
 Open access  Proceedings Article  DOI:10.1145/1247480.1247498

Effective keyword-based selection of relational databases — Source link 

Bei Yu, Guoliang Li, Karen R. Sollins, Anthony K. H. Tung

Institutions: Tsinghua University, Massachusetts Institute of Technology

Published on: 11 Jun 2007 - International Conference on Management of Data

Topics: Search-oriented architecture, View, Database model, Query optimization and Database design

Related papers:

 Effective keyword search in relational databases

 Discover: keyword search in relational databases

 Efficient IR-style keyword search over relational databases

 Spark: top-k keyword query in relational databases

 Efficient Keyword Search Across Heterogeneous Relational Databases

Share this paper:    

View more about this paper here: https://typeset.io/papers/effective-keyword-based-selection-of-relational-databases-
280g1x8ds8

https://typeset.io/
https://www.doi.org/10.1145/1247480.1247498
https://typeset.io/papers/effective-keyword-based-selection-of-relational-databases-280g1x8ds8
https://typeset.io/authors/bei-yu-h3uazrpadt
https://typeset.io/authors/guoliang-li-10iz3ple0z
https://typeset.io/authors/karen-r-sollins-4wd3aesfck
https://typeset.io/authors/anthony-k-h-tung-492mglwztp
https://typeset.io/institutions/tsinghua-university-3bq4rije
https://typeset.io/institutions/massachusetts-institute-of-technology-1y5l0xk3
https://typeset.io/conferences/international-conference-on-management-of-data-1x852s0d
https://typeset.io/topics/search-oriented-architecture-sxtw6xp0
https://typeset.io/topics/view-rhjfpmfc
https://typeset.io/topics/database-model-3jj8b7iu
https://typeset.io/topics/query-optimization-2xo9scn4
https://typeset.io/topics/database-design-utas6far
https://typeset.io/papers/effective-keyword-search-in-relational-databases-19gelzki7v
https://typeset.io/papers/discover-keyword-search-in-relational-databases-33fmpg1hdg
https://typeset.io/papers/efficient-ir-style-keyword-search-over-relational-databases-1ofo0w5wq1
https://typeset.io/papers/spark-top-k-keyword-query-in-relational-databases-1aqfp1qnl7
https://typeset.io/papers/efficient-keyword-search-across-heterogeneous-relational-304142xri3
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/effective-keyword-based-selection-of-relational-databases-280g1x8ds8
https://twitter.com/intent/tweet?text=Effective%20keyword-based%20selection%20of%20relational%20databases&url=https://typeset.io/papers/effective-keyword-based-selection-of-relational-databases-280g1x8ds8
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/effective-keyword-based-selection-of-relational-databases-280g1x8ds8
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/effective-keyword-based-selection-of-relational-databases-280g1x8ds8
https://typeset.io/papers/effective-keyword-based-selection-of-relational-databases-280g1x8ds8


Effective Keyword-based Selection of Relational Databases

Bei Yu
National University of

Singapore

Guoliang Li
Tsinghua University

Karen Sollins
MIT

Anthony K. H. Tung
National University of

Singapore

ABSTRACT

The wide popularity of free-and-easy keyword based searches
over World Wide Web has fueled the demand for incorporat-
ing keyword-based search over structured databases. How-
ever, most of the current research work focuses on keyword-
based searching over a single structured data source. With
the growing interest in distributed databases and service ori-
ented architecture over the Internet, it is important to ex-
tend such a capability over multiple structured data sources.
One of the most important problems for enabling such a
query facility is to be able to select the most useful data
sources relevant to the keyword query. Traditional database
summary techniques used for selecting unstructured data
sources developed in IR literature are inadequate for our
problem, as they do not capture the structure of the data
sources. In this paper, we study the database selection prob-
lem for relational data sources, and propose a method that
effectively summarizes the relationships between keywords
in a relational database based on its structure. We develop
effective ranking methods based on the keyword relationship
summaries in order to select the most useful databases for
a given keyword query. We have implemented our system
on PlanetLab. In that environment we use extensive experi-
ments with real datasets to demonstrate the effectiveness of
our proposed summarization method.

Categories and Subject Descriptors: H.2 [Database
Management]: Miscellaneous

General Terms: Design

Keywords: keyword query, summarization, database selec-
tion

1. INTRODUCTION
Keyword search over structured data such as relational

databases is an increasingly important capability [1, 2, 3,
13, 14, 19, 21], taking advantage of a combination of DB
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and IR techniques. While these projects focus on keyword-
based query processing in a centralized database, the in-
creasing deployment of P2P networks and service oriented
architectures has made it equally important to extend such
keyword-based search capabilities to distributed databases.
Analogous to distributed IR systems [5, 12, 22, 30], keyword-
based database selection is a critical step towards locating
useful databases for answering a keyword query, and on
which existing centralized keyword search methods can be
directly applied.

For effective selection of useful data sources in distributed
IR systems, a common approach is to summarize document
collections with a list of keywords associated with some
intra-collection (e.g., frequency) or inter-collection (e.g., in-
verse collection frequency (ICF) [5]) weightings. Data sources
are then ranked by comparing the keyword queries with their
summaries, which can be stored either at the data sources or
the querying clients (allowing for different tradeoffs in terms
of communication cost and workload size).

Summarizing a relational database with the simple keyword-
list method as in IR systems is, however, inadequate for
two reasons. First, relational tables in a database are typi-
cally normalized. Therefore, the keyword frequency statis-
tics, which are used in most IR-based summaries for textual
documents, cannot really measure the importance of key-
words in a relational database. Consider the case where a
keyword appears only once, and it is in a tuple that is ref-
erenced by many other tuples. Such a keyword is likely to
be important since it is related to many other keywords in
the connected tuples. Second, the results from a relational
database with respect to a keyword query must take into
account the number of join operations that must be done
in order for all the keywords to appear in the result (often
represented as an evaluation tree) [1, 3, 13, 14]. This can
only be obtained if the relationship between keywords in the
relational database is somehow captured in the summary.

For illustration, let us look at the two example databases
DB1 and DB2 shown in Figure 1, in which the arrowed
lines drawn between tuples indicate their connections based
on foreign key references. Suppose we are given a keyword
query Q = {multimedia, database, V LDB}. We can ob-
serve that DB1 has a good result to Q, which is the result of
joining tuple t1 with t3. On the contrary, DB2 cannot pro-
vide relevant results to Q — there are no trees of connected
tuples containing all the query keywords. But, if we evalu-
ate the two databases for Q based on the keyword frequency
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style summaries (denoted as KF-summary in this paper,
and KF-summary(DB1) = { · · · multimedia:1, database:2,
VLDB:1, · · · }, and KF-summary(DB2) = { · · · multime-
dia:3, database:3, VLDB:1, · · · }), DB2 will be selected over
DB1. Therefore, we can observe that the usefulness of a re-
lational database in answering a keyword query is not only
decided by whether it has all the query keywords, but more
importantly, it depends on whether the query keywords can
be connected meaningfully in the database.

In this paper, we define keyword relationship for repre-
senting such connections between keywords in a relational
database and look at how summarizing keyword relation-
ships can help us to effectively select relevant structured
sources in a distributed setting. This work is part of our
BestPeer project [25] for supporting P2P-based data sharing
services. BestPeer is a P2P platform that can be configured
to support either structured [18] and unstructured overlays,
and it provides a set of tools for building data sharing ap-
plications.

We make the following contributions in this paper.

• We propose to look at the problem of structured data
sources selection for keyword based queries. To the
best of our knowledge, this is the first attempt to ad-
dress this problem.

• We propose a method for summarizing the relation-
ship between keywords in a relational database. The
technique for generating the database summary can be
done by issuing SQL statements and thus can be per-
formed directly on the DBMS without modification to
the database engine.

• We define metrics for effectively ranking source databases
given a keyword query according to the keyword rela-
tionship summary.

• We implemented the system in real distributed settings
on PlanetLab [7] and evaluate the effectiveness of the
proposed summarization method with real datasets.

The rest of the paper is organized as follows. In Section
2, we present the way to discover the relationships between
keywords in a relational database in order to effectively eval-
uate its usefulness in answering a given keyword query. We
also show how to create the keyword relationship summary
using SQL. In Section 3, we describe the metrics to rank
databases based on the keyword relationship summaries. We
present our experimental study in Section 4. Then, we dis-
cuss related work in Section 5 and conclude the paper and
discuss our future work in Section 6.

2. SUMMARIZING A RELATIONAL

DATABASE
We consider a set of relational databases {DB1, DB2, · · · ,

DBN}. Given a keyword query Q = (k1, k2, · · · , kq), we
would like to rank the databases based on their usefulness
to answer query Q. Basically, a database is useful given Q if
it has high quality results to the keyword query. Therefore,
we measure the usefulness of a database DB to Q as the
total score of the top-K results it can return, i.e.,

score(DB,Q) =
K

∑

i=1

score(Ti, Q), (2-1)

where Ti is the i-th top result of DB given Q, and score(Ti, Q)
measures the relevance of Ti to Q.

Ideally, given a query Q, the databases should be ranked
based on their scores calculated according to Equation 2-
1, in order that the most useful databases can be selected
to which the query will be forwarded. However, in a real
distributed setting, it is not feasible to get the ideal score
defined by Equation 2-1 for every database in the system,
since it needs to execute the query over all the databases in
the system. A feasible solution is to construct summaries for
the source databases, and estimate the usefulness of them
for a given keyword query by comparing the query with the
summaries.

Therefore, the type of summary we need to construct in
this case is highly dependent on how the relevancy or use-
fulness of the querying result is measured. It is necessary
to answer this question by examining the results returned
by a relational database to a given keyword query. An an-
swer from a relational database to a keyword query is a
minimal tree of tuples containing all the query keywords,
where tuples in the tree are connected according to their re-
lationships defined in the database schema, such as foreign
key relationships. The foreign key relationships, the most
common type of relationships between tuples, are resulted
from the schema normalization, and hence they reflect the
semantics of the database. Although we only consider for-
eign key relationships for simplicity of presentation, other
types of relationships between tuples that are related to the
semantics of the database could also be considered, such as
inclusion relationships or any other kinds of implicit rela-
tionships. The number of tuples of the tuple tree (referred
as size of the tree), reflecting the number of joins between
keywords is inversely proportional to the relevance of the
relationship. In other words, more distant relationships are
reflective of weaker relationships connecting the tuples [13,
14, 19, 21].

To estimate this measure of relevancy, it is easy to see that
a summary of the relationships between all pairs of keywords
in each database must be obtained. Two keywords in a rela-
tional database, if they can be connected, are always related
with a joining sequence of tuples where the two end tuples
contain each of the two keywords. We define distance as the
the number of join operations in a joining sequence of tuples.
For example, the distance of a joining sequence t1⊲⊳t2⊲⊳t3 is
2. For each single tuple, we define its distance as 0. Note
that the distance of a joining sequence to connect two key-
words is bounded by the number of tuples in the database,
instead of the number of tables [14]. In a database, two key-
words could be connected with different joining sequences
at various distances. For example, in database DB2 of Fig-
ure 1, the two keywords, multimedia and binder, can be
connected at 2 distance in two different ways. The joining
sequences are t1 ⊲⊳ t5 ⊲⊳ t12, and t4 ⊲⊳ t9 ⊲⊳ t12. They can
also be connected at 4 distance in one way, with the joining
sequence t15 ⊲⊳ t10 ⊲⊳ tt1 ⊲⊳ t5 ⊲⊳ t12.

Based on the observation above, we measure the strength
of keyword relationships between each pair of different key-
words according to the combination of two factors — the
proximity factor and the frequency factor. The proximity
factor is defined as a parameter that is inverse to the dis-
tance of the joining sequence that connects the two key-
words. The frequency factor, with respect to a particular
distance d, is the number of combinations of exactly d + 1
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(a) DB1

(b) DB2

Figure 1: Example databases

number of distinct tuples that can be joined in a sequence
to include the two keywords in the end tuples.

In this manner, each database is summarized by a list of
keyword pairs that have significant relationship scores. We
will present how to discover and create such relationships
between keywords in the following two subsections.

2.1 KRM: The Keyword Relationship Matrix
We model each relational database DB as two matrices

D(m × n) and T (n × n), where m is the number of distinct
keywords contained in all the tuples t ∈ DB, and n is the
total number of tuples.

The D matrix, illustrated as,

D = (dij)m×n =



























t1 t2 · · · tn

k1 1 0 · · · 0
k2 0 1 · · · 1
...

...
km 1 0 · · · 0



























represents the presence or absence of each keyword in each
tuple in DB. This is closely to the term-document ma-
trix of the vector space model (VSM) in IR literature, with
the change that documents are replaced by tuples in a rela-
tional database, in our work. Although there are also various
weighting schemes developed by IR and DB community for
measuring the importance of the keywords in either docu-
ments or tuples [13, 21, 27], in our case we have simplified
this to being only 0 or 1 for absence or presence.

The T matrix, shown below,

T = (tij)n×n =



























t1 t2 · · · tn

t1 0 1 · · · 1
t2 1 0 · · · 0
...

...
tn 1 0 · · · 0



























represents the relationships between tuples in a relational
database, the most obvious kind being foreign key reference

between tuples. The entry T [i, j] of 1 denotes that tuple ti

references (or is referenced by) tuple tj (1 ≤ i, j ≤ n).
D and T model the content and structure information in

DB, respectively, and they will help us derive the relation-
ships between every pair of keywords in DB, which is rep-
resented with another matrix R(m×m), called the keyword
relationship matrix (KRM).

Definition 1. Let δ be a user-supplied parameter denot-
ing the maximum number of allowed join operations, and K
be the maximum number of results expected from a database.
For each distance d ( 0 ≤ d ≤ δ), ωd(ki, kj) is the fre-
quency of d-distance joining sequences to connect the pair of
keywords ki and kj . A Keyword Relationship Matrix
(KRM), R=(rij)m∗m, represents the relationships between
any pair of two keywords in a relational database with respect
to δ and K. When

∑δ

d=0 ωd(ki, kj) ≤ K,

R[i, j] = rij =
δ

∑

d=0

ϕd ∗ ωd(ki, kj),

in which ϕd is a function of d that measures the impact of
d to the relationship between ki and kj ; and otherwise when
∑δ

d=0 ωd(ki, kj) > K, we have ∃δ′ ≤ δ,
∑δ′

d=0 ωd(ki, kj) ≥

K and
∑δ′−1

d=0 ωd(ki, kj) < K,

R[i, j] = rij =
δ′−1
∑

d=0

ϕd∗ωd(ki, kj)+ϕδ′ ∗(K−
δ′−1
∑

d=0

ωd(ki, kj)).

It is obvious that when two keywords are further apart
based on the number of join operations, the relationship
between them is weaker. Accordingly, ϕd should be a mono-
tonically decreasing function with respect to increasing d.
We propose to set ϕd as

ϕd =
1

d + 1
. (2-2)

Note that ϕd could also be set differently based on specific
requirements.
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In this way, the KRM measures the total scores of up to
top-K results within δ distance for each pair of keywords
as query in a relational database, where each result, a join-
ing sequence, has the score ϕd. A database with a higher
relationship score for a given pair of keywords will generate
better results. The reason we set an upperbound of the num-
ber of results, K, is to enable a user to control the quality of
the results. For example, if for a pair of keywords k1 and k2,
one database A has 5 joining sequences to connect k1 and
k2 at 1 distance, and the other database B has 40 joining
sequences to connect k1 and k2 at 4 distance. If K = 40, the
score of the pair in A is 5× 1

2
= 2.5, while the score of B is

40 × 1
5

= 8, as a result, we will choose B over A. However,
one may very possibly prefer A to B because it has results
with higher quality. If we decrease K to 10, the score of A is
the same, but the score of B now becomes 10× 1

5
= 2, such

that A can be ranked higher than B. In general, K defines
the number of top results users expected from a database.

2.2 Computation of KRM
We next look at how the KRM can be computed, i.e.,

ωd(ki, kj) between every pair of keywords ki and kj in DB.
As said, we can derive such information based on D and T .
We first define the d-distance tuple relationship matrix as
follows.

Definition 2. The d-distance tuple relationship matrix,
denoted as Td(n × n), is a symmetric matrix with binary
entries, such that for any 1 ≤ i, j ≤ n and i 6= j, T [i, j] =
T [j, i] = 1 if and only if the shortest joining sequence to con-
nect the two tuples ti and tj is of distance d, and Td[i, j] =
Td[j, i] = 0, otherwise.

According to the definition, Td actually records whether
there is a shortest path with d hops between any pair of two
tuples in a database, if we view the database as a graph in
which the nodes are the tuples and the edges between nodes
denote the reference relationships between tuples. Obvi-
ously, T1 = T , and T1 ∪T2 ∪· · ·∪T∆ is the transitive closure
of T1, where ∆ is the longest distance of the path between
two tuples in the database graph. Taking database DB2 in
Figure 1 as an example, its tuple relationship matrices T1,
T2, and T3 are shown in Figure 2.

Proposition 1. Let Td1
and Td2

(d1 6= d2) be two tuple
relationship matrices in a database. For any i and j, i 6= j,
if Td1

[i, j] = 1, then Td2
[i, j] = 0.

From Proposition 1, we derive matrices T2, T3, · · · , induc-
tively, based on T1 = T .

Proposition 2. Given T1 = T , and supposing T ∗
d =

∨d

k=1 Tk, we have for all 1 ≤ i, j ≤ n and i 6= j,

Td+1[i, j] =

{

0 if T ∗

d [i, j] = 1,
1 if T ∗

d [i, j] = 0 and ∃r(1≤r≤n),Td[i, r]∗T1[r, j]=1.

Proof. Suppose we already have Td (d ≥ 1), and we can

get T ∗
d =

∨d

k=1 Tk.
When T ∗

d [i, j] = 1, it implies ∃k(1 ≤ k ≤ d),Tk[i, j] =
1. According to Proposition 1, for any 1 ≤ k ≤ d, when
Tk[i, j] = 1 , Td+1[i, j] = 0. Therefore, T ∗

d [i, j] = 1 implies
Td+1[i, j] = 0.

When T ∗
d [i, j] = 0, it means tuples ti and tj must be

connected with more than d number of connections. If there

exists another tuple tr such that Td[i, r] ∗ T1[r, j] = 1, it
means that Td[i, r] = 1 and T1[r, j] = 1, i.e., ti and tr can be
connected with at least d connections, and there is a direct
connection between tr and tj . Therefore, there must be at
least d + 1 connections between ti and tj with the route
ti → tr → tj , and consequently Td+1[i, j] = 1.

Now we can derive the frequencies of every keyword pair
in DB at various distances based on D and T . In this case,
Wd is the matrix of frequencies of keyword pairs at distance
d.

Proposition 3. Let W0 = D × DT . (DT represents the
transposition of matrix D.) We have

∀i, j, 1 ≤ i, j ≤ m and i 6= j, ω0(ki, kj) = W0[i, j].

For d ≥ 1, let Wd = D × Td ×DT . We have

∀i, j, 1 ≤ i, j ≤ m and i 6= j, ωd(ki, kj) = Wd[i, j].

Proof. First, we prove W0 = D ×DT = ω0(ki, kj). For
every 1 ≤ i, j ≤ m,

W0[i, j] =
n

∑

k=1

D[i, k] ∗ D
T [k, j]

=
n

∑

k=1

D[i, k] ∗ D[j, k],

which is the frequency of pair of ki and kj at distance 0,
i.e., they appear in the same tuples. Therefore, ω0(ki, kj) =
W0[i, j].

Next, we prove Wd = D × Td × DT = ωd(ki, kj). Let
M = D × Td. So for every 1 ≤ i ≤ m and 1 ≤ r ≤ n,

M[i, r] =
n

∑

k=1

D[i, k] ∗ Td[k, r].

Then Wd = M×DT , i.e., for every 1 ≤ i, j ≤ m,

Wd[i, j] =

n
∑

r=1

M[i, r] ∗ DT [r, j]

=

n
∑

r=1

n
∑

k=1

D[i, k] ∗ Td[k, r] ∗ DT [r, j]

=
n

∑

r=1

n
∑

k=1

D[i, k] ∗ Td[k, r] ∗ D[j, r]

Since Td[k, r] = 1 indicates there needs at least d connec-
tions to connect tuples tk and tr, and D[i, k] = 1, D[j, r] = 1
represent the presence of keywords ki and kj in tk and tr,
respectively,

∑n

r=1

∑n

k=1 D[i, k]∗Td[k, r]∗D[j, r] is the num-
ber of combinations of tuples that can be joined to include
ki and kj at distance d. Therefore, Wd = D × Td × DT =
ωd(ki, kj).

In Figure 3, we show the frequencies of the pairs of query
keywords at various distances of the two example databases
DB1 and DB2 in Figure 1. By comparing Figure 3(a) and
3(b), we can easily tell that the query keywords are related
more closely in DB1 than in DB2.

Finally, given a maximum distance parameter δ and the
upperbound of the number of desired results, K, the re-
lationship score between each pair of keywords ki and kj ,
rel(ki, kj), in a database DB can be computed according
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T1 T2 T3

Figure 2: Tuple relationship matrices of DB2 in Figure 1

keyword pair d = 0 d = 1 d = 2 d = 3 d = 4
database:multimedia 1 1 - - -
multimedia:VLDB 0 1 - - -
database:VLDB 1 1 - - -

(a) Frequencies of keyword pairs in DB1

keyword pair d = 0 d = 1 d = 2 d = 3 d = 4
database:multimedia 0 0 0 0 2
multimedia:VLDB 0 0 0 0 0
database:VLDB 0 0 1 0 0

(b) Frequencies of keyword pairs in DB2

Figure 3: Compare the frequencies of keyword pairs
of DB1 and DB2 in Figure 1 at distances d = 0, 1, 2, 3, 4

keyword pair DB1 DB2
database:multimedia 1.5 0.4
multimedia:VLDB 0.5 0
database:VLDB 1.5 0.33

Figure 4: Compare the relationship scores of key-
word pairs of DB1 and DB2 in Figure 1

to Definition 1, i.e., rel(ki, kj) = R[i, j]. The higher the
score, the stronger the relationship between them. For the
two databases DB1 and DB2 in Figure 1, the relationship
scores of the query keyword pairs are shown in Figure 4,
where we set δ = 4 and K = 10.

2.3 Implementation with SQL
The generation of the matrices D, T1, T2, · · · , Tδ and W0,

W1, · · · , Wδ, for each DB, can be performed conveniently
inside the local RDBMS using SQL.

2.3.1 Creation of D

We use relation RD(kId, tId) to represent the non-zero
entries of the D matrix. Each record (kId, tId) corre-
sponds to the occurrence of a keyword (kId) in a tuple
(tId). A separate table RK(kId, keyword) stores all the
keywords and their associated ids in the database. These
two relations can be populated by scanning all the native ta-
bles of the local database, parsing each tuple to extract the
keywords, removing stop words, stemming each keyword,
and inserting the keyword id (kId) and tuple id (tId) pair
into RD(kId, tId) and the pair of kId and keyword into
RK(kId, keyword). (Each native table is inserted with a
field tId as the identity of the tuples in the database.)

The main cost includes a sequential read of all the tuples,
and two sequential writes of the tables RK and RD.

2.3.2 Creation of T1, T2, · · · , Tδ

Matrices T1, T2, · · · , Tδ are represented with relations
RT1

(tId1, tId2), RT2
(tId1, tId2), · · · , RTδ

(tId1, tId2),
separately. In each relation RTd

(tId1, tId2)(1 ≤ d ≤ δ),
the tuples represent the non-zero entries of the upper-right
half of Td, since it is symmetric.

The tables RT1
, RT2

, · · · , RTδ
are generated incremen-

tally. First, RT1
(tId1, tId2) is generated by performing

join operations on the pairs of native tables based on their
foreign key reference relationships, and the joined results,
pairs of tuple ids, are inserted into RT1

(tId1, tId2). Next,
RT2

(tId1, tId2) is populated by self-joining RT1
(tId1,

tId2). When d ≥ 3, RTd
is generated by joining RTd−1

with
RT1

, and excluding the tuples already in RTd−1
, RTd−2

, · · · ,
and RT1

. Figure 5 shows the sample SQL statements for
creating RT3

.
Assuming each field is a 3-byte unsigned integer, the max-

imum space overhead of storing all the tables RT1
, RT2

, · · · ,

RTδ
is 6∗n2

2
= 3n2 bytes, where n is the total number of tu-

ples in DB, while the actual size is far less than the number,
as the matrices are very sparse.

INSERT INTO RT3
(tId1, tId2)

SELECT s1.tId1, s2.tId2
FROM RT2

s1, RT1
s2

WHERE s1.tId2 = s2.tId1

INSERT INTO RT3
(tId1, tId2)

SELECT s1.tId1, s2.tId1
FROM RT2

s1, RT1
s2

WHERE s1.tId2 = s2.tId2 AND s1.tId1 < s2.tId1

INSERT INTO RT3
(tId1, tId2)

SELECT s2.tId1, s1.tId2
FROM RT2

s1, RT1
s2

WHERE s1.tId1 = s2.tId2

INSERT INTO RT3
(tId1, tId2)

SELECT s1.tId2, s2.tId2
FROM RT2

s1, RT1
s2

WHERE s1.tId1 = s2.tId1 AND s1.tId2 < s2.tId2

DELETE a FROM RT3
a, RT2

b, RT1
c

WHERE (a.tId1 = b.tId1 AND a.tId2 = b.tId2) OR
(a.tId1 = c.tId1 AND a.tId2 = c.tId2)

Figure 5: SQL for creating RT3

2.3.3 Creation of W0, W1, · · · , Wδ

W0 is represented with a relation RW0
(kId1, kId2, freq),

where tuple (kId1, kId2, freq) records the pair of key-
words (kId1,kId2)(kId1 < kId2) and its frequency (freq)

143



INSERT INTO RW0
(kId1, kId2, freq)

SELECT s1.kId AS kId1, s2.kId AS kId2, count(*)
FROM RD s1, RD s2
WHERE s1.tId = s2.tId AND s1.kId < s2.kId
GROUP BY kId1, kId2

Figure 6: SQL for creating RW0

INSERT INTO RWd
(kId1, kId2, freq)

SELECT s1.kId AS kId1, s2.kId AS kId2, count(*)
FROM RD s1, RD s2, RTd

r
WHERE ((s1.tId = r.tId1 AND s2.tId = r.tId2) OR

(s1.tId = r.tId2 AND s2.tId = r.tId1)) AND s1.kId < s2.kId
GROUP BY kId1, kId2

Figure 7: SQL for creating RWd

at 0 distance, where freq is greater than 0. RW0
is the re-

sult of self-joining RD(kId, tId). The SQL statement for
populating RW0

is shown in Figure 6.
Similarly, Wd (1 ≤ d ≤ δ) is represented as a relation

RWd
(kId1, kId2, freq). Its records are populated by join-

ing RD and RTd
. Figure 7 shows the SQL statement.

The dominating cost for creating RWd
(0 ≤ d ≤ δ) is the

cost used for grouping the tuples resulted from the WHERE
clause according to (kId1, kId2), as sorting is needed in
order to group the same keyword pairs together. The total
space overhead for storing RW0

, RW1
, · · · , RWδ

is at most
3m2, where m is the total number of distinct keywords, with
kId using 3-byte unsigned integer. The actual storage will
be much less, since only a small portion of keyword pairs
will have relationships within δ distance.

The final resulting KRM, R, is stored in a relation RR(kId1,

kId2, score), consisting of pairs of keywords and their re-
lationship score, where the score is greater than 0. It is the
union of RW0

, RW1
, · · · , and RWδ

with the score of each
distinct keyword pair calculated according to Definition 1
and Equation 2-2. The keyword pairs and their associated
scores stored in RR are the keyword relationship summary
of the local database, which we named as KR-summary. A
threshold τ can also be specified such that only the key-
word pairs with relationship scores greater than τ will be
exported.

2.3.4 Update issues

The tables for storing the matrices D, T1, T2, · · · , Tδ and
W0, W1, · · · , Wδ, can be maintained dynamically when new
tuples are added to the database or old tuples are deleted.

When a new tuple t is inserted into a table in DB, we can
find out its relationships with other related tuples at various
distances step by step. First, we identify the set of tuples
that directly reference (or are referenced by) t, denoted as
S1, and insert all the pairs — t with each tuple in S1 —
into the table RT1

. Then, we can further get the set of
tuples, S2, that are directly connected to any one of the
tuples in S1, and they have 2-distance relationships with t.
So we insert the corresponding pairs into RT2

. In addition,
since the tuples in S1 are all connected to t, they themselves
are connected to each other at 2 distance. Therefore, we
also insert the pairs of tuples from S1 into RT2

. We can
repeat the process until RTδ

is updated. Update of RW0
,

RW1
, · · · , and RWδ

can be done together with the update
of corresponding RTd

, with the keywords pairs appearing in
the affected tuples.

When a tuple t is deleted from a table in DB, we simi-
larly first identify the set of tuples, S1, that directly refer-

ence (or are referenced by) t. We remove the corresponding
tuple pairs from RT1

and update RW1
with the correspond-

ing keyword pairs appearing in the tuple pairs. Then we
find the set of tuples, S2, that has 2-distance with t in RT2

,
and delete the pairs containing t. Note that we also need to
delete those tuple pairs consisting of tuples from S1, because
they are connected at 2-distance via t (We assume there is
no cycles in the tuple graph.). We update RW2

as well in
a similar manner. When we update RT3

, we delete all tu-
ple pairs containing t in it, and also delete all tuple pairs
composed of the tuples from S1 and S2, respectively. This
update process is repeated until RTδ

and RWδ
is updated.

3. DATA SOURCES SELECTION USING KRM
In this section, we present our strategy to effectively select

useful data sources based on our KR-summary.

3.1 Estimating multi-keywords relationships
In the previous section, we discussed how the relation-

ship between keywords in a relational database can be rep-
resented and computed. In general, given a query of multiple
keywords, we need to present the relationship among these
multiple query keywords. In a relational database, multiple
keywords are connected with steiner trees [15], where the
leaf nodes are the tuples containing the keywords, which are
results, often called tuple trees, of the database to the query
keywords. However, it is a NP-complete problem to find
minimum steiner trees in graphs [15], and most current key-
word search algorithms are based on heuristics to find the
(approximate) top-K results in a database for a given key-
word query. Therefore, we estimate the relationship among
multiple keywords with our derived keyword pair relation-
ships.

Proposition 4. Given a set of keywords Q = {k1, k2, · · · , kq},
the number of edges of the tuple tree TQ that contains all the
keywords in Q, is no less than

max
1≤i,j≤q,i6=j

{min{d|d ≥ 0&ωd(ki, kj) > 0}}.

According to Proposition 4, we can determine a lower
bound of the size of the tuple trees given a keyword query.
If a pair of query keywords cannot be found in the KR-
summary (i.e., their relationships score is 0 or below τ ), the
number of edges of the tuple tree including all the query key-
words must be greater than δ, and therefore its score should
be set as 0, in order that the data source can be safely pruned
from selection. Consider our previous example in Figure 1,
given the query Q = {multimedia, database,V LDB}, we
will not choose DB2 since the relationship score between
multimedia and V LDB in it is 0 (shown in Figure 4).

On the other hand, when each pair of query keywords
appears in the KR-summary, we estimate the score of the
data source DB to Q through the scores of individual pairs.
Specifically, we propose four kinds of estimations, denoted as
relmin(Q,DB), relmax(Q, DB), relsum(Q, DB) and relprod

(Q, DB), which are defined as follows, respectively,

relmin(Q, DB) = min
{ki,kj}⊆Q,i<j

rel(ki, kj), (3-3)

relmax(Q, DB) = max
{ki,kj}⊆Q,i<j

rel(ki, kj), (3-4)
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relsum(Q, DB) =
∑

{ki,kj}⊆Q,i<j

rel(ki, kj), (3-5)

relprod(Q, DB) =
∏

{ki,kj}⊆Q,i<j

rel(ki, kj). (3-6)

These estimations assume different degrees of intersections
of the joining sequences for connecting pairs of query key-
words in the database, where intersections between joining
sequences of keyword pairs lead to steiner trees that contain
all the keywords. The relmin(Q) is most conservative as
it assumes few intersections, while relprod(Q) assumes the
highest degree of intersection. Note that since these estima-
tions are only used for ranking, their accuracy compared to
the actual value is not so important as long as the ranking
is correct and we will show that this is the case in the exper-
iment section. Interested readers are referred to [8] which
in the same spirit demonstrates why simple Bayesian clas-
sifier works well even on datasets where the assumption of
attribute independency is invalid.

3.2 Databases ranking and indexing
With the KR-summary, we can effectively rank a set of

databases D = {DB1, DB2, · · · , DBN} for a given keyword
query. Specifically, the ranking is a mapping from D to
{1, 2, · · · , N}, such that rank(DBi) < rank(DBj) ⇔ rel
(Q, DBi) ≥ rel (Q,DBj), where rel(Q,DBi) denotes the
relationship score of Q in DBi. With a user provided num-
ber l, we can select the top l number of databases with
highest ranks.

In order to support efficient ranking, we have different
choices of indexing mechanism depending on the network
structure. We generalize them into two types.
Global Index
For efficient selection of the top l number of databases, a
global index can be built on the summaries of local source
databases. The index contains a list of distinct keyword
pairs that appear in the local database summaries. In a
manner similar to the “inverted file” used in IR, for each
keyword pair, there is an inverted list of pairs containing
the source database identifier in which the pair of keywords
appears and the relationship score between them in that
database. A keyword query Q of multiple keywords is eval-
uated by fetching the inverted lists for each pair of different
keywords in Q, and then intersecting the lists of database
identifiers and calculating the relationships scores for each
database. As the page accesses for answering a query through
the index is typically O(logn), a global index for keyword
pairs is expected to have at most 2 times more page accesses
comparing to a simple keyword index when answering key-
word based query.

A global index is typically stored in a central server which
querying clients will submit their queries to. As it is, this
paradigm is well studied and our interest in this paradigm
will be limited to the discussion here.
Decentralized Index
Another possible paradigm is a decentralized index where
query clients are communicating with each other and are
able to share the indexing workload. A typical example of
this paradigm is a peer-to-peer (P2P) network. In this case,
the global index can be distributed among the peers and
each of them can store a certain portion of the keyword
pairs and the associated inverted lists.

To do so, each local database is attached to the P2P net-

work or to a server node in the network, and publishes its
summary, i.e., the keyword pairs and the associated scores,
which are disseminated to other nodes. When a query is
received at some node, a set of search messages is sent out
for each pair of keywords in the query. The corresponding
inverted lists are returned from different nodes in order that
the most useful databases can be selected. For experimental
purpose, in the next section, we evaluate our implementa-
tion of this paradigm over Chord [28], a DHT-based P2P
overlay system in order to see the usefulness and feasibility
of KR-summary being applied in such a context.

4. EXPERIMENTS
In order to evaluate the performance of our proposed ap-

proach for the selection of relational databases, we have im-
plemented the system over PlanetLab [7], which is a testbed
for large-scale distributed systems. All codes are written in
Java. We built the distributed index for KR-summaries over
a Chord-based [28] P2P network as described in Section 3.2.
We selected sixteen physical nodes on Planetlab in various
areas, and each physical node is used to simulate several to
hundreds of Chord nodes, where each Chord node shares
one relational database.

We use real life DBLP1 dataset to generate 82 relational
databases by dividing the whole dataset according to dif-
ferent bibliography types such as inproceedings, articles,
books, etc.. Figure 8 shows the schema of the databases
storing inproceedings papers. The schemas of other bibli-
ography types are similar. There is no overlap between dif-
ferent generated databases. The average number of tuples
per database is 46735, and the average number of distinct
keywords extracted from each database is 19817, after re-
moving stop words and stemming. The numbers of tuples
of different databases are similar. Keyword queries are com-
posed of randomly selected keywords from the databases.
We tested with a set of 112 queries in total, which consists
of 30 2-keyword queries, 34 3-keyword queries, 21 4-keyword
queries, and 27 5-keyword queries.

We use MySQL2 to store all the databases and generate
KR-summaries for them.

Figure 8: Schema of the databases storing inpro-
ceedings papers of DBLP dataset

4.1 Effectiveness of the KR-summary
To evaluate the effectiveness of KR-summary on relational

databases selection, we compare our method with the brute
force selection, that is, sending the given query to all the
source databases, which process the query and return top-
K results, in order that we can get the “real” score of each
database based on Equation 2-1. Note that the execution
time of such a brute force selection is orders of magnitude
longer than that of the summary-based selection. With the
real score, we define the real ranking of the databases as

1
http://dblp.uni-trier.de/

2
http://www.mysql.com/
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real_rank(DBi) < real_rank(DBj) ⇔ real_score(Q,DBi)
≥ real_score(Q,DBj).

Our algorithm for processing keyword query on a rela-
tional database is implemented based on the approach of
the DISCOVER project [13, 14] and [21].

To compare our estimated ranking with real ranking, we
use the metrics defined in IR for evaluating text data source
selection algorithms [12, 26], which is in the same style as
the well known precision and recall definitions. The recall
is defined as

recall(l) =

∑

DB∈Topl(S) score(Q,DB)
∑

DB∈Topl(R) score(Q,DB)
,

where S and R denote summary-based rankings and real
rankings of all the source databases respectively, while Topl(S)
and Topl(R) represent the l databases with highest ranks in
S and R. Note that score(Q,DB) is the real score generated
according to formula 2-1. This recall definition compares
the accumulated score of the top l databases selected based
on the summaries of the source databases against the total
available score when we select top l databases according to
the real ranking. The precision measure is defined as

precision(l) =
|{DB ∈ Topl(S)|score(Q,DB) > 0}|

|Topl(R)|
.

It measures the fraction of the top l selected databases with
non-zero real scores, which have results with acceptable qual-
ity (controlled by K) to the query.

We also compare the effectiveness of our KR-summary
against the keyword frequency summary, which is typically
used as the summary of textual document collection for text
data source selection in IR [12], denoted as KF-summary.
The KF-summary of each relational database is a list of
keywords that appear in the database associated with their
frequencies, i.e., the number of tuples that contain the key-
word. Based on the KF-summary, we estimate the score of
a database DB for a given query Q = {k1, k2, · · · , kq} in
two ways. One is by summing the frequencies of all query
keywords in DB, i.e.,

kf_scoresum(Q,DB) =

q
∑

i=1

freq(ki). (4-7)

The other is to take the product of the frequencies, i.e.,

kf_scoreprod(Q, DB) =

q
∏

i=1

freq(ki). (4-8)

We study the effectiveness of our method along three di-
mensions. First, we examine the impact of δ on the ranking
quality by comparing the precision and recall of the rankings
generated with different values of δ. Second, we compare
the ranking effectiveness for queries with different number
of keywords. Third, we compare the performance of the
four different estimations, MIN, MAX, SUM, and PROD,
which correspond to the formulas 3-3, 3-4, 3-5, and 3-6, for
measuring the relationship on multiple keywords.

4.1.1 Effects of δ

Figure 9 shows the average precisions and recalls of 2-
keyword queries with KR-summary when δ is set to 0, 1, 2,
3, and 4, separately, and with KF-summary. We have the
following three observations with regard to the effects of δ.
First, the selection performance of KR-summaries generally

gets better when δ grows larger. When δ = 4, both preci-
sion and recall stay close to 1. Second, the precision and
recall performance for different values of δ tends to cluster
into groups. We can see that the precisions and recalls of
KR-summaries when δ = 0 and δ = 1 are in a group and
belong to another group when δ is set to 2 and 3. Third,
there are big gaps in both precisions and recalls between
KR-summaries when 0 ≤ δ ≤ 1 and when δ is greater.

These phenomena should all be related to the sizes of the
KR-summaries with different δ values, i.e., the numbers of
keyword pairs in the summaries. When δ is larger, there will
be more keyword pairs and thus the KR-summary can cap-
ture more relationships between keywords, which results in
better performance. However, it is not true that increasing δ
will always result in an increase of the size of KR-summary.
On the contrary, the size is largely dependent on the struc-
ture of the databases. With our data set, the sizes of KR-
summaries with δ equals to 0 and 1 do not vary much, like-
wise for KR-summaries with δ set to 2 and 3. However, when
δ is increased from 1 to 2, there is a big increase of the size
of KR-summaries. To explain this, let’s refer to the schema
shown in Figure 8. The 2-distance joining sequences include
the results of Papers ⊲⊳ AuthorOf ⊲⊳ Authors, Papers ⊲⊳
Citations ⊲⊳ Papers, Papers ⊲⊳ Conferences ⊲⊳ Papers,
and Authors ⊲⊳ AuthorOf ⊲⊳ Authors, all which will lead
to lots of keyword pairs as the tables Papers, Conferences,
and Authors are all text-rich. This explains the similarities
of the performance between δ = 0 and δ = 1, between δ = 2
and δ = 3, and also the big jump in the performance between
δ = 1 and when δ is set higher.

In addition, we can see from Figure 9 that KF-summary
with production estimation (formula 4-8) outperforms that
with summation estimation (formula 4-7). However, com-
paring the performance of KR-summary and KF-summary,
we find that the former can do much better. For example,
when l = 3, KR-summary with δ = 2 and δ = 3 outperforms
KF-summary 67% in precision and 28% in recall, while KR-
summary with δ = 4 improves 43% over KF-summary in
recall. As we have explained, the inferior performance of
KF-summary is due to the existence of many “false positives”
in its results, since it cannot identify unrelated keywords in
the databases.

Another notable phenomena is that in Figure 9(a), the
recall of KR-summary when δ = 2 and δ = 3 declines as l in-
creases, while the recall of KF-summary increases, such that
it outperforms KR-summary (δ = 2 and δ = 3) slightly when
l is greater than 8. This shows that KR-summary (δ = 2
and δ = 3) tends to rank databases with higher scores below
those with lower scores when l is larger. This should be at-
tributed to insufficient keyword relationship information in
the KR-summary for small δ, and hence it underestimates
the scores of some databases. However, it can still identify
databases with very good scores, which is revealed in its
high recall when l is small. This is because very relevant
databases tend to contain results of small sizes, which has
already been captured in the KR-summary with smaller δ.

We next perform the same test with keyword queries con-
sisting of more keywords. Figure 10 shows the results of
queries with 3 to 5 keywords. Similar to Figure 9, the curves
of δ = 0 and δ = 1 still group together, likewise for those
of δ = 2 and δ = 3. In addition, it is interesting to note
that the precision of KR-summary when δ = 2 and δ = 3
is better than that when δ = 4, which means that more
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Figure 9: Recall and precision
of 2-keyword queries using KR-
summaries at different values of δ
and KF-summaries (KF-prod and
KF-sum denote production and
summation estimation)
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Figure 10: Recall and precision of
queries with 3-5 number of key-
words with KR-summaries at dif-
ferent values of δ (with SUM esti-
mation) and with KF-summary
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Figure 11: Recall and precision of
queries with different number of
keywords for δ = 3 and with SUM
estimation

“false positives” are selected with δ = 4 than with δ = 2
and δ = 3. This indicates that having more information
in the KR-summary when δ = 4 can lead to over estimat-
ing the usefulness of some databases, when more keywords
are found in the query. This is because the relationship
scores are based on estimation from keyword pair scores.
We also note that KR-summary still greatly outperforms
KF-summary when number of keywords are more than 2.
In fact, we found that the superiority of KR-summary per-
formance over that of KF-summary is more obvious when
the number of query keywords is increased.

The experiments of this section provide us guidelines in
choosing a good value of δ to achieve satisfied performance.
Ideally, δ should be chosen based on the schema of the
database, such that the connections of tables with rich tex-
tual information can be revealed in the summary. For exam-
ple, δ = 3 is a proper value for the schema shown in Figure 8.
When δ = 4, more distant relationships between keywords
from tables are included, where the pairs of tables the key-
word pairs appear in have already been summarized at lower
distance. Such information tends to overestimate the useful-
ness of the databases when it is used to estimate multiple-
keyword relationships in them. The problem of constructing
an effective model for deriving an “optimal” δ value based
on specific database schemas is complex and large by itself.
We will address it in our future work.

4.1.2 Effects of the number of query keywords

Next, we compare the performance of KR-summary for
queries with different number of keywords. Figure 11 and 12
show the results when δ is set to 3 and 4, respectively. From
the figures, we found that the performance of 2-keyword
queries is generally better than that of 3-keyword and 4-

keyword queries. Between 3-keyword and 4-keyword queries,
the former is generally better. It is surprising however to see
that 5-keyword queries yield better recall than 3-keyword
and 4-keyword queries, and also better than 2-keyword queries
when δ = 3. It is natural to expect that the performance
should degrade when the number of query keywords in-
creases because it becomes harder to estimate the relation-
ships among the keywords.

After investigation, we realize that 5-keyword queries are
generally more selective, i.e., only a few source databases
have non-zero scores for the queries and this results in higher
recall. This is also the reason that the precision of 5-keyword
queries decreases greatly when l increases, especially for
δ = 4 since more “false positives” are included. Generally,
the difference in the recall of queries with different number of
keywords is less than that of precision. This shows that the
estimation method is effective in assigning high ranks to use-
ful databases, although less relevant or irrelevant databases
might also be selected.

4.1.3 Comparing four kinds of estimations

In this experiment, we compare the 4 proposed estima-
tions of database scores using KR-summary — MIN, MAX,
SUM, and PROD. Figure 13 and Figure 14 present the re-
sults with queries consisting of 3-5 keywords and when δ
is set to 3 and 4, respectively. We can see that SUM and
PROD methods have very similar behavior, and they con-
sistently outperform the other two methods. This shows
that it is more effective to take into account the relationship
information of every pair of keywords in the query when es-
timating the overall score of the databases to the query. We
also note that the different estimation methods affect recall
more than precision, which means that SUM and PROD
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Figure 12: Recall and precision of
queries with different number of
keywords for δ = 4 and with SUM
estimation
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Figure 13: Recall and precision of
queries with KR-summaries with
different estimation methods (δ =
3)
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Figure 14: Recall and precision of
queries with KR-summaries with
different estimation methods (δ =
4)

methods are more capable of placing databases with higher
scores to the front of the results list.

4.2 Performance in P2P settings
In this section, we present the cost of indexing and query

processing with our KR-summaries over the PlanetLab testbed.

4.2.1 Cost of indexing KR-summary for each database

We first look at the cost for distributing the the KR-
summary of each database over the Chord [28] structure
varying the number of nodes from 1000 to 10000. Figure 15
shows the number of messages transmitted over the network.
From the figure, we see that when the number of nodes in
the network gets larger, the number of messages increases
slightly, due to the fact that the keyword pairs from a single
database will be distributed over more Chord nodes. Also,
not surprisingly, we can see that when δ is larger, more mes-
sages are used since the size of KR-summary increases.

Correspondingly, Figure 16 shows the actual elapsed time
for indexing a database when the number of nodes varies.
The increase in number of messages causes longer indexing
time when the number of nodes increases, or when δ is larger.
Generally, the increase in time is linear to the number of
nodes, and therefore the indexing method is feasible.

4.2.2 Cost of query processing

We evaluate the cost for processing each query with the
Chord-based index in this section. Figure 17 shows the aver-
age number of messages required for processing a query. We
used four pairs of queries each consisting of 2,3,4 and 5 key-
words respectively making eight queries in total. We can see
that the number of messages increases very gradually with
the increase of nodes, since more nodes must be accessed to
answer the queries. Figure 18 reports the average elapsed
time for processing each query. We note that the waiting

time increases slowly when the number of nodes increases.
Also, when δ becomes larger, the processing time increases.
This is because more results are returned when δ is larger,
which incur more transmission time.

4.3 Time and space cost for generating
KR-summaries

We take one of the experimental databases with 52106 tu-
ples and 20956 distinct keywords as an example to present
the time and space cost for generating KR-summaries. Other
databases have similar statistics, since their sizes are similar.

The KR-summaries are generated with MySQL running
on a server with 3.2GHz Intel Pentium processor and 2G
RAM. The average time for generating KR-summaries is
9.7, and 20.0 seconds when δ is set to 0 and 1. It jumps to
103 and 146 minutes when δ is set to 2 and 3, and it takes
about 9 hours when δ = 4. The main reason of the dramatic
increase of time as the increases of δ is that when δ is larger,
the number of related keyword pairs increases greatly, which
causes much more time being spent in generating table RWδ

.
Next, we compare the storage size of the tuple relationship

matrices at different distances (Table 1) and the final KR-
summaries with δ set to different values (Table 2).

d #entries size on
disk (com-
pressed)

index size
(com-
pressed)

% of n2

1 61765 0.17MB 0.64MB 0.002
2 4500687 3.77MB 22.89MB 0.16
3 21788108 13.77MB 124.50MB 0.80
4 41898415 36.04MB 322.22MB 1.54

Table 1: Size of the tables for storing tuple relation-
ship matrices at different distances (d)

From Table 1, we can see that the size of tuple relationship
matrices becomes larger when the distance increases, but
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δ #entries size on disk (compressed) % of m2

0 207037 0.64MB 0.047
1 212176 0.65MB 0.048
2 6270482 15.03MB 1.42
3 6275887 15.06MB 1.42
4 25622178 57.62MB 5.83

Table 2: Size of KR-summaries with different δ

the matrices are still very sparse. As intermediate results,
the tuple relationship matrices can be deleted after the KR-
summary is generated to save storage space. However, they
can also be kept for efficient updating.

As mentioned earlier, the increase in the size of KR-summary
is less smooth as δ increases, which can be seen from Table
2. The sizes of KR-summaries are similar when δ = 0 and
δ = 1 and likewise for δ = 2 and δ = 3. We also see that the
number of keyword pairs included in KR-summary is a small
portion of all possible combinations of keyword pairs. Note
that the size of the KR-summary is mostly related to the
number of keywords in the source database, not the original
size of the database.

5. RELATED WORK
We discuss the related work to our approach in this sec-

tion.

5.1 Keyword search in relational databases
Keyword search over relational databases has been stud-

ied extensively recently [1, 2, 3, 13, 14, 19, 21]. All these
works focus on efficiently and effectively generating (approx-
imate) top-K results for a given keyword query in a single
relational database. They differ from each other in their
specific search algorithms, and the ranking functions for re-
turning most relevant top-K results. The DISCOVER ap-
proach generates tuple trees by enumerating and evaluating
Candidate Networks (CN), which represent join expressions
that can generate potential answers, based on the schema
graph of the database. The BANKS system represents all
the tuples in a database as a graph where the nodes are
tuples and links between nodes denoting references between
corresponding tuples. The answers are generated by search-
ing steiner trees in the tuple graph that contains all the
query keywords. Our proposed summary-based database
selection technique complements these search engines on a
single database, in order that keyword search to large num-
ber of distributed databases can be effectively supported.

5.2 Data sources selection in data integration
The problem of data source selection is also studied in

the data integration literature [20, 24], but with very differ-
ent settings. A typical data integration system consists of a

set of heterogeneous data sources containing data, a global
virtual schema exposed to users, and a set of mappings be-
tween each of the source schema and the global schema.
The set of schema mappings is essentially the descriptions
of the sources, with which the system will generate query
execution plan that can access multiple useful data sources,
given a query issued against the global schema. [20] presents
a way to declaratively describe the content and capabili-
ties of data sources in terms of the global schema, which
is later formulated as Local-as-View (LAV) approach. [24]
studies the coverage problem of information sources, and
propose a completeness model to measure the usefulness of
data sources. While such data integration system aims to
support integrated access of heterogeneous data sources via
a structured global interface, our approach is for provid-
ing free-and-easy keyword search capability to various data
sources. The advantage of our approach is that all the opera-
tions are fully automatic. In contrast, the mappings needed
in data integration system can only be built manually or
semi-automatically, which limits its applicability to large-
scale and dynamic data sources.

5.3 Selection of unstructured text data sources
There have been many summary-based solutions devel-

oped in IR literature for selection of unstructured text data
sources [5, 12, 29, 30]. Most summary techniques are based
on keyword frequency statistics for estimating the usefulness
of each data source in answering a given keyword query, e.g.,
GLOSS [12] and CVV [30]. CORI [5] summary also relies
on keyword frequency statistics, together with the ICF (In-
verse Collection Frequency) value, which is the inverse of
the number of data sources that contain a particular key-
word, to rank databases in a way similar to the standard
TF.IDF measure for ranking documents in a single source.
The ICF statistics could help identify the importance of a
keyword across difference collections, but it cannot capture
the structure information that is necessary for measuring
the ability of structured data sources in answering a key-
word query. These selection algorithms are examined and
compared extensively in [9, 26] with various datasets. In
addition, [29] proposes a summary technique for document
collections where linkages among documents are available
(e.g., web pages), and therefore documents with more refer-
ences should be ranked higher. It thus incorporates the rank
of documents in the summary to achieve better performance.

The construction of the summary for a text data source
can be performed easily by scanning once all the documents
to extract all the keywords and their associated frequencies,
if the data source can be fully accessed. In some occasions,
the data source can only be accessed via a limited search
interface, query probing and sampling based methods are
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needed to construct its summary [4, 17]. In [16], detailed
cost models are given for these two types of approaches. In
contrast, our approach for constructing KR-summaries for
relational databases can either be performed in the local
DBMS if full access is allowed, otherwise if an SQL query
interface is provided, it can be done by crawling all the tables
and creating the KR-summary in a foreign site.

5.4 Capturing keyword dependence for
information retrieval

There have been research works [6, 11, 23] on capturing
the dependence relationships between keywords for improv-
ing the effectiveness document retrieval tasks, considering
that words occurring in a sentence are not independent in
our natural language. For example, there is some degree of
dependence between the occurrences of the keywords “com-
puter” and “programming”. Such relationships among key-
words can be discovered by directly collecting information
on co-occurrences of keywords from corpus, or by manually
building thesauri to recognize synonyms, compound terms,
etc., such as WordNet [10]. While such relationship cap-
tures the dependences of keywords in natural language, the
keyword relationship defined in our work describes associa-
tions of keywords specific to a particular relational databases
based on references between tuples, which may or may not
be related to their dependence in natural language.

6. CONCLUSION AND FUTURE WORK
In this paper, we introduce a novel summary technique

for relational databases for enabling keyword-based selec-
tion of distributed data sources. Different from traditional
summary used in IR for text databases that mainly re-
lies on keyword frequency information, our summary ex-
ploits the structure of the relational database and contains
pairs of keywords with scores indicating the strength of their
relationship, which are measured based on the references
between tuples. We also propose an estimation method
for ranking the usefulness of databases in answering a key-
word query with our KR-summary. Our experimental re-
sults with real dataset demonstrate the effectiveness of our
proposed summary approach. Further, our evaluation of the
distributed indexing mechanism for the KR-summaries im-
plemented over PlanetLab [7] confirms its feasibility, scal-
ability and efficiency over a real distributed environment.
Indeed, unlike traditional data integration techniques, our
free-and-easy keyword based selection method requires no
human intervention, hereby enabling scalability over a large
network of distributed relational data sources.

Our summary technique can be extended in two direc-
tions. First, we can further incorporate IR-based weighting
methods and weightings based on link structure into the
KR-summary. For example, the D matrix could include the
weighting of each keyword in the tuples it appears in, and
the T matrix could use real numbers to indicate the impor-
tance of different links, instead of binary values. Second,
we can exploit some sampling-based methods for construct-
ing the KR-summary more efficiently and making it more
compact.
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