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Abstract

We consider networks of workstations which are not only time-
sharing, but also heterogeneous with a large variation in the
computing power and memory capacities of different worksta-
tions. Many load sharing schemes mainly target sharing CPU
resources, and have been intensively evaluated in homogeneous
distributed environments. However, the penalties of data accesses
and movement in modern computer systems, such as page faults,
have grown to the point where the overall performance of dis-
tributed systems cannot be further improved without serious con-
siderations concerning memory resources in the design of load
sharing policies. Considering both system heterogeneity and ef-
fective usage of memory resources, we design and evaluate load
sharing policies in order to minimize both CPU idle times and
the number of page faults in heterogeneous distributed systems.
Conducting trace-driven simulations, we show that load sharing
policies considering both CPU and memory resources are robust
and effective in heterogeneous systems. We also show that the
functionality and the nature of load sharing policies are quite in-
dependent on several memory demand distributions of workloads.

1 Introduction

Most load sharing schemes proposed for distributed systems
(e.g., [5], [6], [7], [12], [13] [14], [19]) mainly consider effec-
tively sharing CPU cycles. We have designed CPU-Memory-
based load sharing schemes and shown their effectiveness by
trace-driven simulations in a homogeneous environment [17]. In
this paper, we present our continued effort and report perfor-
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mance results of extending the load sharing design on heteroge-
neous distributed systems.

Some work has been reported on global memory resource
management to reduce page faults by paging remote memory
space in a distributed system (e.g., [1], [8], and [16]). In contrast,
our approach is to use migrations to find a node with sufficient
memory space and CPU cycles for a job to execute. A load shar-
ing scheme in MOSIX also uses the migration approach [2] for
memory load sharing. However, it uses preemptive migrations
only, and is evaluated on a homogeneous environment.

A static scheduling scheme which considers only CPU het-
erogeneity to coordinate a parallel job and local user processes
is proposed in [6]. Researchers have also made efforts to sched-
ule parallel programs, to conduct efficient communications, and
to predict performance on heterogeneous systems (e.g., [3], [9],
[10], [18]).

In this study, we address the following four questions: (1)
what is an effective way to quantitatively incorporate system in-
formation related to processor and memory heterogeneity in the
design of load sharing policies? (2) what are the effects of sys-
tem heterogeneity on performance for different load sharing poli-
cies? (3) Why are some load sharing policies sensitive to the
system heterogeneity? and (4) Do memory demand distribu-
tions of workloads fundamentally affect the performance of load
sharing policies? These considerations are important additions
in designs and evaluation of load sharing policies for memory-
intensive workloads on networks of heterogeneous workstations.

Applying a concept of CPU and memory weights, we quanti-
tatively distinguish the computing capability of CPUs and mem-
ory capacities among heterogeneous workstations. The load in-
dex of each computing node is uniquely represented by its CPU
weight and its memory size. We have conducted trace-driven sim-
ulations to compare load sharing policies for CPU load sharing
and our policies for both CPU and memory sharing in heteroge-
neous systems. We show that the overall performance of a dis-
tributed system and individual jobs on the system can be further
improved by considering memory resources as an additional and
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important factor in load sharing policies. We show that our CPU-
Memory-based load sharing policies are robust and effective in
heterogeneous systems. We also show that the functionality and
the nature of load sharing policies are quite independent on sev-
eral memory demand distributions of workloads.

2 CPU/Memory Weights and Heterogeneity

In this paper, heterogeneity only refers to the variations of
CPU powers and memory capacities, but not the variations of op-
erating systems, network interfaces and hardware organizations
among the workstations. In this section, we quantitatively char-
acterize heterogeneous CPU powers and memory capacities in a
network of workstations. The simple models to be discussed here
will be used in the designs and evaluation of load sharing poli-
cies in the rest of the sections. We use node indexj to represent
one of the nodes in a heterogeneous network of workstations. We
also use variableP to represent the total number of nodes in the
system.

The CPU weight of a workstation refers to its computing ca-
pability relative to the fastest workstation in a distributed system.
The value of the CPU weight is less than or equal to 1. Since
the CPU weight is a relative ratio, it can also be represented by
the CPU speed of each node measured by millions of instructions
per second (MIPS). IfVcpu(j) is the speed of workstationMj in
MIPS,j = 1; :::; P , the CPU weight can be expressed as follows:

Wcpu(j) =
Vcpu(j)

maxP
i=1 Vcpu(i)

; (1)

The total CPU power of a system is defined as the sum of the
CPU speed of each workstation, which represents the accumu-
lated computing capability of the system:

TPcpu =

PX
j=1

Vcpu(j): (2)

Similarly, the memory weight is calculated by comparing the
memory sizes among the computing nodes:

Wmem(j) =
RAMj

maxP
i=1 RAMi

; (3)

whereRAMj is the amount of user available memory space on
nodej for j = 1; :::; P .

The total memory capacity of a system is defined as

TPmem =

PX
j=1

MSj : (4)

whereMSj is the memory size of nodej.
The system heterogeneity can be quantified as the variance of

computing powers and memory capacities among the worksta-
tions. Using standard deviation and CPU weights, we define the
CPU heterogeneity as follows:

Hcpu =

sPP

j=1
(W cpu �Wcpu(j))2

P
; (5)

whereW cpu =

P
P

j=1
Wcpu(j)

P
, is the average CPU weight.

Similarly, we define memory heterogeneity as follows:

Hmem =

sPP

j=1
(Wmem �Wmem(j))2

P
; (6)

where Wmem =

P
P

j=1
Wmem(j)

P
, is the average memory

weight in the system. Higher values ofHcpu andHmem in a
distributed system correspond with a higher variation in the CPU
capability and memory capacity among different nodes. A homo-
geneous system is characterized byHcpu = Hmem = 0.

3 Load sharing in heterogeneous systems

Here are two terms to be used in a multiprogrammed environ-
ment on thejth node forj = 1; :::P :

� MTj : the memory threshold in bytes is the total amount
of memory thresholds accumulated from the running jobs
on the computing node. (After a job executes in its stable
stage, its working set size should also be stable. The mem-
ory space for the stable working set is called the memory
threshold of the job [15]. IfRAMj > MTj , page faults
would rarely occur, otherwise, paging would be frequently
conducted during the executions of jobs in the node.)

� �j : the average page fault rate caused by all jobs on a
computing node is measured by the number of page faults
per million instructions when the allocated memory space
equals the memory threshold.

When a job migration is necessary in load sharing, the mi-
gration can be either a remote execution which makes jobs be
executed on remote nodes in a non-preemptive way, or a pre-
emptive migration which may suspend the selected jobs, move
them to a remote node, and then restart them. We have com-
pared the performance between the remote executions and pre-
emptive migrations for load sharing in a homogeneous environ-
ment [17]. Our study indicates that an effective preemptive mi-
gration for a memory-intensive workload is not only affected by
the workload’s lifetime length, but also by its data access pat-
terns. Without a thorough understanding of workloads’ execution
patterns interleaving among the CPU, the memory and the I/O, it
is difficult to effectively use preemptive migrations in load shar-
ing policies. For this reason, we have decided to only use the
remote execution strategy in this study. Our study in this paper
focuses on the three policies using remote executions: the first
based on CPU resource information, the second using informa-
tion on memory usage, and the third based on data concerning
both CPU and memory resources. Brief descriptions of the three
policies are given as follows.

CPU-based load sharing. The load index in each computing
node is represented by the length of the CPU waiting queue,Lj .
A CPU threshold on nodej, denoted asCTj , is set based on the
CPU computing capability. For a new job requesting service in
a computing node, if the waiting queue is shorter than the CPU
threshold (Lj < CTj), the job is executed locally. Otherwise,
the load sharing system finds the remote node with the shortest
waiting queue to remotely execute this job. This policy is denoted
as CPURE.

memory-based load sharing. Instead of usingLj , we propose
to use the memory threshold,MTj to represent the load index.
For a new job requesting service in a computing node, if the
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node memory threshold is smaller than the user memory space
(MTj < RAMj), the job is executed locally. Otherwise, the
load sharing system finds the remote node with the lightest mem-
ory load to remotely execute this job. This policy is denoted as
MEM RE.

CPU-memory-based load sharing. We have proposed a load
index which considers both CPU and memory resources. The
basic principle is as follows. When a computing node has suffi-
cient memory space for both running and requesting jobs, the load
sharing decision is made by a CPU-based policy. When the node
does not have sufficient memory space for the jobs, the system
will experience a large number of page faults, resulting in long
delays for each job in the node. In this case, a memory-based
policy makes the load sharing decision to either migrate jobs to
suitable nodes or to hold the jobs in a waiting pool if necessary.

The load index of nodej (j = 1; :::; P ) combining the re-
sources of CPU cycles and memory space is defined as

Index(j)(Lj ;MTj) =

n
Lj ; MTj < RAMj ,
CTj ; MTj � RAMj .

WhenMTj < RAMj , CPU-based load sharing is used. When
MTj � RAMj , the CPU queue length (the load index) is set to
CTj as if the CPU were overloaded so that the system refuses to
accept jobs. In our implementation, whenMTj � RAMj , the
local scheduler immediately searches for the most lightly loaded
node in the system as the job’s destination. The load sharing pol-
icy can be expressed as follows:

LS(Index(j)) =

�
local execution; Index(j) < CTj ,
remote execution; Index(j) � CTj .

This policy is denoted as CPUMEM RE.

4 Performance Evaluation Methodology

4.1 A simulated heterogeneous distributed sys-
tem

Harchol-Balter and Downey [12] developed a simulator of a
homogeneous distributed system with 6 nodes, where each lo-
cal scheduler is CPU-based only. We expanded the capability
of this simulator by adding the function of system heterogene-
ity and by implementing the CPU-based, Memory-based, and
CPU-Memory-based load sharing policies using remote execu-
tions. The simulated heterogeneous system is configured with
parameters listed in Table 1.

The parameter values in Table 1 are similar to the ones of
Sun SPARC-20, Sun Ultra 5 and Sun Ultra 10 workstations. The
remote execution overhead matches the 10 Mbps Ethernet net-
work service times for the Sun workstations. We have also con-
ducted experiments on an Ethernet network of 100 Mpbs. How-
ever, compared with the experiments on the 10 Mbps Ethernet,
we found that little performance improvement was gained for all
policies. Although the remote execution overhead is reduced by
the faster Ethernet, it is still an insignificant factor for perfor-
mance degradation in our experiments. The page fault overhead
is the dominant factor.

CPU speeds 100 to 500 MIPS
memory sizes (MSj ) 32 to 256 MBytes

kernel and file cache usage (Usys) 16 MBytes [4]
user available space (RAMj) MSj � Usys

memory page size 4 KBytes
Ethernet speed 10 Mbps

page fault service time 10ms
CPU time slice for a job 10ms

context switch time 0.1ms
overhead of a remote execution 0.1sec

Table 1: Parameters used for the simulated heterogeneous
network of workstations where the CPU speed is repre-
sented by Millions Instruction Per Second (MIPS).

The CPU local scheduling uses the round-robin policy. Each
job is in one of the following states: “ready”, “execution”, “pag-
ing”, “data transferring”, or “finish”. When a page fault happens
in the middle of a job execution, the job is suspended from the
CPU during the paging service. The CPU service is switched to
a different job. When page faults happen in executions of several
jobs, they will be served in FIFO order.

4.2 System conditions

We have the following conditions and assumptions for evalu-
ating the load sharing policies in the distributed system:
� The CPU load index in each node is calculated by

Lj �
1

Wcpu(j)
; j = 1; :::; P;

whereLj is the number of jobs queued in nodej,Wcpu(j)
is the CPU weight of the node, andP is the total number of
nodes in the system.

� Each computing node maintains a global load index file
which contains both the CPU and memory load status in-
formation of other computing nodes. The load sharing sys-
tem periodically collects and distributes the load informa-
tion among the computing nodes. Since only 6 nodes are
used in our system, the global information collection cost is
negligible. The acceptance of this assumption has also been
experimentally validated in [20].

� The location policy determines which computing node is
selected for a job execution. The policy we use is to find the
most lightly loaded node in the distributed system.

� We assume that the memory allocation for a job is done at
the arrival of the job.

� Similar to the assumptions in [11] and [16], we assume that
page faults are uniformly distributed throughout job execu-
tions.

� We assume that the memory threshold of a job is 40% of its
requested memory size. The practical value of this threshold
assumption has also been confirmed by the studies in [11]
and [16].
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4.3 Workloads

The workloads we have used are the 8 traces from [12]. Each
trace was collected from one workstation on different daytime in-
tervals. The jobs in each trace were distributed among 6 homoge-
neous workstations. We have done the following modifications of
the traces for our study. We converted the job duration time into
Million Instructions according to the CPU speed. The duration
time only represents the CPU service time. The requested mem-
ory size of each job in the traces is generated from a Pareto dis-
tribution with the mean sizes of 1 MBytes, 2 MBytes, 4 MBytes,
and 8 MBytes. Each job has the following 4 items:

< arrival time , arrival node , requested
memory size , duration time >

The page faults in each node are conducted in our simulation
as follows. When the memory threshold of jobs in nodej is equal
to or larger than the available memory space of the node (MTj �

RAMj), each job in the node will cause page faults at a given
page fault rate. The page fault rates of jobs range from 0 to 4.0 per
million instructions in our experiments. In practice, application
jobs have page fault rates from 1 to 10.

5 Experimental Results and Analysis

Using the trace-simulation on the distributed heterogeneous
system of 6 nodes, we have evaluated the performance of
the following load sharing policies: CPURE, MEM RE, and
CPU MEM RE. In addition, we have also compared execution
performance of the above policies with the execution perfor-
mance without using load sharing, denoted as NOLS.

A major timing measurement we have used is the meanslow-
down, which is the ratio between the total wall-clock execution
time of all the jobs in a trace and the their total CPU execution
time. Major contributions to the slowdown come from the delays
of page faults, waiting time for CPU service, and the overhead of
migration and remote execution.

node 1 2 3 4 5 6 heterogeneity

MIPS 300 300 300 300 300 300 Hcpu(1) = 0:0
MB 128 128 128 128 128 128 Hmem(1) = 0:0

MIPS 300 400 300 200 300 300 Hcpu(2) = 0:14
MB 128 128 128 128 128 128 Hmem(2) = 0:0

MIPS 500 500 200 200 200 200 Hcpu(3) = 0:28
MB 256 256 64 64 64 64 Hmem(3) = 0:38

MIPS 500 100 500 100 500 100 Hcpu(4) = 0:4
MB 256 32 256 32 128 64 Hmem(4) = 0:4

Table 2: The 4 platforms based on the total power of 1,800
MIPS and the total memory capacity of 768 MBytes. Each
platform consists of 6 nodes. Both CPU and memory het-
erogeneities, (Hcpu(i) andHmem(i), i = 1; 2; 3; 4), are
also calculated for each platform.

5.1 Effects of system heterogeneity

We first examined the effects of system heterogeneity to load
sharing policies, to memory demands of workloads, and to the
overall performance. For a given total CPU power (TPcpu) in
MIPS, a given total memory capacity (TPmem) in MBytes, and
a given number of nodes (P ), we can construct a homogeneous
system and several choices of heterogeneous systems. The to-
tal CPU power and the total memory capacity we selected for a
network of workstations are 1,800 MIPS and 768 MBytes. The
homogeneous system based on the total CPU power and the total
memory capacity is a network of 6 workstations where each node
has 300 MIPS computing capability and 128 MBytes memory
capacity. Table 2 lists all the configurations we used in perfor-
mance evaluation for the given total CPU power and the given
total memory capacity. Each of the 6 nodes is represented by its
MIPS and MBytes. The system heterogeneities represented by
Hcpu andHmem of each platform are also calculated based on
the formulas in Section 2. The 4 platforms are sorted by both
CPU and memory heterogeneities, from homogeneous platform
1 (Hcpu(1) = Hmem(1) = 0:0) to highest heterogeneous plat-
form 4 (Hcpu(4) = 0:4; Hmem(4) = 0:4).

We first concentrate on the performance comparisons of “trace
0” in different directions, and will present performance compar-
isons of all the traces after this focused study.
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Figure 1: Mean slowdowns of “trace 0” on different hetero-
geneous platforms, with mean memory size of 1 MBytes
(left) and 2 MBytes (right).

Figures 1 and 2 present the mean slowdowns of “trace 0”
scheduled by the three load sharing policies on platforms 1,
2, 3, and 4, with the mean memory demand of 1 MBytes,
2 MBytes, 4 MBytes and 8 MBytes. We show that policies
NO LS and CPURE perform poorly, and policies MEMRE and
CPU MEM RE perform well on all the platforms with different
sizes of memory demand. Load sharing decisions are made only
by considering the CPU resources in CPURE, which will not be
beneficial to memory-intensive workloads. As the system het-
erogeneity increases, load sharing performance is affected. For
example, as the heterogeneity moderately increases from plat-
form 1 (homogeneous system) to platform 2 (Hcpu(2) = 0:14
andHmem(2) = 0), the mean slowdowns of the workloads with
different sizes of mean memory demand slightly increase. How-
ever, as the system heterogeneity further increases on platform 3
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Mean Memory Demand 4MB ( σ=1.0)
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Figure 2: Mean slowdowns of “trace 0” on different hetero-
geneous platforms, with mean memory size of 4 MBytes
(left) and 8 MBytes (right).

(Hcpu(3) = 0:28, andHmem(3) = 0:38), the mean slowdowns
for NO LS and CPURE increase more than 10,000 times. In
contrast, the mean slowdowns for MEMRE and CPUMEM RE
only increase to less than 2 times. On platform 4 (Hcpu(4) = 0:4
andHmem(4) = 0:4), our experiments show the similar results
except for the mean memory demand size of 8 MBytes. The mean
slowdowns of the workloads with mean memory demand of 8
MBytes for MEM RE and CPUMEM RE on platform 4 signif-
icantly increase compared with their slowdowns on platform 3.
However, the slowdowns are still much lower than the slowdowns
for NO LS and CPURE.

Why are policies MEM RE and CPU MEM RE much less
sensitive to the system heterogeneity than the CPU-based pol-
icy? We give following reasons to answer this question. First,
the workloads we used are memory-intensive. Thus, memory
load sharing is more effective than CPU load sharing. Second,
in a heterogeneous system, the job pool in a less powerful node
in terms of CPU or/and memory capability may initially be as-
signed a larger number of jobs than a more powerful node. The
local scheduler using the CPU-based policy in the less powerful
node could easily make wrong decisions by scheduling more jobs
than the node could allocate in its limited memory space, caus-
ing frequent page faults which would slow down the executions.
In contrast, policies MEMRE and CPUMEM RE will identify
less powerful nodes that lack sufficient memory to serve jobs.
The local scheduler on the weaker nodes can then migrate some
jobs to execute in remote nodes with low memory allocations. By
correctly making the migration decisions, policies MEMRE and
CPU MEM RE are able to offset system heterogeneity effects.
Finally, compared with a homogeneous system, jobs of the same
workload are likely to move around in a more dynamic manner
on a heterogeneous system. However, even for policies MEMRE
and CPUMEM RE (which make beneficial migration decisions
for memory-intensive workloads), the overhead of remote execu-
tions and page faults still increase proportionally to the increase
in the heterogeneity and mean memory demand.

As the mean memory demand increases, the size of each job in
a workload also increases. It is more likely for a job with a large
memory demand to be scheduled for a remote execution. On the
other hand, it is also possible that none of the nodes in the system

could find sufficient memory space for such a job. In this case, the
job will be scheduled to run in the most lightly loaded node where
it will suffer the page faults. Therefore, for workloads with a
large mean memory demand, increases of slowdowns for policies
MEM RE and CPUMEM RE on a highly heterogeneous system
(such as platform 4) are mainly caused by the increased amount
of remote executions and additional page faults. For example, for
policies CPUMEM RE on “trace 0” with a memory demand of
8 MBytes at� = 0:5, the total numbers of migrations on plat-
forms 1, 2, and 3, are 18, 17 and 15, respectively. The number of
migrations increases to 51 on platform 4. The total numbers of
page faults are 8,339, 8,168, and 16,156 on platforms 1, 2, and 3
respectively. The number of page faults increases to 213,796 on
platform 4.
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Figure 3: Mean slowdowns as the page fault rate increases
on “trace 0” on different platforms, with mean memory
size of 4 MBytes scheduled by policy CPUMEM RE
(left) and CPURE (right).

We also evaluate the heterogeneity effects to load sharing per-
formance as the page fault rate increases. Figure 3 compares
the slowdowns for CPUMEM RE (left figure) and for CPURE
(right figure) as the page fault rate increases on “trace 0” with
mean memory demand of 4 MBytes on the homogeneous plat-
form, and on three other heterogeneous platforms. The exper-
iments show that as the heterogeneity measured byHcpu and
Hmem increases to a certain degree, the slowdown also increases
for the same load sharing policies. For example, the mean slow-
down of CPUMEM RE on platform 4 (Hcpu(4) = 0:4, and
Hmem(4) = 0:4) is 2 times higher than that on the homoge-
neous platform (platform 1) for page fault rates ranging from 0 to
0.6. In contrast, the mean slowdown of CPURE on platform 4 is
2 times higher than that on platform 1 for page fault rates ranging
from 0 to 0.4. But this gap increases to 14 times as the page fault
rate further increases to 0.6. We show that a slight increase of
page fault rates makes the CPU-based policy even more sensitive
to the system heterogeneity.

5.2 Performance comparisons of all the traces

The performance comparisons of the load sharing policies on
other traces are consistent with what we have presented for “trace

0-7695-0574-0/2000 $10.00 � 2000 IEEE 



0” in principle. Figures 4 and 5 present the mean slowdowns of
all the traces (“trace 0”, ..., “trace 7”) scheduled by the three load
sharing policies with the mean memory demand of 4 MBytes on
platforms 1 and 2, platforms 3 and 4, respectively.
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Figure 4: Mean slowdowns of all the 8 traces scheduled
by different load sharing policies with the mean memory
demand of 4 MBytes on platform 1 (left) and platform 2
(right).
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Figure 5: Mean slowdowns of all the 8 traces scheduled
by different load sharing policies with the mean memory
demand of 4 MBytes on platform 3 (left) and platform 4
(right).

We also adjusted the page fault rate for each trace in order
to obtain reasonably balanced slowdown heights of 20 among all
the traces on the 4 platforms. Table 3 lists all the page fault rates
(�’s) for each trace on different platforms.

The NOLS policy has the highest slowdown values for all the
traces on all the platforms. The CPURE policy has the second
highest slowdown values for all the traces on all the platforms.
Policies MEMRE and CPUMEM RE performed the best for all
the traces on all the 4 platforms.

5.3 Effects of initial job pool assignment

In our simulation, each node is initially set with a job pool
where jobs are waiting for scheduling by the node. Table 4 gives
the initial number of jobs in each job pool. In our simulations
discussed in sections 5.1, 5.2, and the next section, job poolj

trace 0 1 2 3 4 5 6 7

platform 1 1.2 0.37 0.26 2.5 0.23 0.24 0.8 2.2
platform 2 1.2 0.37 0.26 2.5 0.23 0.24 0.8 2.2
platform 3 0.5 0.17 0.11 1.0 0.10 0.11 0.36 0.95
platform 4 0.5 0.15 0.10 0.94 0.10 0.24 0.35 0.95

Table 3: Page fault rates used for the 8 traces on the 4
platforms.

job pools 1 2 3 4 5 6

job account 6337 28 4 1398 704 5338

Table 4: The number of jobs initially assigned to each node
in the trace-driven simulation.

is assigned to nodej, for j = 1; :::; 6. The initial job pool as-
signment among the nodes in Table 4 may not match the hetero-
geneous computing capability and storage capacity of different
nodes. Therefore, a less powerful node may be assigned more
jobs, and a powerful node may get fewer jobs. The initial job
pool assignments among the nodes can be rearranged in accor-
dance with each node’s capability and capacity before starting the
execution of workloads. This is simply done by sorting the node
set of a platform based on each node’s CPU power and memory
capacity, and sorting the job pool set based on the number of jobs
in each job pool. Then we make the initial assignment between
the node set and the job pool set in their sequential sorted orders.
We call this assignment as the best initial job pool assignment.
If we make the initial assignment between the node set and the
job pool set in the opposite sorted order, we will get the worst
initial job pool assignment by giving the largest job pool to the
least powerful node and the smallest job pool to the most power-
ful node. Table 5 presents the mean slowdowns of “trace 0” by
NO LS on different heterogeneous platforms using both the worst
and the best initial job pool assignments (the worst case and the
best case). Using the worst initial job pool assignment, the slow-
downs increase as the system heterogeneity increases. The slow-
downs sharply increase to more than 230,000 on platform 4 from
1.71 on platform 1. In contrast, the slowdowns slightly decrease
as the system heterogeneity increases using the best initial job
pool assignment (from 1.71 to 1.35). Our experimental results
indicate that an effective initial job pool assignment can well take
advantage of the system heterogeneity. However, this may not be
a realistic approach for a distributed load sharing system where
migration decisions are made independently at each node. The
initial job pool assignment can be done by a centralized sched-
uler.

6 Effects of Memory Demand Distributions

In our experiments, the memory demand of jobs in workloads
is generated by a Pareto distribution. How is the performance
of memory-based and CPU-Memory-based load sharing policies
affected by other distributions of the memory demand? To ad-
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Worst case 1 MBytes (� = 2:0) 4 MBytes (� = 0:5)

platform 1 1.71 1.71
platform 2 2.24 2.25
platform 3 7.82 9.11
platform 4 233,830 236,211

Best case 1 MBytes (� = 2:0) 4 MBytes (� = 0:5)

platform 1 1.71 1.71
platform 2 1.53 1.54
platform 3 1.33 1.33
platform 4 1.35 1.35

Table 5: Mean slowdowns of “trace 0” with NOLS using
the worst initial job pool assignment (worst case) and the
best initial job pool assignment (best case). In the both case
studies, memory demand of 1 MBytes with page fault rate
of 2.0 and memory demand of 4 MBytes with page fault of
0.5 are used in the simulations.

dress this question, we ran the simulations on the workloads with
different memory demand distributions, and found that policies
MEM RE and CPUMEM RE are also effective on other mem-
ory demand distributions besides the Pareto distribution.

The other distributions we have used for comparisons are uni-
form distribution, exponential distribution, and erlang distribu-
tion. We ran the experiments for “trace 0” with these memory
demand distributions on platform 1, the homogeneous configura-
tion, and on platform 4, the most heterogeneous configuration.

Different Memory Demand Distributions on Platform 1
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Figure 6: Mean slowdowns of “trace 0” with different
memory demand distributions on platform 1 (left), and on
platform 4 (right).

Figure 6 compares the mean slowdowns of “trace 0” sched-
uled by the three policies and NOLS on platform 1 (left) and
on platform 4 (right). In order to make the slowdowns of all the
experiments on different platforms less than 10, on platform 1,
the page fault rate is� = 4:14 for the uniform memory demand
distribution, is� = 1:21 for the exponential distribution, and is
� = 2:3 for the erlang distribution. On platform 2, the page fault
rate is� = 0:27 for the uniform memory demand distribution, is
� = 0:35 for the exponential distribution, and is� = 0:30 for the
erlang distribution. The mean memory demand of the workloads

on both platforms is 48MBytes.
With the exponential and erlang distributions, the mean slow-

downs by CPUMEM RE and MEMRE are 1.33 times lower
than that by NOLS and CPURE on platform 1, and more
than 1.65 times lower on platform 4, respectively. Although
policies CPUMEM RE and MEMRE for the uniform mem-
ory demand distribution do not significantly overperform NOLS
and CPURE on platform 1, the performance improvement (2.4
times) by the policies is significant on platform 4.

7 Conclusion

We have experimentally examined and compared a CPU-
based, a memory-based and a CPU-Memory-based load sharing
policies on heterogeneous networks of workstations. Based on
our experiments and analysis we have following observations and
conclusions:

� The CPU and memory weights of workstations can be ef-
fectively used to characterize heterogeneity of a distributed
system for designs of load sharing policies. For given total
CPU power and total memory capacity, we can have differ-
ent homogeneous and heterogeneous configurations with a
roughly equivalent purchase cost. Under such a condition,
the performance evaluation and comparisons are meaning-
ful and useful.

� The CPU-based load sharing policy is not robust in a hetero-
geneous system, and performs poorly for memory-intensive
workloads.

� The performance of the memory-based and CPU-Memory-
based load sharing policies are quite independent of sys-
tem heterogeneity changes for memory-intensive work-
loads. This is because the job migrations considering both
memory and CPU resources offset the negative effects of
the system heterogeneity. As the system heterogeneity in-
creases to a certain degree, the remote executions and page
faults also increase proportionally for the two policies, re-
sulting a moderate degradation of the performance. How-
ever, our experiments also show that changes of the hetero-
geneity do not affect the functionality and nature of the two
policies.

� An initial job pool assignment which uses information re-
garding system heterogeneity can allocate system resources
effectively.

� We also show that the CPU-based, memory-based and CPU-
Memory-based load sharing policies are independent on
several different memory demand distributions.

The traces and simulation programs can be accessed at
http://www.cs.wm.edu/hpcs/WWW/HTML/publications/abs00-
2.html.
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