
rather than predicates. We next formalize the above ideas.

Definition 3. Let P be a program and a, b atoms occurring in some rule of P. Then:

1. a matches with b, symbolically a ≈u b, if there exists a partial substitution θ of
variables in a such that either aθ = b or a = bθ (e.g., H(a, Y) unifies with p(a, Y);
note that this relation is symmetric);

2. a positively precedes b, symbolically a �p b, if there is some rule r ∈ P such that
a ∈ H(r) and b ∈ B+(r);

3. a negatively precedes b, symbolically a �n b, if there is some rule r ∈ P such that
a ∈ H(r) and b ∈ B−(r);

4. a is disjunctive dependent on b, symbolically a ≈d b, if there is some rule r ∈ P
such that a, b ∈ H(r) (note that this relation is symmetric);

5. a is externally dependent on b, symbolically a �e b, if a is an external predicate of
form &g[X̄](Ȳ), where X̄ = X1, . . . , Xn, and either

– b is of form p(Z̄), and, for some i, Xi = p, ti = a, where a is the arity of p(Z̄)
(e.g., &count[item](N) is externally dependent on item(X)), or

– a is an external predicate of form &g[X1, . . . , Xn](Ȳ), and there is some vari-
able Xi of type a, and b is an atom of arity a (e.g., &DL[p,Q](N) is externally
dependent on q(X, Y) provided that Q ranges over binary predicates).

We say that a precedes b, if a � b, where � = ⋃i∈{p,n,e} �i ∪⋃i∈{u,d} ≈i. Furthermore,
a strictly precedes b, symbolically a ≺ b, if a �+ b but b
�+ a, where + is the transitive
closure operator.

We can now define several structural properties of hex-programs.

Definition 4. Let P be a hex-program and � the relation defined above. We say that
P is (i) nonrecursive, if � is acyclic; (ii) stratified, if there is no cycle in � containing
some atom a and b such that a �n b; (iii) e-stratified, if there is no cycle in � containing
some atom a and b such that a �e b; and (iv) totally stratified, if it is both stratified and
e-stratified.

For instance, the program Pex from Section 2 is both stratified and e-stratified. More-
over, rules (1) and (2) form a nonrecursive program.

3.2 Dealing with Infinite Domains

Given a hex-program P, its grounding grnd(P) is infinite in general, and cannot be
reduced straightforwardly to a finite portion since, given an external predicate &g, the

Effective Integration of Declarative Rules with External Evaluations 281

co-domain of F&g is unknown and possibly infinite. It is thus important to restrict the
usage of external predicates. Such restrictions are intended to bound the number of
symbols to be taken into account to a finite totality, whilst external knowledge in terms
of new symbols can still be brought into a program.

Definition 5. Given a rule r, the set of safe variables in r is the smallest set X of vari-
ables such that (i) X appears in a positive ordinary atom in the body of r, or (ii) X
appears in the output list of an external atom &g[Y1, . . . , Yn](X1, . . . , Xm) in the body of
r and Y1, . . . , Yn are safe. A rule r is safe, if each variable appearing in a negated atom
and in any input list is safe, and variables appearing in H(r) are safe.

For instance, the rule r : C(X) ← url(U),&rdf [U](X, rdf :subClassOf ,C) is safe. Intu-
itively, this notion captures those rules for which input to external atoms can be deter-
mined by means of other atoms in the same rule. Given the extension of the predicate
url, the number of relevant ground instances of r intuitively is finite and can be deter-
mined by repeated calls to F&rdf .

In some cases, safety is not enough for determining finiteness of the set of relevant
symbols to be taken in account. This motivates the following stronger notion:

Definition 6. A rule r is strongly safe in P iff each variable in r occurs in some ordinary
atom b ∈ B+(r) and each atom a ∈ H(r) strictly precedes b.

The rule r above is not strongly safe. Indeed, if some external URL invoked by means
of &rd f contains some triple of form (X, rdf :subClassOf , url), the extension of the url
predicate is potentially infinite. The rule

r′ : instanceOf (C, X)← concept(C), ob j(X), url(U),
&rd f [U](X, rdf :subClassOf ,C)

is strongly safe, if concept(C), obj(X), and url(U) do not precede instanceOf (C, X).
The strong safety condition is, anyway, only needed for rules which are involved in

cycles of �. In other settings, the ordinary safety restriction is enough. This leads to
the following notion of a domain-expansion safe program. Let grndU(P) be the ground
program generated from P using only the set U of constants.

Definition 7. A hex-program P is domain-expansion safe iff (i) each rule r ∈ P is safe,
and (ii) each rule r ∈ P containing some b ∈ B(r) such that, for each a ∈ H(r) with
a ⊀+ b, a is strongly safe.

The following theorem states that we can effectively reduce the grounding of domain-
expansion safe programs to a finite portion.

Theorem 1. For any domain-expansion safe hex-program P, there exists a finite set
D ⊆ C such that grndD(P) is equivalent to grndC(P) (i.e., has the same answer sets).

Proof (Sketch). The proof proceeds by considering that, although the Herbrand universe
of P is in principle infinite, only a finite set D of constants can be taken into account.
From D, a finite ground program, grndD(P), can be used for computing answer sets.

282 T. Eiter et al.

Provided that P is domain-expansion safe, it can be shown that grndD has the same
answer sets as grndC(P).

A program that incrementally builds D and grndD(P) can be sketched as follows:
We update a set of active ordinary atoms A and a set R of ground rules (both of them
initially empty) by means of a function ins(r, A), which is repeatedly invoked over all
rules r ∈ P until A and R reach a fixed point. The function ins(r, A) is such that, given
a safe rule r and a set A of atoms, it returns the set of all ground versions of r such
that each of its body atom a is either (i) such that a ∈ A or (ii) if a is external, fa
is true. D is the final value of A, and R = grndA(P). It can be shown that the above
algorithm converges and grndD(P) ⊆ grndC(P). The program grndC(P) can be split
into two modules: N1 = grndD(P) and N2 = grndC(P) \ grndD(P). It holds that each
answer set S of grndC(P) is such that S = S 1∪S 2, where S 1 ∈ AS(N′1) and S 2 ∈ AS(N2).
N′1 is a version of N1 enriched with all the ground facts in AS(N2). Also, we can show
that the only answer set of N2 is the empty set. From this the proof follows. ��

3.3 Splitting Theorem

The dependency structure of a program P, given by its dependency graph �, can be
employed for detecting modules inside the program itself. Intuitively, a module cor-
responds to a strongly-connected component3 of � and can be evaluated separately.
The introduction of a modular evaluation strategy would allow to use, on the one hand,
different evaluation algorithms depending on the nature of the module at hand. For
instance, a module without external atoms can be directly evaluated by an efficient
ASP solver, whereas a specific algorithm for stratified modules with monotonic exter-
nal predicates can be devised (see e.g., the evaluation strategy adopted in [7] for dl-
programs). On the other hand, such a strategy would enable the evaluation of a broader
class of programs, given by the arbitrary composition of modules of different nature.

A way for splitting a program in sub-modules can be given by the notion of a splitting
set [17]. Intuitively, given a program P, a splitting set S is a set of ground atoms that
induce a sub-program grnd(P′) ⊂ grnd(P) whose models M = {M1, . . . ,Mn} can be
evaluated separately. Then, an adequate splitting theorem shows how to plug inM in a
modified version of P \ P′ so that the overall models can be computed.

The traditional notion of a splitting set and the associated theorem must be adapted in
two respects. First, the new notions of dependency have to be accommodated. Second,
we need a notion of splitting set built on non-ground programs. Indeed, given P, grnd(P)
is in principle infinite. Even if, under reasonable assumptions, we must take only a finite
portion of grnd(P) into account, this portion can be exponentially larger than P. This
makes the idea of managing sub-modules at the ground level infeasible.

Definition 8. A global splitting set for a hex-program P is a set A of atoms appearing
in P such that, whenever a ∈ A and a � b, for some atom b appearing in P, then b
belongs to A. The global bottom of P with respect to A is the set of rules gbA(P) =
{r ∈ P | for each a ∈ H(r) there is an element b ∈ A such that a �u b}.

3 A strongly-connected component (SCC) is a maximal subgraph in which every node is reach-
able from every other node. Note that we modify this definition and let a single node, which is
not part of any SCC, be an SCC by itself.

Effective Integration of Declarative Rules with External Evaluations 283

For example, given the program P

triple(X, Y, Z)← &rdf [u](X, Y, Z), (13)

C(X)← triple(X, rdf :subClassOf ,C), (14)

r(X, Y)← triple(X, r,C), (15)

then, S={triple(X, r,C), triple(X, Y, Z), triple(X, rdf :subClassOf ,C), r(X, Y),&rdf [u](X,
Y, Z)} is a splitting set for P. We have gbS (P) = {(13), (15)}.
Definition 9. For an interpretation I and a program Q, the global residual, gres(Q, I),
is a program obtained from Q as follows:

1. add all the atoms in I as facts;
2. for each “resolved” external atom a = &g[X1, . . . , Xn](Y1, . . . , Ym) occurring in

some rule of Q, replace a with a fresh ordinary atom d&g(Y1, . . . , Ym) (which we
call additional atom), and add the fact d&g(c̄) for each tuple c̄= 〈c1, . . . , cn〉 output
by EVAL(&g,Q, I).

For space reasons, we omit here the formal notion of a “resolved” external atom and the
details of EVAL(&g,Q, I). Informally, an external atom a is resolved if its actual input
list depends only on atoms in I. Thus, the input to &g is fully determined and its output
can be obtained by calling F&g with suitable parameters. To this end, EVAL(&g,Q, I)
performs one or multiple calls to F&g. The external atom &rd f [u](X, Y, Z), for instance,
has a ground input list. Thus EVAL(&g,Q, I) amounts to computing F&g(Πp/1(I, u)).
EVAL is more involved in case of non-ground input terms. Here, some preliminary
steps are required.

Intuitively, given a program P = {triple(X, Y, Z) ← &rdf [url](X, Y, Z)} and the inter-
pretation I = {url(“http://www.gibbi.com/foaf.rdf”)}, its residual is

gres(P, I) = {triple(X, Y, Z)← drdf (X, Y, Z), . . . ,
d&rdf (“me”, “http://xmlns.com/foaf/0.1/workplaceHomepage”,

“http://www.mat.unical.it/ianni”)}.
We can now formulate a generalization of the Splitting Theorem from [17].

Theorem 2 (Global Splitting Theorem). Let P be a domain-expansion safe program
and let A be a global splitting set for P. Then, M \ D ∈ AS(P) iff M ∈ AS(gres(P \
gbA(P), I)), where I ∈ AS(gbA(P)), and D is the set of additional atoms in gres(P \
gbA(P), I) with predicate name of form d&g.

Proof (Sketch). The idea behind the proof is that a splitting set A denotes a portion of P
(viz., the bottom gbA(P)) whose answer sets do not depend from the rest of the program.
Also, gbA(P) is the only portion of P necessary in order to compute the extension of
atoms appearing in A in any model. That is, for each model M ∈ AS(P), we have that
M ∩GA ∈ AS(gbA(P)), where GA is the set of all ground instances (built from constants
in C) of atoms in A. This claim can be exploited in the opposite direction as follows: We
first computeM′ = AS(gbA(P)). Then, we simplify P to Ps by removing gbA(P). The
answer sets of {gres(Ps,M′) | M′ ∈ M′} are answer sets of P provided that additional
atoms in D are stripped out. ��
The above theorem is a powerful tool for evaluating a hex-program by splitting it re-
peatedly in modules, which we consider next.

284 T. Eiter et al.

Splitting Evaluation Algorithm
(Input: a hex-program P; Output: AS(P))

1. Determine the precedes relation � for P.
2. Partition the set of atoms of P into the set Comp = {C1, . . . ,Cn} of strongly connected

components Ci of �, and define that Ci ≺ C j iff there is some a ∈ Ci and some b ∈ C j such
that a ≺ b.

3. Set T � Comp andM � {{}} (the empty model). The setM will eventually contain AS(P)
(which is empty, in case inconsistency is detected).

4. While T � ∅ do:
5. Pop from T some C such that for no C′ ∈ T we have C ≺ C′.
6. LetM � ⋃M∈M AS(gres(bC(P),M)).
7. IfM = ∅, then halt (inconsistency, no answer set exists).
8. P � P \ bC(P).

Fig. 1. Splitting algorithm

3.4 Splitting Algorithm

The class of domain-expansion safe hex-programs encompasses a variety of practical
situations. Note that such programs need not be stratified, and may harbor nondetermin-
ism.

We can design a splitting evaluation algorithm for hex-programs P under the follow-
ing rationale. First of all, P is decomposed into strongly connected components. Then, a
partial ordering is created between such components. Given a current setM of models,
for each component C, we evaluate the answer sets of its possible residuals with respect
to elements of M. The actual method for computing the answer sets of each residual
depends on its structure. The detailed algorithm is depicted in Figure 1.4

In fact, we can generalize this algorithm by popping from T a set E ⊆ T of compo-
nents such that for each Ci ∈ E, {C j ∈ T | C j ≺ Ci} ⊆ E holds (i.e., E is downwards
closed under ≺ with respect to T). For instance, unstratified components without exter-
nal atoms may be evaluated at once.

Example 8. Consider program Pex from Section 2. We mimic an iteration of the split-
ting algorithm. The set S = {pick(P), drop(P)} forms a strongly connected component.
Assume at the moment of evaluating this componentM contains the single answer set
M = {proposition(p1), proposition(p2), axiomatic(p2), . . .}. At this stage, P no longer
contains rules (1) and (2), so the bottom of S is formed by rules (3) and (4). Then,
gres(bC(P),M) is the following program:

proposition(p1)←, proposition(p2) ← , . . . (16)

axiomatic(p2) ← , (17)
. . .

pick(P) ∨ drop(P) ← proposition(P), (18)

pick(P) ← axiomatic(P). (19)

4 M may contain exponentially many intermediate models. A variant of the algorithm avoiding
this by computing one model at a time is straightforward, but omitted for simplicity.

Effective Integration of Declarative Rules with External Evaluations 285

having two answer set M1 = {. . . , pick(p1), pick(p2), . . . } and M2 = {. . . , drop(p1),
pick(p2), . . . }. Then, P is modified by deleting rules (3) and (4). �

3.5 Special Algorithms for Components

The above algorithm enables to exploit special evaluation algorithms depending on the
specific structure of a given strongly connected component C and its corresponding
residual program. In particular:

– recursive positive programs (either e-stratified or not) with monotonic external
atoms can be evaluated by an adequate fixed-point algorithm as described in [7];

– programs without external atoms (either stratified or not) can be directly mapped to
a corresponding ASP program and evaluated by some ASP solver (e.g., DLV); and

– generic components with generic external atoms can be evaluated by an apposite
guess and check strategy (cf. [7]).

3.6 Current Prototype

The experimental prototype for evaluating hex-programs, dlvhex, mainly follows the
algorithm presented in Section 3.4. After transforming the higher-order program into a
first-order syntax and decomposing it into its dependency graph, dlvhex uses an external
answer-set solver to evaluate each of the components. The functions for computing the
external atoms are embedded in so-called plug-ins, which are shipped separately and
linked dynamically to the main application.

For a more detailed presentation of the implementation, we refer the reader to [9]
and http://www.kr.tuwien.ac.at/research/dlvhex.

4 Related Work

A number of works are related to ours in different respects. We group literature into
works more tailored to the Semantic Web and others of a more general perspective. The
works of Heymans et al. [14, 15] on open and conceptual logic programs fall into the
first group. Here, infinite domains are considered, in a way similar to classical logics
and/or description logics, but adopting answer-set semantics based on grounding. The
syntax of rules is restricted. In [15], call atoms are considered similar to ours, but only
restricted to the propositional setting. They also consider preferences, which can be
added to our framework in the future.

[10] introduces the notion of a dl-atom, through which a description-logic knowledge
base can be interfaced from an answer-set program. The notion of stratification given
there is subsumed by the one in this paper, given that stratified dl-programs of [10] can
be viewed as an instance of hex-programs.

Inspired by [10], Antoniou et al. [25] have used dl-atoms for a hybrid combination of
defeasible and description logic, and have used in [24] an extension of dl-programs for
ontology merging and alignment, which fits our framework. Early work on hybrid com-
bination of logic programs and description logics appeared in [19, 5]. Both works do

http://www.kr.tuwien.ac.at/research/dlvhex

286 T. Eiter et al.

not consider the issue of bidirectional flow of information to and from external sources
and prescribe more restrictive safety conditions. Also similar in spirit is the TRIPLE
language [22]. The semantics of TRIPLE considers Horn rules under the well-founded
semantics. However, the information flow here is unidirectional.

Ross [21] developed a notion of stratification for HiLog programs, which basically
constitute the fragment of hex-programs without external atoms. Our notion of stratifi-
cation is more general (as it handles external atoms), and no special range restrictions
on predicate variables are prescribed.

The use of external atoms in logic programs under the answer-set semantics dates
back to [6], where they have been modeled as generalized quantifiers. In general, this
approach (based on the usual reduct by Gelfond and Lifschitz [12]) is different from
ours, and no value invention has been considered there. The latter problem has been
studied extensively in the database field. For instance, Cabibbo [3] studied decidable
fragments of the ILOG language, which featured a special construct for creating new
tuple identifiers in relational databases. He developed notions of safety similar to ours
(in absence of higher order atoms) and gave conditions such that new values do not
propagate in infinite chains.

In a broad sense, value invention, while keeping decidability in ASP, has been con-
sidered in [23, 2, 4]. In [23, 2], potentially infinite domains are considered by allowing
function symbols, whose usage is restricted. Syrjänen [23] introduced ω-restricted pro-
grams, in which, roughly, all unstratified rules according to the dependency graph are
put in some special stratum ω at the top level. Then, each function term must be bound
by some predicate which belongs to some lower stratum. However, the models of ω-
restricted programs have always finite positive part. They are a subclass of Bonatti’s
finitary programs [2], which have been designed for query answering. The work of Cal-
imeri and Ianni [4] considered ASP with external atoms, but input and output arguments
are restricted to constants (individuals), and no higher-order atoms are present. Thus,
the framework there is subsumed by ours.

5 Conclusion and Future Work

We have discussed methods and techniques by which an integration of a rule-based
formalism that has higher-order features and supports external evaluations, as given by
the powerful framework of hex-programs, can be made effective. In this way, declara-
tive tool support for a wide range of reasoning applications on the Semantic Web at a
high level of abstraction can be realized. For example, merging and alignment of on-
tologies [24], or combining and integrating different information sources on the Web in
general, which possibly have different formats and semantics.

The current prototype implementation features atoms for accessing RDF and OWL
ontologies, and provides a tool kit for customized external evaluation plug-ins that the
user might create for his or her application. Our ongoing work concerns enhancing and
further improving the current prototype, as well as extending the classes of effective hex-
programs. Finally, applications in personalized Web information systems are targeted.

Acknowledgement. This work was partially supported by the Austrian Science Funds
project P17212 and the European Commission project REWERSE (IST-2003-506779).

Effective Integration of Declarative Rules with External Evaluations 287

References

1. G. Antoniou, C. V. Damásio, B. Grosof, I. Horrocks, M. Kifer, J. Maluszynski, and P. F.
Patel-Schneider. Combining Rules and Ontologies. A Survey. Technical Report IST506779/
Linkoeping/I3-D3/D/PU/a1, Linköping University, 2005.

2. P. A. Bonatti. Reasoning with Infinite Stable Models. Artificial Intelligence, 156(1):75–111,
2004.

3. L. Cabibbo. The Expressive Power of Stratified Logic Programs with Value Invention. In-
formation and Computation, 147(1):22–56, 1998.

4. F. Calimeri and G. Ianni. External Sources of Computation for Answer Set Solvers. In Proc.
LPNMR 2005, pp. 105–118.

5. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog and
Description Logics. J. Intell. Inf. Syst., 10(3):227–252, 1998.

6. T. Eiter, G. Gottlob, and H. Veith. Modular Logic Programming and Generalized Quantifiers.
In Proc. LPNMR’97, pp. 290–309.

7. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. Nonmonotonic Description Logic Pro-
grams: Implementation and Experiments. In Proc. LPAR 2004, pp. 511–527.

8. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. A Uniform Integration of Higher-order
Reasoning and External Evaluations in Answer Set Programming. In Proc. IJCAI 2005.

9. T. Eiter, G. Ianni, R. Schindlauer, and H. Tompits. dlvhex: A System for Integrating Multiple
Semantics in an Answer-Set Programming Framework. In Proc. WLP 2006, pp. 206–210.

10. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer Set Program-
ming with Description Logics for the Semantic Web. In Proc. KR 2004, pp. 141–151.

11. W. Faber, N. Leone, and G. Pfeifer. Recursive Aggregates in Disjunctive Logic Programs:
Semantics and Complexity. In Proc. JELIA 2004, pp. 200–212.

12. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive Data-
bases. New Generation Computing, 9:365–385, 1991.

13. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs: Combining
Logic Programs with Description Logics. In Proc. WWW 2003, pp. 48–57.

14. S. Heymans, D. V. Nieuwenborgh, and D. Vermeir. Nonmonotonic Ontological and Rule-ba-
sed Reasoning with Extended Conceptual Logic Programs. In Proc. ESWC 2005.

15. S. Heymans, D. V. Nieuwenborgh, and D. Vermeir. Preferential Reasoning on a Web of Trust.
In Proc. ISWC 2005, pp. 368–382.

16. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean. SWRL: A
Semantic Web Rule Language Combining OWL and RuleML, 2004. W3C Member Submis-
sion.

17. V. Lifschitz and H. Turner. Splitting a Logic Program. In Proc. ICLP’94, pp. 23–38.
18. T. Przymusinski. On the Declarative Semantics of Deductive Databases and Logic Programs.

In Foundations of Deductive Databases and Logic Programming., pp. 193–216. 1988.
19. R. Rosati. Towards Expressive KR Systems Integrating Datalog and Description Logics:

Preliminary Report. In Proceedings DL’99, pp. 160–164.
20. K. A. Ross. Modular Stratification and Magic Sets for Datalog Programs with Negation. J.

ACM, 41(6):1216–1266, 1994.
21. K. A. Ross. On Negation in HiLog. Journal of Logic Programming, 18(1):27–53, 1994.
22. M. Sintek and S. Decker. Triple - a Query, Inference, and Transformation Language for the

Semantic Web. In Proc. ISWC 2004, pp. 364–378.
23. T. Syrjänen. Omega-restricted Logic Programs. In Proc. LPNMR 2001, pp. 267–279.
24. K. Wang, G. Antoniou, R. W. Topor, and A. Sattar. Merging and Aligning Ontologies in

dl-Programs. In Proc. RuleML 2005, pp. 160–171.
25. K. Wang, D. Billington, J. Blee, and G. Antoniou. Combining Description Logic and Defea-

sible Logic for the Semantic Web. In Proc. RuleML 2004, pp. 170–181.

	Introduction
	\sc\bfseries{hex}-Programs
	Decomposition of \sc\bfseries{hex}-Programs
	Dependency Information Treatment
	Dealing with Infinite Domains
	Splitting Theorem
	Splitting Algorithm
	Special Algorithms for Components
	Current Prototype

	Related Work
	Conclusion and Future Work

