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Abstract: We propose local search algorithms for the vehicle routing problem with soft time

window constraints. The time window constraint for each customer is treated as a penalty

function, which is very general in the sense that it can be non-convex and discontinuous as long

as it is piecewise linear. In our algorithm, we use local search to assign customers to vehicles

and to find orders of customers for vehicles to visit. It employs an advanced neighborhood,

called the cyclic exchange neighborhood, in addition to standard neighborhoods for the vehicle

routing problem. After fixing the order of customers for a vehicle to visit, we must determine

the optimal start times of processing at customers so that the total penalty is minimized. We

show that this problem can be efficiently solved by using dynamic programming, which is then

incorporated in our algorithm. We then report computational results for various benchmark

instances of the vehicle routing problem. The generality of time window constraints allows us to

handle a wide variety of scheduling problems. As such an example, we mention in this paper an

application to a production scheduling problem with inventory cost, and report computational

results for real world instances.

Keywords: adaptive multi-start local search, dynamic programming, general time window

constraints, local search, metaheuristics, vehicle routing problem, very large scale neighborhood.

Introduction

The vehicle routing problem (VRP) is the problem of minimizing the total distance traveled by

a number of vehicles, under various constraints, where each customer must be visited exactly

once by a vehicle (Desrochers et al. 1988, Desrosiers et al. 1995, Solomon and Desrosiers 1988).

This is one of the representative combinatorial optimization problems and is known to be NP-
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hard. Among variants of VRP, the VRP with capacity and time window constraints, called the

vehicle routing problem with time windows (VRPTW), has been widely studied in the last decade

(Koskosidis, Powell and Solomon 1992, Potvin et al. 1996, Savelsbergh 1992, Taillard et al. 1997).

The capacity constraint signifies that the total load on a route cannot exceed the capacity of the

vehicle serving the route. The time window constraint signifies that each vehicle must start the

service at each customer in the period specified by the customer. The VRPTW has a wide range

of applications such as bank deliveries, postal deliveries, school bus routing and so on, and it has

been a subject of intensive research focused mainly on heuristic and metaheuristic approaches

(Bräysy and Gendreau 2003a, 2003b). Among recent approaches are a two-stage hybrid local

search by Bent and Van Hentenryck (2001), a hybrid genetic algorithm by Berger, Barkaoui and

Bräysy (2003), a reactive variable neighborhood search by Bräysy (2003), a two-phase hybrid

metaheuristic algorithm by Homberger and Gehring (2003), a variable neighborhood decent

with constraint-based operators by Rousseau, Gendreau and Pesant (2002) and so on. See

an extensive survey by Bräysy and Gendreau (2003a, 2003b) for heuristic and metaheuristic

approaches. To the best of our knowledge, only a convex time window constraint is allowed

for each customer in most of the previous work of VRPTW (Potvin et al. 1996, Solomon 1987,

Taillard et al. 1997). The case with multiple time windows (De Jong, Kant and Van Vliet

1996) and other variants of VRPTW (Solomon and Desrosiers 1988) are also considered to be

important.

A constraint is called hard if it must be satisfied and is called soft if it can be violated. The

amount of violation of soft constraints is usually penalized and added to the objective function.

The VRP with hard (resp., soft) time window constraints is abbreviated as VRPHTW (resp.,

VRPSTW). For VRPHTW, even just finding a feasible schedule with a given number of vehicles

is known to be NP-complete, because it includes the one-dimensional bin packing problem as

a special case (Garey and Johnson 1979). Therefore, searching within the feasible region of

VRPHTW may be inefficient, especially when the constraints are tight. Moreover, in many

real-world situations, constraints of time window and capacity can be violated to some extent.

Considering these, we treat these two constraints as soft in this paper.

The main contribution of this paper is to propose an efficient algorithm to deal with general

time window constraints, which is then incorporated in metaheuristic algorithms to develop

general problem solvers. The time window constraints we consider in this paper are general in the

sense that one or more time slots can be assigned to each customer. That is, the corresponding

penalty function can be non-convex and discontinuous as long as it is piecewise linear. We call

the resulting problem as the vehicle routing problem with general time windows (VRPGTW).

In this case, after fixing the order of customers for a vehicle to visit, we must determine the

optimal start times of services at all customers so that the total time penalty of the vehicle is
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minimized. We show that this problem can be efficiently solved by using dynamic programming.

Let nk be the number of customers assigned to vehicle k, and δk be the total number of

linear pieces of the penalty functions for those customers. The information of each linear piece

is usually explicitly given, and in this case, δk is considered as the input size of the penalty

functions of the customers. Moreover, δk = O(nk) holds in many cases, since the number of

linear pieces of the penalty function for each customer is usually O(1). For example, if the

penalty for a customer is the weighted sum of earliness and tardiness, then the number of linear

pieces of the penalty function is at most 3. The time complexity of our dynamic programming

is O(nkδk) if the problem for vehicle k is solved from scratch. We also show that the optimal

time penalty of each solution in the neighborhood of the current solution can be evaluated in

O(
∑

k∈M ′ δk) time from the information of the current solution, where M ′ is the set of indices

of vehicles which the neighborhood operation involves.

Special cases of convex penalty functions were considered in the literature of VRPSTW and

scheduling problems, e.g., Davis and Kanet (1993), Garey, Tarjan and Wilfong (1988), Kosko-

sidis, Powell and Solomon (1992), Taillard et al. (1997), Tamaki, Komori and Abe (1999), and

Tamaki, Sugimoto and Araki (1999). In Taillard et al. (1997), the time penalty for each cus-

tomer is +∞ for earliness and linear for tardiness, and an O(1) time algorithm to approximately

compute the optimal time penalty of a solution in the neighborhood was proposed. In Davis

and Kanet (1993), Koskosidis, Powell and Solomon (1992), Tamaki, Komori and Abe (1999),

Tamaki, Sugimoto and Araki (1999), the time penalty is linear for both of earliness and tardiness,

and an O(n2
k) time algorithm for a given route of vehicle k was proposed in Davis and Kanet

(1993) and Tamaki, Sugimoto and Araki (1999). If the penalty function for each customer is the

absolute deviation from a specified time, this problem becomes the isotonic median regression

problem, which has been extensively studied. To our knowledge, the best time complexity for

this problem (for a vehicle k) is O(nk lognk) (Ahuja and Orlin 2001, Garey, Tarjan and Wilfong

1988, Hochbaum and Queyranne 2003). Very fast algorithms for general convex functions are

also known (Ahuja and Orlin 2001, Hochbaum and Queyranne 2003).

The essential part of VRPGTW, i.e., assigning customers to vehicles and determining the

visiting order of each vehicle, is solved by local search (LS) algorithms. In the literature, three

types of neighborhoods, called the cross exchange, 2-opt∗ and Or-opt neighborhoods, have been

widely used (Or 1976, Potvin et al. 1996, Reiter and Sherman 1965, Taillard et al. 1997). We

refer to these neighborhoods as standard neighborhoods. In our local search, in addition to

these standard neighborhoods, we use an advanced neighborhood called the cyclic exchange

neighborhood (Ahuja et al. 2002, Ahuja, Orlin and Sharma 2000). This is defined to be the set

of solutions obtainable by cyclically exchanging two or more paths of length at most Lcyclic (a

parameter), which stems from the cyclic transfer algorithm of Thompson and Psaraftis (1993)
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and the ejection chains of Glover (1996). As the size of this neighborhood grows exponentially

with the input size, we search an improving solution by using the improvement graph, whose

concept is proposed, e.g., in Ahuja et al. (2002) and Ahuja, Orlin and Sharma (2000), and is

applicable to wide range of problems. We also propose time-oriented neighbor-lists to make the

search in the cross exchange and 2-opt∗ neighborhoods more efficient.

Among many possible metaheuristics based on local search, we use the multi-start local

search (MLS) (Lin 1965, Lin and Kernighan 1973, Reiter and Sherman 1965), the iterated local

search (ILS) (Johnson 1990, Martin, Otto and Felten 1991, Martin, Otto and Felten 1992)

and the adaptive multi-start local search (AMLS) (Boese, Kahng and Muddu 1994, Taillard

et al. 1997). MLS repeatedly applies LS to a number of initial solutions which are generated

randomly or by greedy methods, and the best solution obtained in the entire search is output.

ILS is a variant of MLS, in which the initial solutions for LS are generated by perturbing good

solutions obtained in the previous search. AMLS is also a variant of MLS, which keeps a set P

of good solutions found in the previous search, and generates initial solutions by combining the

parts of the solutions in P .

We conduct computational experiments on three different types of instances: (1) Solomon’s

VRPHTW benchmark instances (Solomon 1987), (2) artificially generated instances of the paral-

lel machine scheduling problem with various types of time windows, and (3) real world instances

of a production scheduling problem with inventory cost. The computational results exhibit a

good prospect of ILS and AMLS. For Solomon’s benchmark instances, the solution quality of our

algorithms is competitive with those of recent algorithms developed for VRPHTW, though our

algorithms require slightly more computational time. It should be pointed out that Solomon’s

instances have only convex penalty functions, while our algorithms can handle more general

penalty functions. For the parallel machine scheduling problem, we generate instances with var-

ious types of time penalty functions (including non-convex ones), whose optimal solutions are

known. Our algorithms find optimal or near optimal solutions with high probability. It is also

observed that the cyclic exchange neighborhood is quite effective in dealing with non-convex

time penalty functions. For the production scheduling problem with inventory cost, we use

real world data provided by a company, and observe that the proposed algorithms find better

schedules than those currently used in the company.

1 Problem

In this section, we formulate the vehicle routing problem with general time windows (VRPGTW).

Let G = (V, E) be a complete directed graph with a vertex set V = {0, 1, . . . , n} and an edge set

E = {(i, j) | i, j ∈ V, i 6= j}, and M = {1, 2, . . . , m} be a set of vehicles. Vertex 0 is the depot
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and other vertices are customers. The following parameters are associated with each customer

i ∈ V , each vehicle k ∈M , and each edge (i, j) ∈ E:

• a quantity qi (≥ 0) of goods to be delivered,

• a penalty function pi(t) (≥ 0) of the start time t of the service,

• a service time ui (≥ 0),

• a capacity Qk (≥ 0),

• a distance dij (≥ 0), and

• a travel time tij (≥ 0).

We assume q0 = 0 and u0 = 0 for the depot 0. Each vehicle can start from the depot af-

ter time 0. Each penalty function pi(t) is nonnegative, piecewise linear and satisfies pi(t) ≤

limε→0 min{pi(t + ε), pi(t − ε)} at every discontinuous point t (see Fig. 1 for example). This (Figure 1)

assumption is necessary to ensure the existence of an optimal solution. Note that pi(t) can be

non-convex and discontinuous as long as it satisfies the above conditions. Distances dij and

travel times tij are in general asymmetric; i.e., dij 6= dji and tij 6= tji may hold.

Let σk denote the route traveled by vehicle k, where σk(h) denote the hth customer in σk,

and let

σ = (σ1, σ2, . . . , σm).

Note that each customer i is included in exactly one σk, and is visited by the vehicle exactly once.

We denote by nk the number of customers in σk for k ∈M . For convenience, we define σk(0) = 0

and σk(nk + 1) = 0 for all k (i.e., each vehicle k ∈ M leaves the depot and comes back to the

depot). We also use a set of directed edges {(σk(h), σk(h + 1)) ∈ E | h = 0, 1, . . . , nk, k ∈ M}

to represent a set of routes σ. Moreover, let si be the start time of the service at customer i

and sak be the arrival time of vehicle k at the depot, and let

s = (s1, s2, . . . , sn, s
a
1, s

a
2, . . . , s

a
m).

Note that each vehicle is allowed to wait at customers before starting services.

For convenience, we define 0-1 variables yik(σ) ∈ {0, 1} for i ∈ V and k ∈M by

yik(σ) = 1 ⇐⇒ i = σk(h) holds for exactly one h ∈ {1, 2, . . . , nk}.

That is, yik(σ) = 1 if and only if vehicle k visits customer i. Then the total distance dsum(σ)

traveled by all vehicles, the total penalty psum(s) for start times of services, and the total amount

qsum(σ) of capacity excess are expressed as

dsum(σ) =
∑

k∈M

nk
∑

h=0

dσk(h),σk(h+1)

psum(s) =
∑

i∈V \{0}

pi(si) +
∑

k∈M

p0(s
a
k)
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qsum(σ) =
∑

k∈M

max

{

∑

i∈V

qiyik(σ) −Qk, 0

}

.

The VRPGTW is now formulated as follows:

minimize cost(σ, s) = dsum(σ) + psum(s) + qsum(σ) (1)

subject to
∑

k∈M

yik(σ) = 1, i ∈ V \ {0} (2)

t0,σk(1) ≤ sσk(1), k ∈M (3)

sσk(h) + uσk(h) + tσk(h),σk(h+1) ≤ sσk(h+1), h = 1, 2, . . . , nk − 1, k ∈M (4)

sσk(nk) + uσk(nk) + tσk(nk),0 ≤ sak, k ∈M. (5)

Constraint (2) means that every customer i ∈ V \ {0} must be served only once by exactly one

vehicle. Constraints (3), (4) and (5) require that the start time si of the service at customer

i must be after the arrival time at customer i. The time window and capacity constraints are

treated as soft, and their violation is evaluated as the penalties psum(s) and qsum(σ) in the

objective function.

As for the objective function (1), the weighted sum dsum(σ) + αpsum(s) + βqsum(σ) with

constants α (≥ 0) and β (≥ 0) might seem more natural; however, such weights can be treated

in the above formulation by regarding αpi(t), βqi and βQk (i ∈ V , k ∈ M) as the given data,

and hence the weights are omitted for simplicity.

We can also consider a penalty function p̃k(t) of the departure time t of vehicle k from the

depot, though in the above formulation we assume that all vehicles have the same departure

time 0. For this, we introduce m dummy customers i = n + 1, n + 2, . . . , n + m with penalty

functions pi(t) = p̃i−n(t) to represent the penalty of the departure time of vehicle k from the

depot. Finally, the distances dij and the travel times tij are defined so that each vehicle k must

visit customer n+k first (i.e., very large cost is incurred if vehicle k visits other customers first).

The time window constraint of customer i is often regarded as hard and defined by an interval

[wr
i , w

d
i ] (instead of a penalty function pi(t)), within which the service of i must be started. Such

an instance can be treated as a special case of our formulation by setting penalty functions as

either

pi(t) = α · max
{

wr
i − t, 0, t−wd

i

}

(6)

or

pi(t) =







0, t ∈ [wr
i , w

d
i ],

α, otherwise,
(7)

where α is a large positive value.

To avoid confusion, we note throughout the paper (unless otherwise stated) that a feasible

solution denotes a solution that satisfies constraints (2)–(5); i.e., a feasible solution (of our
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formulation) does not necessarily satisfy the time window and capacity constraints. Cases with

hard time window and/or capacity constraints can be treated by setting the penalties psum(s)

and qsum(σ) sufficiently large. See Section 3.2 for more discussion about this matter.

Remark: The number of vehicles m is a given constant in this paper, although it is sometimes treated

as a decision variable in the literature. We adopt this assumption for the following two reasons. (1) In

many applications, the number of vehicles m (or the number of machines in scheduling problems) is fixed.

(2) Algorithms become simpler if m is treated as a constant, since route elimination operators are not

necessary. For problems where m is a decision variable, we need to try various values of m to find a small

feasible m; however, in many practical situations, an appropriate range of m is known in advance.

2 Optimal start time of services

In this section, we consider the problem of determining the time to start services of customers

in a given route σk so that the total time penalty is minimized. How to determine σk will be

discussed in Section 3. Let δ(i) be the number of pieces in the piecewise linear function pi(t),

and let the total number of pieces in the penalty functions for all the customers in σk (including

the depot) be δk =
∑nk

h=0 δ
(σk(h)). Furthermore, let δ =

∑

k∈M δk =
∑

i∈V \{0} δ
(i) +mδ(0) be the

total number of pieces in the penalty functions of all customers (including the depot), where

δ(0) is multiplied by m.

We propose an O(nkδk) time algorithm based on the dynamic programming (DP) to solve

this problem. (It is pointed out by Hochbaum (2002b) that this time complexity can also

be achieved by using a more general algorithm in Hochbaum (1997), Hochbaum (2002a) and

Hochbaum and Naor (1994); however, our DP algorithm is simpler and is used to achieve a

more efficient algorithm in Section 4.1.2.) If the penalty functions are convex, this problem

can be formulated as a convex programming problem, which is efficiently solvable by using

existing methods (Bertsekas 1995, Chvátal 1983) even without using efficient algorithms for this

problem (Ahuja and Orlin 2001, Hochbaum and Queyranne 2003). Here, it is emphasized that

the proposed DP algorithm is applicable even if pi(t) are non-convex and discontinuous.

2.1 The dynamic programming algorithm

We define fk
h (t) to be the minimum sum of the penalty values for customers σk(0), σk(1), . . . , σk(h)

under the condition that all of them are served before time t. Throughout this paper, we call

this a forward minimum penalty function. For convenience, we also define

pk
h(t) = pσk(h)(t),

τk
h = uσk(h) + tσk(h),σk(h+1),
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where pk
h(t) is the penalty function for the hth customer of vehicle k, and τk

h is the sum of the

service time at the hth customer and the travel time from the hth customer to the (h + 1)st

customer. Then fk
h (t) can be computed by

fk
0 (t) =







+∞, t ∈ (−∞, 0)

0, t ∈ [0,+∞)

fk
h (t) = min

t′≤t

(

fk
h−1(t

′ − τk
h−1) + pk

h(t′)
)

, 1 ≤ h ≤ nk + 1, −∞ < t < +∞.

(8)

Then the minimum penalty value for the route σk can be obtained by

min
t
fk
nk+1(t). (9)

The optimal start time sσk(h) of the service for each h = 1, 2, . . . , nk and the time sak of vehicle

k to return to the depot can be computed by

sak = min arg min
t
fk
nk+1(t)

sσk(h) = min arg min
t≤sσk(h + 1)−τk

h

fk
h (t), 1≤h≤nk,

(10)

where s0 = sak is assumed for convenience. The first min in the right hand side of (10) signifies

the leftmost t if min fk
nk+1(t) (or min fk

h (t)) is achieved by multiple t.

An example of the computation of recursion (8) is shown in Fig. 2. This figure represents (Figure 2)

the computation of fk
h (t) from fk

h−1(t) and pk
h(t), where τk

h−1 = 2, and fk
h−1(t) and pk

h(t) are

respectively defined by

fk
h−1(t) =































−t+ 3, t < 1

2, 1 ≤ t < 4

−t+ 6, 4 ≤ t < 5

1, 5 < t

and

pk
h(t) =































−0.5t+ 3, t < 4

t− 3, 4 ≤ t < 8

−4t+ 37, 8 ≤ t < 9

t− 8, 9 < t.

2.2 Implementation and time complexity of the algorithm

Let us consider the data structure for computing recursion (8). Since penalty function pk
h(t) is

piecewise linear, fk
h (t) is also piecewise linear. Therefore we can keep the functions that appear

in (8) in linked lists, whose components store the intervals and the associated linear functions

(i.e., linear pieces) of the piecewise linear functions. In computing fk
h (t), the intervals of fk

h−1(t)

are first shifted by τk
h−1 to the right to obtain fk

h−1(t − τk
h−1). Then, fk

h−1(t − τk
h−1) + pk

h(t) is

8



computed by merging the intervals of fk
h−1(t− τ

k
h−1) and pk

h(t) while adding the linear functions

of the corresponding pieces, and by storing fk
h−1(t− τk

h−1) + pk
h(t) in a new linked list. Finally,

fk
h (t) is obtained by taking the minimum of fk

h−1(t
′− τk

h−1)+ pk
h(t′) over all t′ ≤ t, which can be

achieved by scanning the new list from the left. Fig. 3 shows the linked lists for the functions

in Fig. 2. (Figure 3)

The computation of fk
h−1(t− τh−1)+ pk

h(t) and fk
h (t) from fk

h−1(t) and pk
h(t) can be achieved

in O(δk) time, since the total number of pieces in fk
h−1(t) and pk

h(t) is O(δk). The computation

of total time penalty (9) and optimal start time (10) for each h can also be achieved in O(δk)

time, since both computations only require to scan the list of fk
h (t). Therefore, determining

the minimum time penalty for a given route and the optimal start times of services for all the

customers in the route can be done in O(nkδk) time. (For evaluating the optimal time penalty

of a solution in the neighborhood, a more efficient algorithm will be explained in Section 4.1.2.)

3 Local search

In this section, we describe the framework of our local search (LS). The search space of LS is

the set of all visiting orders σ = (σ1, σ2, . . . , σm) satisfying condition (2). Then a solution σ is

evaluated by

cost(σ) = dsum(σ) + p∗sum(σ) + qsum(σ), (11)

where p∗sum(σ) is the minimum value of psum(s) among those s satisfying conditions (3)–(5) for

the given σ. Such an s is computed by the dynamic programming of Section 2 (a more efficient

method will be explained in Section 4.1.2). For convenience, let dsum(σk) be the total distance

of route σk, p
∗
sum(σk) be the optimal time penalty of route σk, and qsum(σk) be the total amount

of capacity excess of route σk, and define cost(σk) = dsum(σk) + p∗sum(σk) + qsum(σk). Then

cost(σ) =
∑

k∈M cost(σk) holds.

The neighborhood N (σ) of a feasible solution σ is a set of solutions obtainable from σ by

applying some specified operations (to be described later). The LS starts from an initial solution

σ and repeats replacing σ with a better solution σ′ (i.e., cost(σ′) < cost(σ)) in its neighborhood

N (σ) until no better solution is found in N (σ). We will use more than one neighborhood in

our LS.

In the subsequent sections, we will explain the details of LS. In Section 3.1, we explain the

neighborhoods used in our algorithm. In Section 3.2, we explain how we define the incumbent

solution. In Section 3.3, we describe the search order in the neighborhoods, and summarize the

framework of LS.
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3.1 Neighborhoods

In our algorithm, we use the standard neighborhoods (i.e., the cross exchange, 2-opt∗ and Or-opt

neighborhoods) with slight modifications. We also use the cyclic exchange neighborhood, whose

basic idea was proposed in Ahuja et al. (2002) and Ahuja, Orlin and Sharma (2000).

3.1.1 Standard neighborhoods

The cross exchange neighborhood was proposed in Taillard et al. (1997). A cross exchange

operation removes two paths from two different routes (one from each), whose length (i.e., the

number of customers in the path) is at most Lcross (a parameter), and exchanges them. Let

N cross(σ, k, k′) be the set of all solutions obtainable by cross exchange operations on two routes

σk and σk′ in the current solution σ = (σ1, σ2, . . . , σm), and letN cross(σ) =
⋃

k<k′ N
cross(σ, k, k′).

The size of the cross exchange neighborhood is O(n2(Lcross)2).

Fig. 4 illustrates a cross exchange operation. In this figure, squares represent the depot (Figure 4)

(which is duplicated at each end) and circles represent customers in the route. A thin line

represents a route edge and a thick line represents a path (i.e., more than two customers may be

included). First, two edges (σk(h
k
1 −1), σk(h

k
1)) and (σk(h

k
2 −1), σk(h

k
2)) are removed from route

σk and two edges (σk′(hk′

1 − 1), σk′(hk′

1 )) and (σk′(hk′

2 − 1), σk′(hk′

2 )) are also removed from route

σk′ . Then, four new edges (σk(h
k
1 − 1), σk′(hk′

1 )), (σk′(hk′

2 − 1), σk(h
k
2)), (σk′(hk′

1 − 1), σk(h
k
1))

and (σk(h
k
2 −1), σk′(hk′

2 )) are added to exchange two paths σk(h
k
1) → σk(h

k
2 −1) and σk′(hk′

1 ) →

σk′(hk′

2 − 1).

The 2-opt∗ neighborhood was proposed in Potvin et al. (1996), which is a variant of the

2-opt neighborhood (Lin 1965) for the traveling salesman problem (TSP, a special case of VRP

in which the number of vehicles is one). A 2-opt∗ operation removes two edges from two different

routes (one from each) to divide each route into two parts and exchanges the second parts of

the two routes (see Fig. 5). Let N 2opt∗(σ, k, k′) be the set of all solutions obtainable by 2- (Figure 5)

opt∗ operations on two routes σk and σk′ of the current solution σ = (σ1, σ2, . . . , σm), and let

N 2opt∗(σ) =
⋃

k<k′ N
2opt∗(σ, k, k′). The size of the 2-opt∗ neighborhood is O(n2).

Note that N 2opt∗(σ) ⊆ N cross(σ) holds if Lcross = n, since the cross exchange operation

generates solutions in N 2opt∗(σ) when the last customers of the two paths to be exchanged

(σk(h
k
2 − 1) and σk′(hk′

2 − 1) in Fig. 4) are the last customers of the routes. However, parameter

Lcross is usually set small to keep |N cross(σ)| small and there are many solutions in N 2opt∗(σ) \

N cross(σ). Hence searching in N 2opt∗(σ) separately from N cross(σ) is meaningful.

The cross exchange and 2-opt∗ operations always change the assignment of customers to the

routes. We therefore use the intra-route neighborhood to improve a solution within a route,

which is a variant of Or-opt neighborhood used in TSP (Or 1976, Reiter and Sherman 1965).
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An intra-route operation removes a path of length at most Lintra
path (a parameter) and inserts it

into another position of the same route, where the position is limited within distance Lintra
ins

(a parameter) from the original position. This is illustrated in Fig. 6. If the removed path (Figure 6)

is σk(h1) → σk(h1 + l − 1) (1 ≤ l ≤ Lintra
path), it is inserted either between σk(h1 − l′ − 1) and

σk(h1 − l′), or between σk(h1 + l+ l′ − 1) and σk(h1 + l+ l′), for 1 ≤ l′ ≤ Lintra
ins . If the removed

path is inserted between σk(h1 + l + l′ − 1) and σk(h1 + l + l′) (resp., between σk(h1 − l′ − 1)

and σk(h1 − l′)), it is called a forward (resp., backward) insertion. In Fig. 6, we show a forward

insertion, where it is denoted h2 = h1 + l+ l′ − 1 for simplicity. For each insertion, we consider

two cases: (1) with its visiting order preserved (denoted a normal insertion), and (2) with its

visiting order reversed (denoted a reverse insertion). Note that, even if we only consider l′ ≥ 1,

the operation of just inverting the order of the removed path with its position unchanged is an

intra-route operation using a forward reverse insertion with l′ = 1 (i.e., the case with h2 = h1 + l

in Fig. 6 (b)), where the path σk(h1) → σk(h1 + l) is regarded as the removed path.

Let N intra(σ, k) be the set of all solutions obtainable by intra-route operations on route σk

of the current solution σ = (σ1, σ2, . . . , σm), and let N intra(σ) =
⋃

k∈M N intra(σ, k). The size of

the intra-route neighborhood is O(n Lintra
path Lintra

ins ).

3.1.2 The cyclic exchange neighborhood

In this section, we define the cyclic exchange neighborhood. Let ψil denote the path in a

solution σ, whose initial customer is i and whose length is l. That is, ψil denotes the sequence

of l consecutive customers i = σk(h), σk(h + 1), . . . , σk(h + l − 1). Let k[i] denote the vehicle

that visits customer i. For a sequence of paths ψi1l1 , ψi2l2 , . . . , ψirlr satisfying k[ij] 6= k[ij′ ] for

all j 6= j ′, the cyclic exchange operation is defined as follows: for each j = 1, 2, . . . , r, ψij−1, lj−1

is removed from route σk[ij−1] and inserted into route σk[ij ] between the two customers to which

ψij lj was connected (i0 = ir and l0 = lr are assumed for convenience). Note that there are two

directions in inserting a path: (1) with its visiting order unchanged (denoted normal insertion)

and (2) with its visiting order reversed (denoted reverse insertion). As a result, there are 2r

possible cyclic exchange operations on a sequence of paths ψi1l1 , ψi2l2 , . . . , ψirlr . Fig. 7 represents

an example of such cyclic exchange operations. In this figure, route σk[i1] is duplicated at the (Figure 7)

right end for simplicity.

As a special case of the cyclic exchange, we also consider the acyclic exchange operation.

Let ψi0 (i = 1, 2, . . . , n) and ψk
00 (k = 1, 2, . . . , m) denote empty paths (i.e., paths of length 0

starting from customer i and the depot, respectively) in a solution σ. An empty path means

that no customer is removed from the route. Let ψi′l′ be the path to be inserted into the route

from which ψi0 or ψk
00 is removed. Then ψi0 signifies that ψi′l′ is inserted between customer i

and its predecessor, while ψk
00 signifies that ψi′l′ is inserted between customer σk(nk) and the
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depot. Then the cyclic exchange operation on a sequence of paths ψi1l1 , ψi2l2 , . . . , ψirlr is called

the acyclic exchange, if an empty path is removed from route k[ir]. Fig. 8 shows an acyclic

exchange operation. (Figure 8)

The cyclic exchange neighborhood N cyclic(σ) is defined to be the set of solutions obtainable

by applying cyclic exchange operations (including acyclic exchange operations) on every possible

combination of paths ψil satisfying the following three conditions:

1. all paths belong to different vehicles,

2. the length of each path is at most Lcyclic (a parameter),

3. the number of participating paths is at most νcyclic (a parameter).

If Lcyclic ≥ Lcross and νcyclic ≥ 2, then N cross(σ) ⊆ N cyclic(σ) holds.

The size of N cyclic(σ) is usually very large and grows exponentially with νcyclic. Therefore,

enumerating all solutions in N cyclic(σ) is computationally infeasible. However, the concept of

the improvement graph (Ahuja et al. 2002, Ahuja, Orlin and Sharma 2000) can be utilized to

implicitly search the neighborhood. We will describe the improvement graph and how we search

an improved solution in Section 4.2.

3.2 The incumbent solution

The incumbent solution in our algorithm is defined as follows. In our formulation of VRPGTW,

the capacity and time window constraints are treated as soft. That is, they are not included

in the constraints (2)–(5) of VRPGTW. Therefore, a locally optimal solution output by LS

may not satisfy the two constraints (i.e., it may not be feasible to VRPHTW even though it is

always feasible to VRPGTW). This situation may happen even if we set α in (6) or (7) very

large, or multiply the values of qi and Qk by a very large number, to make p∗sum(σ) and qsum(σ)

relatively large. On the other hand, the solutions found during the search of LS often satisfy

the two constraints even if p∗sum(σ) and qsum(σ) are not set very large. Some applications prefer

such solutions that satisfy the two constraints (i.e., VRPHTW). Thus, in addition to the original

function cost(σ) of (11), we allow the algorithm to have another criterion, besteval(σ), and to

keep as the incumbent the feasible solution to VRPGTW (i.e., constraints (2)–(5) are satisfied),

which has the smallest besteval(σ) among those found during the search by then. For example,

besteval may be cost(σ) or

besteval(σ) =







dsum(σ), if p∗sum(σ) + qsum(σ) = 0

cost(σ) + β, otherwise,

where β is an appropriate constant that satisfies β > dsum(σ) for all σ. Here we emphasize that

besteval does not affect the search process of our algorithm, i.e., the search is conducted entirely

on the basis of cost.
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3.3 The whole framework of the local search

The LS in our algorithm searches the neighborhoods in the order described as follows. We first

search the three neighborhoods,

1. the intra-route neighborhood,

2. the 2-opt∗ neighborhood, and

3. the cross exchange neighborhood,

in this order. The search of each neighborhood is executed until no improvement is found in

the neighborhood. Then, after the cross exchange neighborhood, it returns to the intra-route

neighborhood. This procedure continues until no improvement is found in three consecutive

neighborhoods. The cyclic exchange neighborhood is then searched after this procedure. If

an improved solution is found in the cyclic exchange neighborhood, the procedure immediately

returns to the intra-route neighborhood; otherwise the local search outputs the locally optimal

solution and stops. Our local search, LS(σ0), which starts from an initial solution σ0, is summa-

rized as follows. (Note that we also keep the solution that minimizes besteval(σ) of Section 3.2

among those solutions generated during the search process, though it is not explicitly described

due to space limitation.)

Algorithm LS(σ0)

Step 1 Let σ := σ0.

Step 2 Execute the following neighborhood search cyclically until no improvement is achieved

in three consecutive neighborhoods.

2a (intra-route neighborhood) If there is a feasible solution σ′ ∈ N intra(σ) such that

cost(σ′) < cost(σ), let σ := σ′, and return to Step 2a. Otherwise go to Step 2b.

2b (2-opt∗ neighborhood) If there is a feasible solution σ′ ∈ N 2opt∗(σ) such that cost(σ′) <

cost(σ), let σ := σ′, and return to Step 2b. Otherwise go to Step 2c.

2c (cross exchange neighborhood) If there is a feasible solution σ′ ∈ N cross(σ) such that

cost(σ′) < cost(σ), let σ := σ′, and return to Step 2c. Otherwise return to Step 2a.

Step 3 (cyclic exchange neighborhood) If there is a feasible solution σ′ ∈ N cyclic(σ) such

that cost(σ′) < cost(σ), let σ := σ′ and return to Step 2. Otherwise output the current

solution σ and halt.

4 Efficient implementation of local search

In this section, we explain various ideas useful to search the neighborhood efficiently. In Sec-

tion 4.1, we propose ideas to speed up the evaluation of the objective values of solutions in the

standard neighborhoods. In Section 4.2, we explain the improvement graph and an algorithm to
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search in the cyclic exchange neighborhood. In Section 4.3, we propose time-oriented neighbor-

lists to prune the search in the cross exchange and 2-opt∗ neighborhoods. Finally, in Section 4.4,

we propose two more ideas to speed up the local search procedure.

4.1 Evaluation of solutions in the standard neighborhoods

Let ∆dsum, ∆psum and ∆qsum be the differences in the distance dsum(σ), the time penalty

p∗sum(σ), and the amount qsum(σ) of capacity excess, respectively, between the current solution

and a solution in the neighborhood. Then let

∆cost = ∆dsum + ∆psum + ∆qsum,

which is negative if the new solution is better than the current solution. For a neighborhood N ,

let one-round time for N be the time either (1) to find an improved solution in N and update the

data stored to evaluate solutions, or (2) to conclude that there is no improved solution in N . We

also define one-round time for N with respect to dsum to be the time required to evaluate ∆dsum

during the whole one-round time. One-round time for N with respect to psum and that with

respect to qsum are similarly defined. In the subsequent sections, we explain separately how we

evaluate ∆dsum, ∆psum and ∆qsum during the search of cross exchange, 2-opt∗ and intra-route

neighborhoods.

4.1.1 Evaluation of ∆dsum

We can compute ∆dsum by the difference between the sum of distances of the inserted edges

and that of the removed edges. For a solution in the cross exchange or 2-opt∗ neighborhood,

∆dsum can be computed in O(1) time, since the number of removed edges and inserted edges is

constant. Therefore, one-round times for N cross and N 2opt∗ with respect to dsum are O(|N cross|)

and O(|N 2opt∗|), respectively.

For the intra-route neighborhood, the evaluation of ∆dsum requires O(Lintra
path) time if we

evaluate a solution in N intra(σ) from scratch, since we need to compute the sum of the distances

of all edges in the removed path when it is inserted reversely. However, we shall explain below

that this computational time can be reduced to O(1) and, consequently, one-round time for

N intra with respect to dsum can be reduced from O(|N intra| ·Lintra
path ) to O(|N intra|), if we evaluate

the solutions in N intra in a specified order and use the information from the previous search.

As explained in Section 3.1.1, intra-route operation is categorized into the following four

groups by the types of insertion: (1) normal forward insertion, (2) reverse forward insertion, (3)

normal backward insertion, and (4) reverse backward insertion. Since ∆dsum is easily computed

in O(1) time for normal insertions, and operations (2) and (4) are similar, we will only treat the

case of (2). See Fig. 6 (b) for a help to understand the following discussion.
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The computation of reverse forward insertions on route σk is done as shown in Fig. 9. The (Figure 9)

three nested loops in Fig. 9 generate all possible reverse forward insertions. The new routes

σnew
k tested in this loop are 〈the depot → σk(h1 − 1), σk(h1 + l) → σk(h2), σk(h1 + l − 1) →

σk(h1), σk(h2 + 1) → the depot〉. To evaluate ∆dsum in O(1) time for each σnew
k , we store two

values dist− and dist+ in the above nested loops. For simplicity, let dk
hh′ denote the distance

from the hth customer to the h′th customer in route σk. If l = 1, we initialize dist− and dist+

by dist− := 0 and dist+ := 0; otherwise (i.e., l > 1) we update them by

dist− := dist− + dk
h1+l−2,h1+l−1,

dist+ := dist+ + dk
h1+l−1,h1+l−2.

The above initialization and update of dist− and dist+ can be executed in O(1) time. Then,

∆dsum of σnew
k can be computed in O(1) time by

∆dsum = (dist+ + dk
h1−1,h1+l + dk

h2,h1+l−1 + dk
h1,h2+1)

−(dist− + dk
h1−1,h1

+ dk
h1+l−1,h1+l + dk

h2,h2+1).

Space complexity for this computation is O(1).

4.1.2 Evaluation of ∆psum

If ∆psum is computed by obtaining p∗sum of the new routes by (8) from scratch, it takesO(
∑

k∈M ′ nkδk)

time, where M ′ is the set of indices of the routes related to the neighborhood operation (|M ′| ≤ 2

holds for standard neighborhoods). Instead of this, we propose an O(
∑

k∈M ′ δk) = O(δ) time

algorithm that computes ∆psum. We also propose a simple idea to further reduce the computa-

tional time, though the worst case time complexity does not change.

Let us consider the computation of the minimum time penalty on a route σk. Define

bkh(t) to be the minimum sum of the penalty values for customers σk(h), σk(h+ 1), . . . , σk(nk),

σk(nk + 1), provided that all of them are served after time t. We call this the backward mini-

mum penalty function. Then, bkh(t) can be computed as follows in a symmetric manner to the

computation of fk
h (t),

bknk+1(t) = min
t′≥t

p0(t
′)

bkh(t) = min
t′≥t

(

bkh+1(t
′ + τk

h ) + pk
h(t′)

)

, 1 ≤ h ≤ nk.
(12)

Then,

p∗sum(σk) = min
t

(

fk
h (t) + bkh+1(t+ τk

h )
)

(13)

holds for any h (1 ≤ h ≤ nk). That is, if fk
h (t) and bkh+1(t) are known for some h, the minimum

penalty p∗sum(σk) can be computed by (13). This is possible in O(δk) time, because fk
h (t) and

bkh+1(t) consist of O(δk) linear pieces as explained in Section 2.2 (for the case of fk
h (t)).
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To utilize this idea, we keep fk
h (t) and bkh(t) in memory for all h = 1, 2, . . . , nk and k ∈ M .

In the case of neighborhood N 2opt∗, the computation of (13) can be directly carried out by

using the forward and backward minimum penalty functions stored in memory. In case of N cross

and N intra, however, the solutions must be treated in a specified order. We will describe the

algorithm only for N intra, since the case of N cross is simpler.

As in Section 4.1.1, we only consider the reverse forward insertions on a route σk as other

cases are similar. Recall that solutions are searched in the order as used in Fig. 9. Let fh1,h2,l(t)

be the forward minimum penalty function for the subroute 〈the depot → σk(h1−1), σk(h1+l) →

σk(h2)〉, and bh1,h2,l(t) be the backward minimum penalty function for the subroute 〈σk(h1 +

l − 1) → σk(h1), σk(h2 + 1) → the depot〉 (see Fig. 6 (b)). Then we evaluate the total time

penalty of the new route σnew
k = 〈the depot → σk(h1 − 1), σk(h1 + l) → σk(h2), σk(h1 + l− 1) →

σk(h1), σk(h2 + 1) → the depot〉 by

min
t

(

fh1,h2,l(t) + bh1,h2,l(t+ uσk(h2) + tσk(h2),σk(h1+l−1))
)

.

As stated above, this computation is possible in O(δk) time, if fh1,h2,l(t) and bh1,h2,l(t) are known.

Now we describe how we compute functions fh1,h2,l(t) and bh1,h2,l(t). Function fh1,h2,l(t) is

computed by (8) from fk
h1−1(t) if h2 = h1 + l, and from fh1,h2−1,l(t) if h2 > h1 + l. Function

bh1,h2,l(t) is computed by (12) from bkh2+1(t) if l = 1, and from bh1,h2,l−1(t) if l > 1. These

functions fk
h1−1(t) and bkh2+1(t) are stored in memory as already mentioned. As we generate

solutions in N intra in the order of Fig. 9, functions fh1,h2−1,l(t) and bh1,h2,l−1(t) are already

available when they are needed for computing fh1,h2,l(t) and bh1,h2,l(t), respectively. From these

arguments, we can conclude that fh1,h2,l(t) and bh1,h2,l(t) are computed in O(δk) time (i.e., the

time to execute (8) and (12)).

Finally, we consider the space complexity of the above computation. We need O(nkδk) space

to store functions fk
h (t) and bkh(t) for all customers in route σk. To compute bh1,h2,l(t), we only

need to keep bh1,h2,l−1(t) in memory, which requires O(δk) space. To compute fh1,h2,l(t), we

need to keep fh1,h2−1,l(t) for l = 1, 2, . . . ,min{Lintra
path , nk}, which requires O(min{Lintra

path , nk} · δk)

space. Therefore, the memory space required to store the necessary functions during the search

of N intra(σ, k) is O(nkδk).

In conclusion, ∆psum of a solution inN cross, N 2opt∗ orN intra can be evaluated in O(
∑

k∈M ′ δk)

= O(δ) time provided that functions fk
h (t) and bkh(t) for h = 1, 2, . . . , nk and k ∈M are available,

where M ′ ⊆ M (|M ′| ≤ 2) is the set of indices of the relevant routes. The space complexity

required for this computation is O(
∑

k∈M nkδk) = O(nδ). At the beginning of LS, we need

to compute functions fk
h (t) and bkh(t) for all h = 1, 2, . . . , nk and k ∈ M , which is possible in

O(
∑

k∈M nkδk) = O(nδ) time. We also need to recompute functions fk
h (t) and bkh(t) for all

h = 1, 2, . . . , nk and k ∈M ′, whenever the current solution is updated (i.e., the current round is
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over). This computation takes O(
∑

k∈M ′ nkδk) = O(nδ) time. As |N cross|, |N 2opt∗| and |N intra|

are larger than n, the one-round times for N cross, N 2opt∗ and N intra with respect to psum are

O(|N cross|δ), O(|N 2opt∗|δ) and O(|N intra|δ), respectively, and the space complexity is O(nδ) for

such neighborhoods.

We can further reduce the number of pieces in forward and backward minimum penalty

functions. Since fk
h (t) (resp., bkh(t)) is nonincreasing (resp., nondecreasing), there are usually

many pieces with considerably large value in fk
h (t) (resp., in bkh(t)) for small (resp., large) t.

Such pieces will not be used in evaluating improved solutions. Therefore, we set a value INF and

delete those pieces whose values over their intervals are not less than INF. We then add one piece

whose interval is the union of the deleted intervals and function value is always INF. Even after

this modification, we can compute the exact optimal time penalty p∗sum(σk) if p∗sum(σk) < INF

holds; otherwise we can conclude that p∗sum(σk) ≥ INF holds. In our algorithm, INF is set to a

sufficiently large value at the beginning of the local search. Then, whenever the current solution

is improved during search, we set INF := cost(σ) for the current solution σ, which ensures that

the algorithm never misses improved solutions. Though the worst case time complexity is not

improved by this modification, actual computation usually becomes much faster.

4.1.3 Evaluation of ∆qsum

Let us consider the total amount of goods
∑nk

h=1 qσk(h) to be delivered in a route σk. We define

γk
0 = 0

γk
h =

∑h
l=1 qσk(l) = γk

h−1 + qσk(h), h = 1, 2, . . . , nk

for all k ∈ M , and store these values in memory during the search. Then, the sum
∑h′

l=h qσk(l)

of the amount of goods for the hth through the h′th customers can be computed in O(1) time

by γk
h′ − γk

h−1. Hence ∆qsum is computed in O(1) time for a solution in N cross or N 2opt∗ (∆qsum

is always 0 for solutions in N intra).

At the beginning of LS, we need to initialize all γk
h, which is possible in O(

∑

k∈M nk) = O(n)

time. Whenever the current solution is updated, we also need to recompute γk
h for all h =

0, 1, . . . , nk and k ∈ M ′, where M ′ ⊆ M (|M ′| ≤ 2) is the set of indices of relevant routes. The

time required for this is O(
∑

k∈M ′ nk) = O(n). As sizes |N cross|, |N 2opt∗| and |N intra| are larger

than n, one-round times for N cross, N 2opt∗ and N intra with respect to qsum are O(|N cross|),

O(|N 2opt∗|) and O(|N intra|), respectively. The space complexity of the above computation is

O(n).
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4.2 Search in the cyclic exchange neighborhood

In this section, we introduce the improvement graph (Ahuja et al. 2002, Ahuja, Orlin and Sharma

2000), which is used to find an improved solution in N cyclic. Then we propose a heuristic on

how to search the improvement graph.

4.2.1 Improvement graph

For simplicity, we first describe the improvement graph in which acyclic exchange operations

are not considered, and then later describe how acyclic exchange operations are treated. The

improvement graph G(σ) = (V (σ), E(σ)) is defined for a feasible solution σ. The set V (σ)

consists of nodes vil (i = 1, 2, . . . , n, l = 1, 2, . . . , Lcyclic), where a node vil ∈ V (σ) represents

path ψil (i.e., the path of length l from i in σ). A directed arc enili′l′ (resp., erili′l′) ∈ E(σ)

from node vil to vi′l′ indicates that paths ψil and ψi′l′ are removed from routes σk[i] and σk[i′],

respectively, and ψil is inserted in place of ψi′l′ in σk[i′] with its visiting order unchanged (resp.,

reversed). Here k[i] denotes the vehicle that visits customer i. That is, enili′l′ and erili′l′ represent

normal and reverse insertions, respectively. Two arcs enili′l′ and erili′l′ are in E(σ) if and only

if k[i] 6= k[i′] holds. Let hi be the index satisfying σk[i](hi) = i for customer i, and define the

following routes:

σn
ili′l′ = 〈the depot → σk[i′](hi′ − 1), σk[i](hi) → σk[i](hi + l− 1), σk[i′](hi′ + l′) → the depot〉,

σr
ili′l′ = 〈the depot → σk[i′](hi′ − 1), σk[i](hi + l− 1) → σk[i](hi), σk[i′](hi′ + l′) → the depot〉.

Then, the costs of arcs enili′l′ and erili′l′ are defined as cost(σn
ili′l′) − cost(σk[i′]) and cost(σr

ili′l′)−

cost(σk[i′]) (i.e., the cost increases on route σk[i′] by the insertions), respectively.

We call a directed cycle C in the improvement graph G(σ) subset-disjoint if k[i] 6= k[i′]

holds for any pair of nodes vil and vi′l′ in C (i.e., all the participating paths belong to different

routes). We then call a subset-disjoint cycle a valid cycle if the sum of their arc costs is negative.

As easily understood, there is one-to-one correspondence between solutions of cyclic exchange

operations in N cyclic(σ) and subset-disjoint cycles in G(σ), and the cost of a cycle represents

the cost increase of the corresponding solution from that of the current solution σ. Hence an

improved solution in N cyclic(σ) can be found by a valid cycle in G(σ).

We need only one of enili′l′ and erili′l′ with lower cost to find a valid cycle. Therefore, instead

of having two arcs enili′l′ and erili′l′ , only one arc eili′l′ = (vil, vi′l′), whose cost is

cili′l′ = min
{

cost(σn
ili′l′) − cost(σk[i′]), cost(σ

r
ili′l′) − cost(σk[i′])

}

,

is included in E(σ) for each ordered pair of vil and vi′l′ .

We now describe how to deal with acyclic exchange operations in the improvement graph.

We create nodes vi0 for i = 1, 2, . . . , n and vk
00 for k = 1, 2, . . . , m, where vi0 and vk

00 correspond
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to empty paths ψi0 and ψk
00, respectively. We also create a node v̂. These nodes are connected by

arcs (vi0, v̂), (vk
00, v̂), (v̂, vi′l′), (vi′l′ , vi0) and (vi′l′ , v

k
00) for i, i′ = 1, 2, . . . , n, l′ = 1, 2, . . . , Lcyclic

and k = 1, 2, . . . , m. Let us define three routes σi′l′ , σ
n
i′l′i0 and σr

i′l′i0 by

σi′l′ = 〈the depot → σk[i′](hi′ − 1), σk[i′](hi′ + l′) → the depot〉,

σn
i′l′i0 = 〈the depot → σk[i](hi − 1), σk[i′](hi′) → σk[i′](hi′ + l′ − 1), σk[i](hi) → the depot〉,

σr
i′l′i0 = 〈the depot → σk[i](hi − 1), σk[i′](hi′ + l′ − 1) → σk[i′](hi′), σk[i](hi) → the depot〉.

Then the cost of arc (vi0, v̂) is defined as 0, that of arc (v̂, vi′l′) is defined as cost(σi′l′)−cost(σk[i′]),

and that of arc (vi′l′ , vi0) is defined as

min
{

cost(σn
i′l′i0) − cost(σk[i]), cost(σ

r
i′l′i0)− cost(σk[i])

}

.

The costs of the arcs (vk
00, v̂) and (vi′l′ , v

k
00) are similarly defined. Now a cycle C in the modified

improvement graph represents acyclic exchange operations if and only if C contains v̂. Thus the

graph contains a valid cycle if and only if an improved solution (either cyclic or acyclic exchange

operations) exists in N cyclic(σ).

Let us now consider the size of the improvement graph and time complexity to construct it.

Since there are O(Lcyclicn) paths to be considered for the cyclic exchange operation, |V (σ)| =

O(Lcyclicn) and |E(σ)| = O((Lcyclicn)2) hold. From the discussion in Section 4.1, it is not

difficult to see that the cost of an arc in E(σ) can be computed in O(δk[i] + δk[i′]) = O(δ) time,

provided that fk
h (t), bkh(t) and γk

h are known for h = 1, 2, . . . , nk and k ∈ M , and the order of

computing the arc costs is carefully designed. As all fk
h (t) and bkh(t) (resp., γk

h) are computed

in O(nδ) (resp., O(n)) time, the construction of G(σ) is possible in O((Lcyclicn)2δ) time. The

space complexity to compute arc costs is O(nδ) (needed to store functions fk
h (t) and bkh(t)), and

the space to store graph G(σ) is O((Lcyclicn)2).

4.2.2 A heuristic algorithm to find a valid cycle

As the problem of finding a valid cycle in a general improvement graph of this type is known to be

NP-hard (Thompson and Orlin 1989), we develop a heuristic algorithm, which is not guaranteed

to find a valid cycle even if it exists. Our algorithm is based on the labeling algorithm for the

shortest path problem.

We first briefly summarize the labeling algorithm in G(σ). Let cuv denote the cost of an

arc (u, v) ∈ E(σ). The cost of a path in G(σ) is the sum of cuv of arcs (u, v) in the path,

and the length of a path is the number of vertices in the path. The shortest path problem

asks to find a path of minimum cost from a specified node vs ∈ V (σ) to every other node in

V (σ). The algorithm computes labels label(v, l) for all v ∈ V (σ), from l = 1 to |V (σ)|, where

label(v, l) stores the minimum cost among all directed paths from vs to v of length at most l. If
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label(v, l) = ∞, no directed path of length at most l from vs to v is found yet. We call the phase

of computing label(v, l) for all v ∈ V (σ) the lth phase. The algorithm also maintains prev(v) for

all v ∈ V (σ), which represents the previous node of v in the directed path to v of cost label(v, l).

The algorithm starts by setting label(vs, 1) := 0 and label(v, 1) := ∞ for all v ∈ V (σ) \ {vs}.

At the beginning of the lth phase with l ≥ 2, labels are set label(v, l) := label(v, l− 1) for all

v ∈ V (σ). Then, for every arc (u, v), if label(u, l−1)+cuv < label(v, l) holds, label(v, l) is updated

to label(u, l− 1) + cuv and prev(v) is updated to u. This step is called the label update step.

The lth phase ends if all arcs are checked. The algorithm stops when label(v, l− 1) = label(v, l)

holds for all v ∈ V (σ) at the end of the lth phase, or it reaches the end of the |V (σ)|th phase.

The algorithm is usually implemented on a node set V̂ , called the active nodes, which is set

to {vs} in the second phase, and is the set of those v satisfying label(v, l− 1) < label(v, l− 2)

in the lth phase with l ≥ 3. Let Ev be the set of arcs whose tail vertex is v. In the lth

phase (l ≥ 2), only the arcs in Ê =
⋃

v∈V̂ Ev are scanned for the label update step, since

label(u, l− 1) + cuv ≥ label(v, l) holds for all arcs (u, v) not in Ê.

We make some modifications on the above labeling algorithm. The set of active nodes is

further reduced as follows. We only consider those arcs (u, v) with label(u, l− 1) < 0 for the

label update steps in the lth phase. That is, we delete those nodes u with label(u, l− 1) ≥ 0

from V̂ . Then the set of the reduced active nodes is denoted Ṽ .

We repeat the algorithm by regarding every node as the source. Recall that we only consider

valid cycles of length at most νcyclic (Section 3.1.2). This parameter is motivated by the fact

that longer cycles are less likely to be subset-disjoint. As a cycle of length more than m will

not be subset-disjoint, we assume that νcyclic ≤ m holds. Our algorithm finishes the search with

the current source node and exits to a further search with another source node, if either of the

following two conditions holds: (1) the algorithm reaches the (νcyclic + 1)st phase, (2) the set of

active nodes Ṽ becomes empty. Finally, the entire algorithm halts either (1) when a valid cycle

is identified, or (2) when the search is completed with all source nodes in V (σ).

Further modification is that the label update step is executed only if the resulting path is

subset-disjoint. In order to check whether a path considered in each label update step is subset-

disjoint or not in O(1) time, we maintain set(v, k) for all v ∈ V (σ) and k ∈M . Let P [v] denote

the path from vs to v obtained by tracing prev(v) from node v back to vs, and let kv be the

index of the route that contains the path (of customers) corresponding to node v ∈ V (σ). The

value of set(v, k) is 1, if P [v] contains a vertex u satisfying ku = k, and 0 otherwise. Then the

label update step for an arc (u, v) ∈ Ẽ is executed only if set(u, kv) = 0 holds (i.e., the new

path P [v] is assured to be subset-disjoint after the label update step). At the beginning of the

lth phase with l ≥ 3, set(v, k) are updated for those v ∈ Ṽ by first resetting set(v, k) := 0 for

all k and then setting set(v, ku) := 1 for all u in P [v].
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The final modification is that the algorithm checks if label(v, l) + cvvs < 0 holds for some

v ∈ Ṽ , at the end of the lth phase. If such a v is found, the resulting cycle (P [v], vs) is a valid

cycle.

The modification of active nodes from V̂ to Ṽ is motivated by the following simple well-known

lemma (see, e.g., Lin and Kernighan 1973).

Lemma 4.1 If
∑l

i=1 ci < 0 holds, then there exists a j such that
∑k

i=j ci < 0 holds for all

k = j, j + 1, . . . , l, and
∑k

i=1 ci +
∑l

i=j ci < 0 holds for all k = 1, 2, . . . , j − 1.

Proof: Let k∗ be the largest index among those k that maximizes
∑k

i=1 ci. Then
∑k

i=1 ci +
∑l

i=k∗+1 ci ≤
∑k∗

i=1 ci+
∑l

i=k∗+1 ci < 0 holds if 1 ≤ k ≤ k∗, and
∑k

i=k∗+1 ci =
∑k

i=1 ci−
∑k∗

i=1 ci <

0 holds if k∗ + 1 ≤ k ≤ l. Hence j = k∗ + 1 satisfies the conditions in the lemma. 2

This lemma indicates that, in a valid cycle C, there exists a vertex v ∈ C such that the costs of

all the directed paths in C starting from v are negative. Thus, although only maintaining labels

with negative cost might miss some valid cycles in the search with the current source node, the

algorithm will eventually find such valid cycles starting from other source node.

The algorithm, called FVC, to find a valid cycle in a given directed graph G(σ) is summarized

as follows. In the algorithm, V̂ is the sets of vertices whose labels have been improved in the

label update step of the current phase, Ṽ is the subset of V̂ whose labels are negative, and Ẽ is
⋃

v∈Ṽ Ev.

Algorithm FVC(G(σ) = (V (σ), E(σ)))

Step 1 Let U := V (σ).

Step 2 Choose a node vs ∈ U and let U := U \ {vs}, label(u, 1) := ∞ for all u ∈ V (σ) \ {vs},

label(vs, 1) := 0, Ṽ := {vs}, V̂ := ∅, Ẽ := Evs , set(v, k) := 0 for all v ∈ V (σ) \ {vs} and

k ∈M , set(vs, kvs) := 1 and l := 2.

Step 3 If l > νcyclic, go to Step 8. Otherwise, let label(v, l) := label(v, l− 1) for all v ∈ V (σ).

Step 4 Choose an arc euv = (u, v) ∈ Ẽ and let Ẽ := Ẽ \ {euv}. If both set(u, kv) = 0 and

label(u, l− 1) + cuv < label(v, l) hold, let label(v, l) := label(u, l− 1) + cuv, prev(v) := u

and V̂ := V̂ ∪ {v}.

Step 5 If Ẽ 6= ∅, return to Step 4.

Step 6 Let set(v, k) := 0 for all v ∈ Ṽ and k ∈M . Then let Ṽ := ∅.

Step 7 Choose a node v ∈ V̂ and let V̂ := V̂ \ {v}. If label(v, l)≥ 0 holds, proceed to Step 8.

If label(v, l) + cvvs < 0 holds, output the corresponding valid cycle and halt. Otherwise,

let Ṽ := Ṽ ∪ {v}, Ẽ := Ẽ ∪Ev and set(v, ku) := 1 for all u in P [v].

Step 8 If V̂ 6= ∅, return to Step 7. Otherwise, if Ṽ 6= ∅, let l := l + 1 and return to Step 3.

Step 9 If U = ∅, halt. Otherwise, return to Step 2.
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Let us consider the time complexity of algorithm FVC. The number of repetitions of the

loop from Step 2 through Step 9 is O(|V (σ)|). The initialization in Step 2 requires O(|V (σ)|m)

time for letting set(v, k) := 0 for all u ∈ V (σ) and k ∈ M . The loop of Steps 3 to 8 is re-

peated O(νcyclic) times. In Step 3, it takes O(|V (σ)|) time to initialize labels label(v, l) for

all v ∈ V (σ). Steps 4 and 5 are repeated O(|Ẽ|) times, and take O(1) time for each exe-

cution. Then, Step 6 requires O(|Ṽ |l) time, since resetting set(v, k) := 0 for all k ∈ M can

be done by tracing the vertices in the path P [v] for all v ∈ Ṽ . For the same reason, Step 7

is carried out in O(l) time to update set(v, k). Step 8 is executed in O(1) time. The loop

of Steps 7 and 8 is repeated O(|V̂ |) times. Consequently the total time required for FVC

is O
(

|V (σ)|2m+ νcyclic|V (σ)||E(σ)| + (νcyclic)2|V (σ)|2
)

= O(νcyclic(Lcyclicn)3), since m ≤ n,

|E(σ)| = O((Lcyclicn)2) and |V (σ)| = O(Lcyclicn) hold. This complexity seems rather large;

however, its actual computational time is usually much smaller, since the sizes of sets Ẽ, Ṽ and

V̂ tend to decrease rapidly as l increases.

4.3 Time-oriented neighbor-lists

In this section, we propose the time-oriented neighbor-lists to prune the neighborhood search

heuristically. A similar technique, called the neighbor-lists, was successfully applied to TSP

(Johnson and McGeoch 1997) and VRP (e.g., Park, Okano and Imai 2000), in which the

neighbor-list of customer i is determined on the basis of the distance from i. However, this

is not appropriate for VRPGTW, since we should also take into account the start time of ser-

vice at i.

Recall that all vehicles can leave the depot after time 0. Here we also assume that it is

desirable to return to the depot before time wd
0 . We partition the period of length wd

0 into νnlist

(a parameter) intervals, and let ρ = wd
0/ν

nlist. For each customer i, we construct νnlist time-

oriented neighbor-lists, nlistφ
i = (nlistφi [1], nlistφi [2], . . . , nlistφi [n]), for φ = 1, 2, . . . , νnlist, where

customer nlistφ
i [l] with a smaller l is more desirable to be served immediately after i, provided

that φ is the largest index satisfying (φ − 1)ρ ≤ si. The desirability of a customer j to be

scheduled immediately after i is determined in the increasing order of

keyφ
i [j] =















dij + min
0≤t≤µnlistW

pj((φ − 1)ρ+ t), if ui + tij ≤ µnlistW

+∞, otherwise,

(14)

where W = mwd
0/n and µnlist is a parameter. In other words, nlistφ

i [l] is the customer j with

the lth smallest value of keyφ
i [j]. The structure of the time-oriented neighbor-lists is illustrated

in Fig. 10. (Figure 10)
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The meaning of (14) is explained as follows. If time ui + tij is large, serving j immediately

after i is not desirable, since it will delay the service of subsequent customers. Therefore we set

keyφ
i [j] to +∞ if ui + tij > µnlistW , where W is a rough estimate of the average time spent for

one customer (i.e., sσk(h+1) − sσk(h)), and µnlist is set to 3 in our experiment. For those j with

ui + tij ≤ µnlistW , the first term in (14) is the distance from customer i to customer j, while

the second term represents the minimum time penalty of customer j if it is served in the time

interval of [(φ− 1)ρ, (φ− 1)ρ+ µnlistW ].

Before proceeding further, we comment on parameter νnlist. It might be natural to set νnlist

proportional to n/m based on the same consideration as W ; however, large memory space is

necessary if νnlist is set large. We therefore set νnlist small to keep the memory requirement

reasonable.

Let us now consider the time complexity of constructing the time-oriented neighbor-lists.

The computation of keyφ
i [j] requires O(δ(j)) time (δ(j) was defined in Section 2). Therefore the

computation of key
φ
i [j] for all j = 1, 2, . . . , n, j 6= i requires

∑n
j=1O(δ(j)) = O(δ) time. It

follows that the construction of nlist
φ
i for each of i = 1, 2, . . . , n and φ = 1, 2, . . . , νnlist requires

O(δ + n logn) time; hence O(nνnlist(δ + n logn)) in total.

We now describe how we use the time-oriented neighbor-lists for the search in N 2opt∗ and

N cross. We first explain the case of N 2opt∗. For a customer i = σk(h
k
1 − 1) (see Fig. 5), the

customers selected for σk′(hk′

1 ) are nlistφ
i [l], l = 1, 2, . . . , Lnlist

2opt∗ (Lnlist
2opt∗ is a parameter), where φ

is fixed to φ = bsi/ρc + 1. Similarly, in the case of N cross, for a customer i = σk(hk
1 − 1) (see

Fig. 4), customers selected for σk′(hk′

1 ) are nlistφ
i [l], l = 1, 2, . . . , Lnlist

cross (Lnlist
cross is a parameter),

where φ is fixed to φ = bsi/ρc + 1. Then, all possible values for hk
2 and hk′

2 (i.e., hk
2 = hk

1, h
k
1 +

1, . . . , hk
1 + Lcross, hk′

2 = hk′

1 , h
k′

1 + 1, . . . , hk′

1 + Lcross) are considered for each pair of hk
1 and hk′

1 .

We do not use the time-oriented neighbor-lists in the search of N intra, since it seems impossible

to keep the time complexity of computing the minimum time penalty to O(δ) if this modification

is added.

By using the time-oriented neighbor-lists, the neighborhood size of N cross is reduced from

O((Lcross)2 n2) to O((Lcross)2nLnlist
cross), and that of N 2opt∗ is reduced from O(n2) to O(nLnlist

2opt∗).

We set Lnlist
2opt∗ := min{n, (Lcross)2Lnlist

cross} in our algorithm so that the size of N 2opt∗ becomes

O(min{n2, (Lcross)2nLnlist
cross}). This parameter setting does not affect the overall neighborhood

size, since the size of N cross is already O((Lcross)2nLnlist
cross).

4.4 Other speedup techniques

We explain two other techniques to speed up the local search. First, we maintain tables

Icross(k, k′), I2opt∗(k, k′) and I intra(k) for k, k′ ∈M so that we do not search the regions where no

improvement is expected. We set Icross(k, k′) := 0 whenever the algorithm finds no improvement
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in N cross(σ, k, k′), and set Icross(k, k′) := 1 whenever an improvement occurs by any neighbor-

hood operation on either σk or σk′ . Tables I2opt∗(k, k′) and I intra(k) are defined similarly. Then,

we search N cross(σ, k, k′) only if Icross(k, k′) = 1 holds. Similarly, we search N 2opt∗(σ, k, k′)

(resp., N intra(σ, k)) only if I2opt∗(k, k′) = 1 (resp., I intra(k) = 1) holds.

The second idea is to improve the search in the cyclic exchange neighborhood. The construc-

tion of the improvement graph is the most expensive part. (Though the worst case time com-

plexity of algorithm FVC of Section 4.2.2 seems to become more expensive if δ = o(νcyclicLcrossn)

hold, its actual computational time is usually much smaller than that of the construction of the

improvement graph.) To alleviate this, we do not construct the whole improvement graph from

scratch. This is motivated by the fact that there may be some routes not modified during the

search after the previous construction. In such a case, the costs of arcs between such routes do

not change. For this, we maintain a table Icyclic(k) for k ∈M . The algorithm sets Icyclic(k) := 0

for all k ∈M whenever the improvement graph is constructed. Then, if route k is involved in the

update of solutions (by any neighborhood operation), the algorithm sets Icyclic(k) := 1. In the

reconstruction, the cost of an arc (u, v) is updated if and only if Icyclic(ku) = 1 or Icyclic(kv) = 1

holds.

Finally, we find more than one valid cycle in the improvement graph by applying algorithm

FVC repeatedly. This is motivated by the fact that the costs on many arcs remain unchanged

even after a cyclic exchange operation is applied. It is executed as follows. If a solution is

improved by a cyclic exchange operation, we remove from the improvement graph those arcs

whose head or tail node is in those routes involved in the update of the solution. Then, algorithm

FVC is again applied to the reduced improvement graph. This procedure is repeated until

either (1) FVC is unable to find a valid cycle, or (2) the number of the routes not involved in

these updates of solutions becomes less than two. Feasible cyclic exchange operations always

correspond to the valid cycles found during the above repeated calls to FVC, since ku 6= kv holds

for any two vertices u and v in these valid cycles.

5 Metaheuristic algorithms

In this section, we describe three metaheuristic algorithms, the multi-start local search (MLS)

(Lin 1965, Lin and Kernighan 1973, Reiter and Sherman 1965), the iterated local search (ILS)

(Johnson 1990, Martin, Otto and Felten 1991, Martin, Otto and Felten 1992), and the adaptive

multi-start local search (AMLS) (Boese, Kahng and Muddu 1994, Taillard et al. 1997). All of

these algorithms are based on the LS described so far. We describe how to generate initial

solutions within their frameworks.
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5.1 The multi-start local search and iterated local search

In the multi-start local search (MLS), LS is repeatedly applied from a number of initial solutions

and the best solution found during the entire search is output. Algorithm MLS is summarized

as follows.

Algorithm MLS

Step 1 Generate an initial solution σ0 and let σbest := σ0.

Step 2 Improve σ0 by LS; i.e., σ := LS(σ0).

Step 3 If a solution σ′ satisfying besteval(σ′) < besteval(σbest) is found during the LS in

Step 2, let σbest := σ′.

Step 4 If some stopping criterion is satisfied, output σbest and halt; otherwise generate a

solution σ0 and return to Step 2.

In the computational experiment in Section 6, the initial solutions of MLS are generated ran-

domly.

The iterated local search (ILS) is a variant of MLS, in which initial solutions are generated

by slightly perturbing a solution σseed, which is a good (not necessarily the best) solution found

during the search. The algorithm of ILS is summarized as follows.

Algorithm ILS

Step 1 Generate an initial solution σ0, and let σseed := σ0 and σbest := σ0.

Step 2 Improve σ0 by LS; i.e., let σ :=LS(σ0).

Step 3 If a solution σ′ satisfying besteval(σ′) < besteval(σbest) is found during the LS in

Step 2, let σbest := σ′.

Step 4 If cost(σ) ≤ cost(σseed), let σseed := σ.

Step 5 If some stopping criterion is satisfied, output σbest and halt; otherwise generate a

solution σ0 by slightly perturbing σseed and return to Step 2.

In our ILS, the random cross exchange operation is used to perturb σseed, which randomly

chooses two paths from two routes with no restriction on the length of the paths and exchanges

them. The algorithm executes the random cross exchange operation νilsptb (a parameter) times

on σseed to generate a new initial solution σ0 in Step 5.

5.2 The adaptive multi-start local search

AMLS maintains a set of solutions P = {σ1,σ2, . . . ,σ|P |} during the search, where |P | ≤ νamls
pop

holds (νamls
pop is a parameter). Solutions in P are selected from the locally optimal solutions

found in the previous search, and are used to generate the initial solution for the next local
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search. We first describe how we generate the initial solution for the next LS, then describe how

we initialize P and update it during the search, and finally summarize the outline of algorithm

AMLS.

Let the current P consist of σλ = (σλ
1 , σ

λ
2 , . . . , σ

λ
m), λ = 1, 2, . . . , |P |, and R[P ] be the

set of |P |m routes {σ1
1, σ

1
2, . . . , σ

1
m, σ

2
1, σ

2
2, . . . , σ

2
m, . . . , σ

|P |
1 , σ

|P |
2 , . . . , σ

|P |
m }. The initial solution

σ0 = (σ0
1, σ

0
2, . . . , σ

0
m) is constructed by selecting routes σ from R[P ] one by one. Let σ0 be the

current solution being constructed, where some routes in σ0 may be empty, and let σ be a route

in R[P ]. Vσ and Vσ0 denote the sets of customers in route σ and solution σ0, respectively. Then

let

cgen(σ,σ
0) =







cost(σ)
|Vσ\Vσ0 |

, if |Vσ \ Vσ0 | 6= 0

∞, otherwise.

Cost cgen(σ,σ
0) measures the attractiveness of route σ with respect to the current solution σ0

under consideration. If |Vσ \ Vσ0 | = 0 holds, all customers in σ have already been assigned to

σ0 and hence it is useless to insert σ into σ0, and hence cgen is set ∞. Otherwise, cgen(σ,σ
0)

indicates the average cost to visit a customer not in σ0.

All the routes in σ0 are initially set to be empty, and then the route selection step is executed

m times. In the kth route selection step, the route σ∗ with the minimum cgen(σ,σ
0) is selected

from R[P ] and we set σ0
k := σ∗. Here we restrict σ0 to contain at most dm/νamls

pop e routes

from one σλ in P to keep its diversity. This is achieved simply by setting cgen(σ,σ
0) := ∞ for

all σ ∈ σλ when σ0 contains dm/νamls
pop e routes from σλ. After m route selection steps, some

customers may be assigned to more than one route in σ0. We call them duplicate customers, and

apply the following customer deletion steps. Let i be a duplicate customer, which is assigned to

Z routes σ0
k1
, σ0

k2
, . . . , σ0

kZ
. We define σ̂kz to be the route obtained by deleting customer i from

σ0
kz

. Then we set σ0
kz

:= σ̂0
kz

for z = 1, 2, . . . , Z except for z = arg minz{cost(σ̂
0
kz

) − cost(σ0
kz

)}.

This customer deletion step is applied to all duplicate customers in a random order. After this

procedure, no customer is duplicate, but some customers may remain unassigned. For all of

the unassigned customers, the following customer insertion steps are applied. Let i be such a

customer, and j be the customer nlistφ
i [l] that has the smallest l among those already assigned

to σ0, where φ is randomly chosen from {1, 2, . . . , νnlist}. Then, customer i is inserted between

j and its preceding customer in the current route. The entire procedure of generating an initial

solution from P , called GENINIT(P ), is summarized as follows.

Procedure GENINIT(P)

Step 1 (initialization) Let all routes in σ0 be empty and let k := 1.

Step 2 (routes selection) Let σ∗ := arg minσ∈R[P ] cgen(σ,σ
0). Then let σ0

k := σ∗ and k := k+1.

If k ≤ m, return to Step 2.
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Step 3 (customer deletion) Execute the customer deletion step on duplicate customers until

there is no such customers.

Step 4 (customer insertion) Execute the customer insertion step on unassigned customers until

there is no such customers.

Step 5 Output σ0 = (σ0
1, σ

0
2, . . . , σ

0
m) as the initial solution and halt.

Initially, P is set empty. If |P | < νamls
pop holds, an initial solution for LS is generated randomly.

Then, for the locally optimal solution σlopt obtained by the LS, we let P := P ∪ {σlopt} if

cost(σlopt) differs from the costs of all solutions in P (P remains unchanged otherwise). If

|P | = νamls
pop holds, an initial solution for LS is generated by calling GENINIT(P ). Then for the

locally optimal solution σlopt obtained by the LS, P is updated as follows. Let σworst be the

solution with the worst cost in P . If cost(σlopt) > cost(σworst) holds, P remains unchanged.

Otherwise, solution σlopt is added to P and some solutions are deleted from P by the following

rules. For this, we define

Rclose(σ, σ′) =
|Vσ ∩ Vσ′ |

|Vσ ∪ Vσ′ |

for a pair of routes σ and σ′, which measures the closeness of the assigned customers between

the two routes. Rclose(σ, σ′) = 1 holds if and only if the assigned customers of σ and σ′ are

exactly the same. For a pair of solutions σ = (σ1, σ2, . . . , σm) and σ′ = (σ′
1, σ

′
2, . . . , σ

′
m), let

Sclose(σ,σ′) =
1

m

m
∑

k=1

max
k′

{Rclose(σk, σk′)},

which measures the closeness of the assigned customers between the two solutions. Sclose(σ,σ′) =

1 holds if and only if the assigned customers are exactly the same. Let m̄ (resp., s̄) be the mean

(resp., standard deviation) of Sclose(σ,σ′) between all pairs (σ,σ′) of solutions in P , and let

ξ(P ) = m̄+ 2s̄ and

S = {σ ∈ P | Sclose(σlopt,σ) ≥ ξ(P )}.

S is the set of solutions in P whose assigned customers are similar to that of σlopt. If S = ∅

holds, we let P := P ∪{σlopt}\{σworst}. Otherwise (i.e., S 6= ∅), we let S ′ := {σ ∈ S | cost(σ) ≥

cost(σlopt)} and then let P := P ∪ {σlopt} \ S ′ if S ′ 6= ∅ (P remains unchanged if S ′ = ∅). The

above rules of updating set P for the obtained locally optimal solution σlopt is summarized as

follows.

Procedure UPDATE(P, σlopt)

Step 1 If |P | < νamls
pop and cost(σlopt) differs from the costs of all solutions in P , let P :=

P ∪ {σlopt} and halt.

Step 2 (|P | = νamls
pop holds.) For the worst solution σworst in P , halt if cost(σlopt) >

cost(σworst) holds.
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Step 3 Let S := {σ ∈ P | Sclose(σlopt,σ) ≥ ξ(P )}. If S = ∅, let P := P ∪{σlopt} \ {σworst}.

Otherwise, compute S ′ := {σ ∈ S | cost(σ) ≥ cost(σlopt)}, and let P := P ∪ {σlopt} \ S ′

if S ′ 6= ∅.

Then algorithm AMLS is summarized as follows.

Algorithm AMLS

Step 1 Let best := ∞ and P := ∅.

Step 2 If |P | < νamls
pop , generate an initial solution σ0 randomly. Otherwise, let σ0 :=

GENINIT(P ).

Step 3 Improve σ0 by LS; i.e., let σlopt := LS(σ0).

Step 4 If a solution σ′ satisfying besteval(σ′) < best is found during the execution of LS, let

best := besteval(σ′) and σbest := σ′.

Step 5 Update set P by calling UPDATE(P,σlopt).

Step 6 If some stopping criterion is satisfied, output σbest and halt; otherwise return to Step 2.

6 Computational results

We conducted various computational experiments to evaluate the proposed algorithms. The

algorithms were coded in C language and run on a handmade PC (Intel Pentium III 1 GHz, 1

GB memory). The program parameters were set as shown in Table 1 unless otherwise stated.

The computational time was measured by using the subroutine available at Tsuchimura’s web (Table 1)

site (http://www.nn.iij4u.or.jp/˜tutimura/c/cpu time.c).

6.1 The vehicle routing problem with hard time windows

6.1.1 Solomon’s benchmark instances

The benchmark instances by Solomon (1987) are widely used in the literature. The number of

customers in each instance is 100, and their locations are distributed in the square [0, 100]2 of

the plane. The distances between customers are measured by Euclidean distance (in double pre-

cision), and the traveling times are proportional to the corresponding distances. Each customer

i (including the depot) has one time window [wr
i , w

d
i ], an amount of requirement qi and a service

time ui. All vehicles k have a fixed capacity Q. Both time window and capacity constraints

are considered hard. For these instances, the number of vehicles m is also a decision variable,

and the objective is to find a solution with the minimum (m, dsum(σ)) in the lexicographical

order. (For two vectors α = (α1, α2, . . . , αl) and β = (β1, β2, . . . , βl), α is smaller than β in the

lexicographical order if and only if there is an index i ∈ [1, l] that satisfies αj = βj for all j < i

and αi < βi.) These benchmark instances consist of six different sets of problem instances called
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R1, R2, RC1, RC2, C1 and C2, respectively. Locations of customers are uniformly distributed

in type R and are clustered in groups in type C, and the two types are mixed in type RC.

Furthermore, for instances of type 1, the time window is narrow at the depot, and hence only

a small number of customers can be served by one vehicle. Conversely, for instances of type 2,

the time window is wide, and hence many customers can be served by one vehicle.

6.1.2 Computational results

As Solomon’s benchmark instances are constructed for VRPHTW, we use the lexicographical

order of the vector (qsum(σ), p∗sum(σ), dsum(σ)) as besteval(σ) in Section 3.2. As the penalty

function pi(t) for customer i, we use formula (6). How we set the number of vehicles m and

parameter α in (6) is described in Appendix.

We first tested algorithm MLS without incorporating N cyclic to see the effectiveness of the

time-oriented neighbor-lists. Recall that the time-oriented neighbor-lists are used only for N 2opt∗

and N cross. Neighborhood N intra is also used in this experiment, since the solution quality is

poor without N intra, and its computational time is small compared to that of N cross. We tested

two values Lnlist
cross = 30, 100 (Lnlist

cross = 100 means that the whole neighborhood N cross ∪N 2opt∗ is

used). The value of Lnlist
2opt∗ is set to min{(Lcross)2Lnlist

cross, n} as discussed in Section 4.3. Algorithm

LS was repeated from randomly generated initial solutions 50 times for each value of Lnlist
cross, and

the average values of the cost and the computational time were compared. Though the results

are omitted due to space limitation, it was observed that, if Lnlist
cross is set to 30, the average

computational time is reduced to 20–30% of those with Lnlist
cross = 100, while maintaining almost

equivalent solution quality. Actually, LS with Lnlist
cross = 30 obtained better average cost for some

instances.

We then tested the effectiveness of the cyclic exchange neighborhood. For this, we compared

the quality of solutions obtained by ILS with and without N cyclic. Both algorithms were run

1800 seconds for each instance, and the solution quality and the number of calls to LS were

compared. Though the results are also omitted due to space limitation, not much difference in

solution quality was observed. One of the conceivable reasons for this is that the number of

calls to LS in ILS without N cyclic is much larger than that of ILS with N cyclic (i.e., many LS can

compensate the power of the cyclic exchange neighborhood). However, this does not immediately

mean that the cyclic exchange neighborhood is useless, as will be observed in Section 6.2.

We finally compare the best solutions obtained by algorithms ILS and AMLS with other

existing methods. (The results of MLS are much worse than those of ILS and AMLS, and are

omitted.) Both ILS and AMLS were run up to 15000 seconds for each instance. The results are

shown in Table 2. “MNV” represents the mean number of vehicles, “MTD” represents the mean (Table 2)

total distance, “CNV” represents the cumulative number of vehicles, and “CTD” represents the
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cumulative total distance, which are usually used in the literature to compare the results on

Solomon’s instances. Column “ILS 2000s” is the result of ILS, where the time limit for each

instance is 2000 seconds. The meaning of columns ILS 15000s, AMLS 2000s and AMLS 15000s

are similar. Column “H&G (1999)” is the result by Homberger and Gehring (1999), “G&H

(2002)” is the result by algorithm HM4C in Gehring and Homberger (2002), “BBB (2003)”

is the result by Berger, Barkaoui and Bräysy (2003), “Br (2003)” is the result by algorithm

RVNS(2) in Bräysy (2003), “BVH (2001)” is the result by Bent and Van Hentenryck (2001),

and “H&G (2003)” is the result by Homberger and Gehring (2003). According to a recent

survey by Bräysy and Gendreau (2003b), not many algorithms achieved CNV 406 or less, and

only those algorithms cited in Table 2 achieved CNV 405. The average computational time of

algorithms H&G (1999), G&H (2002), BBB (2003), Br (2003), and BVH (2001) for each instance

are roughly estimated as 800, 6000, 1300, 500, and 14000 seconds, respectively, if they were run

on our computer (see Appendix for the comparison of different computers). Computational time

of H&G (2003) is not clearly stated in Homberger and Gehring (2003). The solution quality

of ILS and AMLS with the time limit of 2000 seconds are competitive with H&G (1999) and

G&H (2002), but slightly worse than BBB (2003), Br (2003), BVH (2001), and H&G (2003). If

much longer computational time, 15000 seconds, is allowed, both ILS and AMLS exhibit better

quality than BBB (2003), Br (2003), and BVH (2001). Note that the computational time of our

algorithms is roughly equivalent with algorithm BVH (2001).

These results are significant, since our algorithms are very general and not tailored to VR-

PHTW. More details of the computational results on Solomon’s instances are presented in

Appendix.

6.2 Parallel machine scheduling problem

6.2.1 The problem definition

For the parallel machine scheduling problem (PMP), we are given n jobs {1, 2, . . . , n} and m

identical machines {1, 2, . . . , m}. A machine can process only one job at a time, and processing

of a job can not be stopped, once it begins, until it is completed (i.e., no preemption allowed).

Each job i has:

• a processing time ui (≥ 0), and

• a penalty function pi(si) (≥ 0) of the start time si of job i.

We are also given a penalty function p0(t) of the completion time t of all jobs in each machine.

The objective is to find an assignment of jobs to machines, start times si of jobs i (i = 1, 2, . . . , n)

and completion times sak of machines k (k = 1, 2, . . . , m) so that the following total penalty is
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minimized:
n

∑

i=1

pi(si) +
m

∑

k=1

p0(s
a
k).

As can be easily understood, this is a special case of VRPGTW in which the distance and

traveling time between customers, and the quantity of goods to be delivered to customers are

always 0. We considered this problem in order to observe the performance of our algorithm in

dealing with general time penalty functions by generating instances whose optimal values are

known.

6.2.2 Generation of instances

We generate three instances of PMP, which we call LINEAR, NCONV1 and NCONV2. For

each instance, 100 jobs with ui = 10 (i = 1, 2, . . . , 100) are scheduled to 10 machines, and p0(t)

is defined as

p0(t) = max{−t, 0, t− 110}.

We define pi(t) for i = 1, 2, . . . , 100 so that pi(i) = 0 holds for all i in all instances (concrete

definition of pi(t) depends on the instance, and will be given later). We define the sets of jobs

Ik = {i | i ≡ k − 1 (mod 10)}, k = 1, 2, . . . , 10. Then, an optimal schedule of cost 0 can be

obtained by the following rules.

1. All jobs i ∈ Ik are assigned to machine k for k = 1, 2, . . . , 10.

2. Start time si of job i is set to i.

3. Completion time sak is the completion time of the last job processed on machine k.

The three instances differ only in their penalty functions pi(t), which are defined as follows (see

Fig. 11). (Figure 11)

LINEAR: Penalty functions of i = 1, 2, . . . , 100 are defined by

pi(t) = max{i − t, t− i}.

NCONV1: Penalty functions of i = 1, 2, . . . , 100 are defined by

pi(t) =



























































i− 2− t, t < i− 3,

t− i+ 4, i− 3 ≤ t < i− 2,

i− t, −2 ≤ t < i,

t− i, i ≤ t < i+ 2,

i+ 4− t, i+ 2 ≤ t < i+ 3,

t− i− 2, i+ 3 ≤ t.

NCONV2: There are two types, f-type and b-type, of penalty functions for NCONV2. We

denote penalty functions of f-type and b-type for job i as pf
i(t) and pb

i (t), respectively. These
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functions are defined by

pf
i(t) =































i− 7− t, t < i− 7,

t− i+ 7, i− 7 ≤ t < i− 3.5,

i− t, i− 3.5 ≤ t < i,

t− i, i ≤ t,

and

pb
i (t) =































i− t, t < i,

t− i, i ≤ t < i+ 3.5,

i+ 7 − t, i+ 3.5 ≤ t < i+ 7,

t− i− 7, i+ 7 ≤ t.

Then, we set pi(t) = pb
i (t) for 1 ≤ i ≤ 10, pi(t) = pf

i(t) for 91 ≤ i ≤ 100, and we randomly

choose pf
i(t) or pb

i (t) as pi(t) for 11 ≤ i ≤ 90.

6.2.3 Computational results

Let MLS−, ILS− and AMLS− be algorithms MLS, ILS and AMLS, respectively, in which N cyclic

is not incorporated. We tested six algorithms, MLS, MLS−, ILS, ILS− AMLS and AMLS−.

Each algorithm was run three times for each instance, where each run was terminated after 1800

seconds. Table 3 shows the best costs, average costs and the average number of calls to algorithm

LS. It can be observed from the table that MLS, ILS and AMLS are much more powerful than (Table 3)

MLS−, ILS− and AMLS−, indicating the effectiveness of the cyclic exchange neighborhood. It

can also observed that ILS produces slightly better solutions than MLS and AMLS. In summary,

incorporating the cyclic exchange neighborhood is useful for these instances.

6.3 A production scheduling problem with inventory cost

6.3.1 The problem definition

We consider the production of ñ items in a given period [0, X ] on m identical machines. Each

item i = 1, 2, . . . , ñ has

1. a demand Zi,

2. an inventory cost coefficient cii,

3. a production rate Ri,

and each ordered pair of (i, j) for i, j ∈ {1, 2, . . . , ñ} has

1. a setup cost csij,

2. a setup time tsij ,

where Zi is the amount of item i to produce during [0, X ], cii is the cost incurred for a unit of the

accumulated inventory of item i, Ri is the time required to produce one unit of item i, csij is the
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cost incurred whenever the production on a machine is changed from item i to item j (csii = 0),

and tsij is the time required for the setup operation (tsii = 0). We assume that the amount Zi/X

of item i is consumed per unit time. The production of an item can be divided into lots of

possibly different sizes. Let ζi be the number of lots of item i, ir (r = 1, 2, . . . , ζi) be the rth lot

of item i, θir be the amount of production of lot ir (i.e., the lot size) and sir be the start time

of lot ir. Then
∑ζi

r=1 θir = Zi must hold. Moreover, let σk = (σk(1), σk(2), . . . , σk(nk)) denote

the production order on machine k, where σk(h) denote the hth lot in σk. Then, a schedule

π = (ζ, θ,σ, s) is determined by:

1. the number of lots ζi of each item i = 1, 2, . . . , ñ,

2. the size θir of each lot ir, r = 1, 2, . . . , ζi, i = 1, 2, . . . , ñ,

3. a production order σk on machines k = 1, 2, . . . , m,

4. start time sir of production of each lot ir, r = 1, 2, . . . , ζi, i = 1, 2, . . . , ñ.

Determining the start times sir is not trivial, since the machines can have idle time between

adjacent lots. Let aπi (x) denote the accumulated amount of item i produced before time x (0 ≤

x ≤ X), which is determined by the schedule π. Then define

bπi = max

{

max
0≤x≤X

{(Zi/X)x− aπi (x)}, 0

}

,

which is the amount of item i required to be stored at time 0 so that the shortage of item i

will not occur during the entire scheduling period. Then aπi (X) = Zi − bπi must hold. If bπi is

stored at time 0, then the accumulated inventory Iπi of item i over the whole period [0, X ] is

given by

Iπi =

∫ X

0
(aπi (x) + bπi − (Zi/X)x)dx.

Our objective function to be minimized is the sum of the total setup costs and the total inventory

cost:
m

∑

k=1

nk−1
∑

h=1

csσk(h),σk(h+1) +
ñ

∑

i=1

cii · I
π
i .

6.3.2 Formulation to VRPGTW

The production scheduling problem with inventory cost can be formulated to VRPGTW as

follows. The formulation includes some approximation on lot sizing and inventory cost. First,

we regard the number of lots ζi as a parameter, and divide the demand Zi into ζi lots of the

same amount Zi/ζi. (If ζi are set larger, the approximation is more precise, since consecutive

production of lots of the same item can be regarded as one lot.) In the VRPGTW formulation,

each customer represents the production of a lot, and each vehicle represents a machine. Then,

visiting customer ir by vehicle k signifies that the rth lot of item i is produced on machine k. The

service time uir of customer ir then becomes RiZi/ζi. We let the distance dirjr′
from customer
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ir to customer jr′ be dirjr′
= csij, and the travel time tirjr′

from customer ir to customer jr′ be

tirjr′
= tsij . Finally, we set the time penalty function pir(t) to represent the inventory cost of

item i as follows. Since we divide demand Zi into ζi lots, the desirable start time of lot ir is

s∗ir = (r − 1)X/ζi.

If the production of lot ir begins earlier than s∗ir by one unit time, the accumulated inventory

Iπi increases by Zi/ζi. Conversely, if the production of lot ir begins later than s∗ir by one unit

time, bπi should be increased to avoid shortage, and we consider that the accumulated inventory

Iπi increases by Zi. Based on these observations, we set the time penalty function pir (t) as

pir (t) = max
{

αr
ir(s

∗
ir − x), αd

ir(x− s∗ir )
}

,

where αr
ir = ciiZi/ζi and αd

ir = ciiZi. (The above penalty becomes larger than the actual inventory

cost if more than one lot of one item is late, since the amounts of inventory to be added to bπi

are summed up in our penalty function, whereas only the maximum of such amounts for each

item contributes to the real inventory cost.)

6.3.3 Computational results

We conducted computational experiment on real data from Kokuyo Co., Ltd. In the company,

the scheduling period X is one month, and one unit of operating time is eight hours. It is

requested by the company that the minimum production amount of item i at a time should be

the amount to be produced in eight hours. For this, we set parameter ζi so that Zi/ζi becomes

equal to that amount. The number of machines m is 3, and the total number of lots n =
∑ñ

i=1 ζi

is summarized in Table 4. (Table 4)

For this problem, we only tested ILS, since the objective of this experiment is to see the

wide applicability of our problem formulation. For each instance, ILS was run until the number

of calls to LS reaches 300. Table 4 shows the costs in yen of the schedules obtained by ILS and

those of real schedules currently used by the company. (Note that the costs of our algorithm are

recomputed after the schedules are obtained; i.e., they are not the approximate values used in

the algorithm.) The computational times of ILS in seconds and the reduction ratio of the costs

in % are also shown. Significant reduction in cost can be observed from the table.

7 Conclusion

We considered the vehicle routing problem with general time window constraints (VRPGTW),

and proposed local search algorithms. Problem VRPGTW is quite general in that time window

constraints are represented by general penalty functions (e.g., more than one time window for
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each customer can be treated). We proposed a dynamic programming algorithm to efficiently

compute the optimal start times of services for customers in a given route. We also incorporated

an advanced neighborhood, the cyclic exchange neighborhood, and the time-oriented neighbor-

lists to make the local search more effective. As for the metaheuristic frameworks of local search,

we tested the multi-start local search (MLS), the iterated local search (ILS) and the adaptive

multi-start local search (AMLS). The computational results on Solomon’s benchmark instances

indicated that the proposed algorithms are quite effective. A parallel machine scheduling prob-

lem and a production scheduling problem with inventory cost were also solved to show a wide

applicability of the proposed formulation of VRPGTW.
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Appendix: Detailed results for Solomon’s instances

The details of the results on Solomon’s instances are explained. We will omit the computational

results for type C, since these instances are easy and our algorithms always output the best

known values (see, e.g., the column “Our best solution” in Tables II and III of Taillard et

al. (1997), or Table 8 below) in short time under wide ranges of parameter settings.

The number of vehicles m and parameter α in (6) used in our experiments are listed in

Table 5. (As for the instance name, the last two digits represent the instance index and the rest (Table 5)

indicates the type. For example, twelve instances R101–R112 belong to type R1.) According to

Bräysy (2003), these values of m are taken from the best published solutions except for R101,

for which Thangiah, Osman and Sun (1994) reported a solution with one vehicle less. As ILS

(resp., AMLS) failed to find a feasible solution with the best known m within 2000 seconds for

R104 (resp., RC105), we also ran our algorithms with one vehicle more for these two instances

R104 and RC105. Parameter α was chosen after testing 10, 50 and 100 for type 1 instances,

and 1, 5 and 10 for type 2 instances, respectively, in preliminary experiments except for RC105

with m = 13. For RC105 with m = 13, AMLS failed to find a feasible solution with α ≤ 100,

and we decided to use α = 5000 after testing α = 500, 1000 and 5000.

The best solutions obtained by ILS and AMLS are shown in Tables 6 and 7, respectively. (Table 6)

(Table 7)The figures in columns “distance” denote the distances dsum(σ) of the best solutions σ obtained

by the algorithms within the time limit shown in the first row. The total number of calls

to algorithm LS within the time limit is shown in columns “#LS in total.” Columns “time

to best (s)” show the CPU seconds when the best solutions are found. Feasible solutions to

VRPHTW (i.e., p∗sum(σ) = 0 and qsum(σ) = 0) were obtained for all instances except for those

with “—” marks. The last two columns labeled “to find feasible” are the number of calls to

algorithm LS (column “#LS to feas.”) and CPU seconds (column “time to feas. (s)”) when the

first feasible solution is found. We compare our results with the best known values reported

in http://www.sintef.no/static/am/opti/projects/top/vrp/bknown.html (the data was taken on

March 6, 2003), which are summarized in Table 8. A single asterisk “∗” indicates a tie with (Table 8)

the best known solution and a double asterisk “∗∗” indicates that a better solution was found.

ILS obtained three tie solutions, while AMLS obtained one better solution and six tie solutions,

among 39 instances in the table.

Finally, we estimate the computational time of algorithms H&G (1999), G&H (2002), BBB

(2003), Br (2003), and BVH (2001). The benchmark results of SPECint2000, SPECint95 from
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SPEC web page (http://www.specbench.org/) and Dongarra’s LINPACK results (Dongarra

2002) of related CPUs are summarized in Table 9. (As we could not find LINPACK results (Table 9)

for Pentium 400 MHz, Pentium 200 MHz, and Sun Ultra 10 440 MHz in Dongarra (2002), the

corresponding results (i.e., those data in parentheses) were taken from Bräysy and Gendreau

(2003b).) We also include Mflops and Mips reported in Gehring and Homberger (2002). As the

results of SPECint95 and LINPACK for our CPU (Pentium III 1 GHz) are not available, the

results of similar CPUs, Pentium III 933 MHz and 800 MHz, are shown.

Based on these data, we give in Table 10 rough estimates on the computational time spent by

algorithms H&G (1999), G&H (2002), BBB (2003), Br (2003), and BVH (2001) for types R and

RC instances. (The average computational time of Br (2003) reported in Bräysy (2003) on types (Table 10)

R and RC instances ranges from 129.8 to 288.1 minutes which are the estimated values on Sun

Sparc 10 using Dongarra’s factors. The computational time of Br (2003) on Pentium 200 MHz in

the table is therefore estimated from these data.) If the results are the best of multiple runs, we

multiply the number of runs. Algorithm G&H (2002) is designed for distributed computation,

where 5 computers (1 for master and 4 for slaves) were used to obtain the results in Table 2. In

this case, we multiply 4, the number of slaves, to estimate the time in sequential computation,

though this might be an overestimate.
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init [−∞,1] y = −t + 3 [1,4] y = 2 [4,5] y = −t + 6 [5,∞] y = 1

init [−∞,3] y = −t + 5 [3,6] y = 2 [6,7] y = −t + 8 [7,∞] y = 1

init [−∞,4] y = −0.5t + 3 [4,8] y = t − 3 [8,9] y = −4t + 37 [9,∞] y = t − 8

init [−∞,3] y = −1.5t + 8 [3,4] y = −0.5t + 5 [4,6] y = t − 1

[6,7] y = 5 [7,8] y = t − 2 [8,9] y = −4t + 38 [9,∞] y = t − 7

init [−∞,3] y = −1.5t + 8 [3,4] y = −0.5t + 5 [4,8.75] y = 3

[8.75,9] y = −4t + 38 [9,∞] y = 2
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Figure 3. The linked lists representing the 4 functions in Fig. 2

43



σk(hk
1 − 1)

σk(hk
1)

σk(hk
2)

σk(hk
2 − 1)

σk′(hk
′

1 − 1)

σk′(hk
′

1 )

σk′(hk
′

2 )

σk′(hk
′

2 − 1)

σk σk′σk σk′

σk(hk
1 − 1)

σk(hk
1)

σk(hk
2)

σk(hk
2 − 1)

σk′(hk
′

1 − 1)

σk′(hk
′

1 )

σk′(hk
′

2 )

σk′(hk
′

2 − 1)

Figure 4. A cross exchange operation

44



σk(hk

1 − 1)

σk(hk
1)

σk′(hk
′

1 − 1)

σk′(hk
′

1 )

σk σk′σk σk′

σk(hk

1 − 1)

σk(hk
1)

σk′(hk
′

1 − 1)

σk′(hk
′

1 )

Figure 5. A 2-opt∗ operation

45



σk

σk(h1 − 1)

σk(h1)

σk(h1 + l)

σk(h1 + l− 1)

σk(h2)

σk(h2 + 1)

σk(h1)

σk(h1 + l − 1)

σk

(a) normal insertion

σk

(b) reverse insertion

σk(h2)

σk(h2 + 1)

σk(h1 − 1)

σk(h1 + l)
σk(h1)

σk(h1 + l − 1)

σk(h2)

σk(h2 + 1)

σk(h1 − 1)

σk(h1 + l)
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σk[i1] σk[i2] σk[i3] σk[i1]

l1 ψi1l1 ψi2l2 l3 ψi3l3 ψi1l1

i1
i2 i3
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Figure 7. A cyclic exchange operation on three routes (the first and last routes represent the

same route)
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(a) An acyclic exchange on ψi1l1 , ψi2l2 and ψi30 (b) An acyclic exchange on ψi1l1 , ψi2l2 and ψk
00
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Figure 8. An acyclic exchange operation on three routes
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for h1 = 1, 2, . . . , nk − 1 do

for h2 = h1 + 1, h1 + 2, . . . ,min{h1 + Lintra
ins , nk} do

for l = 1, 2, . . . ,min{Lintra
path , h2 − h1} do

evaluate ∆cost of the new solution σnew
k obtained by removing a path

σk(h1) → σk(h1 + l − 1) and reinserting it between σk(h2) and σk(h2 + 1)

with its visiting order reversed

end for

end for

end for.

Figure 9. Search order in the intra-route neighborhood with respect to the reverse forward

insertion
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Figure 10. An illustration of the time-oriented neighbor-lists
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(a) LINEAR (b) NCONV1
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Figure 11. Penalty functions pi(t): (a) LINEAR, (b) NCONV1, (c-f) f-type of NCONV2 and

(c-b) b-type of NCONV2
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Table 1. The default parameter values of our algorithms

N cross: Lcross = 3

N intra: Lintra
path = 3, Lintra

ins = 30

N cyclic: Lcyclic = 3, νcyclic = 5

Neighbor-lists: νnlist = 20, µnlist = 3, Lnlist
cross = 20 (Lnlist

2opt∗ = min{(Lcross)2Lnlist
cross, n} = 100)

ILS: νilsptb = 1

AMLS: νamls
pop = 10
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Table 2. Comparison of the solution quality on Solomon’s instances

problem ILS ILS AMLS AMLS H&G G&H BBB Br †BVH H&G

class 2000s 15000s 2000s 15000s (1999) (2002) (2003) (2003) (2001) (2003)

C1 MNV 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00

MTD 828.38 828.38 828.38 828.38 828.38 828.63 828.48 828.38 828.38 828.38

C2 MNV 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00

MTD 589.86 589.86 589.86 589.86 589.86 590.33 589.93 589.86 589.86 589.86

R1 MNV 12.00 11.92 11.92 11.92 11.92 12.00 11.92 11.92 11.92 11.92

MTD 1215.83 1214.26 1220.02 1217.40 1228.06 1217.57 1221.10 1222.12 1213.25 1212.73

R2 MNV 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73

MTD 978.84 967.03 961.64 959.11 969.95 961.29 975.43 975.12 966.37 955.03

RC1 MNV 11.50 11.50 11.63 11.50 11.63 11.50 11.50 11.50 11.50 11.50

MTD 1385.89 1385.42 1378.72 1391.03 1392.57 1395.13 1389.89 1389.58 1384.22 1386.44

RC2 MNV 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25

MTD 1147.38 1131.24 1132.17 1122.79 1144.43 1139.37 1159.37 1128.38 1141.24 1123.17

All CNV 406 405 406 405 406 406 405 405 405 405

CTD 57798 57516 57480 57444 57876 57641 57952 57710 57567 57309

†Better results with CNV 405 and CTD 57273 were reported without specifying the CPU time in

Bent and Van Hentenryck (2001). The results in column BVH (2001) were taken from Tables 4

and 5 of Bent and Van Hentenryck (2001), which are the best of five runs where each run takes

7200 CPU seconds on a Sun Ultra 10 440 MHz.
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Table 3. The best costs, average costs and the number of calls to algorithm LS by six algorithms

applied to the parallel machine scheduling problem

instance MLS MLS− ILS ILS− AMLS AMLS−

best cost 0 4 0 0 0 2

LINEAR avg. cost 0.0 6.7 0.0 0.7 0.0 2.0

#LS 101.7 1048.0 113.7 985.7 120.0 936.3

best cost 0 13 0 0 0 8

NCONV1 avg. cost 0.0 15.3 0.0 1.0 0.0 9.3

#LS 65.7 635.0 94.3 588.3 70.3 395.3

best cost 4 23 0 12 3 21

NCONV2 avg. cost 5.3 25.0 0.0 17.7 4.0 21.3

#LS 55.3 720.7 94.0 677.7 58.0 403.0
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Table 4. Comparison of schedules obtained by ILS and those used in the company

cost (yen) of the ILS reduction
data n

real schedule cost (yen) CUP secs. ratio (%)

1999.11 66 1443758 1094932 794 24.2

1999.12 67 1400603 919898 523 34.3

2000.01 57 1258431 913148 316 27.4

2000.02 60 1106430 758573 348 31.4

2000.03 59 1177601 858588 334 27.1

2000.04 66 1119503 698220 458 37.6
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Table 5. The number of vehicles m and parameter α for Solomon’s benchmark instances

instance m α instance m α instance m α instance m α

R101 19 50 R201 4 10 RC101 14 100 RC201 4 10

R102 17 50 R202 3 10 RC102 12 100 RC202 3 10

R103 13 100 R203 3 1 RC103 11 10 RC203 3 1

R104 10 10 R204 2 10 RC104 10 10 RC204 3 1

R104 9 10 R205 3 1 RC105 14 100 RC205 4 10

R105 14 10 R206 3 1 RC105 13 5000 RC206 3 1

R106 12 10 R207 2 5 RC106 11 100 RC207 3 1

R107 10 10 R208 2 1 RC107 11 10 RC208 3 1

R108 9 10 R209 3 1 RC108 10 10

R109 11 50 R210 3 5

R110 10 50 R211 2 10

R111 10 10

R112 9 50
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Table 6. Detailed results by ILS for Solomon’s instances

time limit = 2000 secs time limit = 15000 secs to find feasible

#LS in time to #LS in time to #LS to time to

m distance total best (s) distance total best (s) feas. feas. (s)

R101 19 1650.80 760 190.94 1650.80 5632 190.94 21 43.01

R102 17 1487.88 598 440.49 1486.96 4073 14246.96 2 5.06

R103 13 1297.99 775 1072.59 1293.05 5338 6343.37 96 171.39

R104 10 982.02 899 1247.93 982.02 6512 1247.93 2 5.78

R104 9 — — — 1013.13 5313 2032.78 718 2012.69

R105 14 ∗ 1377.11 786 486.91 ∗ 1377.11 5319 486.91 6 13.82

R106 12 1261.94 704 736.88 1257.96 5107 9416.67 6 13.96

R107 10 1125.40 712 855.11 1120.25 5079 4869.27 92 217.28

R108 9 980.32 763 994.55 962.34 5761 4013.62 49 102.82

R109 11 1197.64 761 557.19 ∗ 1194.73 5423 4700.72 92 210.70

R110 10 1119.00 763 884.47 1119.00 5499 884.47 60 126.45

R111 10 1106.30 714 190.10 1101.91 5119 12034.23 25 60.61

R112 9 1003.55 930 1984.91 993.82 6634 14486.12 817 1776.35

R201 4 1262.64 555 1893.11 1253.23 3805 3306.99 1 3.22

R202 3 1201.24 338 1671.67 1200.40 2213 4555.79 5 27.13

R203 3 953.98 313 1017.88 952.29 2208 11018.32 1 7.38

R204 2 853.86 253 200.95 853.86 1786 200.95 24 164.66

R205 3 1026.25 308 1026.25 1009.10 2190 10856.82 1 6.10

R206 3 913.18 394 1355.17 912.01 2473 9251.25 1 7.30

R207 2 977.54 240 1616.77 898.64 1672 12453.91 82 623.46

R208 2 736.43 278 1942.15 734.67 1787 4639.49 1 8.80

R209 3 919.58 331 944.87 919.58 2202 944.87 3 14.05

R210 3 967.94 359 526.71 962.45 2508 8211.05 1 5.49

R211 2 954.65 248 1093.23 941.10 1678 9217.80 45 314.73

RC101 14 1696.95 903 348.62 1696.95 6608 348.62 110 215.14

RC102 12 1554.84 873 682.01 1554.84 6150 682.01 327 672.98

RC103 11 1265.80 968 471.14 1263.54 7031 5248.24 2 4.25

RC104 10 1137.03 978 1816.49 1136.88 6800 14816.71 13 30.49

RC105 14 1543.38 869 1452.53 1540.18 6165 3312.70 6 14.00

RC105 13 1633.72 812 1550.40 1633.72 5726 1550.40 109 219.51

RC106 11 ∗ 1424.73 1124 573.76 ∗ 1424.73 8039 573.76 130 193.17

RC107 11 1232.26 1093 181.31 1232.26 7956 181.31 4 6.20

RC108 10 1141.76 1096 700.90 1140.40 7984 7149.54 28 44.35

RC201 4 1423.60 602 589.51 1413.52 4011 9425.99 1 2.91

RC202 3 1459.40 344 1596.03 1388.86 2519 8374.82 42 197.19

RC203 3 1096.15 410 1842.24 1077.93 2642 10083.76 4 16.18

RC204 3 799.16 458 355.70 799.16 3169 355.70 1 6.32

RC205 4 1314.40 645 1337.54 1307.15 4443 10381.77 1 2.88

RC206 3 1167.28 378 306.16 1165.04 2553 6164.89 2 10.84

RC207 3 1075.92 353 1118.53 1064.05 2399 2902.25 2 14.86

RC208 3 843.15 424 1936.64 834.23 2859 5116.93 1 4.58

∗: a tie with the best known solution
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Table 7. Detailed results by AMLS for Solomon’s instances

time limit = 2000 secs time limit = 15000 secs to find feasible

#LS in time to #LS in time to #LS to time to

m distance total best (s) distance total best (s) feas. feas. (s)

R101 19 1651.97 909 222.56 1650.80 7217 2999.98 2 7.00

R102 17 1487.97 771 180.45 1487.97 7098 180.45 5 20.88

R103 13 1293.05 952 1718.30 1293.05 8205 1718.30 61 137.66

R104 10 981.23 1268 1927.28 981.23 9922 1927.28 2 6.32

R104 9 1013.13 920 1986.56 1013.13 7718 1986.56 912 1986.56

R105 14 ∗ 1377.11 884 466.13 ∗ 1377.11 7213 466.13 5 16.58

R106 12 1258.48 852 1683.83 1257.96 7034 2915.93 13 39.10

R107 10 1120.98 1093 1165.17 1118.04 9293 5962.73 46 145.89

R108 9 977.28 922 1495.42 963.99 8699 2550.13 14 39.44

R109 11 1197.42 1215 1690.89 1197.42 10338 1690.89 29 91.40

R110 10 1142.85 1260 1650.77 1137.10 10579 2460.66 89 210.39

R111 10 1104.54 803 1913.35 1096.73 7747 4275.11 29 79.20

R112 9 1015.50 1118 1768.87 1015.50 9168 1768.87 434 903.86

R201 4 1256.11 1063 1900.43 1253.23 8508 2359.64 1 3.21

R202 3 1201.69 1044 398.19 1200.18 8326 4573.36 6 31.77

R203 3 946.20 599 1407.59 942.86 5060 13230.44 1 7.09

R204 2 848.59 678 1808.52 844.20 5740 9664.77 41 259.32

R205 3 1012.32 519 1175.57 1004.04 4115 4749.60 1 5.95

R206 3 914.28 599 1533.23 913.26 4877 13551.43 1 7.03

R207 2 909.80 909 1574.27 908.77 7894 2601.94 54 333.98

R208 2 728.03 601 1898.09 726.82 5476 2334.02 1 8.37

R209 3 916.99 536 1543.06 913.32 4591 2309.21 2 13.11

R210 3 939.91 719 1184.84 939.37 5127 7045.56 1 5.30

R211 2 904.14 785 1670.15 904.14 4537 1670.15 53 277.88

RC101 14 1696.95 1293 228.75 1696.95 10052 228.75 45 98.62

RC102 12 1554.84 1154 1350.84 ∗ 1554.75 10365 4089.89 118 285.01

RC103 11 1263.54 1634 1973.22 ∗ 1261.67 12480 8887.18 2 5.98

RC104 10 1138.95 1533 566.86 ∗ 1135.48 12248 9584.67 5 16.44

RC105 14 1542.29 911 1342.22 1540.18 11671 3133.75 49 121.21

RC105 13 — — — 1681.56 7207 5220.97 2453 5220.97

RC106 11 1453.59 1425 1831.30 ∗ 1424.73 10440 13621.57 514 733.54

RC107 11 1232.26 1735 821.58 1232.26 13306 821.58 8 18.08

RC108 10 1147.35 1681 1789.81 1140.83 12928 4134.77 11 20.06

RC201 4 1413.52 1061 734.08 1406.94 8366 6877.76 1 2.95

RC202 3 1378.42 899 1826.62 1376.03 7932 3001.17 23 100.63

RC203 3 1088.06 580 410.42 1063.68 4805 2262.31 12 70.40

RC204 3 800.83 849 662.97 799.16 7522 8742.92 1 6.31

RC205 4 1302.60 1066 375.94 1297.65 9141 4668.77 1 2.87

RC206 3 1152.03 642 1798.40 ∗ 1146.32 5459 3986.83 6 36.49

RC207 3 1093.74 540 1528.29 1064.40 4917 4274.48 2 13.74

RC208 3 ∗∗ 828.14 749 1522.56 ∗∗ 828.14 7232 1522.56 1 4.58

∗: a tie with the best known solution; ∗∗: a better solution than the best known solution
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Table 8. The best known values for Solomon’s instances according

to http://www.sintef.no/static/am/opti/projects/top/vrp/bknown.html (the data was taken on

March 6, 2003)

instance m distance instance m distance

R101 19 1645.79 R201 4 1252.37

R102 17 1486.12 R202 3 1191.70

R103 13 1292.68 R203 3 939.54

R104 9 1007.24 R204 2 825.52

R105 14 1377.11 R205 3 994.42

R106 12 1251.98 R206 3 906.14

R107 10 1104.66 R207 2 893.33

R108 9 960.88 R208 2 726.75

R109 11 1194.73 R209 3 909.16

R110 10 1118.59 R210 3 939.34

R111 10 1096.72 R211 2 892.71

R112 9 982.14

C101 10 828.94 C201 3 591.56

C102 10 828.94 C202 3 591.56

C103 10 828.06 C203 3 591.17

C104 10 824.78 C204 3 590.60

C105 10 828.94 C205 3 588.88

C106 10 828.94 C206 3 588.49

C107 10 828.94 C207 3 588.29

C108 10 828.94 C208 3 588.32

C109 10 828.94

RC101 14 1696.94 RC201 4 1406.91

RC102 12 1554.75 RC202 3 1367.09

RC103 11 1261.67 RC203 3 1049.62

RC104 10 1135.48 RC204 3 798.41

RC105 13 1629.44 RC205 4 1297.19

RC106 11 1424.73 RC206 3 1146.32

RC107 11 1230.48 RC207 3 1061.14

RC108 10 1139.82 RC208† 3 828.14

CNV: 405, CTD: 57192

†The best solution of RC208 was found by us.
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Table 9. Benchmark results of various CPUs

CPU SPECint2000 SPECint95 LINPACK Mflops Mips

Pentium III 1 GHz 408–442

Pentium III 933 MHz 192–234

Pentium III 800 MHz 344 38.0

Sun Ultra 10 440 MHz 18.1 (73)

Pentium 400 MHz (54) 239 940

Pentium 200 MHz 5.00–5.47 (24) 107 349

Sun Sparc 10 10
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Table 10. Estimated running time of various algorithms

estimated avg. CPU seconds number number estimated time

algorithm CPU speed for types R & RC of runs of CPUs on our CPU (s)

ILS and AMLS Pentium III 1 GHz 1 2000 or 15000 1 1 2000 or 15000

G&H (2002) Pentium 400 MHz 0.24 1088–1420 5 4 5222–6816

H&G (1999) Pentium 200 MHz 0.1 660–990 10 1 660–990

BBB (2003) Pentium 400 MHz 0.24 1800 3 1 1300

Br (2003) Pentium 200 MHz 0.1 3245–7203 1 1 325–720

BVH (2001) Sun Ultra 10 440 MHz 0.4 7200 5 1 14000
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