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An effective white-noise Langevin equation is derived that describes long-time phase dynamics of
a limit-cycle oscillator driven by weak stationary colored noise. Effective drift and diffusion coef-
ficients are given in terms of the phase sensitivity of the oscillator and the correlation function of
the noise, and are explicitly calculated for oscillators with sinusoidal phase sensitivity functions
driven by two typical colored Gaussian processes. The results are verified by numerical simulations
using several types of stochastic or chaotic noise. The drift and diffusion coefficients of oscillators
driven by chaotic noise exhibit anomalous dependence on the oscillator frequency, reflecting the
peculiar power spectrum of the chaotic noise. © 2010 American Institute of Physics.
�doi:10.1063/1.3488977�

Limit-cycle oscillators are used to model a variety of
rhythmic processes in nature. When a limit cycle is sub-
jected to noise, the frequency of oscillations changes and
the oscillation phase tends to diffuse. These effects are
quantified by drift and diffusion coefficients and are im-
portant in understanding the long-time behavior of noisy
oscillators. Here, we derive their analytical expressions in
terms of the phase sensitivity function of the limit cycle
and the correlation function of the noise, and verify them
by numerical simulations using several types of stochastic
or chaotic noise. Our formulation will provide a simple
and general way to analyze the long-time dynamics of
limit-cycle oscillators driven by arbitrary weak and
smooth colored noise.

I. INTRODUCTION

Nonlinear oscillations are ubiquitously observed in na-
ture and various models of limit-cycle oscillators with stable
periodic dynamics have been used to describe them.1,2 Some
of the many examples are oscillatory chemical reactions, car-
diac cells, spiking neurons, circadian rhythms, frog calls,
passively walking robots, and pedestrians on a bridge.1–8 A
powerful technique for analyzing weakly perturbed limit-
cycle oscillators is phase reduction,1–4 which approximately
describes a limit-cycle oscillator possessing multidimen-
sional state variables by a single phase variable. The result-
ing one-dimensional phase equation is solely specified by the
frequency and the phase sensitivity derived from the original
limit-cycle oscillator, which greatly facilitates analytical
treatments.2,3 The diverse dynamics of limit-cycle oscillators
driven by external forcing or coupled by mutual interactions
have been analyzed using phase reduction.9–12

Since all systems in nature are subjected to fluctuations,
it is essential to incorporate the effect of noise into the dy-
namics of limit-cycle oscillators. It is well documented that
noise can induce nontrivial dynamics in oscillator
systems.2–4,13–19 Synchronization among noninteracting
limit-cycle oscillators induced by common or shared noisy
forcing is a prominent example and has garnered consider-
able interest in connection with the reproducibility of lasers
and electronic circuits,20–23 synchrony of spiking
neurons,24–27 and large-scale correlated fluctuations in
ecosystems.28–31 Phase reduction methods have been exten-
sively used to analyze this phenomenon for limit-cycle oscil-
lators driven by various types of common noise �weak
Gaussian noise,32–36 Poisson random impulses,22,37 and
others38�. As discussed in Refs. 39–41, phase reduction
methods should be applied to noise-driven limit-cycle oscil-
lators with care, in order to properly consider the effect of
amplitude fluctuations; this is in contrast to the case with
smooth forcing, where phase reduction can be performed
without ambiguity. In Ref. 42 a general attempt is made to
derive a phase equation, which explicitly takes into account
the effect of amplitude dynamics, for a wide class of noise.

In this paper, we analyze noisy limit cycles from an al-
ternative viewpoint, namely, their long-time stochastic phase
dynamics. In particular, we will derive an effective white-
noise Langevin equation that describes the coarse-grained
phase dynamics of a limit-cycle oscillator driven weakly by
sufficiently smooth stationary colored noise. In deterministic
systems of limit cycles, e.g., in the synchronization process
of coupled oscillators, long-time phase dynamics dominate
the entire system behavior. Similarly, the long-time behav-
iors of the phase should play crucial roles in stochastic os-
cillator systems and methods for treating them should be

CHAOS 20, 033126 �2010�

1054-1500/2010/20�3�/033126/10/$30.00 © 2010 American Institute of Physics20, 033126-1

http://dx.doi.org/10.1063/1.3488977
http://dx.doi.org/10.1063/1.3488977
http://dx.doi.org/10.1063/1.3488977


developed. Note that the extraction of effective dynamics of
slow modes has been a classical topic in the theory of sto-
chastic processes and various methods such as the use of
projection operators and multiscale expansion have been
developed.43–49

In the present case, the amplitude effect of the oscillator
does not play a significant role at the lowest order approxi-
mation because its decay is much more rapid than the phase
dynamics,41,42 and hence the conventional phase equation
holds. We focus on how to obtain drift and diffusion coeffi-
cients by specifying the effective Langevin equation that
gives the long-time phase dynamics of the limit cycle. To this
end, we develop a simple theory based on the Kramers–
Moyal expansion,50,51 which gives the effective drift and dif-
fusion coefficients in terms of the phase sensitivity of the
limit cycle and the correlation function of the applied noise.
Using several types of phase sensitivity functions and noisy
signals, we demonstrate how the effective drift and diffusion
coefficients depend on the characteristics of the driving
noise.

II. THEORY

In this section, we derive an effective Langevin equation
describing the long-time phase dynamics of a limit-cycle os-
cillator driven by sufficiently weak and smooth stationary
colored noise. We introduce a timescale at which our effec-
tive description holds, and calculate the drift and diffusion
coefficients from the phase sensitivity function of the oscil-
lator and the correlation function of the noise.

A. Model

We consider a limit-cycle oscillator driven by noise,

Ẋ�t� = F�X� + ���t� , �1�

where the vector X�t� is the state of the oscillator at time t,
F�X� is the intrinsic dynamics of the oscillator, ��t� is the
noise, and � is a small parameter representing noise intensity.
We assume that Eq. �1� has a stable limit-cycle solution
X0�t+T�=X0�t� with period T when the noise is absent ��
=0�. The noise is assumed to be smooth, so that ordinary
rules of differential calculus apply for the variable X�t�.
More explicitly, we consider the cases in which the noise is
given by some time-integrated process of �i� stochastic dif-
ferential equations with Gaussian white noise or �ii� ordinary
differential equations with chaotic dynamics.

When the noise is sufficiently small ���1�, the oscilla-
tor state can approximately be described using only its
phase.1–3 We first introduce a phase �� �0,2�� on the un-
perturbed limit-cycle orbit X0�t� that increases with a con-
stant rate �frequency� �=2� /T as �̇�t�=�. This phase � can
then be extended as a phase field ��X� around X0�t� in such
a way that �̇�t�=�X��X� ·F�X�=� holds constantly. The dy-
namics of � at the lowest order in � is approximated as

�̇�t� = � + �Z���t����t� , �2�

where, for simplicity, it is assumed that the noise ��t� is
given only to a single vector component Xi �i=1, . . . ,N� of

X, and we denote its intensity by a scalar function ��t�. The
2� periodic function

Z��� = � ���X�
�Xi

�
X=X0���

�3�

is called the phase sensitivity,1–3 representing a linear re-
sponse coefficient of the phase � to tiny perturbations ap-
plied to the vector component Xi of the oscillator. Extension
to general vector noise is straightforward.

We assume that ��t� is a zero-mean stationary random
process generated by some noise source, which is smooth,
temporally correlated, and generally non-Gaussian, with a
two-point correlation function C�t�, namely,

���t�� = 0, ���t���0�� = C�t� , �4�

where �¯ � represents the ensemble average. We further as-
sume that the correlation function decays with a characteris-
tic time �c as 	C�t�	=O�e−	t	/�c�.

B. Separation of timescales

Our goal is to derive an effective Langevin equation with
Gaussian white noise that approximates the long-time dy-
namics of Eq. �2�. To proceed, we introduce a new slow
phase variable by 	�t�=��t�−�t and rewrite Eq. �2� as

	̇�t� = �Z��t + 	�t����t� . �5�

Let �P=�−1 represent a timescale of the slow phase dynamics
of 	, where �p is much larger than the characteristic decay
time �c of the noise correlation C�t�, i.e., �c��P.

For sufficiently small �, we can introduce an intermedi-
ate timescale �, which is sufficiently longer than the noise
correlation time, �c��, but still the slow phase 	 does not
change significantly within �t , t+��, namely,

		�t + �� − 	�t�	 � 1. �6�

This condition implies ���P=�−1 because 		�t+��−	�t�	
=O���� for bounded Z��� and ��t�.

Thus, we have three distinct timescales in our problem,
which satisfy

�c � � � �P. �7�

The separation of timescales allows us to derive an effective
Gaussian white stochastic process from Eq. �5� at the long
timescale �P that describes the slow dynamics of 	 by renor-
malizing fast fluctuations of the noise ��t� at the short time-
scale �c into effective drift and diffusion coefficients.

C. Effective Langevin equation

We use a simple Fokker–Planck approximation to the
Kramers–Moyal equation51 describing the dynamics of a
probability density function �PDF� P�	 , t� of 	 correspond-
ing to Eq. �5�, using the periodicity of the phase sensitivity
function Z���. To this end, we calculate the first- and second-
order moments of the slow phase dynamics of 	 during
�t , t+��,
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M1�	,t;�� = �	�t + �� − 	�t�� ,

�8�
M2�	,t;�� = ��	�t + �� − 	�t��2� ,

where the ensemble average �¯ � is taken over noise realiza-
tions with fixed 	 and t. Effective drift and diffusion coeffi-
cients v�	 , t� and D�	 , t�, respectively, of the approximate
Fokker–Planck equation are obtained from these moments at
the long timescale �P�
�� by ignoring fast fluctuations of the
noise at the short timescale �c����. That is, we regard � as a
small parameter, retain only the O��� term, and then formally
take the �→0 limit; this yields the effective drift and diffu-
sion coefficients,

v�	,t� = lim
�→0

M1�	,t;��
�

, D�	,t� = lim
�→0

M2�	,t;��
�

, �9�

where v�	 , t� and D�	 , t� will turn out to be constants inde-
pendent of 	 and t. The resulting approximate Fokker–
Planck equation

�

�t
P�	,t� = −

�

�	
�vP�	,t�� +

D

2

�2

�	2 P�	,t� �10�

corresponds to an effective Langevin equation,

	̇�t� = v + 
D��t� , �11�

where ��t� is Gaussian white noise satisfying ���t��=0 and
���t���s��=��t−s�. Considering the original phase variable
��t�, the effective Langevin equation will be given by

�̇�t� = � + v + 
D��t� . �12�

Thus, the effective drift coefficient v gives a noise-induced
correction to the raw oscillator frequency �. The diffusion
coefficient D gives the effective intensity of the noise. Note
that we make no assumption on the oscillator frequency �
but assume only that �c����P=�−1, which can always be
satisfied for sufficiently small �. In other words, we can al-
ways find a scaling region where the above effective Lange-
vin equation is valid, as long as the noise is sufficiently
weak.

D. Drift and diffusion coefficients

To calculate the moments M1�	 , t ;�� and M2�	 , t ;�� ex-
plicitly, we expand the phase sensitivity function Z��� esti-
mated at ��t1�=�t1+	�t1� as

Z��t1 + 	�t1�� = Z��t1 + 	�t� + 	�t1� − 	�t��

= Z��t1 + 	�t�� + Z���t1 + 	�t���	�t1� − 	�t��

+ O��	�t1� − 	�t��2� , �13�

where Z����=dZ��� /d�, and we integrate Eq. �5� as

	�t + �� − 	�t� = �

t

t+�

dt1Z��t1 + 	�t����t1�

+ �

t

t+�

dt1Z���t1 + 	�t���	�t1� − 	�t����t1�

+ O���	�t1� − 	�t��� . �14�

By iterative substitution, namely, by inserting 	�t1�−	�t�
=��t

t1dt2Z��t2+	�t����t2�+O��2� obtained from the above
equation into its second term, we obtain

	�t + �� − 	�t�

= �

t

t+�

dt1Z��t1 + 	�t����t1�

+ �2

t

t+�

dt1

t

t1

dt2Z���t1 + 	�t��


Z��t2 + 	�t����t1���t2� + O��3,�2� , �15�

where we have used the fact that 		�t+��−	�t�	=O����. Tak-
ing the ensemble average of this expression over the noise,
the moments M1�	 , t ;�� and M2�	 , t ;�� can be calculated up
to O��3 ,�2� as

M1�	,t;�� = �2�

t

t+�

dt1

t

t1

dt2Z���t1 + 	�


Z��t2 + 	�C�t − t1�� + O��3,�2� , �16�

M2�	,t;�� = �2�

t

t+�

dt1

t

t+�

dt2Z��t1 + 	�


Z��t2 + 	�C�t − t1�� + O��3,�2� . �17�

Now we take � as an integer multiple of T=2� /�, namely,

� = nT = 2n�/� , �18�

with some appropriate integer n�=1,2 , . . .� such that �c��
=nT��P=�−1 is satisfied �we may simply set n=1 if �c�T�.
Using the periodicity of the phase sensitivity function, the
moments can be written as

M1�	,t;�� = �2�� 1

2�



0

�

dsC�s�

0

2�

d�Z����Z�� − �s��
+ O��3,�2� , �19�

M2�	,t;�� = �2�� 1

2�



−�

�

dsC�s�

0

2�

d�Z���Z�� − �s��
+ O��3,�2� , �20�

both of which turn out to be constants �see Appendixes A
and B for calculations�.

From Eq. �9�, the effective drift and diffusion coeffi-
cients are obtained as

v = �2� 1

2�



0

�

dsC�s�

0

2�

d�Z����Z�� − �s�� �21�

and
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D = �2� 1

2�



−�

�

dsC�s�

0

2�

d�Z���Z�� − �s�� . �22�

The colored noise gives constant contributions of O��2� to
both v and D. In Refs. 52 and 53 similar weak-noise expan-
sion methods for the phase dynamics of noise-driven limit-
cycle oscillators are used to estimate their Lyapunov expo-
nent �Eq. �8� in Ref. 52 which generalizes the result in Ref.
33 for Gaussian noise� or the variance of periods.

E. Fourier representation

The effective drift and diffusion coefficients can be ex-
pressed concisely using the Fourier representation of the
phase sensitivity function,

Z��� = �
�=−�

�

Z̃�ei��, �23�

as well as the power spectrum of the noise ��t�,

I��� = 

−�

�

C�t�ei�tdt . �24�

Because ��t� is stationary, the correlation function satisfies
C�t�=C�−t�, so that the power spectrum I��� can be ex-
pressed as

I��� = 2

0

�

C�t�cos��t�dt = 2 Re ���� , �25�

where

���� = 

0

�

C�t�ei�tdt �26�

is the Fourier–Laplace transform of the correlation function.
Since ���� is analytic in the upper-half of the complex plane
�Re ��0�, we can express its imaginary part using the
Kramers–Kronig relation as

Im ���� =
1

�
P · V · 


−�

� Re ��z�
� − z

dz =
1

2
Î��� , �27�

where

Î��� =
1

�
P · V · 


−�

� I�z�
� − z

dz �28�

is a Hilbert transform of the power spectrum I��� �see, e.g.,
Ref. 54�. Inserting these equations into Eqs. �21� and �22�,
the drift and diffusion coefficients v and D can be expressed
as

v =
�2

2 �
�=−�

�

�i��	Z̃�	2�I���� + iÎ����� �29�

and

D = �2 �
�=−�

�

	Z̃�	2I���� . �30�

Thus, v and D can be calculated from the power spectrum

I��� and its Hilbert transform Î���. This is convenient be-
cause the phase sensitivity Z��� often contains only lower
harmonic components.

III. EXAMPLE I: STOCHASTIC NOISE

In this section, we numerically verify the accuracy of the
effective white-noise phase Langevin Eq. �11� for several
types of colored noise generated by stochastic processes. We
compare the effective drift and diffusion coefficients given in
Eqs. �21� and �22�, respectively, with those obtained by di-
rect numerical simulations of the phase equation �5�.

A. Phase sensitivity functions

We consider the following examples of phase sensitivity
functions �see Fig. 1�:

�1� Type-I sinusoidal function with only a positive lobe, cor-
responding to limit cycles near saddle-node
bifurcation,9,12,55

ZI��� = 1 + cos � . �31�

�2� Type-II sinusoidal function with positive and negative
lobes, corresponding to limit cycles near Hopf
bifurcation,3

ZII��� = sin � . �32�

�3� Phase sensitivity function ZE��� of the Morris–Lecar
neuron model near homoclinic bifurcation �see Appen-
dix C�, where the function is not simply sinusoidal but
contains higher-order harmonics. It can be calculated
numerically by the adjoint method.11,56 We refer to this
function as type-E.

The first two functions ZI,II��� are generic in the sense
that they can be derived analytically from the normal forms
of limit-cycle oscillators near the respective bifurcation
points by appropriate coordinate transformations.12,56 The
third function ZE��� is model-dependent, but is a typical ex-
ample of the phase sensitivity near a homoclinic bifurcation

0 1 2 3 4 5 6
φ

-2

-1

0

1

2

3

Z
(φ

)

Type I
Type II
Type E

FIG. 1. �Color online� Type-I sinusoidal phase sensitivity ZI���, type-II
sinusoidal phase sensitivity ZII���, and type-E phase sensitivity ZE��� ob-
tained from a Morris–Lecar spiking neuron model.
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point. ZE��� tends to be dominated by an exponentially de-
caying part resulting from the linear dynamics near a saddle
point as the bifurcation point is approached, and therefore a
simple exponential function with a discontinuity is proposed
as a generic form of the phase sensitivity in Ref. 56. We do
not, however, use this form to avoid unnatural effects of the
artificial discontinuity.

B. Measuring the coefficients

We estimate the effective drift and diffusion coefficients
v and D by direct numerical simulations of Eq. �5� and com-
pare them with the respective theoretical values, Eqs. �21�
and �22�. The solution to the effective Fokker–Planck equa-
tion �10� from a delta-peaked initial condition P�	 ,0�
=��	� is simply a Gaussian wave packet,

P�	,t� =
1


2�Dt
exp�−

�	 − vt�2

2Dt
� , �33�

whose moments are given by

�	�t�� = vt, ��	�t� − �	�t���2� = Dt . �34�

Thus, we can measure v and D from slopes of the mean and
the variance of the phase plotted as functions of t.

For example, Fig. 2�a� displays typical sample paths of
Eq. �5� with the type-II function ZII���. The evolution of the
slow phase 	�t�=��t�−�t is plotted for 100 realizations of
the Ornstein–Uhlenbeck �OU� noise �explained below�. The
broken line represents the mean path averaged over 200 000
realizations, which shows negative drift induced by the finite
correlation time �c=1 of the noise. Figures 2�b� and 2�c�
display the mean and the variance of the oscillator phase,
respectively, averaged over 200 000 realizations for differing
values of � and for the type-II Z���, all of which clearly
show linear dependence on time t, whose slopes yield v and
D.

C. Ornstein–Uhlenbeck noise

We first consider the case in which the colored noise ��t�
obeys the OU process,

�̇�t� = −
1

�c
� +

1

�c
��t� , �35�

where ��t� is zero-mean Gaussian white noise whose corre-
lation function is given by ���t���s��=��t−s�. This OU pro-
cess generates colored Gaussian noise ��t� with a stationary
PDF,

P��� = � �c

�
�1/2

exp�− �c�
2� , �36�

and an exponentially decaying correlation function,

C�t� = ���t���0�� =
1

2�c
exp�−

	t	
�c
� . �37�

Thus, the characteristic decay time of the noise correlation is
�c. In the limit �c→0, C�t� converges to the Dirac delta
function ��t�, so that ��t� converges to Gaussian white noise
of unit intensity. The power spectrum of ��t� and its Hilbert
transform are given by

I��� =
1

1 + ���c�2 , Î��� =
��c

1 + ���c�2 . �38�

By inserting Eq. �38� into Eqs. �21� and �22�, the drift
and diffusion coefficients are expressed as

v = −
�2

2 �
�=−�

�

	Z̃�	2
��c�

2

1 + ���c��2 �39�

and

D = �2 �
�=−�

�

	Z̃�	2
1

1 + ���c��2 . �40�

Note that v is always nonpositive and vanishes in the white-
noise limit ��c→0�. That is, the OU noise ��t� always tends
to slow down the oscillator for arbitrary �smooth� phase sen-
sitivity functions even if ���t��=0 holds on average, which
agrees with the result previously obtained by Galán57 �note
that Ref. 57 uses a different definition of the OU process�.
Similarly, the diffusion coefficient D is maximized in the
white-noise limit.

For the type-I phase sensitivity function ZI���, v and D
are explicitly calculated as

0 50 100 150 200
t

-2

-1

0

1

2

ψ
(t

)

sample path
mean
mean +_ std. dev.

0 50 100 150 200
t

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

<
ψ

(t
)

>

ω = 1
ω = 2
ω = 3
ω = 4

0 50 100 150 200
t

0.0

0.1

0.2

0.3

0.4

0.5

<
{

ψ
(t

)
-

<
ψ

(t
)

>
}

2
> ω = 1

ω = 2
ω = 3
ω = 4

(a) (b) (c)

FIG. 2. �Color online� �a� Sample paths of the slow phase 	�t� driven by the Ornstein–Uhlenbeck noise �100 realizations�. Oscillator frequency �=1 and the
phase sensitivity function is ZII���. Noise correlation time �c=1 and noise intensity �=0.1. Solid lines represent the mean value and broken curves indicate
the mean value � of the standard deviation. ��b� and �c�� Temporal growth of the mean �b� and the variance �c� of the phase 	�t� averaged over 200 000
realizations for �=1, 2, 3, and 4. The other parameters are the same as in �a�.
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v = −
�2

4

��c

1 + ���c�2 , D =
�2

2
�2 +

1

1 + ���c�2� , �41�

and for the type-II ZII��� as

v = −
�2

4

��c

1 + ���c�2 , D =
�2

2

1

1 + ���c�2 . �42�

Note that v is the same for both ZI��� and ZII���, whereas D
for ZI��� is larger than that for ZII���. This can easily be
seen from the Fourier representations; the only difference
between ZI��� and ZII��� is that ZI��� has a nonvanishing

constant component Z̃0=1 /2. For the type-E phase sensitiv-
ity ZE���, we numerically integrate Eqs. �21� and �22� to
obtain v and D.

In numerical simulations, the noise correlation time is
fixed at �c=1 and the noise intensity at �=0.1. Figures 3�a�
and 3�b� plot v and D as functions of the oscillator frequency
� for the three types of phase sensitivity �averaged over
200 000 realizations� and compare them with theoretical val-
ues, indicating good agreement. The drift coefficient v for
ZI��� and ZII��� coincides with each other and is minimized
at �=�c

−1=1. The diffusion coefficient D for ZI��� and ZII���
differs from each other and decreases monotonically with �c.
In particular, D for ZII��� �more generally for Z��� without a

constant component Z̃0� tends to vanish at large �, indicating
that the long-time phase diffusion of type-II oscillators can
be very small when the oscillator frequency is large. The
numerical values and theoretical values of v and D for ZE���
are also in good agreement.

D. Noise generated by a damped noisy harmonic
oscillator

Next, we consider colored noise ��t� generated by a
damped noisy harmonic oscillator �hereafter referred to as
DNHO noise�,

ẋ�t� = �0y − �x + ��x�t�, ẏ�t� = − �0x − �y + ��y�t� ,

�43�

where �x�t� and �y�t� are mutually independent Gaussian
white noise satisfying ��x�t��x�s��= ��y�t��y�s��=��t−s� and
��x�t��y�s��=0. The parameter �0 is the frequency of the
harmonic oscillations and � is the damping constant. This
process yields two-component noise with a Gaussian station-
ary PDF,

P�x,y� =
1

��
exp�−

1

�
�x2 + y2�� , �44�

and a correlation function C�t� of x�t� with oscillatory decay,

C�t� = �x�t�x�0�� =
�

2
e−�	t	 cos��0t� . �45�

Thus, the correlation time is given by �c=�−1. We use this
x�t� as the noise ��t� given to the oscillator. The power spec-
trum of x�t� and its Hilbert transform are, respectively, given
by

I��� =
�2

2
� 1

�2 + �� + �0�2 +
1

�2 + �� − �0�2� �46�

and

Î��� =
�

2
� � + �0

�2 + �� + �0�2 +
� − �0

�2 + �� − �0�2� . �47�

Effective drift and diffusion coefficients v and D can be
analytically calculated for the type-I phase sensitivity ZI���
as

v = −
�2�

8
� � − �0

�2 + �� − �0�2 +
� + �0

�2 + �� + �0�2� ,

D =
�2�2

4
� 1

�2 + �� − �0�2 +
4

�2 + �0
2 +

1

�2 + �� + �0�2� ,

�48�

and for the type-II phase sensitivity Z2��� as

v = −
�2�

8
� � − �0

�2 + �� − �0�2 +
� + �0

�2 + �� + �0�2� ,

D =
�2�2

4
� 1

�2 + �� − �0�2 +
1

�2 + �� + �0�2� . �49�

In the �0→0 limit, DNHO noise returns to the OU noise, so
that v and D converge to the corresponding results for the
OU noise. Note that values of v coincide again between
ZI��� and ZII���, whereas those of D differ between the two
cases. Values of v and D for the type-E phase sensitivity
ZE��� are calculated by numerically integrating Eqs. �21�
and �22�.
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FIG. 3. �Color online� Effective drift and diffusion coefficients v and D,
respectively, plotted against oscillator frequency � ��a� and �b�� and corre-
lation time �c ��c� and �d�� for type-I, II, and E phase sensitivity functions
ZI���, ZII���, and ZE���, respectively, driven by Ornstein–Uhlenbeck noise.
Noise intensity �=0.1 in all cases. Noise correlation time �c=1.0 in �a� and
�b�, and oscillator frequency �=1.0 in �c� and �d�. Data obtained by direct
numerical simulations are compared with theoretical curves.
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Figure 4 plots v and D obtained by direct numerical
simulations of Eq. �5� �averaged over 200 000 realizations�,
and the data are compared with the theoretical results. The
parameters �=0.1 and �0=2 are fixed and the oscillator fre-
quency � or the noise correlation time �c=�−1 is varied. In
Figs. 4�a� and 4�b� their dependence on � with fixed �c=1 is
shown. In contrast to the OU case, v can take positive and
negative values for all Z���. D does not monotonically de-
crease but exhibits a peak �at �=�0 for ZI��� and ZII����
implying some type of resonance effect. D for ZI��� is again
larger than that for ZII���. Figures 4�c� and 4�d� show the
dependence of v and D on the noise correlation time �c with
fixed oscillator frequency �=1. The drift coefficient v can
take positive values for ZI��� and ZII���. D decreases mono-
tonically for all types of the phase sensitivity. In all cases,
numerical and theoretical results are in agreement.

IV. EXAMPLE II: CHAOTIC NOISE

In this section, we consider colored noise from a well-
known deterministic chaotic system, the Lorenz model. We
apply it to the Stuart–Landau limit-cycle oscillator with an
amplitude degree of freedom, in addition to the correspond-
ing reduced phase equation �5�, to assess the validity of the
effective white-noise phase Langevin equation �11�.

A. Lorenz model

Time sequences generated by low-dimensional chaotic
systems are simple examples of colored non-Gaussian sig-
nals that are abundant in nature. Effects of chaotic signals on
dynamical systems have been extensively investigated in
many contexts.4 Here we use the Lorenz model,58

ẋ�t� = p�− x + y�, ẏ�t� = − xz + qx − y, ż�t� = xy − rz , �50�

which generates a typically chaotic time sequence. We use
parameter values p=10, q=28, and r=0.8 and apply the nor-
malized time sequence of x�t�,

x̃�t� =
x�t� − �x�


�x2�
, �51�

to the oscillator as the colored noise ��t�, where �¯ � denotes
the long-time average. Figures 5�a� and 5�b� show the corre-
lation function and power spectrum of the noise, respec-
tively. The correlation function exhibits oscillatory decay
with several characteristic frequencies, which appear in the
power spectrum of the noise as sharp peaks.

B. Stuart–Landau oscillator

The Stuart–Landau �SL� oscillator is a normal form of
the supercritical Hopf bifurcation3 and is described by a
complex variable W�t�. We apply the chaotic noise to its real
component as

Ẇ�t� = �1 + ic0�W − �1 + ic2�	W	2W + ���t� , �52�

where c0 ,c2 are real parameters and � control the noise in-
tensity. In the absence of noise, �=0, the limit-cycle solution
of the SL oscillator is given by a unit circle on the complex
plane, W0�t�=ei�c0−c2�t. The phase can be explicitly defined as

��W� = arg�W� − c2 ln	W	 , �53�

which satisfies �̇�W�t��=�=c0−c2 for any W�t��0.18 Sepa-
rating W into real and imaginary parts as W=wr+ iwi, the
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FIG. 4. �Color online� Effective drift and diffusion coefficients v and D,
respectively, plotted against oscillator frequency � and correlation time �c

for phase oscillators with type-I, II, and E phase sensitivity functions ZI���,
ZII���, and ZE���, respectively, driven by the damped noisy harmonic oscil-
lator noise. Noise intensity �=0.1 and noise frequency �0=2.0 in all cases.
�c=1.0 in �a� and �b�, and �=1.0 in �c� and �d�. Data obtained by direct
numerical simulations are compared with theoretical curves.
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FIG. 5. �Color online� �a� Correlation function C�t� and �b� power spectrum
I��� of the normalized x variable of the Lorenz model. �c� Drift and �d�
diffusion coefficients of the phase obtained by direct numerical simulations
of the Stuart–Landau oscillator and the corresponding phase equation sub-
jected to the chaotic Lorenz noise, compared with theoretical estimates ob-
tained using the correlation function C�t� in �a�.

033126-7 Effective long-time phase dynamics Chaos 20, 033126 �2010�



phase sensitivities of the respective components can be cal-
culated as

�Zr���,Zi���� = �� ��

�wr
,
��

�wi
��

W=W0���

= �− sin � − c2 cos �,cos � − c2 sin �� . �54�

Note that these sensitivity functions can be transformed to
the type-II phase sensitivity ZII��� by appropriate rescaling
and shifting. Since we apply the chaotic noise to the real
component of W, we use Zr��� below.

C. Results

Figures 5�c� and 5�d� show the drift and diffusion coef-
ficients v and D obtained by direct numerical simulations of
the SL oscillator, Eq. �52�, and its reduced phase equation,
Eq. �5�, driven by the chaotic Lorenz model �averaged over
20 000 realizations�, and compare them with the theoretical
values calculated from Eqs. �21� and �22� using the correla-
tion function C�t� shown in Fig. 5�a�. The noise intensity is
�=0.05 and the oscillator frequency � is varied through the
parameter c0 of the SL oscillator while keeping c2=−2. Re-
sults for v obtained by numerical simulations of the SL os-
cillator agree well with the theoretical values when � is
small, but gradually deviate when � becomes larger. This
discrepancy is due to higher-order errors in the phase reduc-
tion, Eq. �2�, caused by the amplitude effect of the SL
oscillator,42 which arise because � is finite in numerical
simulations and predominantly affect the mean frequency of
the oscillator. In contrast, numerical results for D obtained
from the SL oscillator are almost indistinguishable from the
theoretical values over the whole plotted range of �. Nu-
merical results from the reduced phase equation �5� agree
quite nicely with the theoretical values for both v and D,
indicating that the effective white-noise description of Eq.
�5� itself works correctly for the chaotic Lorenz noise.

The drift and diffusion coefficients v and D show inter-
esting peculiar dependence on �. As � increases, v increases
rapidly and then suddenly decreases, and this is repeated
several times. D exhibits a few sharp peaks, indicating that
phase diffusion due to the Lorenz noise can be strongly en-
hanced at some particular values of the frequency �. These
results, in particular the behavior of D, can easily be under-
stood from the Fourier representation, Eq. �30�. Since Zr���
has only the first harmonic component, Z̃1=−�c2− i� /2 and

Z̃−1=−�c2+ i� /2, Eq. �30� gives D=�2�1+c2
2��I���+ I�

−��� /4=�2�1+c2
2�I��� /2, namely, D is simply proportional

to the power spectrum itself. Indeed, we can see that the
curves in Figs. 5�b� and 5�d� are identical except for the
scaling factor. Moreover, from Eq. �29�, we can see that the

sudden rise and fall of v is due to the Hilbert transform Î���
of the power spectrum I��� near its sharp peaks, which gives
a contribution 1 / ��−��� if the peak is approximated by a
Dirac � function ���−���.

V. SUMMARY

We derived an effective white-noise Langevin equation
that describes the long-time phase dynamics of a limit-cycle

oscillator driven by general non-Gaussian colored noise. Ef-
fective drift and diffusion coefficients were calculated from
the phase sensitivity of the oscillator and the correlation
function of the noise. The results were verified using several
types of colored noise sources, i.e., the Ornstein–Uhlenbeck
process, the damped noisy harmonic oscillator, and the cha-
otic Lorenz model.

Our analysis gave general expressions for drift and dif-
fusion coefficients, applicable to general limit-cycle oscilla-
tors driven by arbitrary weak smooth noise. In a previous
study,57 Galán calculated the frequency shifts of limit-cycle
oscillators �the effective drift coefficient v in our notation�
driven by colored Ornstein–Uhlenbeck noise, and pointed
out that the frequency shift is always negative for arbitrary
phase sensitivity. In contrast, for other types of noise, fre-
quency shifts can also be positive, so that the noise may
increase the frequency of the driven oscillator. We can also
calculate the effective diffusion coefficient D, which directly
reflects the power spectrum of the driving noise. In particu-
lar, for chaotic noises, D exhibited sharp peaks, indicating
that the phase diffusion can be greatly enhanced for peculiar
frequencies of the limit-cycle oscillator.

The effective white-noise Langevin description enables
us to use the powerful classical methods for stochastic
processes50,51 and thus provides a general framework for
analyzing the long-time behavior of limit-cycle oscillators
subjected to noise. Important future topics will include gen-
eralization of the present results to multidimensional situa-
tions and incorporation of deterministic external forcing
�e.g., periodic� or mutual interactions. It is expected that the
combined effect of colored noise and other external pertur-
bations or mutual interactions may lead to qualitatively new
dynamics.
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APPENDIX A: DERIVATION OF EQUATION
„19…
FROM EQUATION „16…

We set �=nT with n being an integer. The right-hand
side of Eq. �16� can be rewritten as



t

t+�

dt1

t

t1

dt2Z���t1 + 	�t��Z��t2 + 	�t��C�t1 − t2�

= 

t

t+�

dt1

0

t1−t

dsZ���t1 + 	�t��Z���t1 − s� + 	�t��C�s�

� 

0

�

dsC�s�

t

t+�

dt1Z���t1 + 	�t��Z���t1 − s� + 	�t��
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=
�

2�



0

�

dsC�s�

0

2�

d�Z����Z�� − �s� , �A1�

where we have used



t

t+�

dt1Z���t1 + 	�t��Z���t1 − s� + 	�t��

= �
j=0

n−1 

0

T

dt1Z����t1 + t + jT� + 	�t��


Z���t1 − s + t + jT� + 	�t��

= �
j=0

n−1
T

2�



0

2�

�d�Z��� + �t + 2�j + 	�t��


Z�� − �s + �t + 2�jT� + 	�t��

=
nT

2�



0

2�

d�Z����Z�� − �s�

=
�

2�



0

2�

d�Z����Z�� − �s� . �A2�

Substituting these results into Eq. �16� yields Eq. �19�.

APPENDIX B: DERIVATION OF EQUATION „20…
FROM EQUATION „17…

Setting �=nT, the right-hand side of Eq. �17� can be
transformed as



t

t+�

dt1

t

t+�

dt2Z��t1 + 	�t��Z��t2 + 	�t��C�t1 − t2�

= 

t

t+�

dt1

t1−t−�

t1−t

dsZ��t1 + 	�t��


Z���t1 − s� + 	�t��C�s�

� 

−�

�

dsC�s�

t

t+�

dt1Z��t1 + 	�t��Z���t1 − s� + 	�t��

=
�

2�



−�

�

dsC�s�

0

2�

d�Z���Z�� − �s� , �B1�

where we have approximated the range of the integral of the
correlation function C�s� over �t1− t−� , t1− t� as �−� ,+�� by
assuming that the decay time of C�s� is much shorter than �
and that t1− t−��0 and t1− t�0 hold. In deriving the final
expression, we used



t

t+�

dt1Z��t1 + 	�t��Z���t1 − s� + 	�t��

= �
j=0

n−1 

0

T

dt1Z���t1 + t + jT� + 	�t��


Z���t1 − s + t + jT� + 	�t��

= �
j=0

n−1
T

2�



0

2�

d�Z�� + �t + 2�j + 	�t��


Z�� − �s + �t + 2�j + 	�t��

= �
j=0

n−1
T

2�



0

2�

d�Z���Z�� − �s�

=
nT

2�



0

2�

d�Z���Z�� − �s�

=
�

2�



0

2�

d�Z���Z�� − �s� . �B2�

We obtain Eq. �20� by substituting the above result into
Eq. �17�.

APPENDIX C: THE MORRIS–LECAR MODEL

The Morris-Lecar model of a spiking neuron is given by
the following set of two-variable ordinary differential
equations:5,9,56

CV̇�t� = gCam��V��VCa − V� + gK�VK − V�

+ gL�VL − V� + I ,

ẇ�t� = ��w��V� − w

�w�V�
� , �C1�

where

m��V� =
1

2
�1 + tanh�V − V1

V2
�� ,

w��V� =
1

2
�1 + tanh�V − V3

V4
�� ,

�w�V� = �cosh�V − V3

2V4
��−1

. �C2�

Here, V represents membrane potential and w is an activation
variable for potassium. The parameter values are chosen as
�=0.23, gL=2.0, gCa=4.0, gK=8.0, C=20.0, VK=−84.0, VL

=−60.0, VCa=120.0, V1=−1.2, V2=18.0, V3=12.0, V4=17.4,
and I=37.5.9 This model exhibits limit-cycle oscillations via
homoclinic bifurcation near I�35.

We set the origin of the phase �=0 at the point where V
exceeds 0 from below. The phase sensitivity function ZE���
for this model can be numerically obtained by the adjoint
method as explained in Refs. 11 and 56. It has an exponen-
tially decaying part, which tends to dominate the whole func-
tion as the parameter I approaches the bifurcation point. The
above set of parameter values gives a fixed frequency �
=0.198. However, note that we may still set � arbitrarily as
in Figs. 3 and 4 by rescaling the time appropriately �ZE��� is
not affected by time rescaling�.
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