
Effective Inter-Component Communication Mapping in Android with Epicc:

An Essential Step Towards Holistic Security Analysis

Damien Octeau1, Patrick McDaniel1, Somesh Jha2, Alexandre Bartel3, Eric Bodden4, Jacques

Klein3, and Yves Le Traon3

1Department of Computer Science and Engineering, Pennsylvania State University
2Computer Sciences Department, University of Wisconsin,

3Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg
4EC SPRIDE, Technische Universität Darmstadt

{octeau,mcdaniel}@cse.psu.edu, jha@cs.wisc.edu, {alexandre.bartel,jacques.klein,yves.letraon}@uni.lu, eric.bodden@ec-spride.de

Abstract

Many threats present in smartphones are the result of in-

teractions between application components, not just ar-

tifacts of single components. However, current tech-

niques for identifying inter-application communication

are ad hoc and do not scale to large numbers of ap-

plications. In this paper, we reduce the discovery of

inter-component communication (ICC) in smartphones

to an instance of the Interprocedural Distributive Envi-

ronment (IDE) problem, and develop a sound static anal-

ysis technique targeted to the Android platform. We ap-

ply this analysis to 1,200 applications selected from the

Play store and characterize the locations and substance

of their ICC. Experiments show that full specifications

for ICC can be identified for over 93% of ICC locations

for the applications studied. Further the analysis scales

well; analysis of each application took on average 113

seconds to complete. Epicc, the resulting tool, finds ICC

vulnerabilities with far fewer false positives than the next

best tool. In this way, we develop a scalable vehicle to

extend current security analysis to entire collections of

applications as well as the interfaces they export.

1 Introduction

The rapid rise of smartphone has led to new applications

and modes of communication [1]. The scale of the new

software markets is breathtaking; Google’s Play Store

has served billions of application downloads [31] within

a few years. Such advances have also come with a dark

side. Users are subjected to privacy violations [11, 12]

and malicious behaviors [33] from the very applications

they have come to depend on. Unfortunately, for many

reasons, application markets cannot provide security as-

surances on the applications they serve [26], and previ-

ous attempts at doing so have had limited success [27].

Past analyses of Android applications [12, 14, 15, 17,

19, 36] have largely focused on analyzing application

components in isolation. Recent works have attempted

to expose and analyze the interfaces provided by com-

ponents to interact [6, 12], but have done so in ad hoc

and imprecise ways. Conversely, this paper attempts to

formally recast Inter-Component Communication (ICC)

analysis to infer the locations and substance of all inter-

and intra-application communication available for a tar-

get environment. This approach provides a high-fidelity

means to study how components interact, which is a nec-

essary step for a comprehensive security analysis. For

example, our analysis can also be used to perform in-

formation flow analysis between application components

and to identify new types of attacks, such as application

collusion [5, 8], where two applications work together

to compromise the privacy of the user. In general, most

vulnerability analysis techniques for Android need to an-

alyze ICC, and thus can benefit from our analysis.

Android application components interact through ICC

objects – mainly Intents. Components can also commu-

nicate across applications, allowing developers to reuse

functionality. The proposed approach identifies a spec-

ification for every ICC source and sink. This includes

the location of the ICC entry point or exit point, the ICC

Intent action, data type and category, as well as the ICC

Intent key/value types and the target component name.

Note that where ICC values are not fixed we infer all

possible ICC values, thereby building a complete speci-

fication of the possible ways ICC can be used. The spec-

ifications are recorded in a database in flows detected by

matching compatible specifications. The structure of the

specifications ensures that ICC matching is efficient.

We make the following contributions in this work:

• We show how to reduce the analysis of Intent ICC

to an Interprocedural Distributive Environment (IDE)

problem. Such a problem can be solved efficiently

using existing algorithms [32].

• We develop Epicc, a working analysis tool built

on top of an existing IDE framework [3] within

the Soot [34] suite, which we have made available



Intent
  - Action
  - Categories
  - Data

Component A Component B

Intent Filter
  - Actions
  - Categories
  - Data

Figure 1: Implicit Intent ICC

at http://siis.cse.psu.edu/epicc/.

• We perform a study of ICC vulnerabilities and com-

pare it to ComDroid [6], the current state-of-the-art.

Our ICC vulnerability detection shows significantly

increased precision, with ComDroid flagging 32%

more code locations. While we use our tool to per-

form a study of some ICC vulnerabilities, our anal-

ysis can be used to address a wider variety of ICC-

related vulnerabilities.

• We perform a study of ICC in 1,200 representative

applications from the free section of the Google Play

Store. We found that the majority of specifications

were relatively narrow, most ICC objects having a

single possible type. Also, key/value pairs are widely

used to communicate data over ICC. Lastly, our anal-

ysis scales well, with an average analysis time of 113

seconds per application.

1.1 Android ICC

Android applications are developed in Java and compiled

to a platform-specific Dalvik bytecode, and are com-

posed of four types of components:

• An Activity represents a user screen. The user inter-

face is defined through Activities.

• A Service allows developers to specify processing

that should take place in the background.

• A Content Provider allows sharing of structured data

within and across applications.

• A Broadcast Receiver is a component that receives

broadcast communication objects, called Intents.

Intents are the primary vehicle for ICC. For example, a

developer might want to start a component to display the

user’s current location on a map. She can create an Intent

containing the user’s location and send it to a component

that renders the map. Developers can specify an Intent’s

target component (or target components) in two ways, (a)

explicitly, by specifying the target’s application package

and class name, and (b) implicitly by setting the Intent’s

action, category or data fields.

In order for a component to be able to receive implicit

Intents, Intent Filters have to be specified for it in the

application’s manifest file. Illustrated in Figure 1, Intent

Filters describe the action, category or data fields of the

Intents that should be delivered by the operating system

to a given application component.

ICC can occur both within a single application and be-

tween different applications. In order for a component to

be accessible to other applications, its exported attribute

has to be set to true in the manifest file. If the exported

attribute of a component is not defined, the OS makes

the component available to other applications if an Intent

Filter has been declared for it.

Intents can carry extra data in the form of key-value

mappings. This data is contained in a Bundle object as-

sociated with the Intent. Intents can also carry data in the

form of URIs with context-specific references to external

resources or data.

Developers can restrict access to components using

permissions. Permissions are generally declared in the

manifest file. A component protected by a permission

can only be addressed by applications that have obtained

that permission. Permission requests by applications are

granted by users at install time and enforced by the OS

at runtime.

2 Android ICC Analysis

As highlighted above, the goal of the analysis presented

in this paper is to infer specifications for each ICC source

and sink in the targeted applications. These specifica-

tions detail the type, form, and data associated with the

communication. We consider communication with Con-

tent Providers to be out of scope. Our analysis has the

following goals:

Soundness - The analysis should generate all specifica-

tions for ICC that may appear at runtime. Informally, we

want to guarantee that no ICC will go undetected. Our

analysis was designed to be sound under the assumption

that the applications use no reflection or native calls, and

that the components’ life cycle is modeled completely.

Precision - The previous goal implies that some gen-

erated ICC specifications may not happen at runtime

(“false positives”). Precision means that we want to

limit the number of cases where two components are de-

tected as connected, even though they are not in practice.

Our analysis currently does not handle URIs1. Since the

data contained in Intents in the form of URIs is used to

match Intents to target components, not using URIs as

a matching criterion potentially implies more false posi-

tives. Other possible sources of imprecision include the

points-to and string analyses. We empirically demon-

strate analysis precision in Section 6.1.

Note that, since we do not handle URIs yet, this im-

plies that Content Providers are out of the scope of this

paper and will be handled in future work.

1Extending the analysis to include URIs is a straightforward exer-

cise using the same approaches defined in the following sections. We

have a working prototype and defer reporting on it to future work.



1 private OnClickListener mMyListener =
2 new OnClickListener () {
3 public void onClick(View v) {
4 Intent intent = new Intent ();
5 intent.setAction("a.b.ACTION");
6 intent.addCategory("a.b.CATEGORY");
7 startActivity(intent); } };

Figure 2: Example of implicit Intent communication

2.1 Applications

Although Android applications are developed in Java,

existing Java analyses cannot handle the Android-

specific ICC mechanisms. The analysis presented in this

paper deals with ICC and can be used as the basis for

numerous important analyses, for example:

Finding ICC vulnerabilities - Android ICC APIs are

complex to use, which causes developers to commonly

leave their applications vulnerable [6, 12]. Examples of

ICC vulnerabilities include sending an Intent that may be

intercepted by a malicious component, or exposing com-

ponents to be launched by a malicious Intent. The first

application of our work is in finding these vulnerabilities.

We present a study of ICC vulnerabilities in Section 6.4.

Finding attacks on ICC vulnerabilities - Our analy-

sis can go beyond ICC vulnerability detection and can be

used for a holistic attack detection process. For each app.

we compute entry points and exit points and systemati-

cally match them with entry and exit points of previously

processed applications. Therefore, our analysis can de-

tect applications that may exploit a given vulnerability.

Inter-component information flow analysis - We com-

pute which data sent at an exit point can potentially be

used at a receiving entry point. An information flow anal-

ysis using our ICC analysis find flows between a source

in a component and a sink in a different component (pos-

sibly in a different application).

In the case where the source and sink components

belong to different applications, we can detect cases of

application collusion [5, 8]. The unique communica-

tion primitives in Android allow for a new attack model

for malicious or privacy-violating application develop-

ers. Two or more applications can work together to leak

private information and go undetected. For example, ap-

plication A can request access to GPS location informa-

tion, while application B requests access to the network.

Permissions requested by each application do not seem

suspicious, therefore a user might download both appli-

cations. However, in practice it is possible for A and B to

work together to leak GPS location data to the network.

It is almost impossible for users to anticipate this kind of

breach of privacy. However, statically detecting this at-

tack is a simple application of our ICC analysis, whereas

the current state-of-the-art requires dynamic analysis and

modification of the Android platform [5].

1 public void onClick(View v) {
2 Intent i = new Intent ();
3 i.putExtra("Balance", this.mBalance);
4 if (this.mCondition) {
5 i.setClassName("a.b",

"a.b.MyClass");
6 } else {
7 i.setAction("a.b.ACTION");
8 i.addCategory("a.b.CATEGORY");
9 i = modifyIntent(i);

10 }
11 startActivity(i); }
12
13 public Intent modifyIntent(Intent in) {
14 Intent intent = new Intent(in);
15 intent.setAction("a.b.NEW_ACTION");
16 intent.addCategory("a.b.NEW_CATEGORY");
17 return intent; }

Figure 3: Intent communication: running example

2.2 Examples

Figure 2 shows a representative example of ICC pro-

gramming. It defines a field that is a click listener.

When activated by a click on an element, it creates In-

tent intent and sets its action and category. Finally, the

startActivity() call takes intent as an argument. It causes

the OS to find an activity that accepts Intents with the

given action and category. When such an activity is

found, it is started by the OS. If several activities meeting

the action and category requirements are found, the user

is asked which activity should be started.

This first example is trivial. Let us now consider the

more complex example from Figure 3, which will be

used throughout this paper. Let us assume that this piece

of code is in a banking application. First, Intent intent

containing private data is created. Then, if condition

this.mCondition is true, intent is made explicit by tar-

geting a specific class. Otherwise, it is made implicit.

Next, an activity is started using startActivity(). Note

that we have made the implicit Intent branch contrived to

demonstrate how function calls are handled. In this ex-

ample, the safe branch is the one in which intent targets a

specific component. The other one may leak data, since it

might be intercepted by an malicious Activity. We want

to be able to detect that possible information leak. In

other words, we want to infer the two possible Intent val-

ues at startActivity(). In particular, knowing the implicit

value would allow us to find which applications can in-

tercept it and to detect possible eavesdropping.

3 Connecting Application Components:

Overview

Our analysis aims at connecting components, both within

single applications and between different applications.

For each input application A, it outputs the following:

1. A list of entry points for A that may be called by com-



ponents in A or in other applications.

2. A list of exit points for A where A may send an Intent

to another component. That component can be in A

or in a different application. The value of Intents at

each exit point is precisely determined, which allows

us to accurately determine possible targets.

3. A list of links between A’s own components and be-

tween A’s components and other applications’ com-

ponents. These links are computed using 1. and 2. as

well as all the previously analyzed applications.

Let us consider the example in Figure 3, which

is part of our example banking application. The

startActivity(i) instruction is an exit point for the

application. Our analysis outputs the value of i at this in-

struction as well as all the possible targets. These targets

can be components of our banking application itself or

components of previously analyzed applications.

Figure 4 shows an overview of our component match-

ing process. It can be divided into three main functions:

• Finding target components that can be started by

other components (i.e. “entry points”) and identify-

ing criteria for a target to be activated.

• Finding characteristics of exit points, i.e. what kind

of targets can be activated at these program points.

• Matching exit points with possible targets.

Given an application, we start by parsing its manifest

file to extract package information, permissions used and

a list of components2 and associated intent filters (1).

These components are the potential targets of ICC. We

match these possible entry points with the pool of already

computed exit points (2). We then add the newly com-

puted entry points to our database of entry points (3).

This database and the exit points database grow as we

analyze more applications. Then we proceed with the

string analysis, which identifies key API method argu-

ments such as action strings or component names (4).

Next, the main Interprocedural Distributive Environment

(IDE) analysis precisely computes the values of Intent

used at ICC API calls (5). It also compute the values

of Intent Filters that select Intents received by dynami-

cally registered Broadcast Receivers. These exit points

are matched with entry points from the existing pool of

entry points (6). The newly computed exit points are

stored in the exit point database to allow for later match-

ing (7). The values associated with dynamically reg-

istered Broadcast Receivers are used for matching with

exit points in the database (8). Finally, these values are

stored in the entry point database (9).

One of the inputs to our analysis is a set of class files.

These classes are in Java bytecode format, since our anal-

ysis is built on top of Soot [34], an existing Java analysis

framework. Android application code is distributed in

2Broadcast Receivers can be registered either statically in the man-

ifest file or dynamically using the registerReceiver() methods.

a platform-specific Dalvik bytecode format that is opti-

mized for resource-constrained devices, such as smart-

phones and tablets. Therefore, we use Dare [29], an ex-

isting tool that efficiently and accurately retarget Dalvik

bytecode to Java bytecode. While other tools such as

dex2jar3 and ded [28] are available, Dare is currently

the only formally defined one and other tools’ output is

sometimes not reliable.

The manifest parsing step is trivial and we use a sim-

ple string analysis (see Section 6). Also, the matching

process matches exit points with entry points. It can be

made efficient if properly organized in a database. Thus,

we focus our description on the main IDE analysis.

It is important to distinguish between what is com-

puted by the string analysis and by the IDE analysis. In

the example from Figure 2, the string analysis computes

the values of the arguments to the API calls setAction()
and addCategory(). The IDE analysis, on the other

hand, uses the results from the string analysis along with

a model of the Android ICC API to determine the value

of the Intent. In particular, in Figure 2, it determines

that, at the call to startActivity(), Intent intent has action

a.b.ACTION and category a.b.CATEGORY. In Figure 3,

the IDE analysis tells us that i has two possibles values

at the call to startActivity() and determines exactly what

the two possible values are.

Reducing the Intent ICC problem to an IDE prob-

lem [32] has important advantages. Our analysis is scal-

able (see Section 6). Further, it is a precise analysis, in

the sense that it generates few false positives (links be-

tween two components which may not communicate in

reality). Thus, security analyses using our ICC analysis

will not be plagued by ICC-related false positives. This

precision is due to the fact that the IDE framework is

flow-sensitive, inter-procedural and context-sensitive.

The flow-sensitivity means that we can distinguish In-

tent values between different program points. In the

example from Figure 3, if Intent i was used for ICC

right before the call to modi f yIntent(), we would accu-

rately capture that this value is different from the one at

startActivity(). The context-sensitivity means that the

analysis of the call to modi f yIntent() is sensitive to the

method’s calling context. If modi f yIntent() is called at

another location with a different argument i2, the analy-

sis will precisely distinguish between the values returned

by the two calls. Otherwise, in a context-insensitive anal-

ysis, the return value would summarize all possible val-

ues given all contexts in which modi f yIntent() is called

in the program. The value of i computed by a context-

insensitive analysis would be influenced by the value of

i2, which is not the case in reality. That would be signif-

icantly less precise, resulting in more false positives.

3Available at http://code.google.com/p/dex2jar/.



Key string 
values

Entry 

points

Exit 

points

Manifest

Class 

files

Intent 
values

Components, Intent 
Filters & permissions

(1) Parsing

(2) Matching

(4) String 
analysis

(5) IDE 
analysis

(6) Matching

(3) Populating 
database

(7) Populating 
database

ICC 
links

ICC 
links

(9) Populating 
database

Dynamic receivers (Intent 
Filters & permissions)

(8) Matching
ICC 
links

Figure 4: Connecting Application Components

if 
(this.mCondition)

i.setClassName("a.
b", "a.b.MyClass");

i.setAction("a.b.
ACTION");

i.addCategory("a.
b.CATEGORY");

i = modifyIntent(i); 
(CALL)

intent = new Intent(in);

i = modifyIntent(i); 
(RETURN)

intent.setAction("a.b.
NEW_ACTION");

intent.addCategory("a.
b.NEW_CATEGORY");

return intent;

startActivity(i);

START

END

Normal flow edge
Call edge

Return edge

Call-to-return edge

i.putExtra("Balance", 
this.mBalance);

i = new Intent();

onClick(View v)

modifyIntent(Intent in)

(r)

(c)

(p)

Figure 5: Supergraph G∗ for the program from Figure 3

4 The IDE Framework: Background

The main part of our analysis is based on the IDE frame-

work [32]. In this section, we summarize the main ideas

and notations of the IDE framework. A complete de-

scription is available in [32]. The IDE framework solves

a class of interprocedural data flow analysis problems. In

these problems, an environment contains information at

each program point. For each program idiom, environ-

ment transformers are defined and modify the environ-

ment according to semantics. The solution to this class

of problems can be found efficiently.

4.1 Supergraphs

A program is represented using a supergraph G∗. G∗ is

composed of the control flow graphs of the procedures

in the program. Each procedure call site is represented

by two nodes, one call node representing control right

before the callee is entered and one return-site node to

which control flows right after exiting the callee. Fig-

ure 5 shows the supergraph of the program in Figure 3.

The nodes of a supergraph are program statements.

There are four kinds of edges between these nodes.

Given a call to procedure (p) with call node (c) and

return-site (r), three kinds of edges are used to model

the effects of the procedure call on the environment:

• A call edge between (c) and the first statement of (p).
• A return edge between the last statement of (p) and

(r).
• A call-to-return edge between (c) and (r).

All other edges in the supergraph are normal intrapro-

cedural flow edges. Informally, the call edge transfers

symbols and associated values from the calling method

to the callee when a symbol of interest is a procedure ar-

gument. The return edge transfers information from the

return value of the callee to the environment in the call-

ing procedure. Finally, the call-to-return edge propagates

data flow information that is not affected by the callee,

“in parallel” to the procedure call (e.g., local variables).

4.2 Environment transformers

Let D be a finite set of symbols (e.g., program variables).

D contains at least a symbol Λ that represents the absence

of a data flow fact. Let L = (V,⊔) be a join semilattice

with bottom element ⊥, where V is a set of values4. An

environment e is a function from D to L. The set of envi-

ronments from D to L is denoted by Env(D,L).
Operator ⊔ is defined over Env(D,L) as a natural ex-

tension of ⊔ in semilattice L: for e1,e2 ∈ Env(D,L), e1 ⊔

e2 is such that, for all d ∈D, (e1⊔e2)(d) = e1(d)⊔e2(d).
An environment transformer is a function from

Env(D,L) to Env(D,L). The algorithms from [32]

4A join semilattice is a partially ordered set in which any two ele-

ments have a least upper bound.



Clearing extra data keys
d.clear()

Constructor
b = new Bundle()

Adding int key-value pair
b.putInt("MyInt", mInt)

Copy constructor
b = new Bundle(d)

b

b

b

b

b

b

b

d

d

d

d

d

d

d

Λ

Λ

Λ

Λ Λ

Λ

Λ

λB.BλB.B λB.B

λB.B λB.B λB.BλB.B λB.B

λB.B

λe.e[b 7! ?]

λe.e[b 7! e(d)]

Λ b d

λB.⊥ λB.βb
({MyInt},∅,0,())(B)

λe.e
h

b 7! βb
({MyInt},∅,0,())(e(b))

i

λe.e
h

d 7! βb
(∅,∅,1,())(e(d))

i

λB.βb
(∅,∅,1,())(B)

Figure 6: Pointwise environment transformers for com-

mon Bundle operations

require that the environment transformers be dis-

tributive. An environment transformer t is said to

be distributive if for all e1,e2, . . . ∈ Env(D,L), and

d ∈ D, (t(⊔iei))(d) = (⊔it(ei))(d). It is denoted by

t : Env(D,L)−→d Env(D,L). Environment transform-

ers have a pointwise representation. We show an exam-

ple on Figure 6. Given environment e∈Env(D,L), trans-

former λe.e is the identity, which preserves the value of

e. Given symbol b ∈ D and value B ∈ L, λe.e[b �→ B]
transforms e to an environment where all values are the

same as in e, except that symbol b is associated with

value B. The functions from L to L (represented next

to each arrow in Figure 6) are called micro-functions.

The environment transformer for the copy constructor

call b = new Bundle(d) is λe.e[b �→ e(d)]. It means

that the value associated with b after the instruction is the

same as d’s value before the instruction. In the pointwise

representation, this is symbolized by an arrow between d

and b with an identity function next to it.

We are trying to determine the value associated with

each symbol at program points of interest, which is done

by solving an Interprocedural Distributive Environment

(IDE) problem. An instance IDE problem is defined as a

tuple (G∗
,D,L,M), where:

• G∗ = (N∗
,E∗) is the supergraph of the application be-

ing studied.

• D is the set of symbols of interest.

• L is a join semilattice (V,⊔) with least element ⊥.

• M assigns distributive environment

transformers to the edges of G∗, i.e.

M : E∗
−→ (Env(D,L)−→d Env(D,L)).

1 public ComponentName
makeComponentName () {

2 ComponentName c;
3 if (this.mCondition) {
4 c = new ComponentName("c.d",

"a.b.MyClass");
5 } else {
6 c = new ComponentName("c.d",
7 "a.b.MySecondClass"); }
8 return c; }
9

10 public Bundle makeBundle(Bundle b) {
11 Bundle bundle = new Bundle ();
12 bundle.putString("FirstName",

this.mFirstName);
13 bundle.putAll(b);
14 bundle.remove("Surname");
15 return bundle; }
16
17 public void onClick(View v) {
18 Intent intent = new Intent ();
19 intent.setCompontent(makeComponentName ());
20 Bundle b = new Bundle ();
21 b.putString("Surname", this.mSurname);
22 intent.putExtras(makeBundle(b));
23 registerMyReceiver ();
24 startActivity(intent); }
25
26 public void registerMyReceiver () {
27 IntentFilter f = new IntentFilter ();
28 f.addAction("a.b.ACTION");
29 f.addCategory("a.b.CATEGORY");
30 registerReceiver(new MyReceiver (),
31 f, "a.b.PERMISSION", null); }

Figure 7: ICC objects example

Under certain conditions on the representation of

micro-functions, an IDE problem can be solved in time

O(ED3) [32]. For example, micro-functions should be

applied in constant time. In the model we present in Sec-

tion 5, we relax some of these constraints but find that

the problem can still be solved efficiently in the average

case. When the problem is solved, we know the value as-

sociated with each symbol at important program points.

5 Reducing Intent ICC to an IDE problem

To solve the Intent ICC problem, we need to model

four different kinds of objects. First, ComponentName

objects contain a package name and a class name.

They can be used by explicit Intents. For example, in

method makeComponentName() of Figure 7, a Com-

ponentName object can take two different values de-

pending on which branch is executed. In the first

branch, it refers to class a.b.MyClass from applica-

tion package c.d. In the second one, it refers to class

a.b.MySecondClass. We want to know the possible

return values of makeComponentName().
Second, Bundle objects store data as key-value map-

pings. Method makeBundle() of Figure 7 creates a Bun-

dle and modifies its value. We need to find the possible

return values of makeBundle().
Third, Intent objects are the main ICC communica-



tion objects. They contain all the data that is used to

start other components. In method onClick() of Fig-

ure 7, the target class of intent is set using the re-

turn value of makeComponentName(). Its extra data

is set to the return value of makeBundle(). Finally,

a new Activity is started using the newly created In-

tent. We need to determine the value of intent at the

startActivity(intent) instruction.

Fourth, IntentFilter objects are used for dynamic

Broadcast Receivers. In registerMyReceiver() on Fig-

ure 7, an action and a category are added to IntentFil-

ter f . Then a Broadcast Receiver of type MyReceiver

(which we assume to be defined) is registered us-

ing method registerReceiver(). It receives Intents that

have action a.b.ACTION and category a.b.CATEGORY

and that originate from applications with permission

a.b.PERMISSION. We want to determine the arguments

to the registerReceiver() call. That is, we want to

know that f contains action a.b.ACTION and category

a.b.CATEGORY. We also want to know that the type of

the Broadcast Receiver is MyReceiver.

In this section, we use the notations from Sagiv et

al. [32] summarized in Section 4. We assume that string

method arguments are available. We describe the string

analysis used in our implementation in Section 6.

5.1 ComponentName Model

In this section, we introduce the model we use for Com-

ponentName objects. We introduce the notion of a

branch ComponentName value. It represents the value

that a ComponentName object can take on a single

branch, given a single possible string argument value for

each method setting the ComponentName’s package and

class names, and in the absence of aliasing.

Definition 1. A branch ComponentName value is a tuple

c = (p,k), where p is a package name and k is a class

name.

In method makeComponentName() of Figure 7, two

branch ComponentName values are constructed:

(c.d,a.b.MyClass) (1)

and

(c.d,a.b.MySecondClass) (2)

The next definition introduces ComponentName val-

ues, which represent the possibly multiple values that a

ComponentName can have at a program point. A Com-

ponentName can take several values in different cases:

• After traversing different branches, as in method

makeComponentName() of Figure 7.

• When a string argument can have several values at a

method call.

• When an object reference is a possible alias of an-

other local reference or an object field.

• When an object reference is a possible array element.

In the last two cases, in order to account for the possi-

bility of a false positive in the alias analysis, we keep

track of two branch ComponentName values. One con-

siders the influence of the call on the possible alias and

the other one does not.

Definition 2. A ComponentName value C is a set of

branch ComponentName values: C = {c1,c2, · · · ,cm}.

The set of ComponentName values is denoted as Vc. We

define ⊥ = ∅ and ⊤ as the ComponentName value that

is the set of all possible branch ComponentName val-

ues in the program. The operators ∪ and ⊆ are defined

as traditional set union and comparison operators: for

C1,C2 ∈ Vc, C1 ⊆ C2 iff C1 ∪C2 = C2. Lc = (Vc,∪) is a

join semilattice.

Note that given the definitions of ⊥ and ⊤ as specific

sets, ∪ and ⊆ naturally apply to them. For example, for

all C ∈Vc, ⊤∪C =⊤.

In method makeComponentName() from Figure 7, the

value of c at the return statement is

{(c.d,a.b.MyClass) ,

(c.d,a.b.MySecondClass)} . (3)

It simply combines the values of c created in the two

branches, given by Equations (1) and (2).

We define transformers from Vc to Vc that represent

the influence of a statement or a sequence of statements

on a ComponentName value. A pointwise branch Com-

ponentName transformer represents the influence of a

single branch, whereas a pointwise ComponentName

transformer represents the influence of possibly multiple

branches.

Definition 3. A pointwise branch ComponentName

transformer is a function δ c
(π,χ) : Vc →Vc, where π is a

package name and χ is a class name. It is such that, for

each C ∈Vc,

δ c
(π,χ)(C) = {(π,χ)}

Note that δ c
(π,χ)(C) is independent of C, because API

methods for ComponentName objects systematically re-

place existing values for package and class names. In the

example from Figure 7, the pointwise branch Compo-

nentName transformer corresponding to the first branch

is

δ c
(c.d,a.b.MyClass), (4)

and the one for the second branch is

δ c
(c.d,a.b.MySecondClass). (5)

Definition 4. A pointwise ComponentName transformer

is a function δ c
{(π1,χ1),··· ,(πn,χn)}

: Vc →Vc such that, for

each C ∈Vc,

δ c
{(π1,χ1),··· ,(πn,χn)}

(C) = {(π1,χ1), · · · ,(πn,χn)}

A pointwise ComponentName transformer summa-



rizes the effect of multiple branches (or a single branch

with multiple possible string arguments, or with possi-

ble aliasing) on a ComponentName value. That is, given

the value C of a ComponentName right after statement

si and given transformer δ c
{(π1,χ1),··· ,(πn,χn)}

that sum-

marizes the influence of statements si+1, · · · ,sk on C,

δ c
{(π1,χ1),··· ,(πn,χn)}

(C) represents all the possible values

of C right after sk. In method makeComponentName()
of Figure 7, the pointwise ComponentName transformer

that models the two branches is

δ c
{(c.d,a.b.MyClass),(c.d,a.b.MySecondClass)}. (6)

It combines the transformers given by Equations (4)

and (5). In order to understand how this transformer is

applied in practice, we should mention that the algorithm

to solve IDE problems initially sets values to ⊥ [32].

Therefore, in method makeComponentName(), the value

associated with c is initially ⊥=∅. Using Definition 4,

we can easily see that if we apply the transformer given

by Equation (6), we get the value given by Equation (3).

This confirms that the transformer models the influence

of the two branches:

δ c
{(c.d,a.b.MyClass),(c.d,a.b.MySecondClass)}(⊥)

= {(c.d,a.b.MyClass) ,

(c.d,a.b.MySecondClass)}

5.2 Bundle Model

The model of Bundle objects is defined similarly to the

model of ComponentName objects. An additional diffi-

culty is introduced. The data in a Bundle can be modified

by adding the data in another Bundle to it, as shown in

method makeBundle() of Figure 7. In this example, the

data in Bundle b is added to the data in Bundle bundle.

Bundle bundle is later modified by removing the key-

value pair with key Surname. The issue is that when

the data flow problem is being tackled, the value of b

is not known. Therefore, the influence of the call to

remove("Surname") is not known: if a key-value pair

with key Surname is part of b, then the call removes it

from bundle. Otherwise, it has no influence.

Our approach to deal with this object composition

problem is to perform two successive analyses. In Anal-

ysis I, we use placeholders for Bundles such as b in in-

struction bundle.putAll(b). We also record all subse-

quent method calls affecting bundle. After the problem

is solved, b’s key-value pairs at the putAll(b) method

call are known, as well as the subsequent method calls.

We then perform Analysis II, in which b’s key-value

pairs are added to bundle’s. The influence of the sub-

sequent method call is precisely evaluated and finally the

value of bundle at the return statement can be known.

5.2.1 Analysis I

In the first analysis, we consider intermediate values that

contain “placeholders” for Bundle values that are not

known when the problem is being solved.

Definition 5. An intermediate branch Bundle value is a

tuple bi = (E,O), where:

• E is a set of keys describing extra data.
• O is a tuple of two types of elements. O contains ref-

erences to particular Bundle symbols at instructions

where putAll() calls occur. O also contains functions

from V i
b to V i

b, where V i
b is the set of intermediate Bun-

dle values defined below. These functions represent a

sequence of method calls affecting a Bundle.

The difference with previous definitions is the intro-

duction of O, which models calls to putAll() as well as

subsequent calls affecting the same Bundle. In method

makeBundle() of Figure 7, at the return statement, the in-

termediate branch Bundle value associated with bundle

is (E,O), where

E ={FirstName} (7)

O =((b,bundle.putAll(b)),β b
(∅,{Surname},0,())) (8)

In O, (b,bundle.putAll(b)) is a reference to variable

b at instruction bundle.putAll(b). β b
(∅,Surname,0,())

models the remove() method call. It is defined below.

We just defined intermediate branch Bundle values.

As we did before, we need to consider multiple branches

and related issues (e.g., several possible string values):

Definition 6. An intermediate Bundle value Bi is a set of

intermediate branch Bundle values: Bi = {bi1 , · · · ,bim}.

The set of intermediate Bundle values is V i
b. We define

⊥ = ∅ and ⊤ as the intermediate Bundle value that is

the set of all possible intermediate branch Bundle val-

ues in the program. We define ⊆ and ∪ as natural set

comparison and union operators. They are such that, for

Bi1 ,Bi2 ∈V i
b, Bi1 ⊆ Bi2 iff Bi1 ∪Bi2 = Bi2 . Li

b = (V i
b,∪) is

a join semilattice.

In method makeBundle() from Figure 7, since there is

only a single branch, the intermediate Bundle value as-

sociated with bundle at the return statement is {(E,O)},

where E and O are given by Equations (7) and (8).

Pointwise transformers are defined from V i
b to V i

b.

Similarly to the ComponentName model, we first in-

troduce pointwise branch Bundle transformers before

defining pointwise Bundle transformers. In the def-

initions below, we use the \ notation for set differ-

ence, and ∪ is naturally extended to tuples such that

(a1, · · · ,ak)∪ (ak+1, · · · ,al) = (a1, · · · ,ak,ak+1, · · · ,al).

Definition 7. A pointwise branch Bundle transformer is

a function β b
(η+

,η−
,cl,Θ) : V i

b →V i
b, where:

• η+ is a set of string keys describing extra data. It

models calls to putExtra() methods.



• η− is a set of string keys describing removed ex-

tra data. It represents the influence of calls to the

removeExtra() method.

• cl takes value 1 if the Bundle data has been cleared

with the clear() method and 0 otherwise.

• Θ is a tuple of two types of elements. It contains ref-

erences to particular Bundle symbols at instructions

where putAll() calls occur. It also contains functions

from V i
b to V i

b. These functions represent a sequence

of method calls affecting a Bundle.

It is such that

β b
(η+

,η−
,cl,Θ)(⊥) =

{(

η+\η−
,Θ

)}

and, for Bi = {(E1,O1), · · · ,(Em,Om)} (Bi �=⊥),

β b
(η+

,η−
,cl,Θ)(Bi) = {(E ′

1,O
′
1), · · · ,(E

′
m,O

′
m)}

where, for each j from 1 to m:

E ′
j =











η+\η− if cl = 1

(E j ∪η+)\η− if cl = 0 and O j =∅

E j otherwise

O′
j =







Θ if cl = 1 or O j =∅

O j ∪
(

β b
(η+

,η−
,0,Θ)

)

otherwise

The definition of E ′
j accounts for several possible

cases:

• If the Bundle data has been cleared (i.e., cl = 1), then

we discard any data contained in E j. This leads to

value η+\η− for E ′
j: we only keep the values η+

that were added to the Bundle data and remove the

values η− that were removed from it.

• If the Bundle has not been cleared, then there are two

possible cases: either no reference to another Bun-

dle has been previously recorded (i.e., O j = ∅), or

such a reference has been recorded to model a call to

putAll(). In the first case, we simply take the union

of the original set E j and the set η+ of added values,

and subtract the set η− of removed values. This ex-

plain the (E j ∪η+)\η− value. In the second case, a

call to putAll() has been detected, which means that

any further method call adding or removing data has

to be added to set O j instead of E j. Therefore in this

case E ′
j = E j.

The definition of O′
j considers several cases:

• If the Bundle data has been cleared, then the previous

value of O j is irrelevant and we set O′
j = Θ. Also, if

O j is empty, then we can also just set O′
j to Θ (which

may or may not be empty).

• Otherwise, the Bundle data has not been cleared

(cl = 0) and a call to putAll() has been detected

(O j �= ∅). Then it means that the current function

models method calls that happened after a call to

putAll(). Therefore we need to record β b
(η+

,η−
,0,Θ)

in O′
j, which explains the definition O′

j = O j ∪

(β b
(η+

,η−
,0,Θ)).

For example, the pointwise branch Bundle transformer

that models the influence of the method makeBundle()
from Figure 7 is β b

(η+
,∅,0,Θ), where

η+ ={FirstName} (9)

Θ =
(

(b,bundle.putAll(b)),

β b
(∅,{Surname},0,())

) (10)

Pointwise branch Bundle transformers model the in-

fluence of a single branch. In order to account for mul-

tiple branches or issues such as possible aliasing false

positive, we define pointwise Bundle transformers.

Definition 8. A pointwise Bundle transformer is a func-

tion

β b
{(η+

1 +,η−
1 ,cl1,Θ1),··· ,(η

+
n ,η−

n ,cln,Θn)}
: V i

b →V i
b

such that, for each Bi ∈V i
b,

β b
{(η+

1 ,η−
1 ,cl1,Θ1),··· ,(η

+
n ,η−

n ,cln,Θn)}
(Bi) =

β b
(η+

1 ,η−
1 ,cl1,Θ1)

(Bi)∪·· ·∪β b
(η+

n ,η−
n ,cln,Θn)

(Bi)

For example, method makeBundle() from Figure 7

only has a single branch, thus the pointwise Bundle trans-

former that models it is simply β b
{(η+

,∅,0,Θ)}, where η+

and Θ are given in Equations (9) and (10). As we did for

the ComponentName value example, we can confirm us-

ing Definitions 7 and 8 that β b
{(η+

,∅,0,Θ)}(⊥) = {(E,O)},

where E and O are given by Equations (7) and (8).

5.2.2 Analysis II

After Analysis I has been performed, the values of the

Bundles used in placeholders in intermediate Bundle val-

ues are known. Ultimately, we want to obtain branch

Bundle values and finally Bundle values:

Definition 9. A branch Bundle value b is a set E of string

keys describing extra data.

Definition 10. A Bundle value B is a set of branch Bun-

dle values: B = {b1, · · · ,bm}.

Since the values of the referenced Bundles are known,

we can integrate them into the Bundle values referring to

them. Then the influence of the subsequent method calls

that have been recorded can precisely be known.

Let us consider the example of makeBundle() from

Figure 7. After Analysis I has been performed, we know

that the intermediate value of bundle at the return state-

ment is {(E,O)}, where

E ={FirstName}

O =
(

(b,bundle.putAll(b)),β b
(∅,{Surname},0,())

)

We consider all elements of O in order. As the

first element of O is (b,bundle.putAll(b)), we inte-

grate b’s value into bundle. From Analysis I, we know



that the value of b at instruction bundle.putAll(b)

is {{Surname} ,∅}. Thus, E becomes {FirstName,

Surname}. The next element of O is β b
(∅,{Surname},0,()).

This means that we have to remove key Surname from E.

The final value of E is therefore {FirstName}. Thus, the

Bundle value associated with bundle at the return state-

ment is {{FirstName}}.

Note that the referenced Bundle can also make refer-

ences to other Bundles. In that case, we perform the res-

olution for the referenced Bundles first. There can be an

arbitrary number of levels of indirection. Analysis II is

iterated until a fix-point is reached.

5.3 Intent and IntentFilter Models

The Intent model is defined similarly to the Bundle

model, which includes object composition. In method

onClick() of Figure 7, the target of Intent intent is set

using a ComponentName object and its extra data is set

with a Bundle. Because of this object composition, find-

ing the Intent value also involves two analyses similar to

the ones performed for Bundles. First, intermediate In-

tent values with placeholders for referenced Component-

Name and Bundle objects are found. Second, the refer-

enced objects’ values are integrated into intent’s value.

Similarly to the Bundle model, we define intermedi-

ate branch Intent values and intermediate Intent values.

The set of intermediate Intent values is V i
i and we de-

fine a lattice Li
i = (V i

i ,∪) as we did for Li
b. We also de-

fine pointwise branch Intent transformers and pointwise

Intent transformers. For example, in method onClick()
of Figure 7, the final intermediate value for intent sim-

ply has placeholders for a ComponentName and a Bun-

dle value. Other fields, such as action and categories,

are empty. The ComponentName and Bundle values are

computed using the models presented in Sections 5.1

and 5.2. Finally, we define branch Intent values and

Intent values, which are output by the second analysis.

The final value for intent after the second analysis pre-

cisely contains the two possible targets (a.b.MyClass

and a.b.MySecondClass in package c.d) and extra

data key FirstName. For conciseness, and given the

strong similarities with the Bundle model, we do not in-

clude a full description of the Intent model here.

In order to analyze dynamic Broadcast Receivers, we

model IntentFilter objects. Modeling IntentFilters is sim-

ilar to modeling Intents, except that IntentFilters do not

involve object composition. That is because IntentFilters

do not have methods taking other IntentFilters as argu-

ment, except for a copy constructor. Thus, their analysis

is simpler and involves a single step. Similarly to what

we did for other ICC models, we define branch Intent-

Filter values, IntentFilter values, pointwise branch In-

tentFilter transformers and pointwise IntentFilter trans-

formers. In particular, we define lattice L f = (Vf ,∪),
where Vf is the set of IntentFilter values. In method

onClick() from Figure 7, the final value of f contains ac-

tion a.b.ACTION and category a.b.CATEGORY. Given

the similarity of the IntentFilter model with previous

models, we do not include a complete description.

5.4 Casting as an IDE Problem

These definitions allow us to define environment trans-

formers for our problem. Given environment e ∈
Env(D,L), environment transformer λe.e is the identity,

which does not change the value of e. Given Intent i and

Intent value I, λe.e[i �→ I] transforms e to an environment

where all values are the same as in e, except that Intent i

is associated with value I.

We define an environment transformer for each API

method call. Each of these environment transformers

uses the pointwise environment transformers defined in

Sections 5.1, 5.2 and 5.3. It precisely describes the influ-

ence of a method call on the value associated with each

of the symbols in D.

Figure 6 shows some environment transformers and

their pointwise representation. The first one is a con-

structor invocation, which sets the value corresponding

to b to ⊥. The second one adds an integer to the key-

value pairs in Bundle b’s extra data, which is represented

by environment transformer

λe.e
[

b �→ β b
({MyInt},∅,0,()) (e(b))

]

.

It means that the environment stays the same, ex-

cept that the value associated with b becomes

β b
({MyInt},∅,0,()) (e(b)), with e(b) being the value previ-

ously associated with b in environment e. The pointwise

transformer for b is

β b
({MyInt},∅,0,()),

which we denote by

λB.β b
({MyInt},∅,0,())(B)

on Figure 6 for consistency with the other pointwise

transformers. It simply adds key MyInt to the set of

data keys. The next transformer is for a copy construc-

tor, where the value associated with d is assigned to the

value associated with b. The last transformer clears the

data keys associated with d.

Trivially, these environment transformers are distribu-

tive. Therefore, the following proposition holds.

Proposition 1. Let G∗ be the supergraph of an An-

droid application. Let Dc, Db Di and D f be the sets

of ComponentName, Bundle and Intent variables, re-

spectively, to which we add the special symbol Λ
5.

Let Lc, Li
b, Li

i and L f be the lattices defined above.

5Recall from Section 4.2 that Λ symbolizes the absence of a data

flow fact.



Let Mc, Mb, Mi and M f be the corresponding assign-

ments of distributive environment transformers. Then

(G∗
,Dc,Lc,Mc), (G∗

,Db,L
i
b,M

i
b), (G∗

,Db,L
i
i,M

i
i) and

(G∗
,Di,L f ,M f ) are IDE problems.

It follows from this proposition that we can use the

algorithm from [32] to solve the Intent ICC problem.

The original IDE framework [32] requires that the

micro-function be represented efficiently in order to

achieve the time complexity of O(ED3). Our model does

not meet these requirements: in particular, applying,

composing, joining micro-function or testing for equality

of micro-functions cannot be done in constant time. In-

deed, the size of micro-functions grows with the number

of branches, aliases and possible string arguments (see

Equation 6 for an example with two branches). However,

in practice we can find solutions to our IDE problem in-

stances in reasonable time, as we show in Section 6.

6 Evaluation

This section describes an evaluation of the approach pre-

sented in the preceding sections, and briefly character-

izes the use of ICC in Android applications. We also

present a study of potential ICC vulnerabilities. Our

implementation is called Epicc (Efficient and Precise

ICC) and is available at http://siis.cse.psu.edu/

epicc/. It is built on Heros [3], an IDE framework

within Soot [34]. We also provide the version of Soot

that we modified to handle pathological cases encoun-

tered with retargeted code.

In order to compute string arguments, we use a simple

analysis traversing the interprocedural control flow graph

of the application. The traversal starts at the call site and

looks for constant assignments to the call arguments. If a

string argument cannot be determined, we conservatively

assume that the argument can be any string. As we show

in Section 6.1, in many cases we are able to find precise

string arguments. More complex analyses can be used if

more precision is desired [7].

For points-to analysis and call graph construction, we

use Spark [24], which is part of Soot. It performs a flow-

sensitive, context-insensitive analysis. We approximate

the call graph in components with multiple entry points.

In order to generate a call graph of an Android appli-

cation, we currently use a “wrapper” as an entry point.

This wrapper calls each class entry point once, which

may under-approximate what happens at runtime. This

impacts a specification only if an ICC field (e.g., Intent)

is modified in a way that depends on the runtime execu-

tion order of class entry points. Generally, if we assume

that our model of components’ life cycle is complete and

if the application does not use native calls or reflection,

then our results are sound.

The analysis presented in this section is performed on

two datasets. The first random sample dataset contains

350 applications, 348 of which were successfully ana-

lyzed after retargeting. They were extracted from the

Google Play store6 between September 2012 and Jan-

uary 2013. The applications were selected at random

from over 200,000 applications in our corpus. The sec-

ond popular application dataset contains the top 25 most

popular free applications from each of the 34 applica-

tion categories in the Play store. The 850 selected appli-

cations were downloaded from that application store on

January 30, 2013. Of those 850 applications, 838 could

be retargeted and processed and were used in the exper-

iments below. The 14 applications which were not ana-

lyzed were pathological cases where retargeting yielded

code which could not be analyzed (e.g., in some cases

the Dare tool generated offsets with integer overflow er-

rors due to excessive method sizes), or where applica-

tions could not be processed by Soot (e.g., character en-

coding problems).

6.1 Precision of ICC Specifications

The first set of tests evaluates the technique’s precision

with our datasets. We define the precision metric to be

the percentage of source and sink locations for which a

specification is identified without ambiguity. Ambiguity

occurs when an ICC API method argument cannot be de-

termined. These arguments are mainly strings of charac-

ters, which may be generated at runtime. In some cases,

runtime context determines string values, which implies

that our analysis cannot statically find them.

Recall the various forms of ICC. Explicit ICC iden-

tifies the communication sink by specifying the target’s

package and class name. Conversely, implicit ICC iden-

tifies the sink through action, category, and/or data fields.

Further, a mixed ICC occurs when a source or sink can

take on explicit or implicit ICC values depending on the

runtime context. Finally, the dynamic receiver ICC oc-

curs when a sink binds to an ICC type through runtime

context (e.g., Broadcast Receivers which identify the In-

tent Filter types when being registered). We seek to de-

termine precise ICC specifications, where all fields of In-

tents or Intent Filters are known without ambiguity.

As shown in Table 1, with respect to the random sam-

ple corpus, we were able to provide unambiguous speci-

fications for over 91% of the 7,835 ICC locations in the

348 applications. Explicit ICC was precisely analyzed

more frequently (≈98%) than implicit ICC (≈88%). The

remaining 7% of ICC containing mixed and dynamic re-

ceivers proved to be more difficult, where the precision

rates are much lower than others. This is likely due to

the fact that dynamic receivers involve finding more data

6Available at https://play.google.com/store/apps.



Random Sample

Precise % Imprecise % Total

Explicit 3,571 97.65% 86 2.35% 3,657

Implicit 3,225 88.45% 421 11.55% 3,646

Mixed 28 59.57% 19 40.43% 47

Dyn. Rec. 357 73.61% 128 26.39% 485

Total 7,181 91.65% 654 8.35% 7,835

Popular

Precise % Imprecise % Total

Explicit 27,753 94.43% 1,637 5.57% 29,390

Implicit 23,133 93.82% 1,525 6.18% 24,658

Mixed 509 85.12% 89 14.88% 598

Dyn. Rec. 4,161 95.81% 182 4.19% 4,343

Total 55,556 94.18% 3,433 5.82% 58,989

Table 1: Precision metrics

than Intents: Intent Filters limiting access to dynamic re-

ceivers can define several actions, and receivers can be

protected by a permission (which we attempt to recover).

In the popular applications, we obtain a precise spec-

ification in over 94% of the 58,989 ICC locations in the

838 apps. Explicit ICC was slightly more precisely an-

alyzed than implicit ICC. Mixed ICC is again hard to

recover. This is not surprising, as mixed ICC involves

different Intent values on two or more branches, which is

indicative of a method more complex than most others.

A facet of the analysis not shown in the table is the

number of applications for which we could identify un-

ambiguous specifications for all ICC – called 100% pre-

cision. In the random sample, 56% of the applications

could be analyzed with 100% precision, 80% of the ap-

plications with 90% precision, and 91% of the applica-

tions with 80% precision. In the popular applications,

23% could be analyzed with 100% precision, 82% could

be analyzed with 90% precision and 94% with 80% pre-

cision. Note that a less-than-100% precision does not

mean that the analysis failed. Rather, these are cases

where runtime context determines string arguments, and

thus any static analysis technique would fail.

6.2 Computation Costs

A second set of tests sought to ascertain the computa-

tional costs of performing the IDE analysis using Epicc.

For this task we collected measurements at each stage of

the analysis and computed simple statistics characteriz-

ing the costs of each task on the random sample and the

popular applications.

Experiment results show that ICC analysis in this

model is feasible for applications in the Google Play

store. We were able to perform analysis of all 348 ap-

plications in the random sample in about 3.69 hours of

compute time. On average, it took just over 38 seconds

to perform analysis for a single application, with a stan-

dard deviation of 99 seconds. There was high variance in

the analysis run times. A CDF (cumulative distribution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100

C
D

F
 (

C
o

m
p

u
ta

ti
o

n
 T

im
e

)

Applications (logscale)

(a) Random sample

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100

C
D

F
 (

C
o

m
p

u
ta

ti
o

n
 T

im
e

)

Applications (logscale)

(b) Popular applications

Figure 8: CDF of computation time

function) of the analysis computation time for all 348 ap-

plications is presented in Figure 8(a). It is clear from the

figure that costs were dominated by a handful of appli-

cations; the top application consumed over 11% of the

time, the top 5 consumed over 25% of the total time, and

the top 29 consumed over 50% of the total time. These

applications are large with a high number of entry points.

Analyzing the 838 popular applications took 33.58

hours, that is, 144 seconds per application. The standard

deviation was 277 seconds. The average processing time

is significantly higher than for the random sample. How-

ever, this is expected, as the average application size is

almost 1,500 classes, which is significantly higher than

the random sample (less than 400 classes per applica-

tion). This is likely related to the popularity bias: one can

expect frequently downloaded applications to have fully

developed features as well as more complex/numerous

features, which implies a larger code base. A CDF of the

computation time for all 838 applications is presented in

Figure 8(b). Once again, analysis time is dominated by

a few applications. The top 5 consumed over 11% of the

analysis time and the top 83 (less than 10% of the sam-

ple) consumed over 50% of the analysis time.

Processing was dominated by the standard Soot pro-

cessing (e.g., translating classes to an intermediate repre-

sentation, performing type inference and points-to anal-

ysis, building a call graph). It consumed 75% of the pro-

cessing time in the random sample and 86% in the pop-

ular applications. It was itself dominated by the trans-

lation to Soot’s internal representation and by the call

graph construction. The second most time-consuming

task was the IDE analysis (which also includes the string

analysis in our implementation). It took 15% of the pro-



cessing time with the random sample and 7% with the

popular one. Finally, I/O operations accounted for most

of the remainder of the processing time. Loading classes

took 7% of the time in the random sample and 3% in the

popular one. Database operations accounted for 2% of

processing for the random sample and 3% for the popu-

lar applications. Other operations (e.g., parsing manifest

files) took less than 1% of processing time.

6.3 Entry/Exit Point Analysis

This section briefly characterizes the exit (source) and

entry (sink) points of Android applications in our data

sets. Note that this analysis is preliminary and will be

extended in future work.

An exit point is a location that serves as a source for

ICC; i.e., the sending of an Intent. In the random sample,

our analysis found 7,350 exit points which can transmit

10,035 unique Intent values. About 92% of these exit

points had a single Intent specification, with the remain-

ing exit points being able to take on 2 or more values.

In two pathological cases, we noted an exit point that

could have 640 different Intent values (most likely the re-

sult of contrived control flow or multiple aliasing for an

Intent value). The popular applications had 48,756 exit

points, associated with 316,419 Intent values. Single In-

tent specifications were found in 90% of exit points. We

found 10 pathological cases where an exit point was as-

sociated with 512 Intent values or more. The use of key

value data was more prevalent than we initially expected,

in about 36% of exit points in the random sample. Key-

value data was present in Intents in 46% of exit points in

the popular applications.

Our study of entry points focused on the sinks of

ICC that were either dynamically registered broadcast re-

ceivers or component interfaces (exported or not) identi-

fied in the application manifest. In the random sample,

we were able to identify 3,863 such entry points associ-

ated with 1,222 unique intent filters. The popular appli-

cations comprised 25,291 entry points with 11,375 Intent

Filters. 1,174 components were exported (and thus avail-

able to other applications) in the random sample, 7,392

in the popular applications. Of those, only 6% (67) of

the exported components were protected by a permission

in the random sample and 5% (382) were protected in

the popular applications. This is concerning, since the

presence of unprotected components in privileged appli-

cations can lead to confused deputy [21] attacks [17].

Oddly, we also found 23 components that were ex-

ported without any Intent Filter in the random sample

and 220 in the popular sample. Conversely, we found 32

cases where a component had an Intent Filter but was not

exported in the random sample and 412 in the popular

one. The latter indicates that developers sometimes use

implicit Intents to address components within an appli-

cation, which is a potential security concern, since these

Intents may also be intercepted by other components.

Lastly, application entry points were relatively narrow

(with respect to intent types). Over 97% of the entry

points received one Intent type in the random sample.

Single Intent Filters were found in 94% of components

protected by Intent Filters in the popular applications.

6.4 ICC Vulnerability Study

In this section, we perform a study of ICC vulnerabilities

in our samples using Epicc and compare our results with

ComDroid [6]. We look for the same seven vulnerabil-

ities as in [6]. Activity and Service hijacking can occur

when an Intent is sent to start an Activity or a Service

without a specific target. Broadcast thefts can happen

when an Intent is Broadcast without being protected by a

signature or signatureOrSystem permission7. In all three

cases, the Intent may be received by a malicious compo-

nent, along with its potentially sensitive data.

Malicious Activity or Service launch and Broadcast

injection are Intent spoofing vulnerabilities. They in-

dicate that a public component is not protected with a

signature or signatureOrSystem permission. It may be

started by malicious components. These vulnerabilities

can lead to permission leakage [17, 19, 25].

Finally, some Intent Broadcasts can only be sent by

the operating system, as indicated by their action field.

Broadcast Receivers can register to receive them by spec-

ifying Intent Filters with the appropriate action. How-

ever, these public components can still be addressed di-

rectly by explicit Intents. That is why the target Re-

ceivers should check the action field of the received In-

tent to make sure that it was sent by the system.

Table 2 shows the results of the study for the ran-

dom and the popular samples. The first line shows the

number of vulnerabilities identically detected by both

analyses, the second line shows vulnerabilities detected

by ComDroid only and the third line shows vulner-

abilities detected by Epicc only. The last two lines

show the total number of vulnerabilities found by each

tool. For the three unauthorized Intent receipt vul-

nerabilities (first three columns), both ComDroid and

Epicc indicate whether the sent Intent has extra data

in the form of key-value pairs, and whether the In-

tent has the FLAG GRANT READ URI PERMISSION or the

FLAG GRANT WRITE URI PERMISSION. These flags are

used in Intents which refer to Content Provider data and

may allow the recipient to read or write the data [6].

7The signature permission protection level only allows access to a

component from an application signed by the same developer. The

signatureOrSystem protection level additionally allows the operating

system to start the component.



Activity Service Broadcast Activity Service Broadcast System Broadcast Total

Vulnerability Hijacking Hijacking Theft Launch Launch Injection w/o action check vulnerabilities

Sample R P R P R P R P R P R P R P R P

Identical 2,591 15,214 78 1,200 503 4,825 179 1,731 23 263 273 3,503 30 126 3,677 26,862

ComDroid only 916 7,717 78 535 218 2,854 12 169 2 18 104 1,684 3 20 1,333 12,997

Epicc only 181 2,079 3 151 23 297 4 20 0 1 4 43 77 580 292 3,171

Total ComDroid 3,507 22,931 156 1,735 721 7,679 191 1,900 25 281 377 5,187 33 146 5,010 39,859

Total Epicc 2,772 17,293 81 1,351 526 5,122 183 1,751 23 264 277 3,546 107 706 3,969 30,033

Table 2: ICC vulnerability study results for the random sample (R) and the popular applications (P)

For the presence of flags and the detection of extra

data, Epicc can precisely indicate when the value of an

Intent depends on the execution path. On the other hand,

a ComDroid specification does not make this distinction.

When Epicc and ComDroid differ for a code location, we

include flags in both the “ComDroid only” and “Epicc

only” rows of Table 2.

The Activity hijacking vulnerabilities found by both

ComDroid and Epicc are unsurprisingly common: they

represent all cases where implicit Intents are used to

start Activities. Service hijacking vulnerabilities are

much less prevalent, which is correlated with the fact

that Services are used less often than Activities. Broad-

cast theft vulnerabilities are quite common as well. As

previously described in Section 6.3, few exported com-

ponents are protected by permissions. Therefore, the

high number of malicious Activity or Service launch

as well as Broadcast injection vulnerabilities is not sur-

prising. Note the discrepancy between the number

of components without permissions and the total num-

ber of these vulnerabilities. A large portion of the

components not protected by permissions are Activities

with the android.intent.action.MAIN action and

the android.intent.category.LAUNCHER category,

which indicate that these components cannot be started

without direct user intervention. They are therefore not

counted as potential vulnerabilities.

If we consider the first three vulnerabilities (unautho-

rized Intent receipt), we can see that ComDroid flags a

high number of locations where Epicc differs. A manual

examination of a random subset of applications shows

that these differences are either false positives detected

by ComDroid or cases where Epicc gives a more precise

vulnerability specification. We observed that a number of

code locations are detected as vulnerable by ComDroid,

whereas Soot does not find them to be reachable. Epicc

takes advantage from the sound and precise Soot call

graph construction to output fewer false positives. Ad-

ditionally, the IDE model used by Epicc can accurately

keep track of differences between branches (e.g., explic-

it/implicit Intent or URI flags), whereas ComDroid can-

not. Note that when an Intent is implicit on one branch

and explicit on another, ComDroid detects it as explicit,

which is a false negative. On the other hand, the IDE

model correctly keeps track of the possibilities.

With a few exceptions, the ComDroid and Epicc anal-

yses detect the same possible malicious Activity and Ser-

vice launches. That is expected, since both are detected

by simply parsing the manifest file. The few differences

can be explained by minor implementation differences

or bugs in pathological cases. The Broadcast injection

vulnerability shows stronger differences, with ComDroid

detecting 377 cases for the random sample and 5,187

for the popular one, whereas Epicc only finds 277 and

3,546, respectively. Some of the Broadcast injections

detected by ComDroid involved dynamically registered

Broadcast Receivers found in unreachable code. Once

again, the call graph used by Epicc proves to be an ad-

vantage. Many other cases involve Receivers listening

to protected system Broadcasts (i.e., they are protected

by Intent Filters that only receive Intents sent by the sys-

tem). The list of protected Broadcasts used by ComDroid

is outdated, hence the false positives.

Finally, there is a significant difference in the de-

tection of the system Broadcasts without action check,

with Epicc detecting 107 vulnerabilities in the random

sample and 706 in the popular one, whereas ComDroid

only detects 33 and 146, respectively. The first rea-

son for that difference is that the ComDroid list of pro-

tected Broadcasts is outdated. Another reason is an

edge case, where the Soot type inference determines Re-

ceivers registered using a registerReceiver() method as

having type android.content.BroadcastReceiver

(i.e., the abstract superclass of all Receivers). It occurs

when several types of Receivers can reach the call to

registerReceiver(). Since no Receiver code can be in-

spected, even though there may be a vulnerability, our

analysis conservatively flags it as a vulnerability.

Overall, Epicc detects 34,002 potential vulnerabilities.

On the other hand, ComDroid detects 44,869 potential

security issues, that is, 32% more than Epicc. As de-

tailed above, the extra flags found by ComDroid that

we checked were all false positives. Further, the poten-

tial causes of unsoundness in Epicc (i.e., JNI, reflection

and entry point handling) are also handled unsoundly in

ComDroid. Thus, we do not expect the locations flagged

by ComDroid but not by Epicc to be false negatives. The

precision gain over ComDroid is significant and will help

further analyses. Note that it is possible that both tools

have false negatives in the presence of JNI, reflection,



or when the life cycle is not properly approximated. In

particular, we found that 776 out of the 838 popular ap-

plications and 237 out of 348 applications in the random

sample make reflective calls. Future work will seek to

quantify how often these cause false negatives in prac-

tice. We will also attempt to determine if the locations

flagged by Epicc are true positives.

7 Related Work

ComDroid [6] is the work most closely related to ours.

Our work aims to formalize the notions it first captured.

It is different in many aspects. First, ComDroid di-

rectly analyses Dalvik bytecode, whereas we use retar-

geted Java bytecode. This allows us to leverage anal-

yses integrated with Soot (e.g., call graph). Also, un-

like ComDroid, our analysis is fully interprocedural and

context-sensitive. Second, our ICC model is sound and

more detailed, taking multiple branches and aliasing into

account. Thus, as shown in Section 6.4, our ICC vulnera-

bility study produces fewer false positives. Finally, Com-

Droid seeks to find potential vulnerabilities, whereas our

approach enables finding attacks for vulnerabilities in ex-

isting applications. This is done by keeping a database

of analysis results and matching newly analyzed applica-

tions with applications in our database. This will allow

us to identify problematic application combinations.

Several kinds of application analysis have been per-

formed for the Android platform [10]. Permission anal-

ysis infers applications properties based on the permis-

sions requested at install time. Kirin [13] uses permis-

sions to flag applications with potential dangerous func-

tionality. Other methods for permission analysis have

been proposed [2, 15, 16], including analyses to detect

over-privileged applications [15] or malware [36].

Dynamic analysis consists in analyzing applications

while they are running. TaintDroid [11] performs dy-

namic taint tracking on Android. It exposes widespread

leakage of personal data to third parties. An extension to

TaintDroid handles implicit flows [18] by monitoring and

recording control flow information. TaintDroid is also

used in the AppFence system [22], which actively pre-

vents sensitive data exfiltration from mobile devices. Al-

ternative approaches dynamically prevent some classes

of privilege escalation attack through ICC [4, 9]. Dy-

namic analyses such as TaintDroid are limited by the

way they interact with the User Interface (UI). Smart-

Droid [35] tackles this issue by combining static and dy-

namic analyses. It is able to simulate the UI to expose

hidden behavior for seven malwares. As we use static

analysis we do not interact with the UI: the call graph is

complete and does not depend on any runtime condition.

Static analysis consists in analyzing application code

to infer useful properties without running the applica-

tion. Several approaches for static analysis have already

been proposed for Android applications. Enck et al.

use decompilation [28] followed by source code analysis

to characterize security properties of applications [12].

Grace et al. perform a study of the dangers caused by

100 ad libraries found in a sample of 100,000 applica-

tions [20] through a reachability analysis on disassem-

bled bytecode. Several analyses have statically found

permission leaks [17, 19, 25], which happen when a priv-

ileged application leaks its capabilities to unprivileged

ones. These analyses focus on finding paths between ex-

posed entry points and sensitive API calls, whereas we

focus on connecting exit points to entry points. Thus,

these analyses could benefit from our ICC analysis.

ScanDal [23] attempts to soundly analyze information

flow. It convert Dalvik bytecode to a formally defined

intermediate language. Dangerous flows are detected us-

ing abstract interpretation. Its analysis is path-insensitive

and has limited context-sensitivity. It finds some actual

privacy leaks, but is limited by a high number of false

positives and flows that are impossible to confirm.

Saint [30] modifies the Android framework to control

application interaction. Every application comes with

a policy describing how it uses permissions it declares.

Policy compliance verification is a possible application

of our tool but is out of the scope of this paper.

8 Conclusion

In this paper we have introduced an efficient and sound

technique for inferring ICC specifications, and demon-

strated its feasibility on a large collection of market ap-

plications. Future work will study a range of applications

and analyses that exploit the database of ICC specifica-

tions. We will also explore a range of extensions that can

use this information at runtime to identify potentially ma-

licious communication between applications. Through

these activities, we aim to aid the community’s efforts to

gauge the security of market applications.

Acknowledgements

We thank Matthew Dering for providing our application

samples. We also thank Atul Prakash, Patrick Traynor

and our shepherd Ben Livshits for editorial comments

during the writing of this paper. This material is based

upon work supported by the National Science Founda-

tion Grants No. CNS-1228700, CNS-0905447, CNS-

1064944 and CNS-0643907. Any opinions, findings, and

conclusions or recommendations expressed in this mate-

rial are those of the authors and do not necessarily reflect

the views of the National Science Foundation. This re-

search is also supported by a Google Faculty Award.



References

[1] ARTHUR, C. Feature phones dwindle as android powers
ahead in third quarter. The Guardian, Nov. 2012. Available
at http://www.guardian.co.uk/technology/2012/nov/

15/smartphones-market-android-feature-phones.

[2] BARRERA, D., KAYACIK, H. G., VAN OORSHOT, P. C., AND

SOMAYAJI, A. A Methodology for Empirical Analysis of
Permission-Based Security Models and its Application to An-
droid. In Proceedings of the ACM Conference on Computer and

Communications Security (Oct. 2010).

[3] BODDEN, E. Inter-procedural data-flow analysis with ifds/ide
and soot. In Proceedings of the ACM SIGPLAN International

Workshop on State of the Art in Java Program analysis (2012).
Available from http://sable.github.com/heros/.

[4] BUGIEL, S., DAVI, L., DMITRIENKO, A., FISCHER, T., AND

SADEGHI, A.-R. XManDroid: A New Android Evolution to
Mitigate Privilege Escalation Attacks. Tech. Rep. TR-2011-04,
Technische Universitat Darmstadt, Germany, Apr. 2011.

[5] BUGIEL, S., DAVI, L., DMITRIENKO, A., FISCHER, T.,
SADEGHI, A.-R., AND SHASTRY, B. Towards taming privilege-
escalation attacks on Android. In Proceedings of the 19th Annual

Network & Distributed System Security Symposium (Feb. 2012).

[6] CHIN, E., FELT, A. P., GREENWOOD, K., AND WAGNER, D.
Analyzing Inter-Application Communication in Android. In Pro-

ceedings of the 9th Annual International Conference on Mobile

Systems, Applications, and Services (MobiSys) (2011).

[7] CHRISTENSEN, A. S., MØLLER, A., AND SCHWARTZBACH,
M. I. Precise analysis of string expressions. In Proc. 10th

International Static Analysis Symposium (SAS) (June 2003),
vol. 2694 of LNCS, Springer-Verlag, pp. 1–18. Available from
http://www.brics.dk/JSA/.

[8] DAVI, L., DMITRIENKO, A., SADEGHI, A.-R., AND

WINANDY, M. Privilege Escalation Attacks on Android. In Proc.

of the 13th Information Security Conference (ISC) (Oct. 2010).

[9] DIETZ, M., SHEKHAR, S., PISETSKY, Y., SHU, A., AND WAL-
LACH, D. S. Quire: Lightweight Provenance for Smart Phone
Operating Systems. In 20th USENIX Security Symposium (2011).

[10] ENCK, W. Defending users against smartphone apps: Techniques
and future directions. In ICISS (2011), pp. 49–70.

[11] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG,
J., MCDANIEL, P., AND SHETH, A. N. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Moni-
toring on Smartphones. In Proc. of the 9th USENIX Symp. on

Operating Systems Design and Implementation (OSDI) (2010).

[12] ENCK, W., OCTEAU, D., MCDANIEL, P., AND CHAUDHURI,
S. A Study of Android Application Security. In Proceedings of

the 20th USENIX Security Symposium (August 2011).

[13] ENCK, W., ONGTANG, M., AND MCDANIEL, P. On
Lightweight Mobile Phone Application Certification. In Proceed-

ings of the 16th ACM Conference on Computer and Communica-

tions Security (CCS) (Nov. 2009).

[14] ENCK, W., ONGTANG, M., AND MCDANIEL, P. Understand-
ing Android Security. IEEE Security & Privacy Magazine 7, 1
(January/February 2009), 50–57.

[15] FELT, A. P., CHIN, E., HANNA, S., SONG, D., AND WAGNER,
D. Android Permissions Demystified. In Proc. of the ACM Conf.

on Computer and Communications Security (CCS) (2011).

[16] FELT, A. P., GREENWOOD, K., AND WAGNER, D. The Ef-
fectiveness of Application Permissions. In Proc. of the USENIX

Conference on Web Application Development (WebApps) (2011).

[17] FELT, A. P., WANG, H. J., MOSHCHUK, A., HANNA, S., AND

CHIN, E. Permission Re-Delegation: Attacks and Defenses. In
Proc. of the 20th USENIX Security Symp. (August 2011).

[18] GILBERT, P., CHUN, B.-G., COX, L. P., AND JUNG, J. Vision:
Automated Security Validation of Mobile Apps at App Markets.
In Proceedings of the International Workshop on Mobile Cloud

Computing and Services (MCS) (2011).

[19] GRACE, M., ZHOU, Y., WANG, Z., AND JIANG, X. Systematic
Detection of Capability Leaks in Stock Android Smartphones. In
NDSS ’12 (2012).

[20] GRACE, M. C., ZHOU, W., JIANG, X., AND SADEGHI, A.-R.
Unsafe exposure analysis of mobile in-app advertisements. In
Proceedings of the fifth ACM conference on Security and Privacy

in Wireless and Mobile Networks (2012), WISEC ’12, ACM.

[21] HARDY, N. The confused deputy: (or why capabilities might
have been invented). SIGOPS Oper. Syst. Rev. 22, 4 (Oct. 1988).

[22] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER, S., AND

WETHERALL, D. These Aren’t the Droids You’re Looking For:
Retrofitting Android to Protect Data from Imperious Applica-
tions. In Proceedings of the ACM Conference on Computer and

Communications Security (CCS) (2011).

[23] KIM, J., YOON, Y., AND YI, K. Scandal: Static analyzer for
detecting privacy leaks in android applications. In MoST 2012:

Workshop on Mobile Security Technologies 2012 (2012).

[24] LHOTÁK, O., AND HENDREN, L. Scaling java points-to analysis
using spark. In Proceedings of the 12th international conference

on Compiler construction (2003), CC’03, Springer-Verlag.

[25] LU, L., LI, Z., WU, Z., LEE, W., AND JIANG, G. Chex: stat-
ically vetting android apps for component hijacking vulnerabil-
ities. In Proc. of the 2012 ACM conference on Computer and

communications security (2012), CCS ’12, ACM, pp. 229–240.

[26] MCDANIEL, P., AND ENCK, W. Not So Great Expectations:
Why Application Markets Haven’t Failed Security. IEEE Secu-

rity & Privacy Magazine 8, 5 (September/October 2010), 76–78.

[27] MLOT, S. Google’s bouncer malware tool hacked. PC Mag-

azine, June 2012. Available from http://www.pcmag.com/

article2/0,2817,2405358,00.asp.

[28] OCTEAU, D., ENCK, W., AND MCDANIEL, P. The ded Decom-
piler. Tech. Rep. NAS-TR-0140-2010, Network and Security Re-
search Center, Pennsylvania State University, USA, Sept. 2010.
Available from http://siis.cse.psu.edu/ded/.

[29] OCTEAU, D., JHA, S., AND MCDANIEL, P. Retarget-
ing android applications to java bytecode. In Proceed-

ings of the 20th International Symposium on the Foundations

of Software Engineering (November 2012). Available from
http://siis.cse.psu.edu/dare/.

[30] ONGTANG, M., MCLAUGHLIN, S., ENCK, W., AND MC-
DANIEL, P. Semantically Rich Application-Centric Security in
Android. In Proceedings of the 25th Annual Computer Security

Applications Conference (ACSAC) (Dec. 2009), pp. 340–349.

[31] ROSENBERG, J. Google play hits 25 billion down-
loads. Android - Official blog, Sept. 2012. Avail-
able at http://officialandroid.blogspot.com/2012/

09/google-play-hits-25-billion-downloads.html.

[32] SAGIV, M., REPS, T., AND HORWITZ, S. Precise interprocedu-
ral dataflow analysis with applications to constant propagation.
Theor. Comput. Sci. 167, 1-2 (Oct. 1996), 131–170.

[33] SECURITY, N. Malware controls 620,000 phones, sends
costly messages. Help Net Security, January 2013. Avail-
able from http://www.net-security.org/malware_news.

php?id=2391.

[34] VALLÉE-RAI, R., GAGNON, E., HENDREN, L. J., LAM, P.,
POMINVILLE, P., AND SUNDARESAN, V. Optimizing java byte-
code using the soot framework: Is it feasible? In Proc. of the 9th

International Conf. on Compiler Construction (2000), CC ’00.

[35] ZHENG, C., ZHU, S., DAI, S., GU, G., GONG, X., HAN, X.,
AND ZOU, W. Smartdroid: an automatic system for revealing ui-
based trigger conditions in android applications. In Proceedings

of the second ACM workshop on Security and privacy in smart-

phones and mobile devices (2012), ACM, pp. 93–104.

[36] ZHOU, Y., WANG, Z., ZHOU, W., AND JIANG, X. Hey, You,
Get off of My Market: Detecting Malicious Apps in Official and
Alternative Android Markets. In Proceedings of the Network and

Distributed System Security Symposium (Feb. 2012).


