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The molecular mean free path (MFP) of gases in confined geometries is numerically eval-

uated by means of the direct simulation Monte Carlo (DSMC) method and molecular

dynamics (MD) simulations. Our results show that if calculations take into account not

only intermolecular interactions between gas molecules, but also collisions between gas

molecules and wall atoms, then a space-dependent MFP is obtained. The latter, in turn, per-

mits one to define an effective viscosity of confined gases that also varies spatially. Both the

gas MFP and viscosity variation in surface-confined systems have been questioned in the

past. In this work we demonstrate that this effective viscosity derived from our MFP calcu-

lations is consistent with those deduced from the linear-response relationship between the

shear stress and strain rate using independent non-equilibrium Couette-style simulations,

as well as the equilibrium Green-Kubo predictions.
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I. INTRODUCTION

Rarefied gas flows are of ongoing interest, because of their fundamental nature and many ap-

plications in different fields including aerodynamics and heat transfer29,44, micro/nano-electro-

mechanical systems (MEMS/NEMS)12, and shale gas recovery14,41. The traditional dimension-

less measure of the degree of rarefaction is the Knudsen number (Kn), defined as the ratio of the

molecular mean free path (MFP) to the characteristic dimension of the gas flow.

Rarefaction effects cause gas flows to deviate from continuum fluid behaviour when Kn& 10−3.

More specifically, for moderate Knudsen numbers in the slip flow regime (10−3 . Kn . 10−1),

these effects are confined to thin layers close to the bounding surfaces, which are referred to as

Knudsen layers. These layers may be accounted for in the conventional Navier-Stokes descrip-

tion with slip/jump boundary conditions for the velocity and temperature12. In the transition flow

regime (0.1 . Kn . 1), rarefaction effects become appreciable in the whole domain, and, in prin-

ciple, the accurate description of a gas flow requires the solution of the Boltzmann equation or

simplified kinetic model equations12. Thermodynamic non-equilibrium gas flows are met in dif-

ferent physical situations ranging from low pressure conditions in the upper regions of planetary

atmospheres (i.e. low-density gas flows in near-vacuum environments) to high pressure conditions

in very small channels (i.e. dense gas flows in micro/nano confinements).

Solving gas kinetic equations, either by the stochastic direct simulation Monte Carlo (DSMC)

technique8, or by deterministic methods4,16, such as molecular dynamics (MD), is computationally

demanding, especially for flows that are three-dimensional and/or involve both continuum and

rarefied regions35. Therefore, much effort has been done over the years to extend the continuum

fluid dynamics description to the transition regime. A first approach to incorporating rarefaction

effects into a continuum description relies on the higher-order continuum equations that are derived

from the kinetic equations via the Chapman-Enskog series solution technique, the Grad moment

method, or a combination of these two37. A second and simpler approach consists in using an

effective viscosity with the original strain-rate in the linear constitutive relationship of the Navier-

Stokes equations, i.e.

µeff(z) =
1

Ψ(z)
µ0, (1)

where µ0 is the nominal viscosity of the gas, and Ψ(z) is an expression of the high-order non-linear

correction terms, which depends on the normal distance z to the nearest solid wall22,24–27. The

effective gas viscosity simplifies to the nominal viscosity in the gas flow regions where rarefaction
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effects can be disregarded, i.e., Ψ(z)→ 1 as z → ∞ in Eq. (1).

The simplest way to define an effective viscosity is to use the direct proportionality between

viscosity and the molecular mean free path (MFP) as predicted by elementary kinetic theory argu-

ments in equilibrium conditions13,23. Accordingly, this produces a high-order non-linear correc-

tion term as follows:

Ψ(z) =
λ0

λeff(z)
, (2)

where λ0 is the nominal MFP in the space-homogeneous conditions, and λeff is the effective MFP

of gas molecules in confined geometries. The nominal MFP for hard-sphere molecules is rigor-

ously defined as:

λ0,h =
m√

2πd2ρ
, (3)

while for molecules interacting through long-range potentials, it can be qualitatively expressed

as12:

λ0,v =
µ0

ρ

√

πm

2kBT
. (4)

In Eqs. (3) and (4), ρ is the gas density, m is the molecular mass, d is the molecular diameter, T is

the temperature of the gas, and kB is the Boltzmann constant.

Stops36 first derived a space-dependent expression for λeff of gas molecules leaving a wall,

distributed according to the diffusive Lambert’s cosine law of reflection. Several decades later,

Guo et al.20 extended the Stops’ model to propose the MFP of confined gases as:

λeff,G(z)

λ0
= 1− 1

2

[

z2E1(z)+(1− z)e−z
]

, (5)

where E1(z) is the exponential integral function, i.e. E1(z)=
∫ ∞

z e−z/zdz. More recently, Abramov1,2

has introduced a new expression for the MFP of gases in confined geometries by replacing the

cosine law with the equilibrium Maxwellian to give:

λeff,A(z)

λ0
= 1− 1

2

[

e−z − yE1(z)
]

. (6)

Beside theoretical research in this area, there have been a number of recent studies in which

molecular dynamics (MD) simulations have been used to directly evaluate the MFP in a gas by

averaging the recorded individual free paths5,7,17,31,39. However, there is still debate about the

behaviour of the effective MFP in confined geometries, and whether this is physical or not. Some

studies take into account the collisions between the freely moving gas molecules and wall atoms,

as these are momentum-changing events, and show that the MFP varies near surfaces5,17,31,39.
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Others7 have argued that the collisions between the freely moving gas molecules and solid wall

atoms (or gas molecules adsorbed on the walls) should be disregarded when evaluating the indi-

vidual free paths. The latter study shows that the MFP should not vary spatially and conclude that

the effective viscosity provided by Eq. (1) is questionable7.

The main aim of the present paper is to resolve disputes in the literature about the spatial vari-

ation of the MFP for gases in confined geometries, such as in flows through micro/nanochannels.

For this purpose, the MFP is computed numerically now by means of both DSMC and MD on the

basis of its definition, namely by averaging the distance travelled by molecules between two con-

secutive collisions. Our aim is also to demonstrate using different techniques for measurements of

viscosity that there is a variation in viscosity near a surface, thereby validating Eq. (1).

It is the first time that DSMC has been used for this kind of investigation until now. The DSMC

technique offers a number of advantages compared to MD simulations, such as the computational

efficiency and the possibility to more easily assess the theoretical predictions proposed in the

literature2,20. On the other hand, MD remains the key simulation tool in that, in principle, it

enables the study of more complex and realistic fluid flows14,43, including the important gas-

surface interactions.

The rest of the paper is organised as follows. In Section II, we briefly present the DSMC and

MD approaches, and we discuss the procedure for the direct determination of the MFP. In Sec-

tion III, we first investigate how the MFP of gas molecules is modified when their dynamics are

constrained by a confining geometry and we assess the accuracy of the theoretical predictions pro-

posed so far, i.e. Eqs. (5) and (6) (Subsection III A). We then measure viscosity using independent

methods and compare our results with Eq. (1) in Subsection III B. Conclusions and future work

are then drawn in Section IV.

II. EVALUATION OF MOLECULAR MEAN FREE PATHS

A. Direct simulation Monte Carlo

The DSMC technique was initially introduced for gas simulations based on physical argu-

ments8, but it has been proved to converge, in a suitable limit, to the solution of the Boltzmann

equation40. The basic idea of DSMC consists in representing the velocity distribution function

of the gas molecules by a number of computational particles. Particle motion and interactions
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FIG. 1: Schematic of the calculation of individual free paths in our (a) direct simulation Monte

Carlo and (b) Molecular Dynamics simulations.

are decoupled over a time step ∆t, which is smaller than the average collision time. The space

domain to be simulated is divided into a mesh of cells whose size ∆z is less than the MFP. These

cells are used to collect together particles that may collide according to stochastic rules derived

from the Boltzmann equation. The cells employed for simulating interactions are also used for the

sampling of macroscopic properties, which are obtained through weighted averages of the particle

properties.

In the present work, particles’ collisions are evaluated based on the hard sphere molecular

model, which provides a reliable description of isothermal gas flows of argon-like molecules. The

particles’ free paths are evaluated by tagging particles and keeping track of their free flight distance

by an appropriate counter that measures the distance incremented by a particle in each time step, as

shown in Fig. 1(a). The free path is therefore a sum over all displacements between two successive

collisions:

li(z) =
n

∑
j=1

vi, j ∆t, (7)

where vi, j is the speed of the ith particle at time t j, n is the number of time steps between two

successive collisions, z is the coordinate of the bin where the particle collided, and ∆t is the nu-

merical time step. Note that if external force fields are absent, such as in the case of DSMC, the

particle’s velocity between two consecutive collisions is constant and, therefore, it can be taken

out of the sum. When a particle collides, the free path is terminated, and the counter is set to zero

whether the collision occurred with a wall or with another particle. As particle-particle collisions

occur in a DSMC cell, the free path is also collected and assigned to the same cell for further
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post-processing.

The mean free path is then easily obtained by averaging over particles:

λ (z) =

N

∑
i=1

li(z)

N(z)
, (8)

where N(z) is the total number of particles that have terminated their free path in the bin of coor-

dinate z. Our numerical experiments have shown that the MFP is discontinuous if the free flights

of the molecules hitting the walls are attributed to the cells closest to them. The continuity of the

MFP is recovered by setting to zero the counter of molecules which suffer a collision with walls,

but disregarding their free flight contribution.

The DSMC simulations we report below have been obtained with ∆z = 10−2 λ0 and ∆t =

2× 10−3 t0, where t0 = λ0/(kBT0/m), and λ0 and T0 are the nominal mean free path and a ref-

erence temperature, respectively. Computational particles are initially distributed according to a

Maxwellian at the temperature T0 and their average number per cell during simulations is about

102. The evolution of the system is simulated for 103 t0. As an input parameter for the bound-

ary condition, both fully diffusive wall, i.e. the tangential momentum accommodation coefficient

(TMAC) α = 1.0, and a mixture of partially diffusive and partially specular walls (i.e. α < 1.0)

have been used in our DSMC simulations: four values of the TMAC (i.e. α = 0.2, 0.4, 0.6, 0.8 and

1.0) are tested. Our results show that the influence of the TMAC on the calculations of MFP is neg-

ligible. For the sake of simplicity, the fully diffusive wall is adopted in all our DSMC simulations

below.

B. Molecular dynamics

In MD simulations, the molecules move according to Newton’s second law, and the inter-

molecular interactions are modelled through a prescribed interatomic potential. In the present

study, monatomic argon (Ar) gas is used and it is assumed that molecules interact through the

Lennard-Jones (LJ) potential:

ULJ
(

ri j

)

=















4ε

[

(

σ

ri j

)12

−
(

σ

ri j

)6
]

, ri j ≤ rc,

0, ri j > rc,

(9)
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TABLE I: Physical parameters and their values in our MD simulations. Subscripts Ar and Pt

refer to argon and platinum atoms, respectively, and kB is the Boltzmann constant.

Parameter Symbol Value

Length scale σAr 3.405 ×10−10 [m]

σAr−Pt 3.085 ×10−10 [m]

Energy scale εAr 1.67 ×10−21 [J]

εAr−Pt 0.894 ×10−21 [J]

Molecule mass mAr 6.63×10−26 [kg]

mPt 3.24×10−25 [kg]

Time scale τ = σAr

√

mAr

/

εA 2.15×10−12 [s]

Temperature εAr/kB 119.8 [K]

where ri j is the intermolecular distance, ε is the energy parameter, σ is the molecular diameter,

and rc is the cutoff distance.

For the measurement of individual free paths, as shown in Fig. 1(b), a condition is set to

judge the occurrence of a collision event between gas molecules: if the distance between two

gas molecules is equal to or less than the collision diameter σcol , i.e. ri j ≤ σcol , the two molecules

have collided and we stop recording the free paths of the involved molecules. We describe the

procedure used to define the collision diameter in our MD simulations, in Appendix A.

As the LJ potential allows any pair of molecules to move closer to each other, even when ri j <

σcol , then the finite time spent during this collision process must be excluded when calculating the

individual free paths. Therefore, we restart recording the free paths when the distance between

the molecules is again larger than the collision diameter, i.e. when ri j > σcol . In this procedure,

the counter for recording each molecular free path is switched on after the last collision between

two molecules and it is not switched off until the next collision. We also count collisions between

gas molecules and wall atoms: if the gas molecule approaches a wall and crosses a virtual plane

that is placed σcol away from and parallel to the wall, we say it has collided with the wall and

stop recording its free path. The MFP is computed using the same equations in the DSMC setup,

namely Eqs. 7 and (8). Note that, in MD simulations particles’ velocities are not constant between
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two consecutive collisions because of the long range nature of the Lennard-Jones potential.

The open source code LAMMPS32 is used to perform our MD simulations reported below, and

a new class has been developed to calculate the individual molecular free paths. The potential

is truncated at a cutoff of rc = 2.5σAr, and the neighbour list method is adopted to reduce the

time-consuming calculation of intermolecular interactions3. A Nosé-Hoover thermostat is applied

to all gas molecules but only in the relaxation part of the simulation, until the system reaches an

equilibrium state (i.e. typically the first 1.5×106 time steps in our MD simulations); the thermostat

is then switched off to remove its effect on the dynamics of the gas molecules while the individual

free paths are recorded. We spend about 2×106 additional time steps averaging the macroscopic

properties and the MFP. Wall atoms are chosen to be platinum (Pt), and the gas-wall (Ar-Pt)

interaction is also modelled with the Lennard-Jones potential. The parameters and their values

that are used in our MD simulations are listed in Table I. The mixed length and energy scales

σAr−Pt = 3.085 × 10−10 m and εAr−Pt = 0.894 × 10−21 J, respectively, are obtained using the

Lorentz-Berthelot mixing rules3,34.

Platinum atoms form two planes of a face-centred cubic (FCC) lattice, i.e. four layers of solid

wall atoms, and are tethered to the lattice site with a harmonic spring which vibrates at the Ein-

stein frequency10,42. A velocity rescaling thermostat is applied to all wall molecules at the same

temperature as the gas throughout the MD simulations. We keep the number of wall atoms the

same in our simulations (i.e. 358,688 platinum atoms in each solid wall) for all Kn. Note that

the lattice space between each layer is 1.154σAr, so the thickness of each solid wall is 3.462σAr,

which is about 1.5 times larger than the interatomic potential cutoff distance of 2.5σAr in the MD

simulations. This thickness of solid wall guarantees that the influence of the furthest layer of wall

atoms on our gas molecular calculations of the free paths is negligible. We also observe in our MD

simulations that gas adsorption on the solid surface is negligible. The number of gas molecules in

the microchannel is 137,952 for Kn = 0.05; as Kn increases (i.e. the channel height decreases), the

number of gas molecules decreases accordingly. The equations of motion are integrated using a

velocity Verlet algorithm with a time step of ∆t = 2×10−3τ , where the characteristic time unit τ is

given in Table I. The spatial variation of the MFP is obtained by assigning the individual free paths

to small constant-width bins that divide the space in the z-direction17,31,39. The bin-independence

of MD results has been tested by varying the number of bins from 100 to 2000. It is found that the

MFP profiles across the channel do not significantly change beyond 500 bins for Kn = 0.2, 1000

bins for Kn = 0.1, and 2000 bins for Kn = 0.05. These correspond to the same bin width in each
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FIG. 2: MD simulation: sample configuration of argon (Ar) gas confined in a microchannel at

standard temperature and pressure.

case. The MD results reported below use these numbers of bins.

III. RESULTS AND DISCUSSION

A. Mean free path of confined gases

We consider a gas in equilibrium at standard temperature and pressure confined in a microchan-

nel and evaluate the MFPs using both DSMC and the MD techniques. In the DSMC simulations,

the computational domain is one-dimensional (z direction). In the MD simulations, the two solid

walls are parallel to the xy plane and periodic boundary conditions are imposed along the x and y

directions, as shown in Fig. 2. The distance between the two parallel walls in the z direction is H,

and the lengths in both x and y directions are set to λ0, which is the nominal MFP. We simulate

cases with different z-direction distances between the two parallel walls, varying from 20λ0 to

λ0/2, where λ0 is the nominal MFP given by Eq. (3). These correspond to Kn ranging from 0.05

to 2.

As the collisions between gas molecules and wall atoms are momentum-changing events, we

have taken these into account when recording the free paths. However, below we also investigate

a different free path definition that does not include them.
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(a) Kn = 0.05, 0.1, 0.2 (b) Kn = 0.5, 1, 2

FIG. 3: Probability density distribution of the individual free paths of gas molecules in the

middle of channels provided by MD and DSMC simulations for different Knudsen numbers: (a)

Kn = 0.05, 0.1, 0.2 and (b) Kn = 0.5, 1, 2.

The influence of a solid wall on the MFP can be first investigated by examining the probability

distribution of the individual free paths across the channel. In elementary kinetic theory, the free

path distribution of gas molecules is supposed to be exponential in a homogeneous system (i.e.

when the gas is not bounded by solid surfaces), which we verify is the case in both our MD

and DSMC simulations. However, the free path of gas molecules can be terminated at the wall

in confined geometries (i.e. an inhomogeneous case) if gas-wall collisions are counted, which

produces a power-law distribution of the free paths17. Therefore, to assess the effect of solid walls,

we measure the free path distributions of gas molecules in the middle of channels with different

heights. Figure 3(a) shows that the free path distributions are still essentially exponential at small

Kn (i.e. in the upper slip and early transition regimes). However, as shown in Fig. 3(b), when

Kn & 0.5, spikes are observed in the distributions of the free paths; these spikes are caused by the

presence of the solid walls and move to the smaller free paths as Kn increases. The simulation

results of the DSMC and MD are in good agreement.

As can be seen in Fig. 4, the measured MFP varies near the wall, and at the wall is half the

nominal value it has in the bulk. It is worth stressing that the small spatial gap between the surface

and the MD data for Kn = 0.2 is not physical, but is due to the assignment of the value of a MFP
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in a measurement bin to the central point of that bin; this becomes more noticeable at larger Kn.

The spatial extent of the near-wall zone becomes greater with increasing Kn. At small Kn, the

MD results agree well with the DSMC results and Abramov’s theoretical prediction1, i.e. Eq. (6),

while the expression of Guo et al.20, i.e. Eq. (5), somewhat underpredicts the MFP near the walls.

Note that To et al.39 obtained a MFP of zero near the wall in their MD simulations for Kn = 0.18

and 0.37, but they only considered molecules outgoing from the walls.

As mentioned earlier, authors from a previous study7 have argued that the MFP should be

defined as the average distance between successive collisions of gas molecules only, and that

collisions between gas molecules and wall atoms or gas molecules adsorbed on a wall surface

should not be taken into account when evaluating individual free paths. With such a definition,

a constant and isotropic MFP would be expected. In order to assess this prediction, we have run

MD and DSMC simulations in a microchannel (H = 20λ0) and disregarded gas-wall collisions in

the evaluation of the MFP. More specifically, while interactions between gas molecules and wall

atoms are still part of the dynamics, the individual free paths are not terminated at the walls. Our

simulations show that a constant MFP is predicted by both DSMC and MD simulations when the

walls are perfectly specular (i.e. α = 0), and Fig. 5 shows that a constant MFP is also obtained

when fully diffusive (DSMC) and real (MD) walls are used.

We therefore conclude that a space-dependent MFP in confined geometries (i.e. an inhomoge-

neous case) is simply a consequence of taking into account the gas-wall collisions. This result is

not in disagreement with the classical expression in kinetic theory that relies on the assumption

of spatially homogeneous conditions. Collisions between the gas and bounding surfaces can be

incorporated in the concept of the MFP and, as discussed in the literature1,2,5,20,39, the resulting

spatial variation of the MFP may help in understanding the transport of gases in Knudsen layers

near surfaces.

B. Local viscosity of the gas in near-wall regions

If the MFP is constant in micro/nanochannels, i.e. the collision rate is on average constant

everywhere, this indicates that the viscosity of the fluid behaves homogeneously too, and the

system under a constant shear stress should give a linear velocity profile. We know that this is

not true for gases in thermodynamic non-equilibrium, and we believe the hypothesis that there

is a constant MFP in these systems is not a practical one either. The reason having an effective
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FIG. 4: Spatial variation of the normalised MFP in microchannels using DSMC (open squares)

and MD (open circles). The theoretical predictions of Guo et al.20 (blue solid line) and Abramov2

(green solid line) are also included for comparison. Data are plotted for only half the channel (i.e.

above one of the surfaces).

FIG. 5: Spatial variation of the normalised MFP of the gas in a microchannel (H = 20λ0). Red

and green solid lines refer to the DSMC simulation results that count and do not count the

gas-wall collisions, respectively; Open squares (black) and circles (blue) refer to the MD

simulation results that count and do not count the gas-wall collisions, respectively. Data are

plotted for only half the channel (i.e. above one of the surfaces).
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viscosity, such as in Eqs. (1) and (2), is appealing because it allows us to use a modified version

of the ubiquitous hydrodynamic Navier-Stokes equations for solving rarefied gas flows, without

the large computational expense of DSMC or MD. However, whether this “effective viscosity” is

actually effective or is physical, are still unclear. It is also worth stressing that it is not unreasonable

that the transport properties of dense fluids in micro/nanochannels differ from those determined

in bulk, especially when their are strong inhomogeneities near the confining walls, such as water

flows through nanotubes or nanopores 9,15,18,33,45. The channel heights we are considering in this

work are however very large in comparison to the few nanometer dimensions, where such non-

continuum transport behaviour are seen to deviate from their bulk description.

In this section we measure viscosity using two independent approaches for three of the lower

Knudsen number cases. In the first approach we run Couette simulations and calculate viscosity

using the linear stress-strain relationship:

µ(z) =−〈Pxz(z)〉
〈γ̇(z)〉 , (10)

where Pxz and γ̇ are the shear stress parallel to the solid wall and the rate of strain, respectively,

and the angle brackets denote a time-averaged value from the MD simulations. Note that since

the gas is rarefied, no layering occurs at the walls and, therefore, the application of this method

is anticipated not to suffer any singularity issues45. In Eq. (10), the stress tensor is calculated by

using the Irving-Kirkwood approach21, i.e.

P =
1

V

[

∑
i

mi(vi −u)2 +
1

2
∑
i, j

ri jFi j

]

, (11)

in which V is the bin volume, vi is the velocity of the ith gas molecule, r is the relative position

between two molecules, u is the local average velocity of the gas flow, and F is the force between

two molecules. The first term on the right-hand side of Eq. (11) is the kinetic component, and the

second one is the virial component. The kinetic term in the Irving-Kirkwood expression is related

to the ideal-gas law, whereas the molecular-molecular virial terms are corrections to the ideal-gas

law needed to account for volumes and the force fields between interacting molecules6.

In the Couette flow problem the gas is sheared by both top and bottom walls, which move with a

constant velocity u0 = 0.2σAr/τ in opposite directions along the x axis. This velocity is sufficiently

small for thermal effects to be neglected, i.e. the gas flow is isothermal and incompressible. The

computational domain is the same as shown in Fig. 2. That is, the distance between the two parallel

walls in the z direction is H, and the lengths in both x and y directions are set to λ0. We select H =
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20λ0, 10λ0, 5λ0, which corresponds to Kn = 0.05, 0.1, 0.2, and, in all these cases, the channel in

the z direction is divided into 21 number of bins. The distributions of the strain rate and shear stress

across the channel are calculated from the local gradient of the velocity profile and from Eq. (11),

respectively. The shear stress and the rate of strain have been averaged over 3×106 time steps after

the system reached a steady state. A velocity-rescaling thermostat was applied to molecules in the

y-direction only, in order to prevent the flow from being perturbed. Figure 6 then shows the local

viscosity of the gas across the channel deduced from the linear-response relationship, i.e. Eq. (10).

It is apparent that the gas viscosity varies near a solid surface, decreasing with increasing Kn. We

observe that the gas viscosity at the wall reduces almost to half the value it has in the bulk (i.e.

49% for Kn = 0.05, 48% for Kn = 0.1, and 44% for Kn = 0.2).

In our second approach we use the Green-Kubo (G-K) equation:

µ =
V

kBT

∫ ∞

0
〈Pxz(0)Pxz(t)〉dt, (12)

where V is the volume, and the time integration is the ensemble average of the auto-correlation of

the stress tensor Pxz. The same Kn cases are used as our first method, but now have no moving

walls; i.e. there is no flow, and we also divide the system in 7 bins to determine the variation in

viscosity. Each case is made larger in the x and y coordinates in order to make the bins contain

a large number of molecules for the auto correlation function (ACF), and have a shape which are

closer to being cubic. Therefore, for Kn = 0.05, 0.1, 0.2 we changed Lx,Ly to 1.5λ0, 2λ0, 3λ0.

Each simulation was run for 40 million time steps, and the ACF is averaged over successive 200k

time steps. No thermostat was applied during the measurement of viscosity.

Note, in principle, Eq. (12) only applies to homogeneous systems in the bulk limit but it has

been widely used for evaluating the transport coefficients of confined fluids as well11,19,38. Here we

use the qualitative behaviour of the viscosity from the G-K approach using the largest possible bins

we could, as we were not able to produce the same level of resolution as the other two techniques,

without running into issues of noise and large computational costs.

We plot in Fig. 6 three independent scaled viscosity calculations: a) the results from our MFP

measurements, i.e. Eq. (1), b) the results from the Couette flow, i.e. Eq. (10) and c) the results from

Green-Kubo, i.e. Eq. (12). Generally, good agreement is achieved across all three methods.

The viscosity seems to drop by half near the solid wall, and recovers the bulk value for Kn =

0.05 and Kn = 0.1. At Kn = 0.2, viscosity measurements still seem to match up well, but non-

equilibrium effects now start to dominate the full channel, rather than confined to the separate
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FIG. 6: Local viscosity measurements of gases predicted using (a) the MFP-based scaling law,

Eq. (2) and the non-equilibrium MD (NEMD) simulations of Couette flow, Eq. (10), and (b) the

Green-Kubo (G-K), Eq. (12), for Kn = 0.05, 0.1, and 0.2. Data are plotted for only half the

channel (i.e. above one of the surfaces), and µ0 is taken to be the bulk viscosity.

Knudsen layers. It is unclear at which stage the definition of viscosity stops being local in rarefied

gases. Our work seems to show that it is still relatively accurate to use spatial variations of viscosity

up to the early transition Knudsen regime, at least in these simple shear flows.

IV. CONCLUSIONS

The molecular mean free path (MFP) in a confined gas has been numerically evaluated using

both the direct simulation Monte Carlo (DSMC) and molecular dynamics (MD) simulations. The

MFP has been found to drop smoothly to half of its bulk value near the walls, as long as the

collisions between the gas and the wall are accounted for. We demonstrate that the wall-distance

dependent MFP is not a numerical artefact but rather a consequence of taking into account the

collisions between gas and wall molecules in the calculation of the MFP locally.

In this respect, two main conclusions are made. First, these results are not in disagreement

with elementary kinetic theory expressions for the MFP, since these expressions only refer to a

spatially homogeneous gas. Second, the answer to the question of whether or not the definition

of the MFP should take into account collisions with the solid surfaces depends on the purpose for

which the MFP is intended. If it is used to scale transport properties near walls2,5,17,20,39, then a

definition that counts gas-wall collisions should be preferred. This leads to an effective spatially-
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varying viscosity derived from the MFP, which agrees well with independent measurements of

viscosity using Newton’s equation of viscosity from a non-equilibrium Couette flow as well as the

Green-Kubo formulation.

The numerical results obtained in the present study have also permitted to assess the theoretical

scaling laws for the MFP proposed in the literature so far2,20. It turned out that Abramov’s scaling

law provides the best match with both MD and DSMC results.

A number of future research directions can be envisioned. These include a more detailed analy-

sis of the capability of the MFP-based viscosity to describe gas flows in the early transition regime

(including in more complex geometries), as well as the development of a consistent slip boundary

conditions to be used within this mathematical framework.

V. ACKNOWLEDGEMENTS

The authors would like to acknowledge the work of Graeme Bird. His influence on the rarefied

gas dynamics community has been profound, and through direct and indirect routes inspired the

work in this paper, and many others. Finally, the authors would like to dedicate this article to Jason

Reese, our co-author, mentor and friend, who passed away in March 2019.

The work is financially supported by the UK’s Engineering and Physical Sciences Research

Council (EPSRC) via grant nos. EP/N016602/1 and EP/R007438/1. JMR acknowledges the sup-

port of the Royal Academy of Engineering under the Chair in Emerging Technologies scheme.

JFX thanks the National Natural Science Foundation of China (grant no. 51506110) for their

support. OH acknowledges support from the EPSRC Early Career Research Software Engineer

Fellowship Scheme (EP/N019180/2). The authors thank Dr Srinivasa Ramisetti for useful discus-

sions.

Appendix A: MD Calibration procedure

In order to directly evaluate the MFP in MD simulations with a continuous interaction potential,

a procedure for judging the collision event between two molecules is required, and a collision

diameter should be chosen. For argon molecules, Dongari et al.17 and Perumanath Dharmapalan

et al.31 suggested σcol = σAr, while Barisik and Beskok7 used σcol = 1.06σAr by combining the

basic concept of the MFP for hard spheres given by Eq. (3) and the viscosity-based MFP in Eq. (4).
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TABLE II: Comparison of the MFP for a spatially homogeneous gas provided by MD

simulations with σcol = σAr and kinetic theory. The values of MFP in brackets are from the ratio

of the mean velocity ū to collision frequency θ , i.e. λ = ū/θ .

MD Kinetic theory

T [K] ū [m·s−1] θ [ns−1] λ [nm] ū [m·s−1] θ [ns−1] λ [nm]

273 382.47 5.59 68.55 (68.38) 380.49 6.15 61.89 (61.87)

297 394.62 5.39 73.81 (73.16) 394.18 5.79 68.11 (68.08)

323 414.58 5.14 81.09 (80.59) 413.86 5.33 77.62 (77.65)

373 446.38 4.83 92.56 (92.51) 444.73 4.73 94.12 (94.02)

473 502.65 4.25 118.26 (118.27) 500.79 3.93 127.36 (127.43)

Note that, in fact, λh and λv differ by a small multiplicative constant: λh/λv = 16/5π = 1.0228. To

et al.39 adopted σcol = 1.014σAr as a best fit of the predictions of kinetic theory to their calculations

of MFP using MD.

To demonstrate the sensitivity of the MFP measurements to the collision diameter, we consider

the MFP of argon molecules contained in a cubic domain, with periodic boundary conditions

in all directions with the length of each side of the domain set to about one MFP, as given by

Eq. (4). We set σcol = σAr and we see in Table II that the subsequent values of MFP from our

MD simulations are greater than kinetic theory predictions at low gas temperatures, but smaller at

higher gas temperatures. This is not unexpected because molecules have larger kinetic energies at

high temperatures and this reduces the collision diameter. The averaged value of the free paths can

also be obtained by the ratio of the mean velocity of the gas molecules to the collision frequency

between gas molecules, i.e. λ = ū/θ , where the mean velocity is ū =
√

8kBT/πm, and θ is the

collision frequency given by MD. A comparison of the averaged free paths based on the collision

frequency and the MFP determined directly from our MD simulations is also made in Table II, and

there is a generally good agreement between the two approaches.

In order to recover the kinetic theory prediction of the MFP, i.e. Eq. (4), a temperature-

dependent collision diameter is proposed to characterise the collision events between gas molecules.

Figure. 7(a) shows a sample simulation result on the variation of MFP with the collision diameter
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(a) MFP versus the collision diameter at 273 K. (b) Collision diameter versus temperature.

FIG. 7: Calibration study of the collision diameter σcol for argon in a spatially-homogeneous

MD system, where (a) shows the calibration of the collision diameter for a fixed temperature of

273 K that provides the same mean free path as kinetic theory, and (b) shows the final calibrated

collision diameters of various temperatures.

at a low gas temperature (i.e. 273 K) for varying prescribed σcol (filled circles). The MD-measured

MFP decreases with the increase of the collision diameter, and the intersection with the prediction

of kinetic theory, Eq. (4) (red solid line), is when σcol ≃ 1.009σAr. Likewise, the approximate

collision diameter can be determined over a range of temperatures, and the results are shown

by solid black symbols in Fig. 7(b). The collision diameter decreases as the gas temperature

increases, and in the range of explored temperatures a linear relationship can be estimated, i.e.

σcol(T )/σAr = 1.0363− 0.0001T with T up to 373 K. As the gas temperature increases (∼ 473

K), the decrease of collision diameter becomes less pronounced and a deviation from the linear fit

is observed. Nevertheless, the proposed temperature-dependent collision diameter can guarantee

good agreement of the MFP between MD calculations and predictions of kinetic theory for the

explored gas temperatures.

Note that, in principle, a temperature-dependent collision diameter can be defined based on the

Chapman-Enskog expression of the viscosity for a gas composed of hard spheres13:

d2
h =

5

16

1

µ

√

kBT

πm
, (A1)
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where µ(T ) is the viscosity of LJ fluids13,30. However, the collision diameters predicted based on

Eq. (A1) differ significantly from the ones provided by MD simulations. Therefore, the calibration

procedure described above turns out to be necessary in order to get accurate simulation results.
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