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Abstract

Effects of Coulomb interaction on the band structure are studied for carbon nanotubes in a random-phase approximation

within a k ·p scheme. The energy gaps are strongly enhanced due to the interaction, while effects on the effective mass

along the axis direction are small. For realistic values of the interaction parameter, the conventional screened Hartree-Fock

approximation works quite well.
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1. Introduction

A carbon nanotube (CN) consists of coaxially rolled

two-dimensional (2D) graphite sheets and its electronic

states change critically from metallic to semiconduct-

ing depending on its tubular circumferential vector.

The characteristic properties were first predicted in a

tight-binding model [1,2] and successfully reproduced

in a k ·p scheme or an effective-mass approximation

[3,4]. The purpose of this work is to study effects of mu-

tual Coulomb interaction on the band structure within

a k·p scheme.
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Effects of the Coulomb interaction on the band struc-

ture were evaluated within a screened Hartree-Fock ap-

proximation [5]. The results show that the band gap is

considerably enhanced by the interaction. In this ap-

proximation the dielectric function appearing in the

self-energy is replaced by the static one and therefore

dynamical effects such as coupling with charge density

excitations are not taken into consideration explicitly.

In this paper, we calculate the electronic states using

a full dynamical random-phase approximation (RPA),

which is often called the GW approximation [6]. The

same method was used previously for semiconducting

CN’s [7] and the present work discusses mainly metallic

CN’s.
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2. Effective-Mass Scheme

In the effective-mass approximation, electronic

states of a 2D graphite near the K point are described

by the k·p equation as [8]

γ(σ ·k̂)F(r) = εF(r), (1)

with γ being the band parameter without interaction,

σ=(σx, σy) the Pauli spin matrices, and k̂=(k̂x, k̂y) a

wave vector operator. For a CN, its electronic states are

obtained by imposing the boundary conditions in the

circumference direction F(r+L)=F(r) exp(−2πiν/3).

The integer ν is 0 or ±1, determined by na +nb =

3M+ν with integer M , where L=naa+nbb is the chiral

vector in the circumference direction and a and b are

the primitive translation vectors of a 2D graphite. The

energy bands are given by

εns(k) = sγ
√

κν(n)2+k2, (2)

where n is an integer, s=+1 and−1 for the conduction
and valence band, respectively, and κν(n)=(2π/L)(n−
ν/3), with L= |L|.
The method of the calculation was discussed in de-

tail previously [7] and therefore will be discussed only

briefly in the following. In RPA, the Coulomb inter-

action appearing in the self-energy diagram Σns(k, ε)

is screened by the dynamical dielectric function

εn−m(q, ω). The self-energy diverges logarithmically

and therefore a cutoff function g0(ε)=εαc
c /(|ε|αc+εαc

c )

is introduced so as to exclude contributions from states

far away from the Fermi level. The cutoff energy εc is

of the order of the width of the π bands in 2D graphite.

The single-particle energy Ens(k) is calculated by

Ens(k) = εns(k)+Σns(k, εns(k)). Originally, it is de-

termined by the equation obtained from the above by

the replacement of Σns(k, εns(k)) by Σns(k, Ens(k)).

However, the present procedure is known to give more

accurate results if the self-energy is calculated only in

the lowest order as in the present case [9,10].

Using the single-particle energy, we evaluate the

band gap ∆n which is defined by the energy difference

at k=0 between conduction and valence bands of the

same index n as ∆n =En+(0)−En−(0). The effective
mass m∗

ns for each band with Coulomb interaction

can also be estimated from the single-particle energy

Ens(k) as 1/m∗
ns = (1/�

2)(∂2Ens(k)/∂k2)|k=0.

The effective strength of the Coulomb interaction is

specified by the ratio between the effective Coulomb en-
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Fig. 1. Calculated gap of a parabolic bands (n=±1) in a
metallic CN (M) and first and second gaps of a semicon-
ducting CN (S) versus the effective strength of the Coulomb
interaction.

ergy e2/κL and the typical kinetic energy 2πγ/L, i.e.,

(e2/κL)/(2πγ/L), which is independent of L. In actual

nanotubes, the interaction parameter is estimated as

(e2/κL)/(2πγ/L) ∼ 0.35/κ. In the following we shall

perform calculations for much wider parameter range,

(e2/κL)/(2πγ/L)<1, in order to make the dependence

on the interaction strength clearer. The cutoff param-

eters are chosen as εc/(2πγ/L)=5 and αc=4.

3. Interaction Effects on Band Structure

Figure 1 gives the gap of the first parabolic band

in a metallic CN and the first and second band gap

for a semiconducting CN. In the regime of very weak

interaction (e2/κL)/(2πγ/L)< 0.05, the band gap in-

creases with the interaction strength in both metallic

and semiconducting CN’s. With the further increase

of the interaction, however, the gap in a metallic CN

starts to decease after taking a maximum at around

(e2/κL)/(2πγ/L)≈0.15, while that in a semiconduct-

ing CN continues to increase.
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Fig. 2. The effective mass of the parabolic band in a metal-
lic CN (M) and those of first and second bands in a semi-
conducting CN (S) as a function of the effective strength
of the Coulomb interaction.

In the weak interaction regime (e2/κL)/(2πγ/L)<

0.2, dynamical effects on the band gap are small and

the static RPA works well. When the interaction is

stronger, the difference between the dynamical and

static RPA becomes larger in a metallic CN than in a

semiconducting CN. The shift in the gaps of a semi-

conducting CN is nearly independent of the band. This

shows that the interaction effects cannot be absorbed

into a simple renormalization of the band parameter γ.

Figure 2 shows the effective mass m∗. In metal-

lic CN’s, dynamical effects on m∗ are much pro-

nounced even when the interaction parameter

(e2/κL)/(2πγ/L) is small. In fact, the difference is

apparent even for the interaction strength as small

as (e2/κL)/(2πγ/L)∼ 0.05 and m∗ in the dynamical

RPA becomes larger than the mass without inter-

action at around (e2/κL)/(2πγ/L) ∼ 0.2, while the

effective mass in the static RPA stays smaller (about

90 %) in the whole range of the interaction strength.

Figure 3 shows the band gap for ametallic CN for dif-

ferent cutoffs, εc/(2πγ/L)=2.5, 5.0, and 10. The band

gap scaled by 2πγ/L increases logarithmically with the
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Fig. 3. The cutoff-energy dependence of the gap of the
parabolic band (n=±1) in a metallic CN.

increase of the cutoff energy. The same is applicable in

a semiconducting CN [7]. This logarithmic cutoff de-

pendence means that the band-gap enhancement in-

creases slightly (logarithmically) with the increase of

the CN diameter if being scaled by 2πγ/L. Unfortu-

nately, experimental measurements of band gaps have

not been accurate enough to make detailed comparison

possible so far.

4. Discussion

If we employ the same scheme, we can calculate the

self-energy for the linear bands with n=0 in metallic

CN’s, giving a gapless linear band with a renormalized

velocity. In fact, although each term of perturbation

expansion of the self-energy is known to exhibit a di-

vergence, the RPA self-energy itself does not diverge

because of the cancellation of divergent polarization

function. This result is in clear contradiction with the

fact that only a charge-density and a spin-density ex-

citation can exist and there are no well-defined quasi-

particle excitations in systems with a linear dispersion

[11,12], leading to the breakdown of the Fermi liquid
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Fig. 4. An example of the spectral function in a single
linear-band model calculated in RPA. The energy of the
first peak corresponds well to the spin-density excitation
and the second to the charge-density excitation.

picture.

This apparent inconsistency arises from the way of

determining the quasi-particle energy from the self-

energy. Even in RPA, the spectral function (the imag-

inary part of the Green’s function) exhibits double

sharp peaks in a system with only metallic linear bands

as shown in Fig. 4. This peak splitting, into charge-

density and spin-density excitations presumably, is a

result of the divergent behavior of the polarization

function and qualitatively in agreement with that of

the spectral function for a Tomonaga-Luttinger liquid

reported in refs. [13] and [14]. For the parabolic bands

both in semiconducting and metallic CN’s, no singu-

lar behavior appears in the polarization function and

therefore quasi-particle states are expected to give a

good picture of their low-energy excitations.

In summary, we have studied effects of the Coulomb

interaction on the bands with parabolic dispersion

using a full dynamical random-phase approximation

within an effective-mass scheme. For the interaction

parameter (e2/κL)/(2πγ/L) appropriate in actual

systems (<∼ 0.1 [15]), the screened Hartree-Fock ap-

proximation has been shown to work sufficiently well.

The band gaps are strongly enhanced but effects on the

effective mass are much smaller, showing that interac-

tion effects cannot be absorbed into a renormalization

of a single band parameter γ.
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