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Active colloids exhibit persistent motion, which can lead to motility-induced phase separation (MIPS).

However, there currently exists no microscopic theory to account for this phenomenon. We report a first-principles

theory, free of fit parameters, for active spherical colloids, which shows explicitly how an effective many-body

interaction potential is generated by activity and how this can rationalize MIPS. For a passively repulsive system

the theory predicts phase separation and pair correlations in quantitative agreement with simulation. For an

attractive system the theory shows that phase separation becomes suppressed by moderate activity, consistent

with recent experiments and simulations, and suggests a mechanism for reentrant cluster formation at high activity.

DOI: 10.1103/PhysRevE.91.042310 PACS number(s): 82.70.Dd, 64.75.Xc, 05.40.−a

I. INTRODUCTION

Active colloidal particles in suspension are currently the

subject of considerable attention, due largely to their ability

to model self-organization phenomena in biological systems,

but also as a new branch of fundamental research in nonequi-

librium statistical mechanics: assemblies of active colloids are

intrinsically out-of-equilibrium systems. In contrast to their

passive counterparts, active colloids undergo both solvent-

induced Brownian motion and a self-propulsion which requires

a continual consumption of energy from the local environment.

Several idealized experimental model systems have been

developed, such as catalytic Janus particles [1–3], colloids

with artificial flagella [4], and light-activated particles [5].

The understanding of active systems has been further aided

by the development of simple theoretical models, which aim

to capture the essential physical mechanisms and which have

been used to study, e.g., bacteria, cells, or filaments in the

cytoskeleton [6–9].

Active particles are characterized by a persistent motion,

which can lead to “self-trapping” dynamics and a rich variety

of related collective phenomena [6–10]. Even the simplest

models of active spherical particles with purely repulsive inter-

actions can display the phenomenon of motility-induced phase

separation (MIPS) [10]. In many respects, MIPS resembles the

equilibrium phase separation familiar from passive systems

with an attractive component to the interaction potential (e.g.,

the Lennard-Jones potential) [11–15]. This apparent similarity

has motivated several recent attempts to map an assembly of

active particles onto a passive equilibrium system, interacting

via an effective attraction (usually taken to be a very short

range sticky-sphere potential [16,17]). Despite the intuitive

appeal of mapping to an equilibrium system, there exists no

systematic theoretical approach capable of predicting an effec-

tive equilibrium potential directly from the bare interactions.

Our current understanding of MIPS has largely been gained

through either simulation [12–15,18] or phenomenological

theory [10,11,13,19]. The phenomenological theory is based

on an equation for the coarse-grained density, featuring a

local speed and a local orientational relaxation time. Although

the precise relationship between these one-body fields and

the interparticle interaction potential remains to be clarified,

some progress in this direction has been made [20]. On a

more microscopic level, it has recently been shown that a

general system of active particles does not have an equation

of state [21], due to the influence of the confining boundaries;

however, one can be recovered for the special case of active

Brownian spheres [21,22].

Here we report a first-principles theory for systems of

active Brownian spheres, which demonstrates explicitly how

an effective many-body interaction potential is induced by

activity. An appealing feature of this approach is that intuition

gained from equilibrium can be used to understand the steady-

state properties of active systems. The required input quantities

are the passive (“bare”) interaction potential, the rotational

diffusion coefficient, and the particle propulsion speed. The

theory generates as output the static correlation functions

and phase behavior of the active system. For a repulsive

bare interaction, activity generates an attractive effective pair

potential, thus providing an intuitive explanation for the

MIPS observed in simulations [12,15,23]. For an attractive

bare potential, we find that increasing activity first reduces

the effective attraction, consistent with the experiments of

Schwarz-Linek et al. [16], before leading at higher activity to

the development of a repulsive potential barrier. We speculate

that this barrier may be related to the reentrant phase behavior

observed in simulation by Redner et al. [14].

The paper will be structured as follows: In Sec. II we specify

the microscopic dynamics and describe how to eliminate orien-

tational degrees of freedom. From the resulting coarse-grained,

non-Markovian Langevin equation we derive a Fokker-Planck

equation for the positional degrees of freedom, from which

we identify an effective pair potential. In Sec. III we employ

the effective pair potential in an equilibrium integral equation

theory and investigate the structure and phase behavior of both

repulsive and attractive bare potentials. In the former case

we predict MIPS, whereas in the latter case phase separation

is suppressed by activity. Finally, in Sec. IV we discuss our

findings and provide an outlook for future research.

II. THEORY

A. Microscopic dynamics

We consider a three-dimensional system of N active, in-

teracting, spherical Brownian particles with spatial coordinate
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r i and orientation specified by an embedded unit vector pi .

Each particle experiences a self-propulsion of speed v0 in its

direction of orientation. Omitting hydrodynamic interactions

the particle motion can be modeled by the overdamped

Langevin equations

ṙ i = v0 pi + γ −1 Fi + ξ i, (1)

ṗi = ηi × pi, (2)

where γ is the friction coefficient and the force on particle

i is generated from the total potential energy according

to Fi =−∇iUN . The stochastic vectors ξ i(t) and ηi(t) are

Gaussian distributed with zero mean and have time cor-

relations 〈ξ i(t)ξ j (t ′)〉 = 2Dt1δijδ(t − t ′) and 〈ηi(t)ηj (t ′)〉 =
2Dr1δijδ(t − t ′), where Dt and Dr are the translational and

rotational diffusion coefficients.

Equations (1) and (2) are convenient for simulation but are

perhaps not the most suitable starting point for developing a

first-principles microscopic theory. For a homogeneous sys-

tem, averaging over the angular degrees of freedom generates

a coarse-grained equation [12]

ṙ i(t) = γ −1 Fi(t) + ξ i(t) + χ i(t), (3)

where χ i(t) is a Markov process with zero mean and where

the time correlation function is given by

〈χ i(t) χ j (t ′)〉 =
v2

0

3
e−2Dr |t−t ′|1δij . (4)

The average in Eq. (4) is over both noise and initial orientation.

The distribution of χ i(t) is Gaussian to a good approximation.

This point and further technical details of the coarse graining

are discussed in Appendix A. Equation (3) provides a mean-

field level of description, which deviates from the exact

equations (1) and (2) by neglecting the coupling of fluctuations

in orientation and positional degrees of freedom.

The Langevin equation (3) describes a non-Markovian

process, which approximates the stochastic time evolution of

the positional degrees of freedom. The persistent motion of

active particles is here encoded by the exponential decay of

the time correlation (4), with persistence time τp = (2Dr )−1.

For small τp the time correlation becomes 〈χ i(t)χ j (t ′)〉 =
2Da1δijδ(t − t ′), and the dynamics reduce to that of an

equilibrium system with diffusion coefficient Dt + Da , where

Da =v2
0/(6Dr ). This limit is realized when τp is shorter

than the mean free time between collisions, i.e., in a dilute

suspension. To treat finite densities requires an approach which

deals with persistent trajectories. With this aim, we adopt (3)

as the starting point for constructing a closed theory.

B. Fokker-Planck equation

A stochastic process driven by colored noise, such as that

described by Eq. (3), is always non-Markovian. Consequently

it is not possible to derive an exact Fokker-Planck equation

for the time evolution of the probability distribution [24].

Nevertheless, an approximate Fokker-Planck description ca-

pable of making accurate predictions can usually be found.

The approximate Fokker-Planck equation implicitly defines

a Markov process which best approximates the process of

physical interest (although precisely what constitutes the

“best” approximation remains a matter of debate). From the

extensive literature on this subject (see Refs. [24–26] and

references therein) has emerged a powerful method due to

Fox [27,28], in which a perturbative expansion in powers of

correlation time is partially resummed using functional cal-

culus. The resulting Fokker-Planck equation is most accurate

for short correlation times (“off white” noise [25]) and for

one-dimensional models makes predictions in good agreement

with simulation data [26].

We now consider applying the method of Fox [27,28]

to Eq. (3). This approach consists of first formulating the

configurational probability distribution as a path (functional)

integral and then making a time-local, Markovian approxi-

mation to this quantity. Technical details of the method are

given in Appendix B. Fox’s approach was originally developed

to treat one-dimensional problems [27,28]; however, the

generalization to three dimensions is quite straightforward.

This enables us to directly obtain the following Fokker-Planck

equation:

∂t�(rN,t) = −
N

∑

i=1

∇i · J i(rN,t), (5)

where �(rN,t) is the configurational probability distribution.

Within the generalized Fox approximation the many-body

current is given by

J i(rN,t) = −Di(rN )
[

∇i − β Feff
i (rN )

]

�(rN,t), (6)

where β ≡ (kBT )−1. The diffusion coefficient is given by

Di(rN ) = Dt + Da

[

1 +
τ∇i ·β Fi(rN )

1 − τ∇i ·β Fi(rN )

]

, (7)

where we have defined a dimensionless persistence time,

τ =τpDt/d
2. The effective force is given by

Feff
i (rN ) =

1

Di(rN )
[Fi(rN ) − kBT ∇iDi(rN )], (8)

where Di(rN )=Di(rN )/Dt is a dimensionless diffusion coef-

ficient. Either in the absence of interactions or in limit of large

Dr the diffusivity (7) reduces to Dt +Da and the effective

force becomes Dt Fi(rN )/(Dt + Da). In this diffusion limit

the system behaves as an equilibrium system at effective

temperature Teff = T (1 + Da/Dt ).

For weakly persistent motion, τ →0, Eqs. (5) to (8) become

exact, and the theory provides the leading order correction to

the diffusion approximation. However, the Fox approximation

goes beyond this by including contributions to all orders in

τ . Indeed, detailed studies of one-dimensional systems have

demonstrated good results over a large range of τ values [26].

The only caveat is that the condition 1−τ ∇i ·β Fi >0 must

be satisfied [27,28]. The range of accessible τ values thus

depends upon the specific form of the bare interaction

potential.

Within our stochastic calculus approach, the effective

many-body force (8) emerges in a natural way from the

coarse-grained Langevin equation (3). The more standard

route (adopted in all attempts made so far [20,29]) to approach

this problem is to derive from the Markovian equations (1)

the exact Fokker-Planck equation for the joint distribution
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of positions and orientations, P (rN, pN,t). However, coarse

graining strategies based on integration of P over orientations

generate intractable integral terms. By starting from (3) we are

able to circumvent these difficulties. As we shall demonstrate

below, our effective force accounts for several important

collective phenomena in active systems.

C. Effective pair potential

In the low density limit we need only consider isolated

pairs of particles. In this limit (5) reduces to an equation of

motion for the radial distribution function, g(r,t)≡�(r,t)/ρ2
b ,

where ρb is the bulk density. This equation of motion, the pair

Smolochowski equation, is given by

∂tg(r,t)=−∇ · j(r,t), (9)

where r =|r12| is the particle separation and ∇=∇r12
. The

pair current is given by

j(r,t) = −2D(r)g(r,t)[ ∇ ln g(r,t) − β Feff(r) ], (10)

where the radial diffusivity

D(r) = Dt + Da

[

1 −
τ∇2βu(r)

1 + τ∇2βu(r)

]

(11)

interpolates between the value Dt at small separations, where

u(r) is strongly repulsive, and Dt + Da at large separations.

The effective interparticle force is given by

Feff(r) =
1

D(r)
[F(r) − kBT ∇D(r)], (12)

where the bare force is related to the pair potential by

F(r)=−∇u(r). The symmetry of the two-body problem can

be exploited to calculate from (12) an effective interaction

potential

βueff(r) =
∫ ∞

r

dr ′
[

βF (r ′)

D(r ′)
−

∂

∂r ′ lnD(r ′)

]

, (13)

where F (r)=|F(r)|. We have thus identified an effective

interaction pair potential, which requires as input the bare

potential and the activity parameters τ and Da .

III. RESULTS

A. Motility-induced phase separation (MIPS)

To illustrate how activity can generate an effective attraction

in a passively repulsive system we consider the nonspecific

potential βu(r) = r−12. In Fig. 1(a) we show the evolution

of the effective potential (13) for fixed τ as a function

of the dimensionless velocity Pe=v0d/Dt . For Pe�10 the

effective potential develops an attractive tail. As Pe is increased

the potential well deepens, the minimum moves to smaller

separations and the radius of the soft repulsive core decreases.

These trends are consistent with the intuitive picture that

persistent motion drives soft particles into one another (the

soft core radius reduces) and that they remain dynamically

coupled (“trapped”) for longer than in the corresponding

passive system. Within our equilibrium picture the trapping

is accounted for by the effective attraction.

For systems at finite density the pair potential (13) is an

approximation because three- and higher-body interactions
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FIG. 1. (Color online) Activity induces effective attraction. Pas-

sive potential βu(r)=r−12. (a) Increasing Pe (in steps of 8) from 0

to 40 generates an effective interparticle attraction. Points indicate

the potential minima. (b) Radial distribution function, g(r), from

simulation (points) and theory (lines) for ρb =0.5 and Pe=0 to 20 (in

steps of 4). Curves are shifted vertically for clarity. (c) As in (b), but

focusing on larger separations for Pe = 4 (squares), 12 (circles), and

20 (diamonds). Inset: Position of the first peak in g(r) as a function of

Pe. (d) Spinodals for τ = 0.045 (dot-dashed) to 0.065 (long dashed)

in steps of 0.005.

will play a role [see Eq. (8)]. However, for simplicity we

henceforth employ the pair potential (13) for all calculations, as

we anticipate that this will provide the dominant contribution.

Although corrections to this assumption can be made, they

obscure the physical picture and come at the expense of a

more complicated theory. The validity of the pair potential

approximation is justified a posteriori by the comparison with

simulation for the finite density pair correlations.

In Fig. 1(b) we show the steady-state (isotropic) radial

distribution function for ρb =0.5 for various values of Pe.

We employ the effective pair potential (13) together with

liquid state integral equation theory and compare theoretical

predictions with direct Brownian dynamics simulation of

Eqs. (1) and (2). The integral equation theory we employ

is the soft mean-spherical approximation (SMSA) proposed

by Madden and Rice [30]. This approximate closure of the

Ornstein-Zernike equation is known to provide reliable results

for the pair structure of Lennard-Jones-type potentials. Given

the form of the effective pair potential shown in Fig. 1 the

SMSA would seem to be a reasonable choice of closure.

Details of the integral equation theory and the simulation

procedure are given in Appendices C and D, respectively.

We find that as Pe is increased the main peak of g(r)

grows in height and shifts to smaller separations [see inset

to Fig. 1(c)], reflecting the changes in the effective potential.

In the main panel of Fig. 1(c) we focus on the second and third

peaks. The quantitative accuracy of the theory in describing

the decay of g(r) is quite striking, in particular the phase shift

induced by increasing activity is very well described. Further

comparison for other parameter values (not shown) suggests
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FIG. 2. (Color online) From active suppression of phase separa-

tion to a cluster phase. Passive potential βu(r) = 4 ε(r−12 − r−6) with

ε = 1.4. (a) Effective potential (13) for τ = 0.025 and Pe = 0 (black)

4,8,12 (red broken lines) and 20,28,36 (blue). Inset: Zoom of the

repulsive peak for Pe = 20,28,36. (b) Spinodals for Pe = 0,4,8,12.

Increasing Pe increases εcrit, the critical value of ε. (c) εcrit as a

function of Pe (black full line) and the locus of points for which

the repulsive peak of βueff takes the value 0.1 (red dashed) and

0.05 (blue dot-dashed). Open (closed) circles indicate points where

BD simulation find a mixed (phase-separated) state (see Fig. 3).

Arrow indicates path taken in (a). (d) Theory (lines) and simulation

(symbols) data (shifted for clarity) for g(r) at ε = 0.5, ρb = 0.3 for

Pe = 0 (black), 12 (blue), and 20 (green). Dotted lines indicate peak

positions.

that (13) combined with the SMSA theory provides an accurate

account of the asymptotic decay of pair correlations.

In Fig. 1(d) we show the spinodal lines mapping the locus

of points for which the static structure factor, S(q) = [1 −
ρbc(q)]−1, diverges at vanishing wave vector. Simulations have

shown that MIPS is consistent with a spinodal instability [12].

As τ is decreased the critical point moves to higher values

of Pe and to slightly higher densities. When compared with

the spinodal of a standard Lennard-Jones system [e.g., the

black curve in Fig. 2(b)] the critical points in Fig. 1(d) lie at

rather higher values of ρb. This suggests that typical coexisting

liquid densities for MIPS will be larger than those found in

equilibrium phase separated systems, as has been observed in

simulation [12,14].

B. Suppression of phase separation

We next consider the influence of activity on a Lennard-

Jones system, βu(r) = 4ε(r−12− r−6). For a phase-separated

passive system, recent experiments and simulations have

demonstrated that increasing Pe first suppresses the phase

separation [16] and then leads at higher Pe to a reentrant

MIPS [14]. Schwarz-Linek et al. have argued that the suppres-

sion of phase separation at lower to intermediate Pe occurs

in their system because particle pairs bound by the attractive

(depletion) potential begin to actively escape the potential well,

and that this can be mimicked using an effective potential less

attractive and shorter ranged than the bare potential [16].

FIG. 3. (Color online) Simulated phase separation. (a) Snapshot

of a mixed system at t/τB = 40, Pe = 8, ε/(kBT ) = 1.5. (b) Snapshot

of a phase separating system at the same time and Pe = 8, ε = 2.5.

(c) The radial distribution function, g(r), for ε = 1.5 (black curve), 2

(blue curve), and 2.5 (green curve). (d) As in (c) but focusing on larger

distances. From the snapshots together with the long-range behavior

of the g(r) we can distinguish between a mixed and a phase-separated

system. The slow decay to the asymptotic value of unity, as shown in

(d), indicates phase separation.

To investigate these phenomena we set ε = 1.4, which

ensures a phase-separated passive state [31], and consider the

evolution of the effective potential as a function of Pe. In

Fig. 2(a) we show that as Pe is increased from zero to the value

18 both the depth and range of the effective potential reduce

significantly, consistent with the expectation of Schwarz-Linek

et al. [16]. Spinodals within this range of Pe values, identifying

where the static structure factor diverges at zero wave vector,

are shown in Fig. 2(b). As Pe is increased the critical point

moves to higher values of ε (cf. Figs. 1 and 3 in Ref. [16]). A

passively phase-separated system will thus revert to a single

phase upon increasing the activity. To examine this behavior

in more detail we show in Fig. 2(c) the trajectory of the

critical point in the (Pe,ε) plane. Above the line there exist

bulk densities for which phase separation occurs.

In order to test the predicted trajectory of the critical point

we have performed Brownian dynamics simulations at a bulk

density ρb = 0.4, which lies close to the critical density [31],

for various values of ε and the Pe values 5,8, and 10. Visual

inspection of the simulation snapshots reveals the existence

of voids in the particle configurations corresponding to a

phase-separated state [see Figs. 3(a) and 3(b) for snapshots].

This visual impression can be made more quantitative by

calculating the radial distribution function. Phase-separating

states generate a very characteristic slow decay of g(r)

[Figs. 3(c) and 3(d)], which provides a useful indicator. The

open circles in Fig. 2(c) represent mixed states, whereas

closed circles indicate phase separated state points. The phase
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boundary predicted by the theory is highly consistent with the

simulation data.

C. Cluster phase

Returning to Fig. 2(a), we find that for Pe>18 the effective

potential develops a repulsive barrier, which grows in height

(see inset) with increasing Pe, while the potential minimum

becomes deeper. It is well known that potentials with a

short-ranged attraction and long-ranged repulsion (SALR

potentials) exhibit unusual equilibrium phase behavior, includ-

ing clustering and microphase separation [32,33]. Although

the attractive component of the potential may favor phase

separation, the long-range repulsion destabilizes distinct liquid

and gas phases and causes them to break up into droplets or

clusters. This represents a nonspinodal type of phase transition,

characterized by a divergence in the structure factor at finite

wave vector. The appearance of a repulsive barrier in the

effective potential suggests that a similar mechanism may be at

work in passively attractive systems subject to high Pe activity.

In Fig. 2(c) we show the locus of points where the effective

potential peak height attains a given value (we choose 0.05

and 0.1 for illustration). When these “isorepulsion curves” are

viewed together with the critical point trajectory the resulting

phase diagram is very similar to that obtained by Redner et al.

in their simulation study of two-dimensional active Lennard-

Jones particles (cf. Fig. 1 in Ref. [14]). However, a detailed

study of the connection between the potential barrier and high

Pe clustering goes beyond the scope of the present work.

IV. DISCUSSION

In summary, we have shown that systems of active spherical

Brownian particles can be mapped onto an equilibrium system

interacting via an effective, activity-dependent many-body

potential. The only required inputs are the bare potential,

thermodynamic state point and the parameters specifying the

state of activity. Our theory captures the phenomenon of MIPS

in repulsive systems and provides first-principles predictions

for the activity dependence of the pair correlations, in very

good agreement with Brownian dynamics simulation. As far

as we are aware no other approach is capable of predicting from

the microscopic interactions the pair correlation functions of

an active system. Further insight into the steady state particle

distribution could in principle be obtained by investigating the

three-body correlations. These could be obtained by employ-

ing the effective potential in a higher-order liquid state integral

equation theory (see, e.g., Ref. [34] and references therein).

For passively attractive systems the theory rationalizes the

experimental finding [16] that increasing activity can suppress

passive phase separation. We find that as Pe is increased from

zero to intermediate values the minimum of the effective

potential becomes less deep, thus weakening the cohesion of

the liquid phase. To the best of our knowledge no alternative

theoretical explanation is currently available for phase-

transition suppression in active suspensions. It is an appealing

aspect of our theory that the suppression of passive phase

separation follows naturally from the same approach which

yields activity-induced attraction for repulsive potentials. For

high values of Pe the appearance of a repulsive barrier in the

effective potential suggests that the reentrant phase separation

observed in simulations [14] may be interpreted using concepts

of equilibrium clustering in SALR potential systems. This

will be a subject of future detailed investigations. It is known

that care must be exercised when analyzing SALR potentials,

as traditional liquid state theories can prove misleading [33].

A key step in our development is the Fox approxima-

tion [27], which yields an effective Markovian description

of the coarse-grained equation (3). Making a Markovian ap-

proximation automatically imposes an effective equilibrium;

however, we are aware that in certain situations this breaks

down [10,19]. Establishing more clearly the range of validity

of our approach, as well as its possible extensions, will be the

subject of ongoing study. However, it is already clear that going

beyond the Markovian approximation will be very challenging.

Indeed, such a step may not even be desirable. Any kind of

non-Markovian description would lead inevitably to a loss of

the effective equilibrium picture and the physical intuition

associated with it. It thus seems likely that practical im-

provements to the present approach will retain the Markovian

description while seeking to optimize, or improve upon, the

Fox approximation for certain classes of bare potential. Very

recently, Maggi et al. have employed an alternative approach

to treating stochastic processes driven by Ornstein-Uhlenbeck

noise [35]. A comparison of their approach with the Fox

method employed here would be very interesting.

With a view to further applications of our approach, we

note that there has recently been considerable interest in active

suspensions at very high densities [36–39]. In particular, it

has been found using computer simulations that activity has a

strong influence on the location of the hard-sphere glass tran-

sition, dynamic correlation functions, such as the intermediate

scattering function, and static pair correlations [37]. Within

our effective equilibrium framework, increasing the activity of

a passively repulsive system generates an effective attraction.

We can therefore anticipate that for volume fractions just above

the glass transition it will be possible to observe a reentrant

glass transition, namely, a melting of the glass followed by

revitrification, as a function of increasing Pe. Moreover, the

nontrivial evolution of the effective potential as a function of

Pe for attractive bare potentials [cf. Fig. 2(a)] suggests these

systems will present a rich variety of glassy states. Work along

these lines is in progress.

Finally, we mention that a natural generalization of the

present theory is to treat spatially inhomogeneous systems in

external fields. Recent microscopic studies of active particles

under confinement (e.g., in a harmonic trap [29]) have provided

considerable insight; however, none of the existing approaches

have considered effective interparticle interactions. Inhomo-

geneous generalization of the present theory enables the inter-

action between MIPS and external fields to be investigated on

the microscopic level. Our preliminary investigations reveal,

for example, activity-induced wetting at a planar substrate

and capillary-condensation under confinement. This will be

presented in a future publication.
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APPENDIX A: COARSE-GRAINED LANGEVIN EQUATION

Equation (2) describes the orientational diffusion of an

active particle. The corresponding conditional probability

distribution function ϒ( p,t | p0,t0), where t > t0, obeys a

Fokker-Planck equation which can be obtained using usual

techniques [40],

∂

∂t
ϒ( p,t | p0,t0) = Dr R2ϒ( p,t | p0,t0), (A1)

where R ≡ ( p × ∇ p) is the intrinsic angular momentum

differential operator. Equation (A1) describes nothing but a

diffusion process on the unit sphere. This problem is well

known when studying, e.g., dielectric relaxation in polar

liquids [41–44]. In spherical coordinates, (A1) becomes

1

Dr

∂

∂t
ϒ(�,t | �0,t0)

=
[

1

sin ϑ

∂

∂ϑ

(

sin ϑ
∂

∂ϑ

)

+
1

sin2 ϑ

∂2

∂ϕ2

]

ϒ(�,t | �0,t0),

(A2)

where we have defined � ≡ (ϑ,ϕ).

Assuming that ϒ and its derivatives are continuous on the

sphere [45], we expand the probability distribution function ϒ

in spherical harmonics

ϒ(�,t | �0,t0) =
∞

∑

l=0

l
∑

m=−l

Alm(t | �0,t0)Ylm(�), (A3)

where Ylm are the spherical harmonics and Alm are coefficients

encoding the initial condition. We also recall that spherical

harmonics are eigenvectors of the operator R2 (in spherical

coordinates), namely, that

R2Ylm = −l(l + 1)Ylm. (A4)

Inserting (A3) in Eq. (A2) and using (A4) we obtain

∑

l,m

∂

∂t
Alm(t | �0,t0)Ylm(�)

= −Dr

∑

l,m

l(l + 1)Alm(t | �0,t0)Ylm(�). (A5)

Multiplying both sides of (A5) by Y ∗
l′m′(�), integrating

over solid angle and using the orthogonality property,
∫

d�Y ∗
l′m′ (�)Ylm(�) = δm,m′δl,l′ , yields

∂

∂t
Alm(t | �0,t0) = −Dr l(l + 1)Alm(t | �0,t0), (A6)

which has the solution

Alm(t | �0,t0) = e−Dr l(l+1)(t−t0)alm(�0), (A7)

where the alm are a new set of coefficients. The probability

distribution is thus given by

ϒ(�,t | �0,t0) =
∑

l,m

e−Dr l(l+1)(t−t0)alm(�0)Ylm(�). (A8)

The initial condition,

ϒ(�,t0 | �0,t0) = δ(� − �0), (A9)

together with the completeness relation of the spherical

harmonics,

δ(� − �0) =
∞

∑

l=0

l
∑

m=−l

Ylm(�)Y ∗
lm(�0), (A10)

allows the missing coefficients to be identified,

alm(�0) = Y ∗
lm(�0). (A11)

The conditional probability distribution is now fully deter-

mined as

ϒ(�,t | �0,t0) =
∞

∑

l=0

l
∑

m=−l

e−Dr l(l+1)(t−t0)Y ∗
lm(�0)Ylm(�).

(A12)

As t → ∞ only the terms with l = 0 survive. The steady-state

distribution function is thus given by

ϒeq(�) = lim
t→∞

ϒ(�,t | �0,t0) = (4π )−1. (A13)

The conditional and equilibrium distributions, (A12)

and (A13), respectively, can be used to coarse-grain the exact

Langevin equations (1) and (2). The approach taken is to

consider the orientation vector pi(t) attached to particle i as a

stochastic variable and to provide its full statistical characteri-

zation. In spherical coordinates the orientation vector is given

explicitly by

p(t) = (px(t),py(t),pz(t))
T

= ( cos ϕ(t) sin ϑ(t), sin ϕ(t) sin ϑ(t), cos ϑ(t))T , (A14)

where ϕ and ϑ are the azimuthal and polar angles, respectively.

Using (A13) we have that

〈pz(t)〉 =
∫

d�ϒeq(�) cos ϑ = 0, (A15)

together with analogous results for the x and y components:

〈px(t)〉 = 0 = 〈py(t)〉. (A16)

Defining the new stochastic variable by χ i(t) ≡ v0 pi(t), its

first moment is thus given by

〈χ i(t)〉 = v0〈 pi(t)〉 = 0. (A17)

Calculation of the equilibrium correlation matrix re-

quires the conditional probability distribution function given

by (A12). For example, for the zz component, we obtain

〈pz(t)pz(t0)〉

=
∫

d�

∫

d�0 cos ϑ cos ϑ0ϒ(�,t | �0,t0)ϒeq(�0)

=
1

3

∫

d�

∫

d�0

∑

l,m

e−Dr l(l+1)(t−t0)

×Y ∗
10(�)Ylm(�)Y10(�0)Y ∗

lm(�0)

=
1

3
e−2Dr |t−t0|, (A18)
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where we have expressed the cosine functions in terms of

spherical harmonics, Y10 =
√

3/(4π ) cos ϑ = Y ∗
10, and used

the orthogonality property. Calculations for the xx and yy

components are performed in the same spirit. We thus obtain

〈px(t)px(t0)〉 = 1
3
e−2Dr |t−t0| = 〈py(t)py(t0)〉, (A19)

whereas off-diagonal components of the correlation matrix are

all zero. We can thus conclude that

〈χ i(t)χ j (t ′)〉 = v2
0〈 pi(t) pj (t ′)〉 =

v2
0

3
e−2Dr |t−t ′|1δij . (A20)

It has been shown [46] that the probability distribution

function (A12) can be well approximated by an expression

which generalizes the planar Gaussian function to the sphere.

The new noise function χ i(t) is thus approximately Gaus-

sian distributed with zero mean and exponentially decaying

correlations. The coarse-grained Langevin equation (3) thus

describes a stochastic process with additive colored noise.

APPENDIX B: APPROXIMATE FOKKER-PLANCK

EQUATION

To derive from (3) an approximate Fokker-Planck equation

we apply the functional calculus methods of Fox [27]. We

address the one-dimensional case before generalizing to higher

dimension. Consider the stochastic differential equation

ẋ(t) = F (x) + g(x)χ (t), (B1)

where F (x) and g(x) may be nonlinear functions in x. If

g(x) = 1, the process is then called additive, otherwise it is

called multiplicative. The noise function χ (t) is by definition

Gaussian distributed with zero mean. Its second moment

determines whether it is a white or colored noise. As we are

interested here in the case of additive colored noise we set

g(x) = 1.

In the framework of functional calculus, the Gaussian

nature of χ (t) is expressed by the following probability

distribution functional:

P [χ ] = Ne− 1
2

∫

ds
∫

ds ′χ(s)χ(s ′)K(s−s ′), (B2)

where the function K is the inverse of the χ correlation

function and the normalization constant is expressed by a path

integral over χ :

N−1 =
∫

D[χ ]e− 1
2

∫

ds
∫

ds ′χ(s)χ(s ′)K(s−s ′). (B3)

The first and second moments of χ are given by

〈χ (t)〉 = 0, (B4)

〈χ (t)χ (s)〉 = C(t − s). (B5)

Recalling that the functional derivative may be defined

according to

δI [φ]

δφ(t ′)
=

d

dλ
I [φ(t) + λδ(t − t ′)]

∣

∣

∣

∣

λ=0

, (B6)

we now derive two useful identities. The first concerns

the functional derivative of the probability distribution

functional,

δP [χ ]

δχ (t)
=

δN

δχ (t)
e− 1

2

∫

ds
∫

ds ′χ(s)χ(s ′)K(s−s ′)

+ N
δ

δχ (t)
e− 1

2

∫

ds
∫

ds ′χ(s)χ(s ′)K(s−s ′)

= −P [χ ]

∫

dsK(t − s)χ (s), (B7)

where, using (B6) and (B4), it can be easily shown that

δN/δχ (t) = 0. The second identity demonstrates the inverse

relation between the functions K and C. The second functional

derivative of P [χ ] yields

δ2P [χ ]

δχ (t ′)δχ (t)
= P [χ ]

{∫

ds ′
∫

dsK(t ′ − s ′)K(t − s)χ (s ′)χ (s)

− K(t − t ′)

}

, (B8)

where use of (B7) has been made. Using (B8) and (B5) together

with the normalization
∫

D[χ ]P [χ ] = 1, leads to

0 =
∫

D[χ ]
δ2P [χ ]

δχ (t ′)δχ (t)

=
∫

ds ′K(t ′ − s ′)

∫

dsK(t − s)C(s − s ′) − K(t − t ′),

(B9)

which implies that
∫

dsK(t − s)C(s − s ′) = δ(t − s ′). (B10)

The solution to the stochastic process described by (B1),

namely, the probability distribution functional for x(t), is given

by the formal expression

P (y,t) =
∫

D[χ ]P [χ ]δ[y − x(t)]. (B11)

Taking the time derivative of (B11) yields

∂

∂t
P (y,t) = −

∂

∂y
[F (y)P (y,t)]

−
∂

∂y

∫

D[χ ]δ[y − x(t)]P [χ ] χ (t). (B12)

The product P [χ ] χ (t) appearing in the second term can be

rewritten in the following way:

P [χ ] χ (t) = P [χ ]

∫

dsδ(t − s)χ (s)

= −
∫

ds ′C(t − s ′)
δP [χ ]

δχ (s ′)
, (B13)

where we have used (B10) and (B7). Inserting (B13) back into

the second term of (B12) and integrating by parts gives us
∫

D[χ ]δ[y − x(t)]P [χ ]χ (t)

= −
∫

ds ′C(t − s ′)

∫

D[χ ]

{

∂

∂y
δ[y − x(t)]

}

δx(t)

δχ (s ′)
P [χ ],

(B14)
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which serves as the exact starting point for Fox’s approxima-

tion scheme [27].

In order to progress further we need to calculate

δx(t)/δχ (s ′). Applying the functional derivative with respect

to χ (t ′) on (B1) yields a first-order differential equation,

d

dt

δx(t)

δχ (t ′)
=

δẋ(t)

δχ (t ′)
= F ′(x)

δx(t)

δχ (t ′)
+ δ(t − t ′), (B15)

the solution of which is

δx(t)

δχ (s ′)
=

∫ t

0

ds e
∫ t

s
ds̃F ′[x(s̃)]δ(s − s ′)

= e
∫ t

s′ dsF ′[x(s)]�(t − s ′), (B16)

where � is the Heaviside step function, which we define here

as follows:

�(t − s ′) =

⎧

⎨

⎩

1, t > s ′
1
2
, t = s ′

0, t < s ′.

Using (B16) in Eq. (B14) we can rewrite (B12) in an alternative

form,

∂

∂t
P (y,t) = −

∂

∂y
[F (y)P (y,t)] +

∂2

∂y2

{∫ t

0

ds ′C(t − s ′)

×
∫

D[χ ]P [χ ]e
∫ t

s′ dsF ′[x(s)]δ[y − x(t)]

}

,

(B17)

which already begins to resemble a Fokker-Planck-type

equation. However, because of the non-Markovian nature of
∫ t

s ′ dsF ′[x(s)] appearing in the exponential of (B17), it is ap-

parent that a reduction of this term to an expression containing

P (y,t) is not possible. An approximation is required.

The colored noise of interest here is characterized by an

exponentially decaying correlation function (A17). In the

literature on non-Markovian processes the time-correlation

functions are generally notated as follows:

C(t − s) =
D

τ
e− |t−s|

τ , (B18)

with a diffusion coefficient D and a correlation time τ . In order

to retain some coherence with the existing literature we will

here employ the standard notation of (B18) and only use the

relation of the parameters in Eq. (B18) to those of (A20) at the

end of the calculation.

Returning to (B17), we first perform a change of variable,

t ′ ≡ t − s ′, in the time integral,

∫ t

0

ds ′C(t − s ′)e
∫ t

s′ dsF ′[x(s)] =
∫ t

0

dt ′C(t ′)e
∫ t

t−t ′ dsF ′[x(s)],

(B19)

and then expand the time integral over F ′ in terms of t ′,

∫ t

t−t ′
dsF ′[x(s)] ≈ F ′[x(t)]t ′ − F ′′[x(t)]ẋ(t)

t ′2

2
. (B20)

Neglecting the t ′2 term in Eq. (B20) enables the integral in

Eq. (B19) to be evaluated:

∫ t

0

ds ′C(t − s ′)e
∫ t

s′ dsF ′[x(s)]

≈
∫ t

0

dt ′C(t ′)eF ′[x(t)]t ′

=
D

τ

∫ t

0

dt ′e−t ′{−F ′[x(t)]+ 1
τ
} ≈

D

1 − τF ′[x(t)]
, (B21)

where we used (B18), and the second approximation results

from assuming a sufficiently large t . We can finally put (B21)

back into (B17) to obtain an approximate Fokker-Planck

equation:

∂

∂t
P (y,t) = −

∂

∂y
[F (y)P (y,t)]

+ D
∂2

∂y2

[

1

1 − τF ′(y)
P (y,t)

]

. (B22)

This is Fox’s result for the approximate Fokker-Planck

equation corresponding to the non-Markovian process (B1).

Equation (B22) implicity defines a Markovian process, which

approximates the non-Markovian process of physical interest.

However, the question of whether this represents the best

approximation remains a subject of debate. We note that

equation (B22) has also been derived by Grigolini et al. [26]

using alternative methods which do not make any assumptions

of a short correlation time.

The one-dimensional Fokker-Planck equation (B22) can

be generalized without much difficulty to describe a three-

dimensional system of N particles. The dynamics of interest

is described by the stochastic equation (3). We now adapt

the standard notation used above to that employed in the

main text, namely, P (y,t) → �(rN ,t), τ → τp = 1/(2Dr )

and D → v2
0/3, and recall that Da = v2

0/(6Dr ) and ζ−1 =
βDt for the friction coefficient in Eq. (3). Making the appro-

priate replacements enables us to write the three-dimensional

generalization of (B22),

∂

∂t
�(rN ,t)

= −
N

∑

i=1

∇i · Dt [β Fi(rN ) − ∇i]�(rN ,t)

−
N

∑

i=1

∇i ·

{

−Da∇i

[

1

1 − D0∇i ·β Fi (rN )

2Dr

�(rN ,t)

]}

.

(B23)

A simple rearrangement of terms in Eq. (B23) leads directly

to Eqs. (5)–(8).

APPENDIX C: INTEGRAL EQUATION THEORY

To calculate the steady-state radial distribution function,

g(r), from the effective pair potential (13) we employ an equi-

librium liquid state integral equation developed by Madden and

Rice [30]. This soft mean-spherical approximation (SMSA)

exploits the Weeks-Chandler-Anderson splitting of the pair
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potential [47] into attractive and repulsive contributions,

u(r) = urep(r) + uatt(r), where the repulsive part is given by

urep(r) =
{

u(r) − u(rmin) r < rmin

0 r > rmin
, (C1)

and the attractive part is given by

uatt(r) =
{

u(r) r > rmin

u(rmin) r < rmin
, (C2)

where rmin is the position of the potential minimum. The total

correlation function, h(r) = g(r) − 1, is related to the shorter

range direct correlation function, c(r), by the Ornstein-Zernike

equation [48]:

h(r) = c(r) + ρb

∫

d r ′h(|r − r ′|)c(r ′). (C3)

The SMSA approximation is given by the closure relation:

c(r) = (1 − eβurep(r))g(r) − βuatt(r). (C4)

For the Lennard-Jones potential the closure relation (C4) has

been shown to provide results for g(r) which are superior to

both Percus-Yevick (PY) and Hypernetted Chain (HNC) theo-

ries [30]. Moreover, the SMSA theory predicts a true spinodal

line in the parameter space, namely, a locus of points for which

the static structure factor, S(k) = (1 − ρbc̃(k))−1, diverges at

vanishing wave vector. This behavior is a consequence of the

assumed asymptotic form of the direct correlation function,

c(r) ∼ −βuatt(r). Other standard integral equation theories,

such as PY and HNC, do not exhibit a complete spinodal line,

but rather a region within which the theory breaks down (“no

solutions region”) [49].

APPENDIX D: BROWNIAN DYNAMICS SIMULATIONS

To benchmark our theoretical predictions we perform

Brownian dynamics simulations of N particles, randomly

initialized without overlap. The system is confined to a periodic

cubic box, the size of which is determined by the number

density according to L3 = N/ρb, where L is the side length.

The Langevin equations of motion (1) and (2) are integrated

via a standard Brownian dynamics scheme [50] with a

constant time step of δt/τB = 10−5. Both the translational and

rotational noise are Gaussian random variables with a standard

deviation of σt = (2D0T )
1
2 and σr = (2DrT )

1
2 , respectively.

For the soft repulsive potential to be considered in this work,

βu(r) = r−12, we employ N = 2000 particles. The potential is

truncated and shifted at rcut/d = 2. To provide good statistics

for the static quantities the simulations are carried out for 106

time steps, sampling every 1000 steps, which is equivalent

to a total run time of ttot/τB = 10 and a sampling rate of

τB/tsample = 100. For the second system we will consider, the

Lennard-Jones system, βu(r) = 4ǫ(r−12 − r−6), we simulate

a larger system of 5000 particles. The integration time of the

equations of motion is the same as in the repulsive system, as

is the cutoff radius. In this case, the runtime is 107 and the

particle positions are sampled every 104 steps.
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