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■ Abstract This review summarizes and assesses recent theoretical and experi-
mental advances, with special emphasis on the effective interaction between charge-
stabilized colloids, in the bulk or in confined geometries, and on the ambiguities of
defining an effective charge of the colloidal particles. Some consideration is given to
the often neglected discrete solvent effects.

INTRODUCTION

Electric double layers form spontaneously whenever surfaces carrying ionizable
groups are suspended in a polar solvent, most frequently water. The high dielec-
tric constantε of the latter favors the dissociation of the functional surface groups,
so that the surface acquires a net charge per unit area,σ . Oppositely charged
counterions are released into the solvent, which generally also contains a finite
concentration of microscopic anions and cations (microions), thus providing addi-
tional coions and counterions. The electric double layer results from the buildup of
a charge density (or “cloud”) of opposite sign to that of the surface charge, which
tends to screen the electrostatic potential due to the latter. The width of the double
layer, which is a measure of its capacity, is determined by the competition between
the thermal motion of the microions, which tends to spread out, or homogenize,
their distribution in order to increase their entropy, and the electrostatic interac-
tions, which attract the counterions toward the surface while repelling the coions.

This review deals with electric double layers around mesoscopic charged par-
ticles, which are referred to as polyions (frequently also called macroions), and
more specifically with the effective interactions between electric double layers

0066-426X/00/1001-0209$14.00 209

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

00
0.

51
:2

09
-2

42
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 W

IB
61

51
 -

 D
eu

ts
ch

e 
Fo

rs
ch

un
gs

ge
m

ei
ns

ch
af

t o
n 

02
/1

1/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.



P1: FNY

August 19, 2000 14:6 Annual Reviews AR109-08

210 HANSEN ¥ LÖWEN

associated with different polyions. Such double layers are ubiquitous in many
physical, geophysical, chemical, and biological systems, including complex flu-
ids, clay soils, polyelectrolytes (e.g. DNA), and cell membranes. The main focus
of the review is on colloidal dispersions of spherical, rodlike, or lamellar polyions,
or micelles resulting from the self-assembly of ionic surfactants (1). Advanced
experimental techniques, such as surface force machines or video microscopy
in combination with optical tweezers, allow a direct measurement of the forces
acting between charged surfaces or polyions. Such direct measurements contrast
with indirect determinations of effective forces via small-angle X-ray or neutron
scattering measurements of static structure factors (2). For the theoretician, the
main challenge is the highly asymmetric nature of dispersions involving meso-
scopic polyions, and microscopic solvent molecules and ions. Clearly, at least
three widely different length scales are involved, namely the characteristic size
(radius)a of the polyions, a typical width of the electric double layer, on the order
of the Debye screening lengthλD, and a typical correlation lengthl of the solvent,
on the order of a few molecular diameters. Under most physical conditions, the
double inequalitya� λD� l holds, so that a coarse-grained statistical description
of the suspension is clearly warranted. This strategy may be cast in the unifying
framework of the density functional theory (DFT) of inhomogeneous fluids (3), as
explained in the following section. A number of key issues, which are currently
the object of intense experimental and theoretical scrutiny, are addressed in sub-
sequent sections of this review. They include the following questions and topics:
(a) the limitations of the standard Poisson-Boltzmann or mean-field theory of elec-
tric double layers and the importance of spatial correlations between microions
(a particularly important question relates to the possibility of an attractive com-
ponent of the effective interaction between polyions, induced by microion corre-
lations); (b) the notion of effective polyion charge (or charge renormalization), as
controlled by dissociation equilibria and counterion adsorption (or condensation),
and of charge regulation; (c) the relation between effective interactions between
polyions, and the phase behavior of their dispersions; (d) the effect of confinement
on the effective interactions between colloids, and more generally the influence of
electrostatic boundary conditions at interfaces; and (e) the introduction of solvent
granularity into the statistical description of double-layers. This review empha-
sizes the more recent experimental and theoretical developments in this very active
field, mostly covering work published during the past decade. Earlier work is ade-
quately covered in some previous reviews of the subject (4–7). Electrostatic CGS
units are used throughout.

MULTICOMPONENT VERSUS EFFECTIVE
ONE-COMPONENT DESCRIPTION

Consider a suspension ofN polyions, of radiusa and chargeZ, in a polar solvent
with co- and counterions, of radiia± and chargesz±e; the radius of the solvent
molecules is comparable to the microion radiia± , i.e. on the order of 0.1–0.2
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nm. In micellar solutions, 1 nm< a < 10 nm, and 10< |Z|< 100, whereas in
most colloidal dispersions, 10 nm< a< 103 nm, and 102< |Z|< 104. A statistical
description of the highly asymmetric multicomponent system is a considerable
challenge, which requires some degree of coarse graining. In most theoretical
investigations of micellar or colloidal systems, the solvent is regarded as a mere
continuum, characterized by its macroscopic dielectric constantε. This amounts
to a “primitive model” (PM) level of description, where polyions and microions
are assumed to be charged hard spheres (nonspherical polyions are considered
later in this review) interacting via the Coulomb potential∼e2/εr , outside the
excluded volume range of interparticle distancesr. It is implicitly assumed that
the mesoscopic polyions have the same macroscopic dielectric constantε as the
solvent, thus avoiding complications due to dielectric discontinuities (e.g. image
charges).

Even within the PM, the theoretician is still faced with the polyion-microion
asymmetry. In micellar solutions, where the size and charge ratiosa/a± and
|Z|/|z±| are roughly a factor of 10, the asymmetry may still be handled within the
multicomponent PM level of description, using the theoretical techniques of the
theory of classical fluids (8). In particular, the partial pair distribution functions
gαβ(r) (whereα andβ are species indices) may be calculated from the usual fluid
integral equations, including the hypernetted chain (HNC) (9) and mean spherical
approximations (10), or their variants (11) and hybrid combinations (12, 13). Al-
ternatively these correlation functions may be obtained from Monte Carlo (MC)
or molecular dynamics (MD) simulations of the asymmetric PM. The multicom-
ponent PM point of view is, in practice, limited to micellar systems with|Z|< 102

because integral equation closures are increasingly unreliable for asymmetric sys-
tems, and their numerical solution tends to become unstable. Similarly, simulations
become more and more difficult and are currently limited to|Z| ≤60 (14). The
multicomponent PM description becomes untractable in the much more asymmet-
ric colloidal range, which requires a coarse-grained description, based on effective
interactions between polyions.

Important simplifications occur within the PM in a number of limiting situations.
(a) In the limit of infinitely low concentrationn (number per unit volume) of
polyions, only a pair of these, within a solution of microions, need to be considered.
The effective interaction between the two polyions (p) is then exactly given by the
potential of mean force,vpp(r ) = −kBT log[gpp(r )] (15). The multicomponent
problem reduces to that of an electrolyte of microions in the external field due to
two fixed polyions, which leads to considerable simplifications in simulations (16)
or the numerical solution of integral equations. (b) The problem may be further
simplified by taking the limita→∞; the initial dispersion then reduces to the much
simpler system of an electrolyte confined between two parallel planes carrying
a, generally uniform, surface chargeσ . The classic problem of two interacting
planar double layers goes back to the work of Gouy (17) and has been the object of
considerable theoretical and experimental work, some of which is discussed in a
subsequent section. (c) In the opposite limit of high concentration, each polyion is,
at least temporarily, trapped in the “cage” formed by neighboring polyions. This
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regime is reasonably described by a one-body model, where a single polyion
is located at the center of a Wigner-Seitz cell, together with an inhomogeneous
distribution of microions, such that the total charge inside the cell is zero. For
practical purposes, the cell is chosen of a simple geometry reflecting the shape of
the polyion (e.g. a spherically symmetric cell around a spherical polyion), and the
electrostatic boundary conditions are chosen such as to mimic the average effect of
the surrounding polyions (18, 19). Despite the considerable simplifications they
imply, cell models allow valuable insight into concentrated dispersions, and these
are discussed further on.

A unifying framework for the statistical description of interacting electric dou-
ble layers, or, more generally, of inhomogeneous fluids and interfaces, is provided
by DFT (3).

DFT and Effective Interactions

In view of the considerable polyion-microion asymmetry, it seems natural to com-
bine a discrete representation of the former with a field description of the latter.
Let {Ri} (1 ≤ i ≤ N) denote the positions of theN polyions, assumed here to
be spherical, and letVdir

N {Ri} be their direct interaction energy for a given con-
figuration;Vdir

N is, to a good approximation, pairwise additive, with a pair potential
vpp(R), including a short-range excluded volume repulsion, the long-range
Coulomb repulsionZ2e2/εR, and a van der Waals attraction (dispersion force), of
intensity characterized by a Hamaker constant (1). The inhomogenous distribu-
tions of co- and counterions, in the “external” field of the polyions, are character-
ized by the local densities (or concentrations)ρα(r)(α = +,−). The equilibrium
densities satisfy the variational principle (3):

δ�
[
ρ∗+(r), ρ

∗
−(r)

]
δρ∗α(r)

∣∣∣∣
ρ∗α=ρα

= 0; α = +,−, 1.

where� is the grand potential functional of the trial densities, given by

�
[
ρ∗+, ρ

∗
−
] = F

[
ρ∗+, ρ

∗
−
]−∑

α

∫
8α(r)ρ

∗
α(r) dr. 2.

In Equation 2,F denotes the intrinsic free energy functional, whereas8α(r) =
µα −8ext

α (r), with µα, the chemical potential of speciesα, and8ext
α , the external

potential acting on ions of this species, equal to the sum of the interactions with
theN polyions:

8ext
α (r) =

N∑
i=1

vpα(r− Ri). 3.

Note that in view of Equation 3, the equilibrium density profilesρα(r), and the
resulting grand potential�, depend parametrically on the polyion configura-
tion. The chemical potentialsµα are either fixed at some reservoir value (semi-
grand canonical ensemble) or determined a posteriori by the canonical ensemble
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constraints:

1

V

∫
V
ρα(r) dr = nα, 4.

whereV is the total volume of the dispersion andnα is the mean (macroscopic)
concentration ofα-ions.

Explicit calculations of the density profiles require some approximation for the
generally unknown free energy functionalF, which is traditionally split into ideal
and excess parts,F = Fid + Fex; Fid is known exactly:

Fid[ρ+, ρ−] = kBT
∑
α=+,−

∫
V
ρα(r)

[
log
(
33
αρα(r)− 1

)]
dr. 5.

If n(0)α denotes the concentrations of some homogeneous reference state (i.e. in
the absence of polyions), andρα(r; ξ) = n(0)α + ξ1ρα(r) (0 ≤ ξ ≤ 1) denotes a
continuous set of density profiles, such thatρα(r; ξ = 1) leads back toρα(r), the
equilibrium density profiles in the presence of polyions, thenFex is given by the
formally exact expression

Fex[ρ+, ρ−] = Fex
(
n(0)+ , n

(0)
−
)+∑

α

µex
α

∫
1ρα(r) dr

− kBT
∑
α

∑
β

∫ 1

0
dξ(ξ − 1)

×
∫

dr
∫

dr′1ρα(r)cαβ [{ρα(ξ)}; r, r′]1ρβ(r′). 6.

µex
α is the excess part of the chemical potential, whereas thecαβ [{ρα(ξ)}] are

the set of direct correlation functions for the inhomogeneous electrolyte with
local densitiesρα(r; ξ ). For Coulombic systems, these decay asymptotically as
−vαβ(r)/kBT = −zαzβlB/r (wherelB = e2/εkBT is the Bjerrum length). It proves
convenient to subtract this from thecαβ, leaving the short-ranged partcsr

αβ . The
excess free energy function then splits into a mean-field Coulombic contribution
and a correlation part:

Fex[ρ+, ρ−] = FCoul+ Fcorr

= e2

2ε

∫
dr
∫

dr′
ρ(r)ρ(r′)
|r− r′| + Fcorr, 7.

whereρ(r) = z+ρ+(r) + z−ρ−(r) is the microion charge density. The correlation
term is formally given by Equation 6, withcsr

αβ replacingcαβ .
Starting from these exact expressions, there are basically two strategies to pro-

ceed with approximations. (a) The most common strategy focuses on the density
profiles and the resulting free energies.Fcorr is approximated by a local density
ansatz or by some weighted density approximation (WDA) (3, 20), which generally
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requires the direct correlation functions in a homogeneous reference state as input.
Once the variational problem Equation 1 has been solved for the approximate free
energy functional, the effective interaction energy between polyions is given by

VN({Ri}) = Vdir
N ({Ri})+�({Ri}), 8.

where the equilibrium grand potential accounts for their indirect interactions, in-
duced by the microions, which have effectively been traced out. It is important to
realize that this contribution depends on the thermodynamic state of the dispersion,
and is generally not pair-wise additive. If correlations are neglected altogether,
Fex reduces to the mean-field Coulombic part, and Equation 1 immediately leads
to the equilibrium profiles

ρα(r) = ζαexp
{−[8sr

α (r)+ zαeψ(r)
]/

kBT
}
, 9.

whereζ α is the fugacity of speciesα (equal to its reservoir concentration in the
absence of correlations),8sr

α is the short-range (excluded volume) part of the inter-
action of an ionα with theN polyions, andψ(r) is the total electrostatic potential
at r, which satisfies Poisson’s equation:

∇2ψ(r) = −4πe

ε
[ρext(r)+ ρ(r)], 10.

with ρext(r ) the “external” charge density carried by theN polyions. Equa-
tions 9 and 10 constitute the multicenter version of mean-field nonlinear Poisson-
Boltzmann (PB) theory. Despite their apparent simplicity, numerical solution of
the PB equations in the presence ofN polyions is a formidable task. In practice,
Equation 10 is often solved in the domain outside the polyions, and the contri-
bution of the latter to the electrostatics is treated as a boundary value problem.
(b) A second, more ambitious strategy is to seek information on both the den-
sity profiles and the pair correlations between microions within the double layers.
This may be achieved by relating the direct correlation functions, appearing in
Equation 6, to their functional inverses, the total correlation functionshαβ, via
the Ornstein-Zernike relations for inhomogeneous fluids (8), supplemented by an
approximate closure relation between theh andc functions. This strategy leads
to coupled equations for the density profiles and the pair correlation functions,
as in the widely used inhomogeneous HNC theory (21). In view of its numerical
complexity, this strategy can only be applied to very simple geometries, and in
practice it is limited to planar geometry.

Cell Model

As stated earlier, cell models, involving a single polyion, prove useful to study
concentrated dispersions, including colloidal crystals. The paradigm is provided
by the much studied case of a globular polyion of radiusa, placed at the center of
a spherical cavity of radiusR determined by the polyion concentration, i.e.R=
(3/4πn)1/3, containing counterions and salt, which ensure overall charge neutrality.
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The density profilesρ+(r) andρ−(r) depend only on the distancer from the center
(one-dimensional problem). Gauss’s law implies the boundary conditions that the
electric field vanish on the surface of the cell, i.e.dψ/dr |r=R = 0. The field on the
surface of the particle (i.e. atr = a) is determined by the surface charge densityσ .
Finally, because of the boundary conditions atr = R, the osmotic pressureP of
the microions is given by (19)

P = kBT [ρ+(R)+ ρ−(R)]. 11.

PB theory, embodied in Equations 9 and 10, reduces here to a spherically symmet-
ric one-center problem, giving rise to a simple second-order nonlinear differential
equation for the local potentialψ(r), which is easily solved numerically (22, 23).
Improvements over the mean-field approximation are achieved by including cor-
relations within the local density ansatz or the weighted density approximation
(23, 24). The resulting osmotic pressures are consistently lower than those pre-
dicted by PB theory, by a factor of three or more for highly charged polyions. This
trend is confirmed by MC simulations of the cell model (23, 24).

Cell model calculations have been extended to other geometries, e.g. rods or
platelets in cylindrical cells. They prove useful in the determination of effective
polyion charges, as discussed below.

CHARGE REGULATION AND RENORMALIZATION

Most published work on electric double layers is based on the assumption of
constant charge on the polyions, e.g. in the form of a uniform surface charge. This is
clearly an oversimplification, as would be the other extreme assumption of constant
surface potential, for two reasons: the strong coupling between electrostatics
and chemical dissociation equilibrium at the surface (charge regulation), and the
adsorption and strong physical binding of counterions to the surface, often referred
to as counterion condensation, which leads to a reduction of the apparent polyion
charge seen at larger distances (charge renormalization).

Charge Regulation

The bare (or structural) surface charge of most polyions results from the dissocia-
tion of functional groups such as the sulphate or carboxylic groups, the number of
which may be measured by titration (25). Generally, the ionization is only partial,
and the dissociation equilibrium, governed by a law of mass action, depends on the
local ionic environment, e.g. on local salt concentration or pH. Any variation of
this environment, linked to the relative motion of neighboring polyions, will lead to
a fluctuation of the surface charge, but for given macroscopic conditions, one may
define some average bare charge. From a theoretical point of view, the coupling of
the surface chemistry to the local inhomogeneities induced by electrostatics poses
a difficult challenge. Early attempts were based on a combination of the law of
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mass action with PB theory (26). A more microscopic point of view is adopted
in the charge regulation primitive model (27) (see also 28), which adds a strong
attraction of chemical origin to the short-range partvsr

pα of the polyion-microion
pair potential, such that

exp
{−vsr

pα(r )/kBT
} = Vαδ(r − dα); r <

1

2
(a+ aα)

= 1; r >
1

2
(a+ aα). 12.

This corresponds to an infinitely deep and narrow potential well localized on a
sphere of radiusdα from the center of the polyion; in practice,dα must be chosen
to be smaller than the polyion radiusa, to prevent the chemical binding of the same
microion to two polyions.

The pair structure of the model has been analyzed by diagrammatic expansion,
and by numerical solutions of the HNC equation for small polyions corresponding
to mineral oxide particles (27). The charge regulation strongly affects the effective
interaction between spherical particles (discussed later).

Charge Renormalization

The bare (or structural) charge resulting from the dissociation equilibrium is fre-
quently large, typically|Z| ≥104 for polyion radiia≥ 102 nm. To describe electric
double layers near such highly charged polyions, the traditional phenomenologi-
cal approach is to divide the counterions into two populations. The first includes
ions that are tightly bound (or adsorbed) to the surface by the strong electric field
E = 4πσ/ε, thus forming a so-called Stern layer of “condensed” counterions.
A rough estimate of the thickness1 of a Stern layer is obtained by balancing
the electrostatic workE× ze×1 against the thermal energykBT. The resulting
1 = εkBT/4πσze is on the order of a few angstrom in water at room temper-
ature for typical surface-charge densities and monovalent counterions; thus1 is
comparable to the size of microions, so that the “condensate” may be expected to
be roughly a monolayer. This monolayer, of opposite sign to the surface charge,
strongly compensates the latter, reducing the total polyion charge to an effective
chargeZ∗ significantly smaller than the bare chargeZ. The remaining counterions
feel a much reduced “external” potential and form the “diffuse” part of the double
layer, which can often be treated within linearized PB theory (LPB).

The phenomenological approach is to considerZ∗ as a parameter adjusted to
experimental data, e.g. polyion structure factors determined by light scattering
(2, 29–31), but much recent theoretical effort has gone into determining the effec-
tive charge from first principles. Most schemes are based on the observation that
the asymptotic behavior of the potential or density profiles is correctly described
by the simple exponential screening predicted by LPB theory. Charge renormal-
ization should account both for nonlinearities in the mean-field PB approach and
for microion correlations. Early attempts focused on the single polyion problem
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within the cell model (22, 23). Within LPB theory the electrostatic potential in a
spherical cell is easily calculated to be of the form

ψ(r ) = C + Ze

εr
(AeκDr + Be−κDr ), 13.

whereκD = 1/λD is the inverse Debye screening length

κD =
(

4π lB
∑
α

nαz2
α

)1/2

. 14.

The integration constantsA andB are determined by the boundary conditions at
r = a andr = R; C is conveniently chosen such thatψ(r = R) = 0. The validity
of the LPB approximation is expected to be reasonable on the cell surface, but
to be very poor near the polyion surface if the latter is highly charged. The bare
chargeZ appearing in the LPB potential Equation 13 is then adjusted to a (lower)
effective valueZ∗ by requiring that the resulting microion charge density on the
cell surface,ρ(R), match the corresponding density obtained from a numerical
integration of the PB equation under the same boundary conditions (22). In view
of the latter, and of Poisson’s equation, this means that the resulting LPB poten-
tial matches the nonlinear PB potential at the surface up to the third derivative.
Note that a renormalization ofZ also implies a renormalization ofκD at a low (or
vanishing) concentration of added salt. Because LPB theory underestimates the
charge density near the polyion surface, it overestimatesρ(r = R), compared with
the PB charge profile, so thatZ∗ is always lower thanZ. Z∗→Z for low polyion
charge, then increases withZ, but saturates for high values of the bare charge, as a
consequence of counterion condensation; the degree of counterion condensation
is not greatly affected by salt concentration (22). The saturation value ofZ∗ is
roughly proportional to the polyion radiusa.

The effects of microion correlations on the values ofZ∗ have been investigated
with local density ansatz and weighted density approximation versions of DFT, and
by MC simulations (23, 24). Correlations tend to lead to a further decrease ofZ∗

compared withZ, and even to a maximum value, followed by an actual decrease of
Z∗ as a function ofZ (23). If the effective charge is obtained by matching the LPB
osmotic pressure to “exact” MC estimates, the resultingZ∗ turns out to depend
only weakly on the ratioa/R, i.e. on the concentration of polyions.

Other semi-phenomenological criteria for determining the effective charge are
discussed by Belloni (32). The Debye-H¨uckel-Bjerrum theory, which has proved
very successful for describing the phase behavior of PM electrolytes (33) has been
extended to charged colloids (34). The Bjerrum pairs of simple electrolytes are
replaced by clusters involving each a polyion and a variable number of adsorbed
counterions, which are in chemical equilibrium with the free, nonadsorbed coun-
terions, assuming a simple form for the internal partition function of a cluster. The
distribution of cluster sizes turns out to be sharply peaked, allowing a clear-cut
definition of Z∗ (34).
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A more fundamental approach to a definition of effective charges is based
on a careful analysis of the asymptotic decay of density profiles and correlation
functions. This may be achieved within the “dressed ion” reformulation of linear
response theory, i.e. of the polarization of an electrolyte by the average electrostatic
potential (35). Within the PM, the point charges of the microions are replaced by a
local, spread-out charge distribution incorporating the short-range fraction of the
polarization charge around each bare ion, which is thus replaced by a dressed ion.
The short-range fraction of the polarization charge is defined in terms of short-
range contributionshsr

αβ to the pair correlation functionshαβ(r ) = gαβ(r ) − 1;
thehsr

αβ are related to the short-range partscsr
αβ of the direct correlation functions,

introduced after Equation 6, via coupled Ornstein-Zernike (OZ) relations (36).
This leads to an exact, nonlocal generalization of the LPB equations, and a residue
analysis of the corresponding Fourier transform of the potentialψi (r ) around an
ion i leads to the following asymptotic decay for larger (35, 36):

ψi (r ) ∼ z‡i eexp(−κr )

ε‡r
. 15.

This is precisely of the LPB (or Debye-H¨uckel) form, but with renormalized values
z‡i , κ andε‡ of the valence, inverse screening length and dielectric constant of the
solution (as opposed to the pure solvent), which can all be expressed in terms of
thehsr

αβ ; the latter may be calculated by supplementing the OZ relations with some
approximate closure, e.g. HNC.

In the weak-coupling limit of very low ionic bulk concentration,z‡i → zi , κ →
κD, andε‡→ ε. Simple Stillinger-Lovett sum rule (37, 37a) considerations show
that proper inclusion of the finite sizeaα of the ions leads to an enhancement of
screening, i.e.κ > κD (38). For sufficiently strong coupling (i.e. at high ionic con-
centrations), the exponential decay Equation 15 goes over to a damped oscillatory
behavior characterized by a pair of complex conjugate inverse decay lengthsκ and
κ∗ (38–40). The location of the cross-over from monotonous to oscillatory decay
depends on the approximate closure.

The dressed ion reformulation for the bulk PM may be extended to the case
where one ionic species consists of polyions, and hencez∗i is to be identified with
the effective chargeZ∗ of the latter (36). A similar treatment has been applied
to planar electric double layers to determine effective surface charge densities
(41). The latter tend to saturate for monovalent counterions, increasingly so as
their concentration increases, whereas for concentrated solutions of divalent ions,
the effective surface charge goes through a maximum before decreasing as the
bare surface charge increases. This behavior is reminiscent of that observed in a
spherical cell (23, 24).

The effective polyion chargeZ∗ is not easily accessible to experiment. In-
direct determinations are based on the assumption of the validity of some sim-
ple functional form of the effective pair interaction between polyions, generally
a screened Coulomb potential. The thermodynamic properties and pair struc-
ture of a system of polyions interacting via this potential can be determined
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accurately from fluid integral equations or simulations (42, 43). The effective
chargeZ∗ is then adjusted to provide the best theoretical fit to experimental data,
e.g. the polyion pair structure as measured by scattering experiments (2, 29–31), or
the freezing line as a function of salt concentration and bare particle charge (44).
The latter measurements confirm the saturation predicted by the PB cell model
(22, 23) but should be reanalyzed because the underlying simulation data do not
take into account an important “volume” contribution to the free energies, which
strongly affects the phase diagram at low salt concentration (45, 46).

Recent experiments carried out at very low electrolyte concentration on silica
particles, with weakly dissociating silanol surface groups, and on latex particles,
with strongly dissociating sulfonic acid groups, were able to measure simulta-
neously the bare polyion charges by conductometric titration and the effective
charges by conductivity measurements (47, 48). The bare charge was controlled
by varying the amount of added NaOH. Under these experimental conditions,Z∗

was not observed to saturate, but to follow very nearly a square root lawZ∗ ∼ √Z
for both colloidal systems.

PLANAR GEOMETRY

The simplest, and most widely studied, double layer geometry is that of uniformly
charged, infinite planes in an ionic solution (17). These planes may represent stacks
of thin charged lamellae, such as clay platelets or rigid membranes, or they may
correspond to the surfaces of spherical colloidal particles separated by a distance
h� a, so that the curvature of the facing surfaces may be neglected in first approx-
imation. In the former situation, one may consider the simplified model of a single
charged plane within a slab of thickness h equal to the mean spacing between
lamellae in the stack; this would be the one-dimensional equivalent of the cell
model. The two situations are shown schematically in Figure 1;σ denotes the sur-
face charge density,ε is the macroscopic dielectric constant of the solvent (within a
PM representation), andε′ is the dielectric constant of the colloidal particles. When
ε′ 6= ε, which is the rule rather than the exception, the dielectric discontinuity at
z = ±h/2 must be properly incorporated into the boundary condition, e.g. by
the introduction of electrostatic image charges (49). In most published theoretical
work, the assumptionε′ = ε is made for the sake of simplicity.

Microion density profilesρ+(z) andρ−(z) depend only onz, and the intrinsic
free energy functional per unit area perpendicular to thez axis is still given by
Equations 5–8, with the volume integrals replaced by one-dimensional integrals
over the interval [− h

2 ,
h
2 ]. Fixed charge (or Neumann) boundary conditions imply

that the potential satisfy

−dψ

dz

∣∣∣∣
z=± h

2

= ±4πσ

ε
. 16.

The key physical quantity, which is in principle measurable using a surface force
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Figure 1 Two different plate geometries.

apparatus (1), is the force per unit area acting between two charged planes and
their associated electric double layers. This force per unit area is the net osmotic
pressure (or disjoining pressure)1P = P−Pbulk, whereP is the osmotic pressure
exerted by the microions between the charged plates, andPbulk is the pressure of
the electrolyte in the reservoir that fixes the chemical potentials of the microions.
P may be calculated via the mechanical route, by averaging the local stress tensor,
or by the thermodynamic route, by differentiation of the total free energy, or grand
potential, with respect toh. Both routes lead to a natural separation of the pressure
P into kinetic, electrostatic, and collisional parts (49):

P = Pkin + Pel+ Pcoll, 17.

where

Pkin = kBT
∑
α

ρα(z). 18.

Explicit expressions forPelandPcoll in terms of density profiles and inhomogeneous
pair correlation functions are given elsewhere (49). Note that although each of the
terms in Equation 17 depends on the coordinatez, their sum must be independent
of zfor mechanical equilibrium. In practice, simplified expressions are obtained by
calculatingP in midplane (z= 0 in Figure 1) or at the surface of the charged planes.
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In the latter case, the expression forP reduces to the simple contact theorem (5):

P = kBT
∑
α

ρα(z= ±(h/2− aα))− 2πσ 2

ε
. 19.

This expression is not convenient for simulation purposes becauseP appears as
a difference of two large numbers, the first of which involves the contact value
of the counterion density profile, affected by large numerical uncertainties. The
calculation at midplane is then preferable because theρα are expected to be close
to their bulk values there, but the average force between microions on both sides
of this plane must be evaluated (50).

Poisson-Boltzmann Approximation

The mean-field approximation, where correlations between microions are neg-
lected, is well understood as a result of the pioneering work of Gouy (17); density
profiles and forces are known analytically or are given by simple quadratures (51).
The pressure is given throughout by

P = kBT
∑
α

ρα(z)− ε

8π
[E(z)]2, 20.

whereE(z) = −dψ(z)/dz is the mean local electric field. This is most easily
evaluated in the midplane, whereE = 0 by symmetry, i.e.P = kBT

∑
α ρα(0),

showing that the force between equally charged plates is always repulsive within
PB theory.

In the limit of low surface charge and electrolyte concentration, PB theory may
be linearized, and the disjoining pressure reduces to

1P = 2σ 2e−κDh. 21.

A charge renormalization to account for nonlinearities, similar to the procedure
within the cell model described earlier, leads to a much reduced effective surface
chargeσ ∗, and to a saturation for large bare chargesσ (52).

The Effect of Microion Correlations

Although PB theory always predicts a purely repulsive interaction between planar
electric double layers, it was suggested by Oosawa as early as 1968 (53) that the
force might turn attractive if microion correlations were taken into account. The
first convincing evidence for double-layer attraction came from MC simulations
that indicated large deviations from the predictions of PB theory in the presence
of divalent counterions (50). This early prediction of an attractive minimum in the
effective force between planar double layers at short separationsh was confirmed
by subsequent simulations in the presence of salt (1:2 and 2:2 electrolytes) (49, 54)
and polyvalent counterions (55), by inhomogeneous HNC calculations (49) and
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an improved version based on the reference HNC closure (56, 57), and by local
density ansatz and weighted density approximation versions of DFT (58, 59).

The reduction of the double-layer repulsion and eventual correlation-induced at-
traction may be understood by considering the contact theorem (19), or
the expression for the pressure in midplane. At contact, the correlations keep the
counterions in the first layer apart, thus limiting the piling up following from the
uncorrelated mean-field treatment and reducing the contact value of the counterion
density; according to Equation 19, this leads to a lowering of the pressure, which
can even become negative (corresponding to an effective attraction), because of
the negative Coulombic contribution. The lowering of the counterion concentra-
tion immediately at contact leads to an enhanced attraction of the next layers of
counterions to the surface, so that correlations enhance the counterion density in
that region. This enhancement in turn entails a depletion of the counterion density
in the midplane, whereas electrostatic correlations make a negative contribution
(Pel in Equation 17), which generally dominates the smaller, positive collisional
part. Overall these various effects lead to a much reduced1P compared with the
repulsive PB interaction. The attraction observed for very short separations may
be explained by a two-dimensional, lattice-like structuring of the adsorbed coun-
terions, when the counterion patterns on opposite surfaces are shifted relative to
each other to minimize the electrostatic interactions (60).

The reason an attraction is in general observed only with divalent (e.g. Ca2+)
counterions is that the entropic cost associated with their “condensation” near the
surface is smaller than for monovalent ions, because only half as many counterions
are needed to provide the same electrostatic shielding. Another related aspect of
microion correlations is the phenomenon of charge reversal (or inversion). The
apparent charge density of the surface placed atz= −h/2, seen at the abscissaz,
is (61)

σ ∗(z) = σ + e
∫ z

− h
2

∑
α

zαρα(z
′) dz′. 22.

Within PB theory,σ ∗ never changes sign, but in the presence of correlations this
may occur at a criticalz, beyond whichσ ∗ is of opposite sign toσ , due to an over-
compensation of the bare surface charge by the counterions. Thus a test charge
will be attracted, rather than repelled, by a plane carrying a surface chargeσ of the
same sign, beyond a critical separation. Charge inversion can only occur when the
microion density profiles have a nonmonotonic behavior. The overcompensation
of the surface charges of two parallel plates is enhanced when the counterions
are linked together to form polyelectrolyte chains, once more as a result of the
reduction in entropic repulsion (61, 62).

Charge inversion and effective attraction between platelets may even be ob-
served in the case of monovalent counterions, provided the coions are larger than
the counterions (57).

Attractive forces between charged surfaces immersed in aqueous solutions of
CaCl2 and Ca(NO3)2 have been measured directly with a surface-force apparatus

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

00
0.

51
:2

09
-2

42
. D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 W

IB
61

51
 -

 D
eu

ts
ch

e 
Fo

rs
ch

un
gs

ge
m

ei
ns

ch
af

t o
n 

02
/1

1/
09

. F
or

 p
er

so
na

l u
se

 o
nl

y.



P1: FNY

August 19, 2000 14:6 Annual Reviews AR109-08

ELECTRIC DOUBLE-LAYER INTERACTIONS 223

(63). The existence of correlation-induced attraction between charged surfaces of
equal sign has important consequences on colloid stability and provides a plausible
explanation for the common observation that the addition of multivalent ions to
solutions or suspensions of polyions often leads to precipitation.

SPHERICAL POLYIONS

Aqueous solutions and dispersions of spherical or quasi-spherical polyions, in-
cluding globular proteins and charge-stabilized colloidal particles, such as silica
mineral particles or polymer latex spheres, have been thoroughly studied exper-
imentally and theoretically for many decades. Much of the interest stems from
the realization that such colloidal systems exhibit a phase behavior reminiscent of
that of simple molecular systems, albeit on very different scales. A particularly
attractive feature of colloidal dispersions is that the effective interactions between
particles may be tuned by the experimentalist, e.g. by varying the concentration
of added electrolyte, thus providing an additional handle on phase behavior. The
beautiful early microscopy observations by Hachisu et al (64) unambiguously
showed the existence, at low volume fractions, of colloidal crystals and crystalline
alloys, which Bragg-reflect visible light and are, in particular, responsible for the
iridescence of opals.

The coexistence of ordered crystalline and disordered fluid phases has been
monitored by careful experiments using confocal laser scanning microscopy, which
allows the direct observations of ordered and disordered configurations, and ultra–
small-angle X-ray scattering (USAXS), which provides statistically averaged in-
formation on ordering of colloids via the static structure factorS(k) (47, 48). These
measurements provide three-dimensional phase diagrams by varying the colloid
concentrationn or packing fractionη = 4πna3/3, the effective colloid chargeZ∗

(as determined by conductivity measurements), and the monovalent salt concentra-
tionns, equal to the concentrationn−of coions, typically in the range 10−6–10−5 M.
The observed phase diagrams exhibit a striking reentrant behavior, e.g. for fixed
n and ns, and the colloidal dispersion crystallizes into an ordered BCC lattice
on increasingZ∗, as one might expect, but on further increase ofZ∗, it remelts
into a disordered fluid phase. This reentrant behavior may be qualitatively un-
derstood in terms of an increase of the total ionic strength, linked to an increase
of the counterion concentrationn+ with Z∗, which enhances the screening power
of the microions and hence reduces the range of the screened Coulomb repulsion
between polyions. However, the standard Derjaguin-Landau-Verwey-Overbeek
(DLVO) representation of the latter (65) fails to provide a quantitative explanation
of the experimental data (66).

Another striking feature of low concentration dispersions (η < 0.05), reported
by the Kyoto School, is the appearance of strongly inhomogeneous patterns in
highly deionized samples. USAXS measurements and confocal laser scanning
microscopy show clear evidence of regions of relatively high colloid concentration,
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which may be crystalline (67), amorphous (68), or fluid (69) in character, coexisting
with regions of extremely low concentration, or voids. Apart from direct visual
observation, the existence of voids, and the fraction of the total volume occupied by
them, may be inferred from a comparison between the mean interparticle spacing,
dn ∼ n−1/3, calculated under the assumption of a homogeneous dispersion, and
the spacingdx deduced from the position of the main X-ray diffraction peak in the
structure factorS(k). The observation thatdx is significantly less thand points to
the existence of voids occupying a fractionf = 1 − (dx/d)3 of the total sample
volume. The considerable literature on the subject is summarized elsewhere (70).
The existence of voids and the related but controversial (71) observation of a
complete separation between a high concentration colloidal “liquid” phase and a
much more dilute “gas” phase (72) are claimed to be evidence for a long-range
attractive component of the effective pair interaction between colloidal particles
carrying charges of equal sign. The same attraction is also invoked to explain the
reentrant liquid-solid coexistence described earlier (66).

However, recent direct measurements of the effective interaction between pairs
of colloidal particles show no evidence of an attraction, at least at low concentra-
tion. Such direct measurements are based on video microscopy. In the simplest
method, a large number of instantaneous configurations of a dilute suspension
are recorded, and the colloid-colloid pair distribution functiong(r) is calculated
from the measured distribution of interparticle distances (73). The effective pair
potential coincides with the potential of mean force in the low concentration limit
(8) and is hence given by

v(r ) = −kBT log[g(r )]. 23.

An alternative method follows the relative Brownian motion of a pair of colloidal
particles released from initial positions where they were localized by optical tweez-
ers (74). Both sets of measurements confirm that the effective pair potential is
purely repulsive and may be fitted to a screened Coulomb (DLVO) form by adjust-
ing the effective chargeZ∗ and the inverse screening lengthκD, compatible with
estimated salt concentrations. However, this same DLVO potential, used within
a harmonic approximation, seems to be unable to reproduce the measured bulk
modulus of a colloidal crystal at much higher concentrations (75, 76), although
the difference between experiment and theory may be linked to the omission of
the “volume” contribution to the effective interaction energy between polyions
(discussed below).

DLVO Theory Revisited

The effective pair potential between spherical polyions, first derived by Derjaguin,
Landau, Verwey, and Overbeek (65), is easily recovered within the framework of
DFT. On tracing out the microion degrees of freedom, the effective interaction
energy between polyions is given by Equation 8, once the grand potential� has
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been determined from the variational principle Equation 1. The required intrinsic
free energy functional is defined by Equations 5 and 7. NeglectingFcorr in the
latter amounts to mean-field theory, and the Euler-Lagrange equation associated
with the variational principle leads back to the PB Equation 10 for the local elec-
trostatic potentialψ(r). Because the external charge associated withN polyions
is a multicenter distribution, the numerical task of solving the PB equation forN
interacting polyions can only be handled numerically using advanced optimization
techniques, coupling MD simulations with DFT (77–79).

A more phenomenological approach may be adopted whereby the bare polyion
charge is reduced to a considerably lower effective value by a Stern layer of
tightly bound counterions. The coupling between the polyions and the remaining
microions (forming the so-called diffuse double layer) is accordingly strongly
reduced, so that the corresponding density profilesρα(r) vary much more smoothly
in the vicinity of the polyion surfaces. In that case, the integrands of the ideal
contribution to F in Equation 5 may be expanded to second order in the deviations
1ρα(r ) = ρα(r ) − nα of the local densities from their bulk values, i.e.

Fid ≈
∑
α=±

{
Fid(V, T, nα)+ kBT

2nα

∫
V

[1ρα(r)]2 dr
}
, 24.

whereFid(V, T, nα) is the Helmholtz free energy of an ideal gas of densitynα.
The free energy functional defined by Equations 5 and 7, neglectingFcorr, is now
a quadratic functional of the local densities, and the resulting Euler-Lagrange
equation reduces to a linear multicenter PB (LPB) equation for the local potential
ψ(r), in the familiar form(∇2− κ2

D

)
ψ(r) = −4π

ε
ρext(r). 25.

This linear equation is easily solved by Fourier transformation in the bulk, with the
boundary condition that the potential and its gradient vanish at infinity. Because
ρext is a linear superposition of contributions from theN polyions, the same is true
of ψ(r) and the resultingρα(r). Because microions cannot penetrate the spherical
polyions, the excluded volume condition,ρα(r ) = 0; [r − Ri] < a(1 ≤ i ≤ N),
must be imposed via a constraint, or by the use of a polyion-microion pseudo
potential (45, 46). Note that, strictly speaking, the linear superposition of densities
only holds provided the electric double layer associated with a given polyion does
not overlap a neighboring polyion (weak overlap approximation). This is not
a significant limitation except at high polyion packing fraction. The excluded
volume condition leads to an additional polyion charge renormalization such that
the effective chargeZ∗ is multiplied by the DLVO factoreκDa /(1 + κDa); the
product is henceforth designated byZ∗. The local potential is finally of the form

ψ(r) =
N∑

i=1

9(i )(r) =
N∑

i=1

Z∗e
ε

exp(−κD|r − Ri |)
|r − Ri | . 26.
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When Equation 26 and the resultingρα(r ) are substituted into the quadratic free en-
ergy functional, the effective interaction energy Equation 8 between theNpolyions
reduces to

VN({Ri}) = V0+
∑
i< j

v(|Ri − Rj |), 27.

whereV0(T, n, n+, n−) is a state-dependent “volume” term (80), the detailed ex-
pression of which is given elsewhere (46, 81). This term has been generally over-
looked, but it strongly influences the calculated phase behavior of charge-stabilized
colloidal dispersions, as discussed later. The main contribution to the volume term
is the sum of cohesive electrostatic free energies arising from the electrostatic at-
traction between each polyion and its associated double layer of opposite charge.
The physical interpretation ofV0 is discussed in detail elsewhere (82). The effective
pair potential is precisely of the well known DLVO form (65), namely

v(R) = Z∗2e2

ε

e−κD R

R
. 28.

Note that the pair-wise additivity in Equation 27 is a direct consequence of the
quadratic nature of the approximate free energy functional; the exact ideal contribu-
tion (Equation 5) to the free energy would lead to many-body effective interactions.

There are alternative contraction procedures to reduce the initial asymmet-
ric, multicomponent PM to an effective one-component system, based on the
OZ equations and approximate closures, like the mean spherical approximations
for the partial pair distribution functionsgαβ(r) (10–13). The simple assump-
tion of the asymptotic behaviorcαβ(r)→ −vαβ(r )/kBT of the direct correlation
functions is sufficient to show that the effective pair interaction is asymptotically
of the DLVO form (28) and reduces to (28) in the appropriate limits. Corrections
to the DLVO potential at short range may be obtained from numerical solutions of
the fluid integral equations, and these confirm the purely repulsive nature of the
effective pair potential at low colloid concentration, at least when all microions
are monovalent (13).

The phase diagram of a monodisperse system of particles interacting via the
DLVO pair potential (Equation 28) has been determined by extensive MC simu-
lations as a function of colloid and salt concentrations, the latter determining the
inverse Debye screening lengthκD (42, 43). As expected from the purely repul-
sive nature of the effective pair potential, the phase diagram exhibits a first-order
transition between a single (disordered) fluid phase and (ordered) face-centered-
cubic or body-centered-cubic crystalline phases, the latter being the stable phase
in the κD → 0 limit, which corresponds to the widely studied one-component
plasma model (83). However, the coarse-graining procedure leading from the ini-
tial multicomponent polyion/microion “mixture” to the effective one-component
system also introduces the volume termV0 into the effective interaction energy
between polyions. BecauseV0 is a nonlinear function of the polyion densityn,
due to the overall charge neutrality conditionnZ∗ + n+z+ + n−z− = 0, this term
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Figure 2 Phase diagram for a charged suspensions in theη− nsplane withη = 4πna3/3
andZ = 350,a = 380 nm,ε = 13.9 (penthanol), and monovalent counterions at room
temperature. Possible phases are fluid (F), gas (G), liquid (L), and face-centered-cubic
(FCC) crystals. Tie lines denote coexistence conditions.

must be included in the free energy for a proper determination of the phase be-
havior (45, 46, 82). At high concentrations of added salt, the variation ofV0 with
n is slow enough that it does not affect the phase behavior significantly. At salt
concentrations lower than 10−5 M, the volume term drives a van der Waals–like
instability of the fluid, which separates into two phases of very different colloid
concentrations, reminiscent of the gas and liquid phases of ordinary molecular
fluids. Depending on the effective colloid surface charge, this phase separation
is completely disconnected from the freezing transition driven by the repulsive
pair interaction (28), and it exhibits upper and lower critical points (reentrant be-
havior) in then − ns plane, wheres is salt (see Figure 2); or it merges with the
freezing line, leading to a considerable broadening of the fluid-solid coexistence
region, and the possibility of upper and lower triple points, as seen in Figure 3.
The possibility of a fluid miscibility gap in polyelectrolytes had been conjectured
in 1938 by Langmuir (84), who referred to it as unipolar coacervation, and the
complex phase scenario discussed elsewhere (45, 46, 82) has recently been con-
firmed by an extension of Debye-H¨uckel theory to the highly asymmetric PM
(85). These calculations provide a natural explanation for the observed phase
behavior of charge-stabilized colloids, including the formation of voids (67–72),
without the assumption of a long-range attractive component in the effective pair
interaction, which is frequently made (86) but which lacks a firm theoretical
basis.
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Figure 3 Same as Figure 2,
but for Z = 1000,a = 350
nm, andε = 25.3 (ethanol).
There is a triple point of coex-
isting gas, liquid, and crystal.

Beyond DLVO

It was shown earlier that the effective force between two uniformly charged plates
may turn attractive at short distances if correlations between microions are properly
accounted for. A similar effect is expected to hold between two spherical polyions,
as first conjectured for two isolated spheres by Patey (15) on the basis of numerical
solutions of the HNC equation. When two spheres are sufficiently close, such that
the shortest separationh between their surfaces is much less than their radiusa,
the problem reduces essentially to that of two charged planes discussed earlier:
A short-range correlation-induced attraction may be expected for divalent coun-
terions. A collective polarization mechanism of adsorbed counterions operates in
the opposite limith � a and leads to a “doubly screened” attractive component,
proportional toe−2κD R,which is always dominated by the DLVO repulsion (87). It
is important to stress that effective attractions between spherical polyions require
a finite concentration of the latter in the absence of salt, i.e. when only counterions
are present (87, 88). No such restriction holds at finite salt concentration, where
the problem of two isolated polyions is a meaningful limit.

A similar doubly screened attraction between spherical polyions occurs in the
charge regulation PM introduced earlier (cf Equation 12) (27). Note that the ef-
fective interaction between two isolated colloids is purely attractive (forR> 2a)
in the case of a symmetrical adsorption of co- and counterions (V+ = V− in
Equation 12), because the colloidal particles are then, on average, neutral.

Computer Simulations

Density-functional MD simulations were performed for monovalent counterions
without (78, 89) and with (90) added salt. The effective interaction between the
polyions was found to be repulsive and in quantitative agreement with DLVO
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theory, provided the charge was renormalized according to the cell model prescrip-
tion incorporating the excluded volume correction (91). This approach includes
counterion correlations, but it is not completely equivalent to a full simulation
of the PM because an approximate polyion-counterion pseudopotential is used
and the exact density functional of the electrolyte is unknown. Because of the
high charge asymmetry between poly- and microions, a full simulation of the
PM requires the inclusion of many counter- and salt ions and is not feasible on
present-day computers. There are two ways to escape from this: either by con-
sidering only a small number of polyions, or by reducing the charge asymmetry
significantly. By considering only two polyions within the PM, the effective pair
potential can be calculated within a simulation by averaging over the microscopic
ions while keeping the polyion positions fixed. For monovalent microions, the
simulation yields repulsive forces correctly described by DLVO theory both with
(92) and without (93) added salt. For divalent counterions, attractive forces are
obtained, which may be attributed to counterion correlations (88) and Coulomb
depletion (94), resulting from a depletion zone of counterions between two nearly
touching polyions due to the strong counterion repulsion. A typical snapshot of
the counterions around two fixed polyions and the averaged force versus polyion
distance are shown in Figure 4. A system of three polyions was simulated in order
to extract effective triplet interactions, which were found, however, to be small
with respect to the pair-wise part (95).

On the other hand, there are a number of full simulations of the PM with a re-
duced charge asymmetry corresponding to micellar rather than colloidal polyions.
Most of the work is summarized in a review by Vlachy (96). As for more recent
work, the role of salt valency has been investigated in some detail (97). More-
over, the charge asymmetry was pushed toZ:z+ = 60:1, 60:2, 60:3 using efficient

Figure 4 Effective forceF in units
of F0 = Z2e2

a2 × 10−4 between two
polyions versus reduced distancer/a.
The squares are for aqueous suspen-
sions. The force is repulsive in good
agreement with DLVO-theory (dashed
line). (Circles) Show attraction for a
solvent with a strongly reduced dielec-
tric constantε. (The parameters are
given in detail in Reference 94.) (In-
set) A counterion configuration around
two fixed polyions.
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cluster move algorithms (14, 98) and treating 80 polyions simultaneously (99). For
the 60:3 asymmetry, clear indications for a phase separation were reported, which
can be attributed to an effective attraction between polyions.

POLYIONS IN CONFINED GEOMETRIES

The bulk behavior of polyionic dispersions is expected to change significantly
in the presence of neutral or charged interfaces confining the dispersion to a re-
stricted volume. Such confinement occurs naturally in the vicinity of the sample
container, which may be approximated locally by an infinite plane restricting the
suspension to a half space. Many experiments are carried out in a slit geometry,
with the suspension confined between parallel planes (e.g. glass plates); if the in-
terplanar spacing is comparable to the diameter2aof the polyions, the suspension
behaves like a quasi–two-dimensional many-body system exhibiting interesting
phase behavior (100).

The electrostatic effects of confinement are essentially threefold. (a) The in-
terface between two different dielectric media, e.g. the suspension and the glass
of the container wall, must be characterized by appropriate boundary conditions;
in particular the dielectric discontinuity implies the presence of electrostatic im-
age charges. (b) The confining surfaces lead to a reduction in screening power of
the electrolyte, which ceases to be exponential in directions parallel to the sur-
face (101). (c) If the surfaces are charged, they attract or repel the polyions and
microions and release additional counterions into the suspension.

These effects will modify the electrostatic interactions between double lay-
ers associated with polyions close to the confining walls. This has been clearly
demonstrated by a number of direct measurements of the effective forces between
spherical polyions confined near a glass wall, or in narrow slits, using digital video
microscopy techniques similar to those mentioned earlier for measurements in the
bulk. Measurements of the colloid pair distribution functiong(r) carried out at
sufficiently low concentration allow the effective pair potential to be extracted di-
rectly from Equation 23 (102, 103), whereas data collected from more concentrated
samples, where the effective potentialv(r ) is expected to differ significantly from
the potential of mean force defined by Equation 23, require an elaborate inversion
procedure based on fluid integral equations (properly adapted to a two-dimensional
geometry) (104, 105), or on an iterative method involving computer simulations
(102). These experiments leave little doubt of the existence of an attractive com-
ponent of the effective polyion pair potential at low ionic strength (i.e. for salt
concentrations estimated to be below about 10−5 M), when the polyions are highly
confined, as achieved in narrow slits (102, 104), or by localizing them close to
a single plane by optical tweezers (103, 106, 107). The observed attractive well
in v(r ) is relatively shallow (depth of the order ofkBT) and long ranged; typi-
cally, v(r ) becomes negative for interparticle distances considerably larger than
the particle diameter 2a. The experiments carried out for two particles close to a
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charged plate with the center-to-center vector parallel to the plate clearly show that
the attractive well disappears when the particles are moved away from the plate;
the measuredv(r ) returns to its bulk DLVO form (Equation 28) when the distance
to the plate is several particle diameters (103, 106, 107). An additional twist for
suspensions of colloidal particles confined to a slit is provided by the introduction
of quenched obstacles, in the form of larger, charged colloids, which form a dis-
ordered porous two-dimensional matrix. As the concentration of such obstacles
is increased, the effective interaction potential between the smaller colloids is ob-
served to develop a second attractive component extending to larger interparticle
separations (108). Closely related observations of metastable colloidal crystallites
suggest that facets of such crystals behave very much like charged plates, inducing
effective attractions between nearby polyions (106) due to many-body interactions.

The DFT formulation of DLVO theory in the bulk has been extended to the
case of confined particles. The electrostatic potential due to a point polyion near a
planar surface separating two media of dielectric constantsε andε′was determined
within LPB theory by Stillinger as early as 1961 (109). The case of two spherical
polyions of finite radiusa near an uncharged planar surface was examined within
LPB theory (110). Because microions cannot leak beyond the dividing surface,
the spherical symmetry of the electric double layers around each of the polyions
is broken. The effective repulsion between the polyions is enhanced and decays
like 1/R3, whereR is the separation parallel to the surface, as expected from the
considerations of Jancovici (101).

If the confining surface carries an electric charge densityσ, as would be the
case for a glass plate in contact with an aqueous dispersion, the planar electric
double layer building up near the surface will modify the local co- and counte-
rion concentrations in the vicinity of nearby polyions and, hence, influence their
mutual interaction. Considering the charged wall as an additional colloidal par-
ticle of infinite radius, it is clear from the inherent pair-wise additivity that the
quadratic free energy functional, defined by Equations 24 and 7 (withFcorr = 0),
which underlies LPB theory, will not affect the effective interaction between two
polyions near the wall. Clearly the intrinsic three-body nature of the problem must
be taken into account. The minimal theory to achieve this is to carry the expansion
in Equation 24 one order further, allowing for a direct coupling between the three
double layers associated with the polyions and surface. Application of DFT per-
turbation theory (78) leads to the prediction of a long-range attraction between
polyions, decaying like 1/R3 along the surface and exponentially normal to the
surface, for finite concentrations of polyions, to allow for an imbalance between
co- and counterion concentrations (111). Both the location and depth (typically on
the order ofkBT ) of the predicted potential well are in semiquantitative agreement
with direct experimental measurements (103, 106, 107). The attraction predicted
within mean-field theory occurs when the surfaces of the spherical polyions are
several Debye lengths apart, and it has nothing to do with the correlation-induced
attraction at very short range predicted in the bulk, and which is significant only
for multivalent counterion (87, 88, 94, 99, 97).
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The generalization of DLVO theory may also be extended to slit (112, 113)
and pore (114) geometries. The quasi–one-dimensional confinement in the lat-
ter case leads to an even slower decay of the long-range attraction. The exis-
tence of an effective attraction between two like-charged polyions confined by
a charged cylindrical surface was also predicted on the basis of numerical solu-
tions of the nonlinear PB equation (115), but it has since been proved rigorously
that PB theory can only lead to purely repulsive effective interaction between
two identical polyions confined to a cylinder of arbitrary cross section (116, 117),
whatever the boundary conditions at the charged surfaces. This proof does not
invalidate the results of the perturbation theory (111, 113, 114) because charge
renormalization (which accounts for short-range correlations), followed by an LPB
perturbation treatment of the nonadsorbed counterions, is not a mere approximation
to nonlinear PB theory, which is, moreover, unphysical near highly charged
surfaces.

A direct simulation of the PM for confined colloids is only feasible for low
surface charges and small particle sizes (118). In this regime, the attraction between
colloids is strongly enhanced by the presence of a charged wall with respect to that
in the bulk (94). Also, the wall-particle interaction was found (118) to be attractive
for divalent counterions.

ROD-LIKE POLYIONS

There is a large variety of rod-like polyions ranging from synthetic suspensions
to biological macromolecules. These include colloidalβ-FeOOH (119), imogolite
(120), boehmite (121–123), polytetrafluoroethylene (124), ellipsoidal polystyrene
latex particles (125), and cylindrical micellar aggregates (126, 127), as well as
virus solutions from tobacco-mosaic virus (128, 129), bacterial fd (130, 131), and
Pf1 viruses (132). Another motivation to study rod-like colloids comes from
the self-assembly of charged stiff biopolymers such as DNA strands (133, 134),
F-actin fibers (135), and microtubules (135), which constitute rod-like polyions
on a supramolecular rather than a colloidal length scale.

The simplest model system is the electric double layer around a single, infinitely
long, cylindrical polyion of radiusa that is homogeneously charged with line charge
densityλ. LPB theory leads to the electric potential9(r ) = λK0(κDr )/aK1(κDa)ε,
wherer is the distance from the rod axis andK0(x), K1(x) are Bessel functions of
imaginary argument. Consequently, LPB theory predicts the effective interaction
v(r ) between two parallel rods per unit length to be of the following form:

v(r ) = λ2

(κDaK1(κDa))2ε
K0(κDr ), 29.

where the factor 1/[κDaK1(κDa)] is the excluded volume correction. Contrary to
the three-dimensional case, PB theory can be solved analytically within a cylin-
drical cell around the charged rod for vanishing salt concentration (18, 136). The
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analytical solution for the counterion density field around the colloidal rod exhibits
a strong peak at contact (137), providing a theoretical framework of Manning coun-
terion condensation (138, 139). As for spherical macroions, one cannot extract an
effective interaction from the PB solution for a single double layer directly. One
possibility is to proceed as for the spherical PB cell model. Matching the LPB
theory at the cell boundary (140), one derives the effective interaction potential
v(r ) = λ∗2/εK0(κr )whereκ andλ∗ are renormalized according to the cell model
prescription.

A more direct theory, which requires a larger numerical effort, is to solve the
two-dimensional PB theory for two parallel rods in a slit geometry and extract the
effective force from there. In a recent numerical study (141) no attraction was
found, consistent with the exact result (116, 117) in three dimensions.

Beyond the PB level of description, computer simulations for the effective in-
teraction between two parallel, homogeneously charged rods have been performed
for divalent counterions and no added salt (142). An effective attraction between
the rods was found. The question is whether the attraction is due to correlations
(143) or to fluctuations (144, 145). If the former is true, the attraction should
increase with decreasing temperature and may even persist for zero temperature,
whereas fluctuation-induced attraction should increase with temperature. A simple
model (146) gave significant support for a correlation picture. This can be intu-
itively understood as the gain in electrostatic energy on bringing together staggered
arrays of adsorbed counterions (60, 147). Fluctuation (148, 149) and polarization
effects (150) may still play an important additional role. For parallel rods on
a triangular lattice, a negative pressure was found by computer simulation with
divalent counterions (151), which can be attributed to some attractive component
in the effective interactions.

Qualitatively, the situation closely resembles the case of spherical macroions.
But there are also differences. First, Manning condensation theory applies only
to rod-like polyions. A possible mechanism of attraction of nearly touching rods
by sharing Manning-condensed counterions was proposed, which is only possible
for rods (152). Second, the Coulomb depletion mechanism for attraction (94) was
found to be irrelevant for parallel rods.

For finite rod lengths and arbitray orientations of the rods, the effective inter-
action between two rods will depend both on the rod orientations and on their
center-of-mass separation. Starting from point charges distributed along the rods,
LPB theory results in a Yukawa-segment model (153), which was confirmed by
density-functional MD simulations for monovalent counterions (140), provided the
charge and the screening constantκ are renormalized according to the cell model
prescription. The associated phase diagram for parameters suitable for the TMV
suspension was calculated, involving different liquid crystalline phases (154).

A full simulation of the PM was performed for stiff polyelectrolytes (155),
resulting in bundle formation, which is a possible sign of an effective attraction.
Clearly, the effective pair potential picture is insufficient for bundles (156), and
many-body interactions play a significant role (148, 149).
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LAMELLAR POLYIONS

Lamellar polyions may be schematically looked on as rigid or flexible charged
surfaces or platelets, providing a two-dimensional counterpart of charged rods
or polyelectrolytes. Examples are the geologically and technologically impor-
tant smectite clays (157) and self-assembled bilayers of ionic surfactants, which
constitute the prototype of biological membranes (51).

Consideration is first given to electric double layers around infinitely thin, uni-
formly charged circular or square platelets, which constitute a reasonable model of
smectite clay particles, and in particular of the widely studied synthetic Laponite
mineral particles. To a good approximation the latter are rigid, thin disks of
thicknessd ≈ 1 nm and radiusa ≈ 15 nm, carrying a structural surface charge
σ ≈ −e/(nm)2. Natural montmorrilonite clays are silicate mineral platelets of
similar chemical composition and crystal structure, but of irregular and poly-
disperse shape, and of much larger lateral dimension, implying some degree of
bending flexibility.

Dry powders of clay will swell on addition of water, releasing counterions into
the interlamellar volume and building up interacting electric double layers; the
swelling is essentially driven by the double-layer repulsion of mostly entropic
origin. During the initial stages of swelling, the spacingh between platelets re-
mains small compared with their lateral extension, so that a moderately swollen
lamellar phase may be reasonably modeled by a stack of infinite charged planes
(158). The results for planar geometry, discussed earlier, apply then directly to the
swollen phase. In particular, limited swelling, often observed in the presence of
divalent counterions, may be related to the cohesive behavior (effective attraction
between planes, or negative disjoining pressure) due to correlation effects within
the PM (159). An important issue in the understanding of the swelling behavior
is the competitive condensation of counterions of different valence and/or size
(159, 160). The PM model is, however, expected to be inadequate when the in-
terlamellar spacingh is only on the order of a few microion diameters. Under
those conditions, the molecular nature of the solvent (water) must be explicitly
taken into account. Constant-pressure MC simulations clearly show the impor-
tance of counterion hydration in determining the swelling behavior, and point to the
role of K+ ions as a clay-swelling inhibitor (161). When swelling proceeds until
the interlamellar spacingh becomes comparable to the platelet radiusa, finite-
size (edge) effects become important. The force acting on a platelet follows
from the integration of the stress tensor5= over the two faces6+ and6− of the
platelet:

F = −
∫
6+,6−

5= ds, 30.

where ds= n̂ds is the surface element oriented along the outward normaln̂, and
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the stress tensor has the standard form

5= =
[

P(r)+ ε

8π
|E|2

]
I − ε

4π
E(r)⊗ E(r), 31.

which generalizes the uniaxial expression (Equation 20). Within LPB theory,
Equation 30 leads to the following expression for the force between two coax-
ial disks separated byh, immersed in an ionic solution of inverse Debye lengthκD

(162):

Fz(h) = (πa2)× 4πσ 2

ε

∫ ∞
0

J2
1 (x)

1

x
exp

{
−h

a

√
x2+ κ2

Da2

}
dx. 32.

Numerical solutions of the nonlinear PB equation, for the same coaxial geometry,
show that the LPB expression (32) strongly overestimates the force (163), as in
the spherical case, thus requiring a proper renormalization of the surface-charge
densityσ . Recent MC simulations show that the force may become attractive for
divalent counterions, as in the case of infinite charged planes, but that the finite size
of the disks leads to significant differences in the relative weight of electrostatic
and contact contributions (164).

Finite concentration effects in highly swollen stacks of parallel platelets of finite
size may be examined within a cell model, compatible with the shape of the platelet.
A coaxial cylindrical cell is chosen for a disk-shaped platelet, whereas a paral-
lelepipedic cell is better adapted to square platelets (162, 165). Note that the platelet
concentration determines the cell volume, but not the aspect ratio of the cell, e.g. the
ratio R/h in the case of a cylindrical cell of radiusRand heighthequal to the inter-
lamellar spacing; the optimum aspect ratio for a given volume and electrolyte con-
centration is determined by minimizing the free energy of the microions in the cell.
The latter has been calculated within LPB theory, which can be solved analytically
(162, 165), and within nonlinear PB theory, which requires numerical solution; the
latter is greatly simplified within a Green’s function formulation (163, 166).

The osmotic pressures calculated as a function of Laponite concentration within
PB theory agree reasonably well with experimental data (167) for reservoir salt
concentrations on the order of 10−3 M or larger, but differ dramatically from the
predictions of one-dimensional PB theory for stacks of infinite platelets, pointing
to the importance of edge effects in highly swollen clays (166).

In very dilute dispersions of clay platelets, such that the distance between the
centers of neighboring polyions is significantly larger than the particle radius, the
platelets can rotate more or less freely (sol phase). As the concentration increases,
a gel phase is formed, depending on salt concentration. Several recent experiments
have attempted to establish a link between the mesoscopic fractal structure of the
gel and its rheological properties (167–169), but due to metastability and aging of
the dispersions (170), no clear-cut scenario has yet emerged.

A theoretical description of the sol-gel transition of clay dispersions hinges on a
knowledge of the highly anisotropic effective interaction between charged platelets
in an electrolyte. The charged segment, or site-site model, introduced earlier for
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charged rods has been generalized to charged circular platelets, and used in MD
simulations of Laponite dispersions (171).

For well-separated platelets, the effective pair potential reduces to a sum of
screened interactions between the electrostatic multipoles associated with the
anisotropic electric double layers around each platelet (172). A simplified ver-
sion of such an effective interaction, involving infinitely thin disks carrying an
unscreened quadrupole moment, has been used in MC simulations that predict a
reversible sol-gel transition (173).

Lipid bilayers and membranes constitute another class of lamellar polyions,
which are flexible. Electrostatic interactions renormalize the bending rigidity of
these flexible membranes (51), a subject of ongoing work beyond the scope of
this review. In relation to the correlation-induced attraction between like-charged
planes discussed earlier, the fluidity of membranes provides an additional mecha-
nism for attraction between membranes, resulting from the lateral charge fluctua-
tions within the planes of the latter (174).

DISCRETE SOLVENT EFFECTS

So far, all theoretical considerations of interacting electric double layers have been
based on the PM, which ignores the molecular nature of the solvent. The PM thus
neglects excluded volume effects of the latter, as well as hydration of ions and the
expected reduction of the local dielectric constant near highly charged surfaces,
due to polarization of nearby water molecules. Neglect of these and other solvent
effects is expected to be particularly inadequate in situations where the spacing
between two charged polyion surfaces is only on the order of a few molecular
diameters.

To go beyond the PM level of description, simple models have been used to
describe the solvent molecules (generally water). The crudest model is to rep-
resent the latter by neutral hard spheres of appropriate diameter while keeping
a macroscopic dielectric constantε in the Coulombic interactions between ions;
this model accounts only for excluded volume effects. The next refinement is to
consider hard spheres with embedded point dipoles, to account for the highly
polar nature of the solvent (8, 175), whereas a reasonable local coordination of
the solvent molecules can only be achieved by adding higher-order multipoles
(176–178). In MC or MD simulations, much more sophisticated pair potentials
may be used, involving three or more interaction sites on each water molecule, as
in the widely used SPC/E potential (179).

A purely hard sphere (HS) solvent is implicit in the modified PB formula-
tion of Kralj-Igli č & Igli č (180) and others (114, 181). As expected, the modified
PB equation leads to a saturation of the counterion density at contact for high
surface-charge densities. The force between two charged surfaces in a mixture of
charged and neutral hard spheres was calculated by Tang et al (182) within a DFT
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generalizing the earlier theory of the same authors for a PM electrolyte (59); the
force is a strongly oscillatory function of the spacing between the plates, due to
HS layering, and is insensitive to surface charge and salt concentration. The latter
observation, which holds when solvent, anions, and cations are of the same size,
does not carry over to the more realistic case of unequal diameters, which has been
investigated within inhomogeneous HNC theory (183). At low surface charge, the
total force between platelets is reasonably approximated by a superposition of the
pure HS solvent “hydration” force, and the electrostatic contribution of the ions,
as calculated within the PM, in the case of equal diameters (183, 184).

The dipolar HS model for the solvent was first used to determine the structure
of the electric double layer near a single charged wall within the mean spherical
approximations (185, 186). More accurate and complete results on the planar elec-
tric double layer in a dipolar solvent were obtained from numerical solutions of
the coupled reference HNC equations for the three density profiles (187). These
calculations give statistical mechanics evidence for the reduction of the local di-
electric constant near the charged surface, and for significant electrostriction. A
generic density functional, based on the successful “fundamental measure” theory
for hard core fluids of Rosenfeld et al (188, 189), has been put forward, which can
be adapted to any polyion geometry (190); when applied to a single planar double
layer, this theory shows a considerable enhancement of the counterion density at
contact, when a dipolar, rather than bare HS solvent is used.

The effective solvation force between two charged plates immersed in an ionic
solution of charged and dipolar HS was calculated within a quadratic free en-
ergy functional of the local density, charge density, and polarization, generalizing
Equations 24 and 6 (with direct correlation functions approximated by bulk mean-
spherical-approximations solutions) (191). This calculation provided the first con-
vincing evidence of the strong influence of a granular (as opposed to continuous)
solvent on the solvation forces at short range.

The most complete investigation so far of the potential of mean force be-
tween two spherical polyions immersed in an ionic solution with a “realistic”
solvent involving hard spheres with point dipoles and tetrahedral quadrupoles
(177) appears to be the work by Kinoshita et al (192), who solved the reference
HNC equations for this highly asymmetric multicomponent mixture, for ratios
10≤ a/as ≤ 30, wherea andas are the polyion and solvent molecule radii, re-
spectively. While maintainingas fixed at 0.14 nm, a value appropriate for water,
these authors varied the counterion radius. Their most striking finding is that larger
counterions are more strongly adsorbed to the polyion in the presence of a molec-
ular solvent, leading to a greater reduction of the Coulomb repulsion between
the polyions, and even to the possibility of an effective attraction for monovalent
counterions, when their radius exceedsas by more than 20%. The trend toward a
reduction of effective repulsion with increasing counterion size is the exact oppo-
site of the prediction of the PM, a clear illustration of the pitfalls of the latter in
describing the short-range behavior of solvation forces!
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OUTLOOK

Although the understanding of effective interactions between electric double layers
has clearly advanced in the past decade through a combination of new theoreti-
cal approaches, quantitative measurements, and large-scale computer simulations,
there are still many open questions. Future research should focus on the influence
of image charges (193) due to dielectric discontinuities between the solvent and
the container walls or the polyions themselves. Real samples possess, moreover,
an intrinsic polydispersity in size, charge, and shape, which becomes relevant for
a quantitative comparison between theory and experimental data. Another rapidly
growing field concerns flexible polyelectrolyte chains whose stiffness is governed
by their persistence length (137). A theoretical approach needs input from both
nonlinear screening and polymer theories. The microscopic incorporation of the
solvent is still in its early stage, and full molecular theories describing hydration
forces and hydrogen bonding are highly desirable for aqueous suspensions. Lastly,
alternative approaches, such as recent field theoretical formulations (194), might
lead to additional insight.

ACKNOWLEDGMENTS

We thank E Allahyarov, D Goulding, Y Levin, P Linse, V Lobaskin, P Pincus, and
R van Roij for helpful comments.

Visit the Annual Reviews home page at www.AnnualReviews.org

LITERATURE CITED

1. Israelachvili J. 1992.Intermolecular and
Surface Forces. London: Academic. 2nd ed.

2. Chen SH. 1986.Annu. Rev. Phys. Chem.
37:351

3. Evans R. 1991. See Ref. 195, pp. 85–175
York: Dekker

4. Carnie SL, Torrie GM. 1987.Adv. Chem.
Phys.56:141

5. Blum L, Henderson D. 1991. See Ref. 195,
pp. 239–76

6. Attard P. 1996.Adv. Chem. Phys.92:1
7. Arora AK, Tata BVR, eds. 1996.Ordering

and Phase Transitions in Charged Colloids.
New York: VCH

8. Hansen JP, McDonald IR. 1986.The-
ory of Simple Liquids. London: Academic.
2nd ed.

9. Belloni L. 1985.Chem. Phys.99:43

10. Belloni L. 1986.J. Chem. Phys.85:519
11. Belloni L. 1988.J. Chem. Phys.88:5143
12. Khan S, Morton T, Ronis D. 1987.Phys.

Rev. A35:4295
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