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Based on the effective-mass concept, we perform the Faddeev calculations for a low-
lying spectrum of 3α states in 12C nucleus. A three-body potential is used to describe

the known breaking of the 3α-cluster structure in the nucleus. We show that the contri-
bution of the three-body potential to the Hamiltonian can be compensated by increas-

ing/decreasing the α-particle free mass. The effective-mass values are adjusted so that

to reproduce the experimental data for the 12C nucleus. The energy dependence of the
effective mass and the correlation to a three-body potential are discussed. We show that

the coupling between the 0+ (2+) levels forms a specific picture of anti-crossing on the

energy/effective-mass plane.
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1. Introduction

The effective-mass approach for three-particle systems was proposed in Ref.1 based

on the effect of a mass-energy compensation that takes place for a three-body

Hamiltonian. This compensation manifests the mass-energy equivalence in bound

nuclear systems. It was shown in Ref.1 that a decrease in kinetic energy can be

compensated by an increase in the attractive contribution of potential energy. The

corresponding calculations for 3H and 3He nuclei have been performed using the

Faddeev method in the configuration space. The nucleon effective mass was defined

to compensate for a contribution of three-body nuclear potential. The potential

is required to reproduce 3N experimental data using phenomenological nucleon-

nucleon potentials. The simulations have shown that the results of this efficient

model can be comparable to those based on sequential consideration of the three-

body force (3BF). The evaluations for kinetic energy and pair-potential terms of

the Hamiltonian have been compared to ones of different authors2–5 for 3H nucleus

applying the Argonne AV14 potential and different three-body potentials. It was

found that the nucleon effective mass have slightly increased from the free-mass

value that the ratio m∗/m of effective mass m∗ and free mass m is 1.017. This

relatively small correction reflects the contribution of a three-body force in the 3N
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Hamiltonian.

We have to note that the idea of effective mass is widely applied in solid-state

physics.8 For example, in Ref.,9 the effective mass of an electron in InAs is 0.024m0,

while in GaAs is 0.064m0, where m0 is the mass of a free electron. In nuclear physics

and astrophysics, the effective mass method is used in the study of neutron stars10

within the more general one-particle method of many-body physics.11 According to

the consideration, an individual particle (nucleon) is in a complex interaction with

the environment (other nucleons in nuclei), which affects the particle dynamics,12,13

and the one-particle potential is considered to be energy dependent.14

Applying the effective mass method, we consider a 3α-cluster system simulating

low-lying spectral states of the 12C nucleus. The α-particle model has been proposed

almost a century ago (see, for example,15) based on the molecular properties of low-

lying 12C states. This molecular aspect has been studied within the framework of

several variational approaches.16 In Refs.,17–34 the cluster approach has been used

to treat the 3α problem with different inter-cluster potentials, phenomenologically

obtained. However, the cluster model has failed in a detailed description of the 12C

spectrum. The main problem is that this approach does not reproduce the ground

state energy of the 12C nucleus taking into account only α-α potential. To reach an

admissible description of experimental data via cluster calculations, one needs to

add a three-body potential.23,26,27,29 However, the potential would be different for

different spectral levels of the 3α system. Moreover, a three-body potential can be

repulsive,2426,30 or attractive one.23,33 That depends on the choosing of a two-body

potential model. For example, a repulsive 3α potential was phenomenologically in-

troduced in Ref.32 with the dependence on the total angular momentum J=0+, 2+,

and 4+. The potential has the Gaussian form with the depths V (0+)=31.7 MeV,

V (2+)=63.0 MeV, and V (4+)=150.0 MeV,34 respectively. An attractive three-body

potential has been proposed in Ref.31 In corresponding 3α-cluster model, the phe-

nomenological pair potential having s, d, and g partial components was used from

Ref.35

In the present work, we implement the cluster model from Ref.31 However, the

current model does not include the three-body potential. We introduce an α-cluster

effective mass that effectively substitutes the contribution of the three-body poten-

tial. In our calculations, an adjustment of effective-mass values has to reproduce

the experimental energy for considering levels. The effective mass is assumed to be

a function of energy and orbital momentum of the 3α state. To solve the corre-

sponding three-body problem, we apply the method of the Faddeev equations in

configuration space.36 That allows us to take into account the Coulomb interaction

in a rigorous manner.31
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2. Model

2.1. Mass-energy compensation: 3N system

In this section, we consider the AAA model for the 3H nucleus, where the masses

of protons and neutrons are the same, and the particles in the system are identical.

The averaged nucleon mass m was chosen as in Ref.4 as mN=938.9 MeV (or ~2/mN

= 41.473 MeV fm2). Our calculations for the ground state were performed using

the charge-independent AV14 potential.6 The calculated value for the 3H binding

energy is equal to -7.684 MeV. Without three-body potential, the 3N system is

weakly bound, and the difference between our AV14 results and experimental values

∆E = ECal. − Eexp. is 0.798 MeV. One can find many examples of corresponding

calculations in the literature3–5 given without and with a three-body potential. The

three-body Hamiltonian reads

H = H0 + V2bf + V3bf , (1)

where H0 is three-body kinetic operator, V2bf (V3bf ) is two-body (three-body) inter-

actions. Here, we assume that the three-body force term is a perturbation. Other

factors of the nucleon-nucleon interaction like the charge symmetry breaking or

electro-magnetics terms (see Ref.7) are not considered in this model. Following

Ref.,1 we define the effective nucleon mass m∗ in a nucleus. The effective mass can

be obtained as a correction to the averaged free nucleon mass to reproduce the

experimental value of the ground state energy. The possibility of the procedure was

shown in Ref.1 due to the the mass-energy compensation effect takes a place for

the three-body Hamiltonian. To explain this effect, we consider the Hamiltonian

written in following form:

H = βH0 + αV2bf , (2)

where β, α > 0. We can change the mass and the depth of potential simultaneously

by using parameters α and β defining the scaling for the nucleon mass by the relation

m∗ = mN/β. The corresponding energy changes are oppositely directed and can

be compensated by each other. Similar compensation is possible for a three-body

force as a part of the potential term.

Fig. 1 illustrates the calculations for the ground state using the Hamiltonian

(2). Increasing the nucleon mass leads to an increase in the binding energy of the

three-body system. The energy E(α, β) is a linear function near the cross point

α = β = 1. The compensation has been interpreted in Ref.1 as a manifestation of

the mass and energy equivalence of applied to three-nucleon system.

The dependence of the 3H ground state energy on the effective mass m∗/m could

be applied to an evaluate the nucleon effective mass. We calculate the energy using

the AV14 NN potential. The results of the calculations fitted by linear functions

are presented in Fig. 2. One can obtain the same linear dependence using the

results published in Ref.37 for the NN CB-Bonn potential scaled by a parameter.

Alternatively, such energy dependence on the potential scaling one can repeat by
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Fig. 1. The ground state energy E of 3H as a function of the parameter α (the line E(α)) or β
(the line E(β)) calculated with the AV14 NN potential and corresponding to the Hamiltonian

H = βH0 +αV , where β, α > 0, and m→ m/β in the H0. The linear fits for the calculated values

are shown. The effective mass of nucleon m∗
N/mN is equal to 1.017 for α = β = 1.

nucleon mass scaling.1 In this way, the effective mass of nucleon m∗/m is about

1.017. That corresponds to the experimental value for the ground state energy

of about -8.48 MeV. In Fig. 2, we show this correspondence by the vertical and

horizontal dashed lines.

It has to note that the result of the calculation for the 3N wave function within

the proposed effective approach is comparable with the results of 3N realistic models

from the literature.

2.2. α-cluster model for 12C: effective-mass extension

The α-cluster model describes the 12C nucleus as a three-body system of α-particles.

The particles interact with pair and three-body nuclear potentials and the Coulomb

force. In the present work, we use the formalism of Ref.31 based on the Faddeev

equations in configuration space. Also, we apply phenomenological Ali-Bodmer

(AB) α-α potential35 having different s, d and g partial components which are

written as two-range Gaussian:

V (x) = V1 exp(−x
2

β2
1

) + V2 exp(−x
2

β2
2

)

where the strength and range parameters are V1=500 MeV, β1=1.43 fm, V2=-

130 MeV, β2=2.11 fm for s-wave; V1=320 MeV, β1=1.43 fm, V2=-130 MeV,

β2=2.11 fm for d-wave; V1=0, V2=-130 MeV, β2=2.11 fm for g-wave. The attractive

s-wave component of the potential simulates the Pauli blocking.

The starting point of our approach is related to the kinetic, 2-body, and 3-body

potentials terms of the 3-α Hamiltonian. The 2-body potential must reproduce two-
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Fig. 2. The ground state energy E of 3H as a function of the effective mass m∗/m. The solid
circles are the results of the calculations (the AV14 NN potential). The fine red line corresponds

to the linear fit for the calculated values. The dashed lines correspond to the effective mass of

nucleon m∗/m about 1.017 and the experimental value for the ground state energy about -8.48
MeV.

body experimental data. Three-body potential can be found by 3-α data. The Ali-

Bodmer-type potentials satisfy this request.31 The potential has simple coordinate

dependence with a repulsive core in s partial wave. The combination AB +3α

potentials obtained in Ref.31 describes the low-lying 12C spectrum. The dependence

of the 3-α potentials on total orbital momentum was detected. Thus, an additional

adjustment for the 3BF potential will reproduce the spectrum with good accuracy.

Note here that our goal is to present the general scheme of the effective mass

definition for the three-body system. The main assumption of the approach is that

a three-body potential acts in the system. Our choice for the pair potential is based

on the model proposed in Ref.31 by two coauthors of the presented work.

The angular momentum configurations {(l, λ)}, where J = l + λ is to-

tal orbital momentum, l is momentum of a pair of particles, λ is the rela-

tive momentum of third particle. One may choose the quantum number sets31

(0, 0)(2, 2)(4, 4) for the 0+ band and (2, 0)(0, 2)(2, 2)(2, 4)(4, 2)(4, 4) for the 2+ band.

The (4, 0)(0, 4)(2, 2)(2, 4)(4, 2)(4, 4) configuration of angular momenta for the 4+

states and the (0, 1)(2, 1)(2, 3)(4, 3)(4, 5) configuration for 1− state.

The known breaking of cluster structure is described by a three-body potential

which acts at short distances.38 According to the effective-mass concept presented

in the previous section, the contribution of the three-particle potential can be com-

pensated by a variation of free mass of α-particles, mα. One achieves compensation

when the calculated energy is equal to the experimental value. The effective mass
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m∗
α can be smaller or larger than the free mass depending on the energy level. Ob-

viously, there is a correlation between depth of three-body potential and effective

mass value.

It may be noted that one of the reasons42,43 for the violation of the cluster

structure of 12C is the significant mixing of the p3/2 subshell closure component42

to the pure 3α-cluster wave function. This mixing generates additional terms in the

Hamiltonian. We consider the additional terms as a form of three-body force. In

Ref.,42 such breaking of the α-cluster structure affects all considered states of the 0+

and 2+ bands like a three-body force. Particularly, in Ref.,42 a coupling between the

0+ states was discussed. Below we present the evidence for such coupling, obtained

in the framework of the effective-mass approach.

The attractive three-body potential V3(ρ) having the Gaussian form was defined

in Ref.:31

V3(ρ) = V exp(− ρ2

2β2
), (3)

where 1
2ρ

2 =
∑i=3
i=1 r2i and ri is the position vector of i-th α particle relative to

the center of mass of the system, V=-31.935483 MeV, β = 3.315 fm. We use this

potential as an auxiliary one for calculations of resonances. It should be emphasized

that the potential (3) does not affect the two-particle threshold of three-particle

systems.31

3. Numerical results

Based on the effective-mass approach, we calculate the low-lying spectrum of a

3α-cluster system using the α-α Ali-Bodmer potential of the ”d” version.35 The

results of our calculations are presented in Table. 1. Here, the effective mass m∗
α is

adjusted to reproduce the experimental energy of the first two levels of the 0+, 2+,

4+ bands, and 3−1 and 1−1 levels. The bound states are the states 0+1 and 2+1 , and

the remaining states are resonances. In order to calculate the energy of resonances,

we used the analog39 of the method of continuation in coupled constant.40,41 In

our study, the effective mass was considered as a coupled constant. To estimate the

energy of the resonances, we calculate a set of bound state energies obtained with

different effective-mass values.

This evaluation procedure is shown in Fig. 2 for the 3H bound state. The simple

linear interpolation to the positive energy region allows us to evaluate effective mass

by correspondence to the experimental value for energy.

In the case of the 3α-cluster system, the binding energy and effective mass

correspondence can be more complicated. The results of our calculations for the

first levels of the 0+ and 2+ bands are resented in Fig. 3. One can see that the

energy/effective-mass dependences are non-linear. We applied a polynomial func-

tion to interpolate and extrapolate to negative and positive energies. The physical

reason for the non-linear behavior is the coupling between the levels. Note that

the effective mass adjusted by the 0+1 ground state energy (m∗
α/mα=1.29) does
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not lead to the experimental energy for the 0+2 state. This situation is shown in

Fig. 3 (Upper panel). To obtain the experimental 0+2 value, one must reduce the

effective mass adjusted for the 0+1 energy to 1.176. The same situation exists for

the 2+ states: the effective mass of the 2+2 state is less than one for the 2+1 state.

We explain this statement in Fig. 3 (Lower panel).

The effective mass and three-body potential depth are correlated due to the

initial assumption of our approach. Thus, one can assume a dependence of effective-

mass value on total orbital momentum. In particular, the effect of the 3α potential

in the 2+ states must be smaller than one in the 0+ states.34 For example, the

three-body potential proposed in Ref.31 reproduces well low-lying 0+ states of the

nucleus. However, the same potential applied to the calculations of bound 2+1 and

the resonance 2+2 states makes overbounds for the energies of the levels. An ad-

ditional adjustment for the parameters of 3BF is needed for 2+ states. Thus, the

hypothesis of the dependence of 3BF on the total orbital momentum can be con-

sidered a probable one.

Comparing the effective mass for 0+1 and 2+1 states, one may detect an energy

dependence or an orbital momentum dependence of the effective mass. This compar-

ison is illustrated by Fig. 4, where we show the effective mass (m∗/m) variations

for the J = 0 → 2 vector using data from Tabl. 1. The mass variation can be

represented by the form: ∆m∗ = (δm∗/δJ)∆J + (δm∗/δE)∆E assuming a depen-

dence of effective mass on orbital momentum J and energy E. One can show that

(δm∗/δJ) = 0 and the effective mass depends on the energy only. The variations

of the effective mass for different energies when the orbital momentum is fixed J+
1

(J+
2 ), J = 0, 2 (see Fig. 3) can be described by the form: ∆m∗ = (δm∗/δE)∆E. In

Fig. 4, the corresponding results are shown by open circles and squares. The results

obtained for both representations coincide. Thus, the effective mass does not have

essential orbital momentum dependence for 0+n and 2+n states when n = 1, 2. In

addition, it can be seen that the dependence of the effective mass on energy can

be represented as a linear function. For states J+
n , where J = 0.2 and n = 1.2,

the slopes of the functions are approximately equal. At the same time, the linear

functions are different in constant for the states n = 1 and n = 2.

The results shown in Fig. 3 can be interpreted in the terminology of the two-

level theory as anti-crossings of levels.44 The n = 1 and n = 2 states are the

lower and upper states of a quasi-doublet formed by the anti-crossed levels. To

Table 1. The effective mass m∗
α/mα with relation to the low-lying levels of the 12C. The calculated

energies for each level is shown. The energy is measured from the three-body α+α+α threshold.

12C 0+1 0+2 2+1 2+2 4+1 4+2 3−1 1−1

E (MeV) -7.275 0.286 -2.93 2.25 6.05 6.81 2.4 3.6

m∗
α/mα 1.290 1.176 1.15 1.11 0.92 1.17 1.05 1.19
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Fig. 3. The energy E of the states J+
1 (red solid circles) and J+

2 (blue solid circles), J = 0, 2
and 0+3 (open circles) of 3α-cluster system along of the α-particle effective mass m∗

α/mα. The left
panel (right panel) corresponds to 0+ (2+ ) band. The experimental data are shown by the dashed

horizontal lines. The vertical lines represent the corresponding values of the effective masses. The
energy is measured from a three-body α+ α+ α threshold.

clarify this assumption, we performed calculations with the three-body potential

(3). This potential does not affect the two-body α−α threshold, and we can make

an extension for allowable energy and effective-mass scopes to apply the numerical

procedure proposed above for bound states. The results of the calculation are given

in Fig. 5. The three-body potential increases the depth of the potential well where

are the bound states J+
1 , J+

2 , J+
3 , J+

4 , J = 0, 2. One can see that the anti-crossing

of the levels occurs for the pairs 0+1 and 0+2 , 0+2 and 0+3 , 0+3 and 0+4 . In the 2+ states,

the similar situation is visible for the pairs 2+1 and 2+2 , 2+3 and 2+4 . According to
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Fig. 4. The effective mass (m∗/m) (solid lines) as a function of energy of levels given for the

vector J = 0 → 2. The red and blue lines correspond to lower and upper members of the coupled

states (J+
1 and J+

2 ). The open circles (open squares) show the results of our calculations for the

states J+
1 (red) (J+

2 , (blue)), J = 0, 2 (see Fig. 3). The energy is measured from the three-body

α+ α+ α threshold.

the two-level system theory, we can definite upper member and lower member of

the corresponding quasi-doublets. In the absence of a coupling between levels, the

levels may cross. The assumed crossing of the levels is schematically presented by

crossing fine lines in Fig. 5. One can assume that the level anti-crossings will be

saved in the continuous spectrum of the nucleus. Thus, our study is extended to

the states of the continuous spectrum.

We can conclude that there is tunneling coupling between the 0+ levels and

between the 2+ levels. At the same time, the levels with different J are not coupled

due to the different rotation symmetry of these states. The coupling parameter

depends on overlapping wave functions45,46 and is small for these states. The 4+1
and 4+2 levels do not demonstrate also a coupling. The results of our calculations

for the levels 4+1 and 4+2 are given in Fig. 6(Upper panel). The effective masses for

these levels have a significant difference, 0.92mα and 1.17mα. That gives different

contributions of the kinetic energy to the Hamiltonians and provides the difference

in coordinate behavior of the wave functions. One can assume that the last differ-

ence arises from the effect of coordinate scaling due to the mass difference. The

asymptotic behavior of these functions differs only in the mass coefficient due to

the closeness of the energies of the levels.

The energy/effective mass dependence is a simple linear function with different

slopes for the 4+1 and 4+2 levels. One can interpret that the corresponding three-

body potential must have different depths in the 4+1 and 4+2 states to reproduce the

experimental data for these levels. Thus, the results of,34 in which the three-body
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Fig. 5. The energy E of the low lying levels J+
1 (red solid and open circles) and J+

2 (blue solid and
open squares), J = 0, 2 of the 3α-cluster system along of the α-particle effective mass m∗

α/mα.

The Upper panel (Lower panel) corresponds to 0+ (2+ ) band. The assumed level crossing is

schematically shown by intersecting thin lines for the case when there is no coupling between the
levels. The three-body potential Eq. (3) was added to the model. The energy is measured from

the α+ α+ α threshold.

potential acts with the same depth for different 4+ levels, can be explained within

the framework of the effective-mass approach.

The results for the states 3−1 and 1−1 are shown in Fig. 6(Lower panel). Also, a

linear dependence of energy on the effective mass has been found for these states.

There is no coupling between the levels due to different rotational symmetries and

significant differences in the effective mass.
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Fig. 6. The energy E of the 12C low lying levels and the α-particle effective mass m∗
α/mα. (Upper

panel) The results for the levels 4+1 and 4+2 (solid and open circles) are given. (Lower panel) The

results for 3−1 (solid circles) and 1−1 (solid squares) states are presented. The experimental data

are shown by the solid/dashed horizontal lines. The vertical lines represent corresponding values
of the effective masses. The fine solid lines are given for eyes to show a linear extrapolation. The
energy is measured from a three-body α+ α+ α threshold.

4. Conclusions

The imperfectness of α-cluster structure of the 12C nucleus can be described with a

three-body force. Based on the effect of mass-energy compensation, the three-body

force can be taken into account in a phenomenological manner using the effective-

mass approach.

We have presented the results of the Faddeev calculations for the bound 3N sys-

tem to demonstrate the mechanism of mass-energy compensation for a three-body

Hamiltonian. Based on this compensation effect, we have proposed the effective-
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mass approach which was initially applied for a bound few-body system. In the

presented work, this approach is assumed to be applicable to describe the reso-

nances states. Based on this assumption, we have defined the effective mass of

the α-cluster in the 12C. The corresponding mass adjustment was performed to

reproduce the experimental data for several low-lying states available with the Ali-

Bodmer α-α potential.

For the 0+ (and 2+) band, we have found that there is a coupling between pairs

of nearest levels. We describe these coupled levels as quasi-doublets following the

terminology of the theory of two-level systems.44 The anti-crossings picture, which

was obtained on the energy/effective-mass plane, is interpreted within this theory.

According to this interpretation, the coupling matrix elements of the quasi-doublets

are non-zero due to overlapping the wave functions of the nearest levels. The last

one is possible, for example, when these levels have the same orbital momentum

and similar rotation symmetry. We have found that the coupling takes place for the

pairs of the levels 0+1 and 0+2 , 0+2 and 0+3 , 0+3 and 0+4 . Also, we have found that the

structure of the 2+ band repeats the one for the 0+ band. Along with that, the levels

with different orbital momenta like the 0+ and 2+ levels are not coupled. However,

the levels 4+1 and 4+2 are not coupled also despite the same orbital momenta. Here,

the orbital momentum similarity of wave functions is broken by differences in the

kinetic term in the Hamiltonian due to the significant difference in the effective

masses. The similar explanation one can give for 3−1 and 1−1 resonances. There is

no coupling due to different rotation symmetry and significant differences in the

effective masses.

Within our approach, an effective-mass value is correlated with the strength of

a three-body potential. However, this approach does not support the assumption

about the direct dependence of the effective mass (and 3BF) on only the total

orbital momentum used previously within the approximations31,34 for three-body

potentials. We conclude that 3BF has to be separately defined for each energy level

as it was earlier concluded in Ref.47 Note that, the effective mass of the 0+1 ground

state is the largest in the considered 3α spectrum. In other states, the mass of the

α-cluster increases or decreases relative to the value of free mass.
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