
A
u
th

o
r'
s 

  p
er

so
n
al

   
co

p
yEffective learning system techniques for human–robot

interaction in service environment

Z. Zenn Bien *, Hyong-Euk Lee

Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong,

Yuseong-gu, Daejeon 305-701, Republic of Korea

Received 25 October 2006; received in revised form 9 January 2007; accepted 18 January 2007

Available online 2 February 2007

Abstract

HRI (Human–Robot Interaction) is often frequent and intense in assistive service environment and it is known that realizing human-
friendly interaction is a very difficult task because of human presence as a subsystem of the interaction process. After briefly discussing
typical HRI models and characteristics of human, we point out that learning aspect would play an important role for designing the inter-
action process of the human-in-the loop system. We then show that the soft computing toolbox approach, especially with fuzzy set-based
learning techniques, can be effectively adopted for modeling human behavior patterns as well as for processing human bio-signals includ-
ing facial expressions, hand/ body gestures, EMG and so forth. Two project works are briefly described to illustrate how the fuzzy logic-
based learning techniques and the soft computing toolbox approach are successfully applied for human-friendly HRI systems. Next, we
observe that probabilistic fuzzy rules can handle inconsistent data patterns originated from human, and show that combination of fuzzy
logic, fuzzy clustering, and probabilistic reasoning in a single frame leads to an algorithm of iterative fuzzy clustering with supervision.
Further, we discuss a possibility of using the algorithm for inductively constructing probabilistic fuzzy rule base in a learning system of a
smart home. Finally, we propose a life-long learning system architecture for the HRI type of human-in-the-loop systems.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The existing robots are generally grouped into three
types such as industrial robots, service robots and robots
with special missions. The robots that we see in manufac-
turing sites belong to the first group while the robots built
for special tasks such as Mars Rover and fire-fighting
robots are of the last type. The robots that perform works
and service activities directly for human beings are called
service robots [1]. Recently, service robots are getting
increased attention because of their potential applications
for enhancing human well-being and quality of life. In par-
ticular, service robotic systems are often viewed as one of
the primary alternative solutions for the arising caregiver-

shortage problem in many advanced nations which are
soon to confront with the demographic crisis of aged
population.

Since a service robot interacts with human frequently
during its operation, symbiotic coexistence, and safety are
of great concern for the potential users, which is well
reflected in a paper by Leifer [2] who proposed three rules
of service robot design in the following context: (1) service
robot design should be a social activity and service robots
should be social agents: (2) service robots must tolerate
ambiguity: (3) all applications should be reapplications.
As a matter of fact, design of service robots should be car-
ried out from the start in the form of multi-group activity
involving not only the engineering team but also the poten-
tial user group. In case of assistive robotic systems, consul-
tation with medical doctors and caregivers, as well as social
workers and even policy makers, is further recommended.
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The objective of such design philosophy is to make a ser-
vice robot to be a social agent that can interact with human
in a friendly way. The 2nd proposition indicates that the
robot should have proper human-like intelligence to figure
out what to do, and where to go, etc., when it is not told
precisely about the detailed actions to take to achieve a
given task, not mentioning of handling many problems in
an unstructured environment. Last, but not least, Leifer
asserts that the system applications should be implemented
with proven technologies and with assured confidence for
success because human is involved and, as such, no trial-
and-error is allowed. From these observations, we may
derive a number of challenging R&D issues to study for
faithful service robotic systems; some outstanding prob-
lems include: (1) effective integration in consideration of
a number of requirements from various parties involved,
(2) endowment of human-like intelligence, and (3) safe
and friendly human–robot interaction design.

In this paper, we consider realization of service robotic
systems from HRI (Human–Robot Interaction) perspec-
tive. Note that HRI is frequent and intensive in a service
robotic environment. Recall that HRI can be considered
a special form of HCI (Human–Computer Interaction) or
a particular category of USI (User–System Interaction),
which we briefly review in Section 2. When robot and
human are interacting with each other, we may consider
a human-in-the loop system that contains the two elements
as subsystems. Human-in-the-loop system is a well-estab-
lished notion and, traditionally, a major concern is to
design the total system in such a way that the troublesome
human factors are minimized. The complex airplane control
system is a typical example, and we may call such design
practice as machine-centered approach. When a robot is
to assist a person with disability or an elderly, we find that
the machine-centered design methodology is doomed to fail
because training people with disability or old persons to
learn about complicated robots is simply implausible.
Rather, it seems better to take the other opposite approach
of human-centered design for such an assistive service
robotic environment. In this approach, it is proposed that
machine factors should be minimized and, that the robot
be designed to adapt to human by learning and under-
standing characteristics and behaviors of human, which is
often called ‘‘human-friendly’’ system design approach.

The crux of the problem in the latter design approach, of
course, is to let the robot know proper amount of human
characteristics necessary for human-friendly interaction.
We find that at least two kinds of difficulties, objective
and subjective, are well-known and outstanding. The first
one is that human is such a complex entity so that it is
not easily modeled in the form to be understood by a
machine robot. The second difficulty is that, even if some
human characteristics are available, it is not trivial for
the robot to act and interact in a way that human as a user
feels socially comfortable in his/her own terms. In other
words, it would be quite difficult for robot to have a proper
human model and execute interactions in a human-friendly

due to complexity and variability of the user’s characteris-
tics and behavior. Here, we may mention that uncertainty
of the environment can be another source of difficulty as
in the case of a residential space where the context under-
goes continual change due to human’s activities on the
environment.

With advancement of effective bio-signal processing
techniques, however, some of the difficulties mentioned
above may be overcome for limited HRI applications.
First, note that efficient acquisition and use of various
human bio-signals are essential in human-friendly HRI to
recognize human’s behavior and physical status as well as
understand human intention (see Fig. 1). Human bio-sig-
nals include body gestures such as hand gesture and some
physiological bio-signals such as EMG, EEG, and ECG.
Note that, as long as modeling is concerned, such signals
show quite complicated characteristics such as high dimen-
sionality, nonlinear-coupling of attributes, subjectivity,
apparent inconsistency, susceptibility to environmental
noise and disturbances, and time-variance as well as situa-
tion-dependency [3]. As such, building a human model
from diverse and complex sources of information would
be a very challenging task when it is to be used for
human-friendly interaction in various situations for a long
time.

Another observation to note is that, as a subsystem of
the human-in-the-loop system, human seems to operate
with perception-based input data and mostly employ an
approximate reasoning inference mechanism, whereas
robot is operating with measurement-based input data
and under well-defined mathematical formalism. Imagine
a home environment, for example, where the owner inter-
acts socially with a service robot as a butler: one day, the
master comes back home after work and finds that the
house is somewhat hot. In this situation, the room temper-
ature perceived by human and that sensed by robot are dif-
ferently represented; e.g., ‘‘a little hot’’ and ‘‘26.5 �C’’,
respectively. If the total human-in-the-loop system is con-
structed to be human-friendly, the owner may give an

Fig. 1. Variety of information on human model for interaction.
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instruction to the robot in his/her natural language such as
‘‘Lower the temperature a little,’’ instead of reading the
thermometer and telling the robot to reduce the tempera-
ture, say, by 5�. In this interaction, the robot should be
aware of linguistic variables used by human such as
‘‘hot’’ and ‘‘a little’’. It would be also interesting to see
how the concept ‘‘a little’’ would go through inference
and be processed differently in case of a human butler
and that of the robot. Human would employ approximate
reasoning based on his experiences while the robot should
find a proper action by means of some preprogrammed
computation.

HRI has been under study in the robotics community
for a long time [4], and numerous reports are available
for successful interaction applications. Interaction itself
can be treated from various view points such as social inter-
action, physical interaction, virtual reality interaction, and
so on. The human-friendly HRI in assistive service envi-
ronment involves social and physical interactions. Most
of the known human-friendly interaction methodologies
are far from practical use, especially when the human is
either an old person or a disabled. Based on our experi-
ences on this interaction problem, we find that, firstly,
long-term learning can be an important aspect in handling
complexity and time-variance of human characteristics
and, secondly, as an effective and efficient engineering solu-
tion, the toolbox approach of combining intelligent learn-
ing techniques can be effectively utilized. The long-term
learning concept is embryonic for the robotics community
and some related studies have recently been initiated [3].
Regarding the second approach, we find that, with limited
success, the so-called soft computing techniques such as
FSL (Fuzzy Set and Logic) and ANN (Artificial Neural
Network) can be used quite effectively for realizing
human-friendly systems. We comment, in particular, that
FSL-based technique is a very powerful tool for encoding
human knowledge formed from perception-based data
and for transforming it into machine knowledge for feed-
back and inference. In this paper, we demonstrate that,
for human-friendly HRI, FSL method with other soft com-
puting techniques can play an important role in establish-
ing a learning system model for time-varying, inconsistent
and user-dependent human bio-signals.

This paper is organized as follows. In Section 2, we
briefly review some well-known approaches for HRI and
then, the learning system issues are addressed in the context
of HRI in assistive service environment. In Section 3, we
describe the soft-computing toolbox approach for effective
hybridization of existing intelligent techniques as a cost-
effective powerful engineering solution to design a
human-friendly system. Particular attention is given to a
couple of learning system techniques based on fusion of
FSL and other soft-computing techniques. In the section,
use of the FSL-based learning techniques in the soft com-
puting toolbox approach is illustrated as two examples.
In Section 4, we observe that probabilistic fuzzy rules can
handle inconsistent behavioral data patterns and show

how such a PFRB (probabilistic fuzzy rule base) can be
constructed from an algorithm of iterative fuzzy clustering
with supervision [43]. We further discuss a possibility of
establishing a PFRB-based learning system for a smart
home. Then, we propose a life-long learning system archi-
tecture for the HRI process of human-in-the-loop systems.
Finally, a brief concluding remark is given in Section 5.

2. Human–robot interaction and learning issues

2.1. Typical models of human–robot interaction (HRI)

A simplistic model of HRI is shown in Fig. 2 [4]. This
diagram is to illustrate that, when robot interacts with
human as operator, robot is mostly the passive recipient
of service from human, whereas when robot interacts with
human as user, the robot becomes the active provider of
service and therefore, in this service environment, defini-
tion of working space for the robot should be rigorously
established in order to protect human from possible mis-
haps. This model can be considered as an extension of
the case of an industrial robot for which the working space
includes objects and other automation systems but no
human. When the robot should perform more than simple
tasks and the environment is broad and complex, as for a
mobile robot in- and out-door environment, the roles of
human partner may vary as shown in Fig. 3. Those multi-
ple human roles in HRI along with their application
domain examples can be summarized as follows [5]:

• Operator: Manus Arm-based Wheelchair, Master/Slave
Robot

• Teammate: Carrying a Long Table
• Mechanic/Programmer: Industrial Robots
• Supervisor: Teaching Pendant Systems
• Bystander: Office Robots

For effective HRI, some people seek for hints from HHI
(Human–Human Interaction) and many researchers look
for solutions from techniques of HCI. In fact, Scholtz
asserts that determining what is available in HCI research
should be a first step of developing HRI framework [5].
Recently, the word ‘‘agent’’ is often used in referring to
the human counterpart such as robot, computer or some-
thing else [6], in which a scheme of HAI (Human–Agent
Interaction), called IDEA (Interaction Design for Adapta-

Fig. 2. 1:1 Human–robot interaction model by tanie.
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tion), is proposed. Fig. 4 depicts a HAI model in which B

refers to behavior, M (B) is for model of behavior, L for
learning and I for interaction. According to the algorithm
IDEA, human adaptation should be first exercised, then
followed by agent adaptation. However, this kind of inter-
action may require heavy cognitive load on the part of
human and is hard to adopt in case the human is physically
weak.

When we study HRI, it is imperative to note that human
and robot are two different entities having different descrip-
tors of interaction. For robot, we use technical terms such
as I/O devices, level of autonomy, model of user, morphol-
ogy, composition, learning, and so forth, whereas, for
human, we contrast utility notions such as end user, inter-
action role, level of shared interaction, physical proximity,
task criticality, application area, ratio of people versus
robot, etc. [7]. In case of service robotic systems, we may
add intentionality, emotion and personality [6] as descrip-
tors for human. From design and realization point of view,
we also find a category of functionally driven engineering
approaches in which safety, reliability, usability, task man-
agement, modeling, and evaluation are important items to
check and encounter another category of biologically dri-
ven scientific methods for which cognition, ethos, interac-

tion structure, mind and psychological aspects are paid
serious attention. Recently, interaction is intensely being
studied from ‘‘service’’ aspect. Thus, numerous forms of
interaction seem possible, depending on application
domains and or perspectives of viewing the interaction.
However, it seems to be the state-of-the art that not many
generic HRI models are available, especially for human-
friendly interaction.

2.2. Learning issues for human-friendly robot in service

environment

Consider a typical example of service in which a robot is
to guide a very old person from one place to another. In
this situation, interaction from the robot’s part can include
leading the human with soft grasp of hand, coordinated
walking if the robot is of humanoid type, watching
human’s facial and body gestures with timely proper
responses. Some of the robot’s actions in this guide mission
can be well defined in advance but many motion sequences
of the robot may not be available for interaction in
unknown environment or for detailed behaviors. That is,
preprogramming for all possible robot motions is simply
impossible, or if any, such packages may not work for
many practical service environments. Even if not satisfac-
tory initially, however, the guide mission would be gradu-
ally and successfully accomplished if, as in the case of
human–human interaction, the robot is capable of learning
in situ behaviors from human feedback and self adaptation
for varying environment.

Various definitions on ‘‘learning’’ are available. And,
approaches of analysis and design for learning systems
are diverse, depending on application domains [8]. For
example, learning in [9] is defined as changes in the system
that are adaptive in the sense that they enable the system to
do the same task or tasks drawn from the same population
more efficiently and more effectively the next time. The
notion of learning is addressed in [10] in view of machine
learning, where a computer program is said to learn from
experience E with respect to some (class of) tasks T and
performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E. In [11],
learning is defined as automated system optimization based
on sequential presentation of examples as a step-by-step
process of improvement.

Learning in robot is also a broad concept, referring to
actions of robot to adapt and change its (physical) behav-
ior or its (non-physical) understanding based on input/out-
put observations [12]. An attempt to categorize robotic
learning methods is made and is illustrated in Fig. 5.

It should be pointed out that the notion of learning in
robotics is expanding as applications are diversified. A
robot, for example, can learn to dance, which is physical
behavior as well as can know human intention, which is
a non-physical entity, from facial expressions. As for phys-
ical behavior of a robot, we may further differentiate well-
defined tasks from some pattern of behaviors for which

Fig. 3. Multiple human-role model of HRI [5].

Fig. 4. Interaction design for adaptation scheme of HAI [6].
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capturing some abstract level of features would be the goal
of learning, rather than specific geometrical forms of
actions. In the guide mission considered earlier, opening
a door is a sequence of motions that robot can easily learn
while some particular habit observed from human’s gait
pattern is a feature that would be helpful in coordinated
walking. Typically, the learning unit plays a role of a bridge
between knowledge and experience as shown in Fig. 6,
where knowledge is obtained and modified by repetitive
experiences through learning algorithms. Reinforcement
learning updates its policy by action-reward pairs, for
example, and an iterative learning control method gener-
ates the desired control input by repetitive trials of control
action and observation of actual output [13]. In order to
achieve required performance, the designer of a learning
system has to decide a proper method of knowledge repre-
sentation and learning mechanism depending on the target
tasks and goals of learning.

It is further observed that the level of complexity and
difficulty will be broad for a robot to learn various human
behaviors. Let us consider an example of skill learning in
archery. The objective is to hit the bull’s eye against possi-
ble wind and other circumstances. The archer may accumu-
late his/her know-how on hitting the target from numerous
trials-and-errors. This kind of learning can be called a basic
level learning in consideration of the learning target being
static. When we consider a moving target, however, the
problem becomes more difficult. In a clay pigeon shooting,
the player is trained to hit a moving target under all cir-

cumstances. We may say this kind of learning as a 2nd level
of learning. A still more difficult type of skill learning can
be compared with the situation of fishing using a fish-spear
with fisherman on a boat in a river. In this case, the fisher-
man should spear a moving target fish even when the boat
is in motion or is rolling in the river. We may say that this
is a 3rd level skill learning which may be acquired gradually
and in a long time to cope with continually changing target
and environment. This last type of learning naturally leads
us towards a notion of ‘long-term learning’. It would be
interesting to contrast the 3rd level learning with MRACS
(Model-Reference Adaptive Control System) [14], where
the system undergoes a structural change or there is severe
change in the environment that considerably affects the
control performance as shown in Fig. 7.

A typical learning involves several steps; (1) target func-
tion specification, (2) selection of learning algorithm, (3)
selection of data/data subsets, (4) preprocessing, (5) mea-
sure of performance, and (6) halt criteria [3]. In case of
HRI, the target function specification and selection of
learning algorithms are, in particular, not obvious in most
cases. Let us consider, for example, human gesture and
behavior pattern as the learning target. Recall that bio-sig-
nal acquisition and its use for pattern classification are

Fig. 5. A categorization for learning methods in robotics [12].

Fig. 6. Typical learning system structure*. Fig. 7. MRACS with structure change in varying environment.
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essential in human-friendly HRI in service environment
[15]. It is well known that success rate of human bio-signal
recognition is usually very low due to time-variance and
user-dependence of bio-signal. Specifically, human bio-sig-
nals show complicated characteristics such as high dimen-
sionality, nonlinear-coupling of attributes, subjectivity,
apparent inconsistency, susceptibility to environments
and disturbances, and time-variance as well as situation-
dependency [3]. Among those characteristics of human
bio-signals, we briefly discuss the following features in view
of realizing a human-friendly HRI process in service
environment:

(1) Complexity/high-dimensionality
(2) Subjectivity (User-dependency)
(3) Time-variance (Inconsistency)
(4) Difficulty of Real-time Learning and Control

First, it is noted that human bio-signals are usually high-
dimensional complex data. For example, a human face is
reported to have 44 muscles with 23 bones which can the-
oretically generate 55,000 expressions. If a pattern is
required to be recognized from such high-dimensional
data, the problem of selecting a set of attributes for classi-
fication is considered a foremost important issue to resolve.
Also, one of the most difficult tasks in such a recognition
problem may lie in performing classification with ambigu-
ous/fuzzy boundaries, assuming that the features are prop-
erly selected and robustly extracted. At this point, we may
pay attention to the human perception capability of
extracting ‘essential knowledge’ from complex informa-
tion/data by employing approximate reasoning, and
expressing it in words. FSL-based techniques are known
effective in transferring human knowledge to machines.

Secondly, differences of individual’s characteristics in
rendering bio-signals may hinder the system performance
greatly. For example, a facial expression for the same emo-
tional state can differ from person to person [16]. Also, it is
reported that a directly measured bio-signal such as EMG
shows user-dependent characteristics in amplitude, and fre-
quency distribution of the signals and, in other extracted
features [17]. In general, it is difficult to extract a set of
user-independent features, therefore, personalization is
often adopted as an engineering methodology to handle
user-dependence problem.

Thirdly, even if the current service robotic system is
designed and realized with high performance, meeting the
requirements of the user at the time of design, it is obvious
that the level of satisfaction would not be maintained for
the user in a long time scale of operation. Some of the
physical features or behavior patterns of human can vary
in time and also some of the preferences of the user may
change in a long time span. To cope with this kind of
changes due to the long time factor, a gradual and inces-
sant learning through interaction and feedback is required.
For this, a life-long learning system framework is
discussed.

Finally, we point out that it is technically challenging
and important for the system to have a real-time learning
and control capability for effective HRI. Most traditional
pattern classifiers are designed to perform training/learning
in off-line and then are applied to a real target system.
However, when we consider an assistive service environ-
ment where HRI frequently occurs, it is important that
human is the learning target as well as a real-time evalua-
tor/teacher for the learning system. As such, on-line/incre-
mental learning methods are preferred which include
human in the system loop. We demonstrate some possibil-
ity of realization by presenting several illustrative examples
in the paper.

It is remarked that ‘‘learning system’’ may refer to an
organized institution for human learning in some non-engi-
neering communities, where e-learning is recently a hot
subject of discourse and ‘‘learning system architecture’’
concerns with types of instruction and learning such as:
(1) receptive learning, (2)directive learning, (3) guided dis-
covery learning, and (4) exploratory learning [18].

3. Soft computing approach and fuzzy set and logic-based

techniques for HRI

3.1. Soft-computing toolbox approach for HRI learning

It is usual that the designer selects a learning model and
a learning algorithm in consideration of the functional
requirements of the system to be designed. When the sys-
tem under consideration has complex structure, one may
utilize more than one learning model with multiple learning
algorithms for building the overall learning system. This
design methodology is often practiced in civil engineering
and construction industry. In the case of building a house,
for example, various kinds of tools can be used some of
which may be employed here and there wherever such prac-
tice can facilitate the process of building the designed
house. Similar approach can be utilized for designing a
robot system to perform human-friendly HRI in service
environment.

It is now well-known that there are available various
soft-computing techniques, such as FSL [19], ANN [20],
RST (Rough Set Theory) [21], ECT (Evolutionary Compu-
tation Technique) [22] or GA (Genetic Algorithm) [23],
SVM (Support Vector Machines) [24], and probabilistic
methods including HMM (Hidden Markov Model) [25].
These techniques can be ‘tools in the soft-computing tool-
box’ to design a learning system as shown in Fig. 8. Known
also as techniques of computational intelligence, these
intelligent techniques have been developed mainly by mim-
icking physical and/or biological working mechanisms and
behaviors of human or animal. Recall that FSL can be
effectively adopted for human and robot interaction prob-
lems since many forms of human knowledge can be
expressed by fuzzy sets and rules and it can make a
machine reason in a similar way that human reasons about
uncertain and ambiguous data. RST can be utilized in
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reducing the number of rules, rendering a minimal set from
the existing rule base, while ANN can be utilized for learn-
ing a general nonlinear function in many pattern classifica-
tion areas using its layered structure of neurons with non-
linear activation function. In addition, some other
methods, including Reinforcement Learning, SOM (Self-
Organizing Map), Inductive Decision Tree, and Bayesian
Learning, can also be used in constructing a learning
system.

According to our extensive survey and experiences of
developing real HRI systems, we have found that hybrid
combination of soft computing techniques is quite effective
in implementing functional blocks for the system’s learning
and adaptation. A combination of these soft computing
techniques are chosen and utilized as tools wherever and
whenever appropriate and relevant to the tasks and goals
of the system as long as they play their inherent roles har-
moniously with each other. As will be illustrated later in
Section 3.3, the soft-computing toolbox approach can offer
easy-to-implement and cost-effective engineering solutions
for various problems of human behavior understanding
in HRI. We remark that the performance of a system
designed by the methodologies described in the paper can
be further optimized by applying again some soft comput-
ing optimization techniques such as GA or SVM as long as
the performance can be quantitatively expressed. Since

human is involved in the HRI process, however, some
practical measure of performance may include qualitative
requirements such as safety, comfort, or human-friendli-
ness for the user. In such cases, we may get performance
evaluation in terms of satisfaction degrees in reference to
some existing systems or by subjective judgment of the
users, as we have done for evaluating KARES II, a
wheel-chair based service robot system, developed at
HWRS-ERC, KAIST [30].

3.2. Fuzzy set and logic-based learning techniques

There are many possible ways of hybridizing different
techniques from the soft-computing toolbox in designing
a learning system. In this paper, we restrict our attention
to FSL-based hybrid approaches since they are most rele-
vant to HRI in assistive service environment. Later, we
present a couple of case study examples for illustration.

FLC (Fuzzy Logic Controller) has been very success-
fully adopted for various industrial and home appliance
systems. In the system, the fuzzy set and logic theory is uti-
lized in substituting a human expert by FLC by using its
knowledge representation/description capability in a
human-in-the-loop system. However, one drawback of
the conventional FLC is that re-tuning of the fuzzy con-
troller is necessary when the system parameters undergo
some significant changes. To design a control system in
consideration of both uncertainty of plant parameters
and robustness against external disturbances, Procyk and
Mamdani proposed an adaptive control technique called
SOFLC (Self-Organizing Fuzzy Logic Controller) [26]. It
has a basic form of fusing FLC and a performance error-
based rule-learning technique. The original SOFLC is,
however, valid for a very limited class of systems and shows
unstable characteristics when the stable state is slightly dis-
turbed by external signals as noted in an inverted pendu-
lum system in [27]. An improved version of self-learning
controller is presented in [27] with a new design principle
that the learning law should not modify the fuzzy control
rules if the system moves satisfactorily along the zero error
hyper plane [27].

Another popular version of a fuzzy system with learning
capability is obtained by fusing FSL and ANN with an
advantage that FSL system emphasizes interpretability
while ANN accomplishes nonlinear mappings [28]. Typical
fusion forms of FL and NN include: (1) Neuro-Fuzzy Sys-
tem (parallel form/series form), (2) NFS (Neural-Fuzzy
System) and (3) FNN (Fuzzy-Neural Network) [3]. The
parallel/series form of a neuro-fuzzy system has low degree
of fusion and usually used for representation of expert
knowledge. On the other hand, a NFS has a fuzzy inference
architecture with ANN learning for tuning of membership:
this is sometimes called as a neuralized fuzzy system. A
FNN is an improved form of NN and it is said to be a
‘fuzzified neural network’. Lin’s FNN has a special form
of FNN with 5-layered structure [29]. Lin’s FNN has been
used for a number of applications in our projects, including

Fig. 8. Block diagram of soft computing-based human–machine interac-

tion system.
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a personalized facial expression recognition system [16] and
an intention reading unit for a rehabilitation robots
[15][30]. FMMNN (Fuzzy Min-Max Neural Network)
[31] is also one form of FNN, which we is very effectively
used for recognizing hand postures [32] and bio-signal fea-
tures [33]. FMMNN is a simple hyper box-based learning
system with fast incremental learning and on-line adapta-
tion capability. Hyper boxes, which are correspondent to
fuzzy rules of the classes, are easily constructed from input
data and are simply modified to minimize a classification
error by constructing non-overlapped hyper boxes between
different classes. Recently, we find that GWFNN (Gabor-
wavelet Fuzzy Neural Network) can play an effective learn-
ing role in user adaptation stage for our PDA-based facial
expression recognition system [34].

3.3. Applications of soft computing toolbox approach with

FSL-based techniques

In this section, we briefly describe two project examples
for which the soft-computing toolbox approach is adopted
and Fuzzy Set and Logic-based techniques are successfully
used.

3.3.1. Case study (1) sign language recognition system [35]

Sign language is a special form of human gesture for
communication among persons with hearing impairment.
Recognition and graphical generation of sign language
have been an important subject of research for communica-
tion between a hearing-impaired person and an ordinary
person as well as among people with hearing impairment.
In KAIST, we have been developing two versions of KSL
(Korean Sign Language) recognition system as an auto-
mated sign language interpreter. Earlier version was a Data
Glove-based system, and the recent version is a camera
vision-based system. It is remarked that Korean Sign Lan-
guage is composed of sign words and manual alphabets,
which are expressed by both dynamic hand motions and
static hand postures. To achieve fast and accurate recogni-
tion, we have used fuzzy set and automata representation

for gesture segmentation while we have adopted HMM
method for dynamic gesture word matching to deal with
scalable and spatio-temporal data pattern. And also,
FMMNN has been utilized for classification of the static
hand postures.

The overall system structure is shown in Fig. 9, where
the learning methods mentioned above are used from the
soft-computing toolbox, and, as reported in [35], we have
obtained quite successful performance with 95.8% as recog-
nition rate of hand posture and 94.9% as recognition rate
of sign words among 414 manual alphabets and compound
words.

3.3.2. Case study (2) personalized facial expression

recognition [16][34]

In HHI, the facial emotional expression is known to
play very crucial role as much as various body gestures.
For human-friendly interaction between human and robot,
therefore, it is desirable for the robot to have a capability
of recognizing human facial emotional expressions, in addi-
tion to the face detection and tracking function. In fact, the
human facial expression recognition has become an inte-
gral part in many advanced service robotic systems. As
mentioned earlier, the problem of recognizing emotion
from face is known to be very complex and difficult due
to high dimensionality of facial structure. In addition, sub-
jectivity and individuality in facial expressions are quite
troublesome and may not be ignored in understanding
emotions [36]. After some years of work, we have success-
fully developed a first version of FEERS (Facial Emotional
Expression Recognition System) in which Ekman’s linguis-
tic rules of six universal emotion expressions are trans-
formed into fuzzy rules, and the RST is applied for rule
reduction while a ANN-based fuzzy observer is introduced
for recognition. This first version has shown limited success
in terms of success rate. To enhance performance, we have
further used Lin’s FNN-based classifier. This FNN is capa-
ble of modeling human’s expertise-based decision making
process and easy-to-train structure by well-known tech-
niques (such as error back propagation). Furthermore,

Fig. 9. Block diagram of KSL recognition system.
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due to its connection structure, FNN provide an easy way
to locate causes of errors using input/output relationship.
For personalized recognition, we have proposed a system-
atic way of performing personal model selection and struc-
tural modification [16] as shown in Fig. 10. The proposed
method in [16] enables a selection of specific model among
many individualized models via fuzzy similarity measure
and modification of old model. We have also suggested a
novel feature selection method using FNN’s structure-
based connection degree and histogram of connection
degrees to find a set of user-dependent features. As a result,
we have obtained 90.4% classification rate for 7 facial
expressions by using 1764 images which are acquired from
22 persons. For modification of the old model, GWFNN is
also used to build a long-term adaptive learning scheme
with Q-learning and unsupervised FNN [34]. In our preli-
minary experiment with 3 facial expressions, GWFNN-
based adaptive facial expression recognition gives 93.35%
classification rate where only 234 images are used contain-
ing 3 facial expressions among 1764 images.

4. Architecture of probabilistic fuzzy rule-based learning

system

For a system, a fuzzy IF-Then rule can be made from a
pair of input and output data. We say that two IF-THEN
rules are inconsistent if, for the same antecedent values, the
two rules have different consequent values. If a system pro-
duces different output data for the same input, the informa-
tion about the system may well be said to be inconsistent,
which is, grossly speaking, one of the characteristics of
human bio-signals and human-behavior. Consider, for
example, the case in which TV watching pattern of an
inhabitant in home environment is to be modeled and the
learned knowledge is to be applied for constructing an
automatic channel recommendation system. To describe
these kinds of human’s behavioral pattern, we may need
a lot of accumulated data related to the behavior. Wang
and Mendel’s method [37] is often used to extract fuzzy
rules from numerical data patterns for a given fuzzy parti-
tion space. This approach shows difficulty in dealing with
inconsistent data pattern as shown in Fig. 11 where
improperly divided fuzzy partition by incomplete prior-
knowledge may cause extraction of meaningless rules and

loss of meaningful information. In general, we find that
human I/O data can be sparse due to limitations of appro-
priate sensors for human behaviors and measurement diffi-
culty, and also, can be mostly inconsistent in the sense that
when transformed into rules, there are many inconsistent
rules. We remark that a conventional supervised classifier
usually minimizes classification error by rejecting inconsis-
tent data and may show low satisfactory performance due
to loss of information during the learning process.

By fusing FSL and probabilistic reasoning, however,
we may effectively handle inconsistent data in forming
IF-THEN rules. Note that some of the merits of an if-
then fuzzy rule-based system are its capability of easy
accumulation and modification of interpretable knowl-
edge which can be also combined with human expert’s
knowledge in a seamless fashion. Also note that one of
the effective ways to express knowledge without loss of
much information caused by inconsistent data patterns
is to utilize probabilistic reasoning. Thus, fuzzy logic
and probabilistic reasoning can be combined in the form
of so-called PFR (Probabilistic Fuzzy Rule). In the prob-
abilistic fuzzy rule, fuzzy set deals with linguistic uncer-
tainty in describing the antecedent part of a rule and
probability theory handles probabilistic uncertainty of
the consequent part of the rule. In a fuzzy classifier sys-
tem, the antecedent part of the rules partitions the input
space into a number of regions by fuzzy sets, while the
consequent part describes the class labels as the output
for the partitioned regions. In a probabilistic fuzzy classi-
fier, probabilities for all the class labels are described in
the consequent part of the rules [38–42].

Fig. 10. Learning structure for personalized facial expression recognition.

Fig. 11. Example of inconsistent data pattern.
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While acquisition of fuzzy rules usually requires expert’s
knowledge and/or prior analysis on the case-specific data
pattern, construction of an interpretable PFRB can be car-
ried out with low human intervention and without much
prior knowledge. In this section, we show a learning system
with capability of representing given data patterns auto-
matically with a minimal number of meaningful probabilis-
tic fuzzy rules using a small number of heuristic design
parameters.

4.1. Representation of probabilistic fuzzy rule base

We briefly describe probabilistic representation of a
fuzzy rule base to familiarize notational conventions to
be used in the section. In a classical fuzzy rule-based clas-
sifier, the antecedent part of a rule defines the operating
region of the rule in the M-dimensional input feature space
while the consequent part of the rule describes one of the K
classes, indicating a crisp class label from the label set
{c1,c2, . . . ,cK}. Compared with the classical fuzzy rule-
based knowledge, the probabilistic fuzzy rule has the prob-
ability information in the consequent part as shown in Eq.
(1):

Ri : If x1 ¼ ~A1
i and x2 ¼ ~A2

i and; . . . ; and xM ¼ ~AM
i

then Prðy ¼ c1jx ¼ ~AiÞ ¼ P 1
i ; Prðy ¼ c2jx ¼ ~AiÞ

¼ P 2
i ; . . . ;Prðy ¼ cK jx ¼ ~AiÞ ¼ PK

i ; i ¼ 1; . . . ;N ð1Þ

where x = (x1,x2, . . . ,xM), ~Ai ¼ ð~A1
i ;
~A2
i ; . . . ;

~AM
i Þ and Ri de-

notes the ith rule. Note that the vector fuzzy set Ãi is as-
sumed to have its membership function with shape of
multivariate Gaussian function described by Eq. (2):

l~Ai
ðxÞ ¼ exp �1

2
x� m~Ai

� �T
X

~Ai

0

@

1

A

�1

x� m~Ai

� �

8

<

:

9

=

;

ð2Þ

Here, m~Ai
and

P

~Ai
are, respectively, the mean vector

and the covariance matrix of the data that form the
fuzzy set Ãi. It is remarked that an ordinary fuzzy rule
can be considered a special case of a rule expressed in
Eq. (1). The totality of rules, Ri, i = 1, . . . ,N is called
the PFRB.

4.2. Algorithm for iterative fuzzy clustering with supervision

[43]

In order to endow a service robot with capability of
learning some user’s behavior, we consider a classifier
learning system equipped with a PFRB that can handle
inconsistent data pattern such as shown in Fig. 11. To con-
struct PFRB, we present a learning scheme, called IFCS
(iterative fuzzy clustering with supervision)-Algorithm.
The learning system starts with a fully unsupervised learn-
ing process with FCM (Fuzzy C-Means) clustering algo-
rithm [44] and with some cluster validity criterion
[45][46], but it gradually constructs meaningful fuzzy parti-
tions over the input space and obtains corresponding rules

with probabilities through an iterative learning process of
selective clustering with supervising guidance based on
cluster-pureness and class-separability. We show that effec-
tive combination of an unsupervised learning process with
a proper supervising scheme can be effective for searching
regularities in data patterns, and in particular, in finding
more separable and/or analyzable groups of geometrical
shapes.

To describe IFCS algorithm in more detail, we define the
notions of cluster-pureness index and class-separability
index as follows. Let xj 2 RM be the jth training input vec-
tor and {c1,c2, . . . ,cK} be a given label set for K classes. Let
dj 2 {c1,c2, . . . ,cK} be the class label of xj. Given a labeled
data set X = {(x1,d2), (x2,d2), . . . ,(xn,dn)}, we sort X by the
class labels and obtain X s ¼ fðx11; c

1Þ; ðx12; c
1Þ;

. . . ; ðx1n1 ; c
1Þ; . . . ; ðxKnK ; c

KÞg, where xjk denotes the kth data
with the class label j and nj denotes the number of data with
the class label so that

PK

j¼1nj ¼ n. We also get an unlabeled
form Xsu of Xs as X su ¼ ðx11; x12; . . . ; x1n1 ; . . . ; xjnj ; . . . ; xKnK Þ.

Definition 1. (Cluster-pureness Index)
Let lijk be the membership value of xjk for the cluster i

and f(Æ) be a function satisfying

f ðzÞ ¼
1; zP 0

0; z < 0

�

ð3Þ

The cluster-pureness index P a
i of the cluster i is defined

by

P a
i ¼

maxj2f1;2;...;Kg
Pnj

k¼1lijkf ðlijk � aÞ
PK

j¼1

Pnj
k¼1lijkf ðlijk � aÞ

ð4Þ

Definition 2. (Class-separability Index)
Let ma

i ðjÞ and R
a
i ðjÞ be the mean vector and the

covariance matrix, respectively, of data satisfying lijkP a,
k = 1,2, . . . ,nj where lijk denotes the membership value of
xjk for the cluster i, and let f(Æ) be a function satisfying Eq.
(3). The class-separability Sai of the cluster i is defined by,

Sa
i ¼ max

a6¼b
Sepai ða; bÞN

a
i ðaÞN

a
i ðbÞ ð5Þ

where

N a
i ðjÞ ¼ f

X

nj

k¼1

f ðlijk � aÞ � 2

 !

ð6Þ

Sepai ða; bÞ ¼ 1=ð1þ e�4:4ðkai ða;bÞ�0:5ÞÞ ð7Þ

kai ða; bÞ ¼
1

8
ðma
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i ðbÞÞ

T R
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i ðbÞ

2
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jRa
i ðaÞkR

a
i ðbÞj

p ð8Þ

The overall structure of the learning algorithm of IFCS is
shown in Fig. 12.

We describe the detailed steps of IFCS-algorithm with
its flow chart given in Fig. 13 in the following.
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4.2.1. Initialization

At fitst, initial clustering using FCM algorithm is per-
formed with the cluster validity vXB from the Xsu. We find
the first local minimum to get the number of clusters c with
high reliability and high calculation speed from the cluster
validity values. Then, after obtaining the initial partition
matrix U, a fuzzy rule base of the form in Eq. (1) is gener-
ated along with the recognition rate as a performance mea-
sure. Let Ssep be a set of the cluster indices which have

passed the class-separability test, and suppose Ssep is ini-
tially an empty set.

4.2.2. Cluster-pureness test

Wecalculate the cluster-pureness index P a
i for each cluster

i. Then, we find i* wich corresponds to the smallest value of
P a
i , i.e., i

� ¼ argmin
i¼1;2;...;c

P a
i . If the selected i* is already in Ssep,

the cluster with the next smallest value of P a
i is selected as i*.

Fig. 13. Flowchart of the IFCS algorithm[43].

Fig. 12. Overall structure of IFCS algorithm.
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4.2.3. Class-separability test

For the selected cluster i* in the cluster-pureness test, we
conduct the class-separability test using Eq. (5). That Sa

i� is
larger than Smin implies that data in the cluster i* is separa-
ble with different class labels while that Sa

i is smaller than
Smin implies that each of the class in the cluster i* is no
more separable. Then, Ssep is updated by including the ele-
ment i*. If |Ssep| = c, all the clusters are not separable and
the procedure is terminated.

4.2.4. Selective fuzzy clustering

Again, FCM clustering with the cluster validity vXB is
performed for the unlabeled data set X i�

su that contains only
the data xjk 2 Xsu satisfying li�jk P a. Find the first local
minimum to get the number of clusters c 0 in X i�

su and con-
duct re-clustering. Then, labeling newly generated clusters,
obtain a partition matrix U new ¼ ½U T

cþ1 . . .U
T
cþc0�

T from X i�

su,
where U i ¼ ½li11li12 . . . lijk . . . liKnK

�. We obtain the parti-
tion matrix U by omitting the i*-th row of U and by adding
Unew to U, i.e., U ¼ ½U T

1U
T
2 . . .U

T
i��1U

T
i�þ1 . . .U

T
cU

T
new�

T
. The

total number of clusters increases by c 0-1.

4.2.5. Performance evaluation

Using the newly updated U, a new fuzzy rule base of the
form Eq. (1) is generated. Then, we obtain the recognition
rate as a performance measure. The procedure is termi-
nated if the recognition rate is not increased by a pre-spec-
ified number eP. Otherwise, the procedure is repeated from
the cluster-pureness test until one of the terminating condi-
tions is satisfied.

Based on the algorithm on the IFCS presented above,
we are developing a learning system in which three layered
memory subsystem is adopted in the inductive learning
process for a HRI system as explained in the following case
study.

4.3. Usage of probabilistic fuzzy rule base

As an application example, we show construction of a
PFRB-based behavior learning system and discuss its usage
for HRI in a smart home environment.

4.3.1. Case study (3): PFRB-based behavior pattern

learning system

A smart house, called ISH (Intelligent Sweet Home), has
been under development at KAIST since the year 1999. By
this project, we focus our efforts on human-friendly techni-
cal solutions for motion/mobility assistance and advanced
human–machine interfaces to provide people with physical
disability with easy control of both home-installed appli-
ances and assistive robotic systems including an intelligent
bed, intelligent wheelchair and transferring system [47,48].
Since the smart house consists of a number of subsystems
and tasks, and each task requires usually more than one
subsystem for cooperative execution, we have noticed that
an inhabitant with some cognitive difficulty often expresses
difficulty to handle dexterously all the subsystems with var-

ious human–machine interfaces. To resolve this difficulty,
we have been developing a human-look service robot as
shown in Fig. 14 so that the user can operate the whole sys-
tem [49] with ease. The robot should possess high level of
intelligence for their control and management of the
semi-structured environment, and be able to perform
human-friendly actions and interactions with the user,
offering high level of comfort and functionality. For this,
the stewardess robot generates a sequence of subtasks, dis-
tributes subtasks to subsystems, and supervises actions of
each subsystem to synchronize subtasks, thus, reduces the
cognitive load of the user.

The robot is to be equipped with various recognition
subsystems for human-friendly interaction such as facial
emotional expressions, hand and body gestures and human
gait patterns, not mentioning other typical functional sub-
systems including navigation subsystem and face detection/
tracking subsystem, all of which are integrated for a large-
scale robot. One of the key features of the stewardess robot
is its learning capability including intention reading of the
user so that some awkward or difficult situations can be
avoided for the user with some physical disability. The sys-
tem is also supposed to provide a personalized service
depending on the inhabitant’s preference and life style.
All of these functions of the robot will enable the home sys-
tem to perform appropriate tasks autonomously instead of
cumbersome manual operations by observing the inhabit-
ants’ behavior. As mentioned earlier, we have observed
that a desired human-friendly interaction system in the
ISH would be possible only when the management system
would be equipped with a powerful learning capability.

As an initial stage attempt to design a life-long learning
system, we have constructed a probabilistic fuzzy rule base
by observing the user’s behavior pattern in daily life using
IFCS algorithm. More specifically, we first separate a
knowledge base for temporal storage and a knowledge base
for control. Then, we adopt a reliability measure of proba-
bilistic fuzzy rule for improvement of the rule base. Among
possibly numerous probabilistic fuzzy rules, only those
rules that are considered reliable by the reliability measure
are accumulated in the knowledge base for control, and
then, the learning system provides classification results
using the knowledge base. Fig. 15 shows a structure for
an inductive learning process for extraction of probabilistic

Fig. 14. Stewardess robot, ‘‘Joy’’ in Intelligent Sweet Home, KAIST.
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fuzzy rule base using IFCS algorithm. Overall learning
takes place in three processes called STM (short-term mem-
ory), ITM (interim transition memory) and LTM (long-
term memory). In the STM, the IFCS learning algorithm
generates a PFRB (probabilistic fuzzy rule base) from a
set of training examples which are observed during each
time period. PFRB in STM is considered to be a temporal
rule base, while ITM is a pool of possibly reliable probabi-
listic fuzzy rules for control. By a fuzzy membership-simi-
larity measure between rules, DM1 (decision maker 1)
adds or merges each rules from STM into ITM. If the
DM1 decides to merge the incoming rule into existing rule
base in the ITM, a probabilistic similarity-measure between
rules is calculated. And it is reflected in updating the reli-
ability measure value of the merged probabilistic fuzzy
rule. Reliability measure of a probabilistic fuzzy rule is
recursively calculated along the curve y = 1 � e�cx, where
x is an accumulated value of the probabilistic similarity-

measure and c is a design parameter. DM2 selects probabi-
listic fuzzy rules from ITM to be transferred to LTM
according to the reliability measure. LTM is the storage
of a PFRB for control as shown in Fig. 16.

To show effectiveness of the proposed learning system,
we have tested air-conditioner control data as well as TV
watching pattern data. We have obtained a performance
of high classification rate with small number of acquired
rule base for each data pattern, and, the learning system
can provide probable outputs in sequence from probability
of each class in the learned PFRB. Regarding TV watching
pattern data, the success rate goes up to success rate of
around 95% if we include the second probable class for
classification even though the data pattern shows inconsis-
tent characteristic. The learning system can recommend a
favorite TV channel for the inhabitant with high satisfac-
tion degree within 2 trials, which can be very useful to
apply in a practical system.

Fig. 15. A structure for inductive learning phase for probabilistic fuzzy rule base extraction.

Fig. 16. A structure control phase for probabilistic fuzzy rule base extraction.
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4.4. Architecture of life-long learning system for HRI

A typical pattern classifier is first trained for regularities
in I/O relationship from given data pattern in off-line, and
then, the learned system is used for recognition and/or con-
trol. When the system recognizes human behavior in short
term with an assumption that selected features of the
behavior remain stationary, such a classifier is quite suc-
cessful in performance, especially with various soft-com-
puting techniques employed in the process of perception
and recognition [50]. If the system is supposed to operate
in a service environment of residential space for a long per-
iod of time, however, such an approach may not work
because we must deal with time-varying and non-stationary
learning targets such as human bio-signals, body gestures
and other behavioral patterns in parallel for a long time
span. One obvious implication is that the learning system
needs a huge memory capacity with capability of efficient
management in view of long term learning and adaptation
for human-friendly interaction.

There have been several attempts to design a learning
system from a view of memory structure in reference to a
human cognitive learning model. The learning system of
‘‘Cognitive Robot’’ has been designed inspired by the cen-

tral executive from Baddeley’s working memory model [51]
with a combination of STM and LTM [52]. Note that an
early conceptual approach of introducing memories in
the learning system started from studies on cognitive mod-
els of human memory in the field of psychology and cogni-
tive informatics. William James identified three
components in human memory [53], known as the after-
image, the primary, and the secondary memory. Since then,
contemporary theories on memory classification [54] [55]
commonly described it as the sensory memory, short-term
memory and long-term memory. Based on this model,
Wang suggested that the logical architecture of memories
in the brain can be classified into the following four catego-
ries: (1) the SBM (Sensory Buffer Memory), (2) the STM
(Short-Term Memory), (3) the LTM (Long-Term Mem-
ory), and (4) the ABM (Action Buffer Memory) [56]. Also,
Pelayo described storage process in the memorization pro-
cess with four kinds of above explained memories incorpo-
rated with timed arc Petri Net [57]. It is instructive to refer
to Hawkins [58] who asserts that, if an intelligent machine
is ever to behave like a human, it should have a memory
structure and functionality similar to the neo-cortex of
human brain. Specifically, the neo-cortex stores sequences
of patterns in a hierarchical invariant form, and recalls pat-
terns auto-associatively and predictably in the 6 multilay-
ered memory structure. It performs as basic learning
components the bottom-up classifications of patterns and
the top-down construction of sequences.

Referring to learning through the entire lifespan of a
system [59], we may use a new terminology ‘‘life-long
learning’’ or continuous learning. Grossberg asserts that,
in contrast to a paradigm adapting only to a changing
environment, the notion of life-long learning suggests

preservation of previously learned knowledge if it does
not contradict the current task [60]. To build a learning
system that is capable of frequent and intense interaction
between human and robot for a long time, we adopt the
concept of life-long learning for building a system that is
capable of performing human-friendly interaction with
the user with physical disability in assistive service envi-
ronment. Here, assistive service includes fetching and
delivering articles and foods in the home as well as ren-
dering entertainment services, such as turning on/off TV,
in response to gesture commands for the user’s indepen-
dent living.

We propose a life-long learning system architecture
whose brief schematic block diagram is shown in
Fig. 17(a). The overall system under consideration func-
tions as a pattern classifier, a controller or a multiple com-
bination of them and its information flow process has a
structure consisting of IE (Inference Engine), PFRB, and
CDS (Context Descriptor Set). The inference engine per-
forms logical operations and numerical computations with
input data and the rules. The rule base, PFRB, corresponds
to the model of the learning target which contains a given
number of rules and parameters in each rule. The CDS is
introduced to reflex the fact that context awareness is
essential for rendering proper services in a continuously
changing service environment. The context descriptor set
corresponds to a set of models of the environment which
concerns the outside of the system boundary. These context
models can be qualitative as well as quantitative. In the sys-
tem theory, the context is often expressed as a set of fixed
assumptions some of which may look artificial to make the
theory mathematically tractable. As mentioned earlier,
however, HRI takes place in a service environment (of a
residential space in our study) for which the context may
change in time and in space so such fixed assumptions on
the environment and the system would have very limited
applications.

The context dependence of the system is concisely illus-
trated by a metaphorical diagram called ‘‘Context as a
box’’ [61]: inside the box are sentences as the content and
outside of the box carries a collection of parameters and
their values. The representation of context dependency
may vary in terms of partiality, approximation and per-
spective [61] and proper reasoning should be applied along
these dimensions for successful text understanding that
corresponds to a satisfactory system operation. We shall
adopt a notational convention similar to that in [61] to rep-
resent the context of the system in terms of parameters,
Pi (i = 1, . . . ,N) and a value Vij, j = 1, . . . ,M, for each param-

eter Pi, which we call the context descriptors. These
descriptors and their values may initially be determined
by some a priori knowledge about the system and also by
initial information of the environment. During the opera-
tion of the system, these parameters may change or may
be deleted/newly introduced to reflect accumulated moni-
tored information on environment and the user or the
operator feedback.
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In the system, it is to be designed that learning takes
place in two forms of inductive learning and deductive
learning whose conceptual block diagram is shown in
Fig. 17(b). The inductive learning process works for both
the rule base PFRB block and the context descriptor set

block CDS in a way that the parameters of the blocks
are updated inductively by pairs of system input /output
data and by accumulated monitored data of the environ-
ment. The deductive learning process operates also for
both PFRB and CDS. First, some of the rules that are

Fig. 17. Proposed life-long learning system architecture for HRI.

Z.Z. Bien, H.-E. Lee / Knowledge-Based Systems 20 (2007) 439–456 453



A
u
th

o
r'
s 

  p
er

so
n
al

   
co

p
y

judged as bad or unnecessary can be deleted from the rule
base or newly instituted into the base PFRB in the given
context. This kind of action corresponds to structure
change of the rule base and can be configured deductively,
meaning that the structural change is carried out in a top-
down fashion in consideration of context constraints. Sec-
ondly, the user feedback that may be obtained during or
after interaction in the form of unconscious reactions, or
conscious demands should be taken care of deductively
unless the feedback has an immediate resolution. Personal
habits and preferences should be understood along with
limitations of the system at hand and in view of partial,
approximate and/or perspective representations. For
proper contextual reasoning, one may adopt those method-
ologies of localized reasoning, push and pop or shifting in
[61].

In order to facilitate information flow for data process-
ing and learning mentioned above, some effective memory
subsystem should be incorporated so that all the relevant
knowledge and data such as rules and parameter values
are stored and retrieved efficiently. It is proposed that
the memory subsystem consists of three units hierarchi-
cally as shown in Fig. 17(c): (1) DM (Data Memory) with
a STM function, (2) FM (Feature Memory) with a middle
term memory function and (3) RM (Relation Memory)
with a LTM function. On the one hand, DM unit handles
information/data as in an ordinary memory and can
include a buffering function for sensory input and action
output as well. On the other hand, with a finite capacity
of memory size, this unit should be capable of handling
huge data contained in sequences of temporal-spatial pat-
terns that come into the system incessantly. One approach
is to introduce an autonomous down-sizing-filter function
to DM by which some bad/less reliable information or
un-fired/less privileged rules, etc., are gradually deleted.
In this approach, rules and information may be tagged
with some form of weights denoting measure values such
as aging, reliability or importance degree. More effec-
tively, the memory data can be grouped into a number
of clusters or regions and the content of each region is
continually summarized and expressed as some invariant
features. This extracted feature values are stored in the
next level of memory unit, called FM. DM is a kind of

STM since most of the data in the memory would go
through some modifications. Next, the features are to be
again grouped and related in FM and the relation names
are passed to the deeper layer called RM. Functionally,
FM would work as a form of associative memory and
retention of information or data in FM is affected by
DM, thus the content of the memory may change. RM
is the most abstract level in the hierarchy and the content
would be least dynamic as in a LTM unit. For example,
consider a dweller’s habit of having snack while watching
TV in the living room: a sequential monthly data of TV
channels selected by the user and information about
snacks that the user has are continuously stored and
updated in DM while data of most watched TV channel
and most favored snack are statistically obtained from
DM and are stored in FM. Finally, the two pieces of
information are related and the relation is stored in
RM. This mechanism is partly similar to the memory
structure of the neo-cortex of human brain which effi-
ciently handles huge sequential patterns [58]. The infor-
mation in RM and FM, when retrieved, helps the total
system to locate the necessary information in DM and
also can be used for prediction of the system behavior
in sequential actions [58].

It is remarked that the framework of a learning system
architecture proposed above is to be developed and evalu-
ated in terms of actual hardware and, as discussed in the
previous section, the project is still in embryonic stage
and that this memory structure may be extended to a more
complex, hierarchical memory system having 4 or more
layered units.

5. Concluding remarks

The human–robot interaction process in service environ-
ment has been considered as a human-friendly human-in-
the-loop system where interaction occurs frequently and
intensely. As an effective engineering approach of achieving
human-friendly HRI process, we have attempted to use
soft computing techniques of various types for recognition
of human gestures, human bio-signals and human inten-
tion as well as human’s physical status and behavior, as
summarized in Fig. 18.

Fig. 18. Typical human behavior recognition procedure.
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To cope with formidably complicated characteristics of
human such as high dimensionality, nonlinear-coupling
of attributes, subjectivity, apparent inconsistency, suscepti-
bility to environments and disturbances, and time-variance
as well as situation-dependency, we have proposed a long-
term learning system to be used in assistive service robotic
environment such as an intelligent residential space where
old/disabled people live independently. It is noted that
life-long learning capability is essential for robot to coexist
with human as well as serve well for human in the long run
in continually changing environment.

In this paper, we have shown that FSL-based hybrid
learning techniques can play an important role in modeling
time-varying, inconsistent and user-dependent characteris-
tics of human bio-signals. These intelligent techniques have
been shown to work for some recognition systems in HRI
process. Finally, we have proposed a framework of life-
long learning architecture with probabilistic fuzzy rule base
to be utilized for long-term human-friendly HRI process.
We remark that the proposed life-long learning system
architecture is in its early stage of development and would
need a great deal of efforts for actual realization and prac-
tical utilization.
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