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We compute the reflectance properties of a metasurface that consists of a doubly periodic array
of patch nanoantennas strongly coupled to a metallic film. Each plasmonic patch antenna can be
accurately modelled as a polarizable, radiating, magnetic dipole. By accounting for interactions
amongst the dipoles, an equivalent surface polarizability can be obtained, from which the effective
surface impedance, reflectivity and other homogenized quantities of interest can be obtained. When
the metasurface is extremely close to the metal film, the interaction between constituent dipoles is
dominated by surface plasmon mediation. We calculate analytically the dipole interaction constant
by explicitly evaluating the infinite sum of fields from all the dipoles in the lattice. While an single
film-coupled nanoparticle exhibits anomalous loss due to coupling to surface plasmons, we find that
for the lattice of dipoles, the radiation reaction force due to the coupling to the surface plasmon
modes is exactly canceled by the interaction constant; the lattice thereby conserves energy in the
limit of zero Ohmic loss. When Ohmic losses are present, absorption to surface plasmons reemerges
and can be compared with the losses to radiation and Ohmic absorption in the metasurface.

I. INTRODUCTION

Nanopatterned metasurfaces are of particular interest,
as they offer a path to useful functionality while avoiding
the large absorption often exhibited by volumetric meta-
materials. Metasurfaces consisting of patterned slits or
nanoantennas have been used to form a variety of holo-
graphic and diffractive optics, as well as surfaces that can
absorb light over bandwidths selectable by design[1].

When metasurfaces involve plasmonic materials, field
enhancement effects can become relevant, increasing the
response of the scattering elements and introducing ad-
ditional functionality. An important factor in control-
ling field enhancement is precise control over the gap di-
mension between nanometallic structures, since the mag-
nitude of the field enhancement is typically a sensitive
function of that spacing. One particular system that is
relatively easy to fabricate and that allows excellent con-
trol over the gap dimensions is that of the nanopatch
antenna, which consists of a nanoparticle with a planar
facet (such as a cube, platelet or similar particle) sepa-
rated by a dielectric layer from a metal film. With planar
deposition techniques such as polymer self-assembly or
atomic layer deposition, sub-nanometer accuracy of the
insulating spacer layer can easily be achieved over large
areas[2].

The nanopatch antenna is an especially convenient ge-
ometry for applying analytic methods. Similar to the
patch antenna ubiquitous in radio frequency (RF) tech-
nology, the radiation, scattering, and many other proper-
ties of the nanopatch can be understood using relatively
simple expressions. Because the nanopatch supports a
transmission like resonance between the planar facet of
the nanoparticle and the film[3]modified by the plasmonic
response of the metalit can be effectively modeled as two
polarizable magnetic dipoles[4, 5]. For waves at normal
incidence, the response of the nanopatch can be further

simplified as a single magnetic dipole.
Unlike the lower frequency, RF patch antenna, a

nanopatch resonant at optical wavelengths on a metal
film can couple to surface plasmon modes, introducing
an additional loss channel and compete with radiative
losses. For many configurations of practical interest, it
is desirable to maximize the radiative loss, such that the
potential of surface plasmon coupling can be unwanted.
In this work, we examine the role of the surface plas-
mons that are both emitted and reabsorbed by lattice,
and compute the overall losses and coupling of the dipoles
in the metasurface through surface plasmon modes using
the framework of effective medium theory.

Within effective medium theory, materials and meta-
materials are both defined as an ensemble of deeply sub-
wavelength objects or elements, which under certain con-
ditions will behave collectively as a homogeneous mate-
rial. This ensemble of elements may be distributed ran-
domly or periodically, and the elements that compose
the material or metamaterial are assumed to be small
enough to be well-described as point dipoles. Lorentz
was the first to propose in his doctoral thesis[6] in 1878
that a body of continuous material, as described by the
macroscopic Maxwell’s equations, should be described
by point sources in vacuum which satisfy the micro-
scopic Maxwell’s equations, or Lorentz equations. Ac-
cording to Einstein, Lorentz thus famously ”separated
matter and ether,”[7, 8] providing a basic framework
by which the effective material parameters used in the
macroscopic Maxwell’s equations might be derived from
a given microscopic structure of point dipoles. Lorentz’s
early work was improved upon by Planck[8], Ewald[9],
Madelung[10], Hoek[11], De Groot[12], and others who
have collectively contributed to a long and rich history
of relating the effective material parameters of a body
to it’s microscopic structure. Ewald and Madelung in
particular were the first to treat periodic crystals, while
Lorentz, Planck, and Hoek were primarily concerned with
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gasses and amorphous solids. A good review of the early
history and results of effective medium theory is available
in [8].

More recently, interest in effective medium theory has
revived with the popularization of metamaterals, which
has brought new challenges to the classical homogeniza-
tion approaches that were developed in the late 19th and
early 20th centuries to model natural materials. Classical
homogenization techniques were very commonly based on
the assumption, which is originally attributed to Lorentz,
that there exists a length scale ∆ over which one might
average the electric field, which is both much smaller than
the wavelength λ and much larger than the lattice spac-
ing a between the atoms[8, 13], i.e

a� ∆� λ. (1)

However, metamaterials are designed to be resonant, and
many metamaterial elements are resonant at wavelengths
where λ/10 < a < λ/2[2, 4] since it can be difficult to
design resonators that operate at a wavelength that is
more than an order of magnitude larger than the physical
dimension of the metamaterial element. In this regime
spatial dispersion becomes an important effect, and the
classical Lorentz-Lorenz relation will not apply, which
has led authors to develop exact formulas for the interac-
tion constant and homogenization of metamaterials and
metasurfaces that have a larger lattice spacing relative to
the wavelength [14–16]. These formulas are not only use-
ful for the modeling of metamaterials[16–18], but also for
the extraction of the exact polarizability of metamaterial
elements from full-wave simulations[19].

In this work we focus on the homogenization of meta-
surfaces consisting of nanoparticles tightly coupled to a
metallic film. Metasurfaces in this geometry are of signif-
icant interest in optics as absorbers[2], fluorescence en-
hancing surfaces[20], and single photon sources[21]. In
each of these applications, a metasurface is close enough
to a metal film to where the dipole elements that compose
the metasurface couple to the surface through evanescent
near fields. When a metasurface is placed a shorter dis-
tance from a metal film than the distance between the
elements of the metasurface, the interaction between the
metasurface and the film can no longer be treated with
a transfer-matrix formalism based on the homogenized
parameters of the metasurface, because the evanescent
near fields of the dipoles will interact with the surface. In
this case, the microscopic details of the metasurface need
to be taken into account. When this happens, an addi-
tional loss mechanism is made available through surface
plasmons, and it is no longer clear how the forces that
the dipoles exert on one another will be modified when
the interaction is mediated by surface plasmon modes.
The question that this paper seeks to address is, how are
the interaction constants between dipoles in a metasur-
face modified when a metasurface is tightly coupled to a
metal film that supports surface plasmons?

We begin with a brief overview of the effective medium
theory framework that we will be using is presented in

section II. In section III we explore a particular geometry
of current interest in optics, which is a single metamate-
rial element with a magnetic response coupled to a metal
film. An exact expression for the surface plasmon contri-
bution to the interaction constant of a film-coupled meta-
surface is derived in sections IV and V, and it is shown
that the interaction constant perfectly the cancels the
radiation reaction damping force due to the surface plas-
mon coupling. Although the radiative damping force due
to the surface plasmon is perfectly canceled in the limit of
no Ohmic losses, the interaction between the metamate-
rial elements produces a resonance frequency shift, which
is given by the real part of the interaction constant. The
resonance frequency shift is compared against full-wave
simulations in section VI by examining a perfect absorber
made of a metasurface of patches that are coupled closely
to a metal film, and it is thereby shown that the surface
plasmon interaction dominates the coupling between the
metamaterial elements. The theory also predicts the ex-
istence, depth, and position of Wood’s anomalies, which
are also compared with full-wave simulation results in
section VI.

II. EFFECTIVE MEDIUM THEORY
FRAMEWORK

There is a sense in which the polarizability of a dipole
itself is not an inherent property of the dipole, but de-
pends on the environment, and therefore may be con-
sidered a nonlocal property. Even vacuum is no excep-
tion, since the vacuum itself places certain requirements
on what values the polarizability of a dipole may take.
From the perspective of quantum electrodynamics, any
geometry interacts with a dipole through vacuum states,
which cause the dipole to spontaneously emit and there-
fore decay.

This phenomenon is not, however, unique to quantum
electrodynamics, and can also be seen in the classical
realm. Here we derive the complex polarizability of a
point dipole, following a treatment similar to what is pre-
sented in Refs. [13, 22]. Consider a single dipole that is
placed at position r0 in an environment that is described
by a Green’s function G(k, r, r′), and imagine that the
environment is illuminated by some incident electric field
E0. The total field in the environment E at wavenumber
k = ω/c will be

E(r) = E0(r) + ε−1
0 G(k, r, r0)p. (2)

The polarizability of a dipole is the tensor that defines
the proportionality between the dipole moment and the
field. However, there are two possible ways in which this
polarizability might be defined. The polarizability might
be expressed as the proportionality with the total field
experienced by the dipole, p = ᾱ0

eE. We define ᾱ0
e as the

inherent polarizability of the dipole, since all interactions
with the environment are contained in E rather than in
the polarizability, and therefore ᾱ0

e does not change when
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the environment changes. The alternative definition of
the polarizability is p = ᾱeE0, which is the effective
polarizability of the dipole, since it is a quantity that
is dependent on the environment in which the dipole is
placed. The effective polarizability can be found directly
from eq. (2),

ᾱe = ᾱ0
e(1− ε−1

0 G(k, r0, r0)ᾱ0
e)
−1. (3)

The real part of Green’s tensor at the origin is generally
singular or undefined. A good discussion of the nature
of the singularity of Green’s functions is available in [23–
25]. In this work, we disregard the real part of Green’s
tensor at the origin for a dipole in free space, since it does
not lead to any restrictions on the range of values that
the effective polarizability may take, and hence makes it
impossible to observe a difference between the inherent
and effective polarizability due to the real part of the
Green’s function. In Ref. [13] it was pointed out that
the real part may be ignored by renormalization, and
that only the imaginary part is of physical significance.

The imaginary part of Green’s tensor at the origin,
however, is always finite, and according to Poynting’s
theorem corresponds to the power loss of fields radiated
by the dipole. A careful calculation of the limiting form
of Green’s tensor at the origin for a dipole in free space
shows that[26]

G(k, r0, r0) = −i k
3

6π
I (4)

and so the effective polarizability of a dipole in free space
is

ᾱe = ᾱ0
e(1 + ik3ᾱ0

e/6πε0)−1. (5)

This is the well known radiation reaction correction,
which corrects the polarizability in order to account for
the force that a radiating dipole exerts on itself so that
its amplitude decays in time according to the energy that
is radiated from the dipole.

Similar to the manner in which an effective polariz-
ability might be formed for a single dipole, an effective
polarizability might be formed by any arrangement of
dipoles where there is sufficient symmetry in the system
and incident field E0 to require that the dipole moments
of these dipoles must be equal. Under this assumption,
the total field incident on the ith dipole can be written
as the sum of the incident field plus the sum of the fields
radiated by all the dipoles in the space,

E(ri) = ᾱ−1pi = E0(ri) + ε−1
0

∑
j

G(rj − ri)pj (6)

where the j = i term in the sum represents the self-
interaction of the dipole. The Green’s function here has
been reduced to a function of a single argument of the
distance between dipoles, which can be done when the
dipoles are placed in free space. All of the pi terms may

be collected to give(
ᾱ−1
e − ε−1

0 G(0)
)
pi = E0(ri) + ε−1

0

∑
j 6=i

G(rj − ri)pj .

(7)
Moreover, if it is known by the symmetry of the problem
that pj = pi for all j, then the equation may be rewritten
in the form

pi =

ᾱ−1 − ε−1
0

∑
j

G(rj − ri)

−1

E0(ri). (8)

The quantity in the parentheses becomes the new ef-
fective polarizability, and the infinite sum over the
Green’s function is typically defined as the interaction
constant[14, 16, 27]

C =
∑
j

G(rj − ri). (9)

. Thus we have that

ᾱeff = ᾱ(1−Cᾱ/ε0)−1 (10)

is the effective polarizability of any arrangement or lattice
of dipoles that exhibits sufficient symmetry for the dipole
moments to be equal.

Once the effective polarizability is known, the effective
medium properties of the lattice are immediately avail-
able. The trivial example is the single point dipole in
free space, where the interaction constant is C = C0D ≡
−i k

3

6π , and therefore the effective polarizability of the
point dipole is given by eq. (5). If the set of dipoles
are arranged in a column in one dimension with a lat-
tice constant a < λ/2 then they form a line source with
a polarizability per unit length of χ = αeff/a, since
(αeff/a)E will be equal to the average dipole moment
per unit length. Similarly, if the dipoles are arranged in
a two-dimensional plane with a lattice constant a, then
the surface susceptibility will be χ = αeff/a

2, and the
volumetric susceptibility of a three-dimensional lattice
will be χ = αeff/a

3.
We end this section on a final note regarding the energy

dissipation of resonant dipoles. If the inherent polariz-
ability of the dipole, ᾱe, happens to follow a Lorentzian
line shape, i.e.

ᾱ0
e =

ε0Aω
2
0

ω2
0 − ω2 + iω2

0/QΩ
(11)

where A is an amplitude coefficient that has units of vol-
ume, ω0 is the resonance frequency, and QΩ is the Ohmic
Q-factor, then the effective polarizability will also be a
Lorentzian, but with a resonance frequency shift in pro-
portion to the real part of the Green’s function, and
an added loss term through the imaginary part of the
Green’s function. This is explicitly given by

ᾱeff =
ε0Aω

2
0

ω̃2
0 − ω2 + iω2

0/Q
(12)
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where

ω̃0 = ω0

√
1− Re{C(ω)A}

≈ ω0(1− Re{C(ω0)A/2}) (13)

1/Q ≈ 1/QΩ − Im{C(ω0)}A. (14)

where we have assumed that the interaction constant
doesn’t vary significantly as a function of frequency near
the resonance of the dipole, i.e. C(ω) ≈ C(ω0). When
the geometry within which a dipole is placed is modified,
the resonance frequency and quality factor of the dipole’s
resonance are both modified as the Green’s function is
changed.

III. THE FILM-COUPLED MAGNETIC DIPOLE

In this section, the contribution to the radiation re-
action force experienced by a single dipole due to the
coupling to a surface plasmon mode in a metal film is
calculated, as shown in fig. 1(a). In particular, we are
interested in magnetic dipoles that are oriented parallel
to the surface of a metal film, and separated by some
distance d from the film along the z-axis. The radiation
reaction force for any dipole is given by the imaginary
part of the Green’s function evaluated at the location of
the dipole. One of the standard approaches for comput-
ing the Green’s function in any waveguide-like geometry
is to expand the field into a set of bound modes and radi-
ation modes[28]. For a dipole in free space, there are no
bound modes, and so the Green’s function for a dipole in
free space can be computed using only radiation modes.
However, for a dipole placed near a metal film, there is a
set of bound surface modes, which are surface plasmons.
Here we show that the coupling of the dipole to surface
plasmon modes yields an imaginary part of the Green’s
function at the location of the dipole that corresponds to
the power loss of the dipole into surface plasmon modes.

The coupling to the surface plasmon is found using a
modified formulation of coupled mode theory, adapted
particularly for expansions of the field into a basis of
cylindrical Hankel functions, i.e. by expanding the field
in a sum of modes

E =
∑
µν

A+
µνE

+
µν (15a)

H =
∑
µν

A+
µνH

+
µν (15b)

where H+
µν and E+

µν are the outgoing cylindrical Hankel
basis defined in appendix B. The Hankel basis is a con-
venient choice for this problem, because there is only one
bound cylindrical wave that a magnetic dipole can excite
when it is oriented parallel to the surface of the metal
film. However, unlike most of the bases used in cou-
pled mode theory, which assume that the basis is a set of
source free solutions to Maxwell’s equations, it is shown
in appendix A that the Hankel functions are not source-
free solutions to Maxwell’s equations, since they imply

the existence of a delta-function source at the origin. The
modification of the coupled mode theory equations due
to this source is taken into account in appendix A, and
the final expression for the amplitude A+

µν of an outgoing

cylindrical Hankel wave {E+
µν ,H

+
µν} is

A+
µν =

ik2

4Lε0(1 + δν0)

∫
P·(E+

µν+E−µν)−µ0M·(H+
µν+H−µν)dV.

(16)
where {E−µν ,H

−
µν} is the incoming Hankel basis, and L is

a normalization constant that is described in appendix B.
This equation is in disagreement with the expressions
given in [29], and in agreement with the expressions in
the supplementary material presented in [30], although
no rigorous proof was provided in [30] for eq. (16), and
Refs [29, 30] both treated the Hankel basis as source-free.

Consider a magnetic dipole sitting at some distance d
along the z-axis from a metal film with relative dielectric
constant ε, the surface of which is on the xy-plane. Then
in eq. (16), we have that M = myŷδ(z − d)δ(r)/2πr. A
careful calculation shows that

HTM+
µνy (dẑ) +HTM−

µνy (dẑ) =
−i
Z0
ZTMµ (d)δν1 (17a)

HTE+
µνy (dẑ) +HTE−

µνy (dẑ) =
i

Z0k

d

dz
ZTEµ (d)δν1. (17b)

where ZTMµ (z) and ZTEµ (z) are the profiles of the TE and
TM modes in the z-direction, with mode numbers µ, as
defined in appendix B. The mode amplitudes excited by
this source are therefore

ATMc
µν =

−myk
2Z0

4L
ZTMµ (d)δν1 (18a)

ATMs
µν = 0 (18b)

ATEcµν = 0 (18c)

ATEsµν =
mykZ0

4L

d

dz
ZTEµ (d)δν1. (18d)

The superscripts ”c” and ”s” refer to modes that have an
angular dependence that goes as cos(νθ) and sin(νθ), re-
spectively. In the particular case of the geometry where
there is only a single interface between a metal and a di-
electric, there is only one bounded TM mode, and there
are no bounded TE modes, and so the TE mode am-
plitudes become irrelevant. For the single bounded TM
mode, an expression for ZTMµ (z) is given in eq. (B8).

Using the excited mode amplitudes in eqs. (18a)
to (18d), together with the mode definitions provided in
eqs. (B11e) and (B11f), the y-component of the magnetic
field excited by the dipole is shown to be

Hy(r, θ, z) =
−imyβ

3
√
−ε

4(1− ε)
e−k

+
z (d+z)×[

H
(2)
0 (βr)− cos(2θ)H

(2)
2 (βr)

]
, (19)

where k+
z = ik/

√
ε+ 1 and β = k

√
ε/(ε+ 1) is the sur-

face propagation constant. Taking the limit as r → 0,
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the real part of eq. (19) becomes singular, as it is for
a dipole in free space. The imaginary part, however,

is simply Im{Hy(0)} =
−myβ3√−ε

4(1−ε) e−2k+z d. According to

Poynting’s theorem, the power dissipated by the hori-
zontal magnetic dipole into the surface plasmon is given
by Psp = (−ω/2)Im{m∗ · H}, and therefore the power
dissipated into the surface plasmon is,

Psp = ω|my|2Re

{
β3
√
−ε

4(1− ε)
e−2k+z d

}
. (20)

Moreover, the coupling factor due to the radiation re-
action from the SPP mode is then,

C0D = Hy(0)/my =
−iβ3

√
−ε

4(1− ε)
e−2k+z d. (21)

IV. ONE DIMENSIONAL ARRAY OF
FILM-COUPLED MAGNETIC DIPOLES

Consider a one-dimensional array of magnetic dipoles
placed along the y-axis, oriented in the y-direction, sep-
arated by some distance ay from each other, and placed
at a distance d over a metal film that lies in the xy-
plane. Moreover, assume that the one-dimensional ar-
ray is illuminated by a TM plane-wave with a free-space

wave vector of k = (kx, ky, kz), with kz =
√
k2 − k2

x − k2
y

and polarized with the magnetic field oriented in the y-
direction. The phase of the moments of the dipoles that
comprise the one-dimensional array will therefore be re-
lated by the phase of the illuminating plane wave, such
that dipole mi = miŷ at location ri will have dipole
moment mi = mye

−ik·ri .

The dipole at the origin is excluded when computing
the C1D interaction constant, as illustrated in fig. 1(b).
The effective polarizability of the magnetic dipoles in the
array is determined by the fields that the dipoles exert on
each other. The field experienced by the magnetic dipole
at the origin due to all the other dipoles is given by

H1D
y (0) =

−imyβ
3
√
−ε

2(1− ε)
e−2k+z d

∞∑′

µ=−∞

H
(2)
1 (β|µay|)
β|µay|

e−ikyµay .

(22)
This sum converges quickly, but a simpler expression for
the real part of the sum, which corresponds to the power
loss due to radiation into surface plasmons, can be found
by applying Poisson’s summation formula[27]. The Pois-
son summation formula states that,

∞∑
µ=−∞

f(µa) =
1

a

∞∑
µ=−∞

F

(
2πµ

a

)
(23)

where F (ω) is the Fourier transform of f(t). We are
interested in applying this formula to aid in evaluating

the infinite sum

∞∑′

µ=−∞

H
(2)
1 (β|µay|)
β|µay|

e−ikyµay = − lim
z→0

J1(z)

z

+

∞∑
µ=−∞

J1(β|µay|)
β|µay|

e−ikyµay − i
∞∑′

µ=−∞

Y1(β|µay|)
β|µay|

e−ikyµay

=
−1

2
+

∞∑
µ=−∞

J1(β|µay|)
β|µay|

e−ikyµay − i
∞∑′

µ=−∞

Y1(β|µay|)
β|µay|

e−ikyµay .

(24)

Using the Fourier transform

F

{
J1(β|t|)
β|t|

}
=

{
2
β2

√
β2 − ω2 ω < |β|

0 otherwise
(25)

we can transform the infinite sum over the bessel function
of the first kind as

∞∑
µ=−∞

J1(β|µay|)
β|µay|

e−ikyµay =
∑
µ∈U

2Γµ
β2ay

(26)

where

Γµ =
√
β2 − (2πµ/ay − ky)2. (27)

The sum is evaluated over all of the Γµ modes that are
propagating, which satisfy the relationship |2πµ/a−ky| <
|β|. We define the set U as the set of all mode numbers
µ such that Γµ is propagating:

U = {µ | |2πµ/a− ky| < |β|}. (28)

Then the total magnetic field experienced by the dipole
at the origin is expressed as,

H1D
y (0) =

my

√
−ε

(1− ε)
e−2k+z d× iβ3

4
−
∑
µ∈U

iβΓµ
ay
− β3

∞∑
µ=1

Y1(βµay)

βµay
cos(kyµa)

 .
(29)

Let C1D = H1D(0)/my be defined as the part of the
interaction constant due to all of the dipoles along the y-
axis, excluding the dipole at the origin. The total inter-
action constant for the one-dimensional array of dipoles
lying along the y-axis and oriented in the y-direction is
C = C0D + C1D, where C1D is given by

C1D =

√
−ε

(1− ε)
e−2k+z d× iβ3

4
−
∑
µ∈U

iβΓµ
ay
− β3

∞∑
µ=1

Y1(βµay)

βµay
cos(kyµa)

 .
(30)
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x̂

ŷẑ

(a)

x̂

ŷẑ

(b)

x̂

ŷẑ

(c)

FIG. 1. Illustration of the dipoles summed to produce the
(a) C0D, (b) C1D, and (c) C2D components of the interaction
constant. The interaction constant is found by computing
the fields of the dipoles at the location of the red dot, which
designates the origin.

In the limit that β is purely real, the final sum on the
right hand side of eq. (30) is purely real, and all losses
are due to the two purely imaginary terms, and these two
terms therefore represent the radiative damping force. As
was the case for the one-dimensional array of dipoles in
free space, the dipoles in the column exert a force on each
other that cancels the force proportional to iβ3/4 that
they exert on themselves due to the radiation reaction,
and replaces it with a force proportional to the sum of the
energy carried in all surface plasmon diffraction orders
that are radiated by the line of dipoles.

V. TWO DIMENSIONAL ARRAY OF
FILM-COUPLED MAGNETIC DIPOLES

Now consider a two-dimensional lattice of dipoles ori-
ented in the y-direction with lattice spacing ax and ay in
the x and y directions, excluding the line of dipoles along
the y-axis, as illustrated in fig. 1(c). The two-dimensional
lattice may be thought of as a set of lines of dipoles par-
allel to the y-axis, and at positions nax along the x-axis.
The total field of the lattice is the sum of the fields radi-
ated by the lines of dipoles, and so we first compute the
field radiated by a single line of dipoles lying along the
y-axis and oriented in the y-direction. Directly summing
the magnetic fields of this lattice would be cumbersome
because the field in the Hankel basis is given in cylin-

drical coordinates, and the redefinition of the cylindrical
unit vectors would need to be taken into account for each
dipole in the lattice. Instead of summing the magnetic
fields, we compute the total z-component of the electric
field, and the total electric field from all of the dipoles
can be easily summed since ẑ is translationally invariant.
Then the y-component of the magnetic field can be found
using

Hy =
ik

Z0β2

∂

∂x
Ez. (31)

which is valid when the field in the entire surface is as-
sumed to vary as e−k

+
z z, and the field is purely transverse

magnetic[28].
The total z-component of the electric field radiated

by a single line of dipoles, which is denoted by E1D
z , is

given by the infinite sum of the field radiated by each of
the individual dipoles. Using the same methods outlined
in section III and appendix A, the z-component electric
field in the surface plasmon mode radiated by a single
magnetic dipole placed over a metal surface is

Ez =
−myZ0β

4
√
−ε

2k(1− ε)
e−k

+
z (z+d) cos(θ)H

(2)
1 (βr) (32)

and therefore the total electric field radiated by a line of
dipoles along the y-axis is,

E1D
z =

−myZ0β
4
√
−ε

2k(1− ε)
e−k

+
z (z+d)×

∞∑
µ=−∞

xH
(2)
1 (β

√
x2 + (y − µay)2)√

x2 + (y − µay)2
e−ikyµay . (33)

Applying Poisson’s summation technique to the sum in
eq. (33), the total field is

E1D
z =

−imyZ0β
3
√
−ε

kay(1− ε)
e−k

+
z (z+d)e−ikyy

×
∞∑

µ=−∞
sign(x)e−i|x|Γµe−i(2πµ/ay)y. (34)

where Γµ is given in eq. (27), and the Fourier transform

F

{
H

(2)
1 (β

√
x2 + (y − t)2)√

x2 + (y − t)2

}
= (35)

2i

β|x|
e−i|x|

√
β2−(ω−ky)2e−i(ω−ky)y. (36)

was used[31]. If the distance between the dipoles is less
than the surface plasmon wavelength, then only the µ = 0
mode will be propagating.

The total electric field generated all of the lines of
dipoles in the lattice together, E2D

z , excluding the line
of dipoles at x = 0, is the sum of the electric field radi-
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ated by each line of dipoles individually:

E2D
z =

−imyZ0β
3
√
−ε

kay(1− ε)
e−k

+
z (z+d)e−ikyy×

∞∑
µ=−∞

∞∑′

ν=−∞
sign(x− νax)e−i|x−νax|Γµe−ikxνaxe−i(2πµ/ay)y.

(37)

If we restrict ourselves to considering the region of space
where |x| < ax, then

E2D
z =

−2myZ0β
3
√
−ε

kay(1− ε)
e−k

+
z (z+d)e−ikyy×

∞∑
µ=−∞

e−i(2πµ/ay)y
∞∑
ν=1

e−iΓµνax sin(Γµx− kxνax).

(38)

The magnetic field in the region |x| < ax due to dipoles
for all ν 6= 0, is found using eqs. (31) and (38) to be

H2D
y =

−i2βmy

√
−ε

ay(1− ε)
e−k

+
z (z+d)e−ikyy×

∞∑
µ=−∞

Γµe
−i(2πµ/ay)y

∞∑
ν=1

e−iΓµνax cos(Γµx− kxνax).

(39)

and here we are interested more specifically in the mag-
netic field at the location of the dipole,

H2D
y (0) =

−i2βmy

√
−ε

ay(1− ε)
e−2k+z d×

∞∑
µ=−∞

Γµ

∞∑
ν=1

e−iΓµνax cos(kxνax). (40)

A straightforward application of Poisson’s summation
technique can again be used to simplify the sum over
ν, yielding

∞∑
ν=1

e−iΓµνax cos(kxνax) = −1/2−
∞∑

ν=−∞

iΓµ
axΓ2

µν

(41)

where Γµν =
√
β2 − (2πµ/ay − ky)2 − (2πν/ax − kx)2.

The contribution to the interaction constant due to
all of the lines of dipoles excluding the line at x = 0 is
defined as C2D = H2D(0)/my, which is

C2D =

√
−ε

(1− ε)
e−2k+z d×[ ∞∑

µ=−∞

iβΓµ
ay
− 2β

axay

∞∑
µ=−∞

∞∑
ν=−∞

Γ2
µ

Γ2
µν

]
. (42)

The total interaction constant is finally

C = C0D + C1D + C2D =

√
−ε

(1− ε)
e−2k+z d×[ ∞∑

µ=−∞

iβΓµ
ay
−
∑
µ∈U

iβΓµ
ay

− 2β

axay

∞∑
µ=−∞

∞∑
ν=−∞

Γ2
µ

Γ2
µν

− β3
∞∑
µ=1

Y1(βµay)

βµay
cos(kyµa)

]

=

√
−ε

(1− ε)
e−2k+z d

[∑
µ/∈U

iβΓµ
ay

− 2β

axay

∞∑
µ=−∞

∞∑
ν=−∞

Γ2
µ

Γ2
µν

− β3
∞∑
µ=1

Y1(βµay)

βµay
cos(kyµa)

]
.

(43)

Notice that, in the limit of purely real permittivity, the
contribution to the interaction constant from the 2D lat-
tice in eq. (42) contains a sum over all modes propagat-
ing away from each column of dipoles in constant x. This
term serves to cancel out the imaginary term in eq. (30)
that corresponds to the power loss due to the modes prop-
agating away from each column of dipoles. Provided that
the permittivity is purely real, then the interaction con-
stant C is purely real, meaning that there is no net loss
by the dipoles to the surface plasmon. Conservation of
energy and Poynting’s theorem is thereby maintained by
the lattice in a very round-about way: dipoles exert a
force on themselves according to their own energy loss
via the radiation reaction, but when placed in a lattice,
the dipoles exert forces on each other that exactly can-
cel the radiation reaction force and replace it with a new
force that corresponds to the radiation losses of the lat-
tice as a whole. This is already known to be true for
metamaterial lattices in free-space[14], but here we have
demonstrated this it is also true when the dipoles are
coupled to a metal film such that their Green’s function
is dominated by the surface plasmon mode.

VI. APPLICATIONS TO METAMATERIAL
ABSORBERS

Although the main result in eq. (43) is that there is
no net alteration to the Q-factor of a metasurface when
it is coupled to a metal film that supports surface plas-
mons, the real part of the interaction constant predicts
a resonance frequency shift, and the imaginary part pre-
dicts additional Ohmic losses due to absorption by sur-
face plasmons. Furthermore, the expression for the in-
teraction constant in eq. (43) includes a series of singu-
larities in the term

2β

axay

∞∑
µ=−∞

∞∑
ν=−∞

Γ2
µ

Γ2
µν

(44)
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when Γµν = 0, which occur when β =√
(2πν/ax − kx)2 + (2πµ/ay − ky)2, where µ ∈ Z

and ν ∈ Z \ {0}. Since there is no singularity when
ν = 0, the lowest order singularity is therefore the
case where µ = 0 and ν = ±1, and occurs when
β2 = (2π/ax ± kx)2 + k2

y. Under normal incidence,
eq. (43) predicts that there will be additional resonance

when β =
√

(2πν/ax)2 + (2πµ/ay)2, the lowest order
term of which is when β = 2π/ax, i.e. when the
period of the lattice is equal to the surface plasmon
wavelength. We claim that these resonances are the
Wood’s anomalies of the film-coupled metasurface.

As an example application of the theory, we consider
a metamaterial surface consisting of nanopatches that
are placed a small distance h away from a silver film,
with a lattice constant of a. The gap region between the
nanopatch and the metal film is known to support a set of
cavity modes, which couple to the incident magnetic field
and scatter as a magnetic dipole[4]. The excitation of the
cavity modes due to the incident field can be found using
a form of temporal coupled mode theory, and the mag-
netic polarizability of the nanopatch is found from the
amplitude of the magnetic dipole moment of the scat-
tered field from the cavity. The magnetic polarizability
of the nanopatch antenna given in [5] is

α =
8hc2 cos2(sin(θ)kW/2)

ω2
0 − ω2 + iω2

0/Q
(45)

where W is the width of the nanopatch and θ is the angle
of the incident magnetic field. Expressions for ω0 and Q
can be found in [4, 5]. The reflection coefficient of the
entire flim-coupled nanopatch metasurface system is [5],

r = rTM +
−ik(1− rTM )2

2a2 cos(θ)
α (46)

where rTM is the fresnel reflection coefficient of the bare
metal film under TM polarization.

a

h

W

FIG. 2. Illustration of the film-coupled metasurface of optical
patch antennas. Each patch is a cuboid of widthW and height
H that is lifted off the film by a distance h.

In Ref. [5], all interactions between the nanopatches
through surface plasmons or evanescent radiation modes
were neglected, and only the loss due to propagating ra-
diation modes was taken into account by a choice of Q

that included the radiation loss of the metasurface. How-
ever, since the nanopatch antennas scatter as magnetic
dipoles and are placed very close to the surface of the
metal film, they will couple through surface plasmons.
Neglecting the evanescent radiation mode interaction and
assuming the remaining coupling is primarily mediated
through surface plasmon modes, the effective polarizabil-
ity of the dipoles will become

αeff =
α

1− Cα
(47)

where C is the interaction constant in eq. (43). The inter-
action constant is calculated using the measured Johnson
and Christy data for the dielectric constant of silver[32].
The magnetic dipole that is generated by the film-coupled
nanopatch is created by an effective magnetic surface cur-
rent that lies on the boundary of the gap region between
the nanopatch and the metal film. Since the size of this
gap is typically extremely sub-wavelength (∼ 5nm), we
take d = 0 in the calculation of C, which places the mag-
netic dipole exactly adjacent to the metal film.

The new, corrected reflection coefficient with the sur-
face plasmon interaction taken into account will now be

r = rTM +
−ik(1− rTM )2

2a2 cos(θ)
αeff , (48)

which is plotted alongside eq. (46) in fig. 3 and com-
pared with simulation results. The particular system
presented in fig. 3 is for a periodic array of cubic patches
illuminated under normal incidence with a width W of
80nm, and separated from a metal film by a distance of
h = 5nm. Since the coupling coefficient is able to per-
fectly account for the resonance frequency shift and pre-
dict nearly all other features of the reflection spectrum,
the coupling between nanopatches must be dominated
by surface plasmon interactions, and the evanescent and
propagating radiation modes play nearly no effect, aside
from the propagating radiation modes determining the
radiation Q-factor.

Returning to eq. (14), we note that the imaginary part
of the interaction constant of the lattice is a measure of
the loss rate of each magnetic dipole to surface plasmons.
Every dipole in the lattice may be thought of as emitting
surface plasmons into the metal film at a certain rate,
which is proportional to the radiation reaction force due
to the surface plasmon coupling, or C0D, in eq. (21). The
surface plasmons are then either re-absorbed by another
dipole, which is proportional to the sum C1D + C2D, or
dissipate into Ohmic losses. The imaginary part of the
interaction constant given in eq. (43), which is due to the
surface plasmon interaction between the dipoles, is there-
fore a measure of the loss rate of any particular dipole in
the lattice to surface plasmons, minus the reabsorption
rate. The imaginary part of C is then the overall rate of
loss of the lattice to surface plasmons that are eventually
dissipated in Ohmic losses rather than reabsorbed by the
dipoles in the lattice, which we refer to as the Ohmic loss
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FIG. 3. Comparison of reflection coefficient including surface
plasmon coupling (blue line) and excluding surface plasmon
coupling (green line) with full-wave simulation results (dots)
for nanopatches with a pitch of (a) 400nm, (b) 450nm, (c)
500nm, and (d) 550nm.

rate due to surface plasmons, or

Γspp = ω0/Qspp = ω0AIm{C}. (49)

The constant A is the amplitude of the dipole’s
Lorentzian response, as in eq. (12). We compare the
Ohmic loss rate to surface plasmons with the radiative

loss rate of the dipoles, which was found in [4] to be

Γrad = ω0/Qrad = ω0A
2k|1− rTM |2

a2
(50)

for a periodic metasurface of dipoles coupled to a metal
film with lattice constant a. The ratio Γspp/Γrad is plot-
ted in fig. 4 as a function of the lattice constant for fixed
wavelength, for a metal film with ε = −15(1 + iδ), where
δ is the loss tangent. Surprisingly, the surface plasmon
losses are below or on the order of a few percent of the
total loss rate, until it approaches the Wood’s anomaly
at a/λ = k/β ≈ 0.97. At that point, the losses are by
far dominated by the surface plasmon losses since the
field becomes dominated by standing waves between the
dipoles.

0.6 0.7 0.8 0.9 1
a=6
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!
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p
=
!
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d
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FIG. 4. Ratio of the losses of the metasurface to surface
plasmons relative to the radiative loss rate, when coupled to
a metal film with ε = −15(1+iδ). The metasurface is assumed
to be placed infinitely close to the metal film (i.e. d = 0).

VII. CONCLUSION

When a metasurface is tightly coupled to a metal film,
the Green’s function of the dipoles is perturbed, which
changes how the lattice is homogenized. The dipoles
that compose the lattice are now able to both couple
into bound surface plasmon modes as well as radiation
modes. We have demonstrated that conservation of en-
ergy is upheld by the lattice in the sense that every sur-
face plasmon that is emitted into the lattice is reabsorbed
by the lattice, in the limit that the metal exhibits zero
Ohmic losses. In addition, the expressions for the in-
teraction constant derived here allow the change in the
frequency response of the metasurface to be computed
as it is brought closer to the metal film. Higher order
diffraction modes due to the surface plasmon interaction
are explained, and a means is provided to directly calcu-
lating the overall loss rate of the metasurface to surface
plasmons that are eventually dissipated in the metal film.
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Appendix A: Unconjugated Coupled Mode Theory
for Free Space Modes in a Cylindrical Hankel Basis

Coupled mode theory is a method to find solutions to
Maxwell’s equations,

∇×E = −iωµ0H− iωµ0M (A1)

∇×H = iωε0E + iωP (A2)

by expanding the field in a sum of modes

E =
∑
µν

AµνEµν (A3a)

H =
∑
µν

AµνHµν (A3b)

where the modes are themselves solutions of Maxwell’s
equations:

∇×Eµν = −iωµ0Hµν − iωµ0Mµν (A4)

∇×Hµν = iωε0εEµν + iωPµν . (A5)

Here, we are viewing the solution to Maxwell’s equations
as the actual fields distributed everywhere in the system,
with P and M representing the actual electric and mag-
netic polarizations of each of the metamaterial elements.
This will problem will be solved by expanding the fields
in an eigenmode basis, which is given by the cylindri-
cal waveguide modes. We will consider these modes in a
Hankel function basis, where the modes are all propagat-
ing waves. The details of these modes and their deriva-
tion are given in the appendix. However, there are two
important properties of these modes that must first be
noted before deriving the coupled mode theory equations.

Firstly, it ought to be noted that the cylindrical Han-
kel functions are not source-free solutions to Maxwell’s
equations. Normally, coupled mode theory is developed
using a basis of source-free solutions of Maxwell’s equa-
tions (i.e Pν = Mν = 0), which are therefore eigenmodes
of Maxwell’s equations. This is the assumption that was
used in references [29, 30] when deriving the coupling of
sources to Hankel cylindrical modes. However, the cylin-
drical Hankel basis that we are considering is not a set of
source-free solutions to Maxwell’s equations, since each
of those modes imply the existence of of a point-source at
the origin. For example, the source implied by the fun-
damental TM mode may be found by using the integral
form of Maxwell’s equations,

iω

∫
S

P±µν · da =

∫
∂S

H±µν · dl− iωε0ε
∫
S

E±µν · da (A6)

where the + sign corresponds to solutions that are out-
going waves and the − sign corresponds to solutions that
are incoming waves. The surface S may be chosen to be
a small disk oriented in the ẑ direction with any arbi-
trary radius. If the TE and TM modes with ν = 0 (see
appendix B) are used in eq. (A6), then the right hand
side evaluates to

iω

∫
S

P±µ0 · da =
∓4ε(z)Zµ(z)

βµZ0
, (A7)

which is independent of the radius of the disk. Clearly,
P±µν cannot be zero everywhere. Moreover, since the
right-hand side is entirely independent of the radius of
the disk of integration, the integral on the left must also
be independent of the disk of integration. The argument
P±µν must either go as 1/r, or else have a delta function
form in the radial coordinate. Since the Hankel functions
are known to be source-free solutions when r 6= 0, P±µν
must have a delta-function form. Hence, we have that

PTM±µ0 = ẑ
±i4ε0ε(z)Zµ(z)

βµk

δ(r)

2πr
(A8a)

MTM±
µ0 = 0 (A8b)

PTE±µ0 = 0 (A8c)

MTE±
µ0 = ẑ

±i4Zµ(z)

βµk

δ(r)

2πr
. (A8d)

However, as shall be seen, there will be no need to exactly
evaluate all of the electric and magnetic polarizations for
each of the modes. This task will be particularly difficult
when evaluating the sources corresponding to modes with
ν ≥ 1, since there is no obvious way to define a surface
such that the integral converges.

However, making some simple observations about the
properties that these sources must have will provide a
way forward. The absorbed power for each solution is
given by Poynting’s theorem as

P±abs = Re

{∫
J ·EdV

}
= −ωIm

{∫
P±µν ·E

±
µνdV

}
(A9)

The outgoing and incoming wave solutions to Maxwell’s
equations must be related to each other such that P−abs =

−P+
abs. This absorbed power must also be finite, and so

the phase of P±µν must be such that Im{P±µν ·E
±
µν} only

involves the Jν(βµr) portion of the Bessel function, which
implies that

Im{P+
µν ·E

−
µν} = Im{P+

µν ·E
+
µν} = −Im{P−µν ·E

−
µν}.
(A10)

Therefore it follows that P−µν = −P+
µν . An extension of

the argument to include magnetic currents will also show
that M−µν = −M+

µν , and these conclusions are consistent
with eqs. (A8a) to (A8d).

The second important point to make note of regarding
the cylindrical Hankel basis used here is the orthogonality
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property,∫ (
E+
µν ×H−ρσ −E−ρσ ×H+

µν

)
· da =

4L(1 + δν0)

Z0k
δρµδσν

(A11)
where the integration is carried out over the surface of
a cylinder of any radius aligned along the z-axis. This
orthogonality relationship can be derived directly using
the expressions for the modes given in appendix B, which
was also shown in [29], although with a different normal-
ization. The choice of normalization that yields eq. (A11)
is given in appendix B, where the constant L is defined in
eqs. (B7a) and (B7b) and has units of length. This par-
ticular choice of normalization leaves the electric field of
the modes as dimensionless, the magnetic field with units
of inverse impedance, and therefore the inner product of
the modes has units of area times inverse impedance.

Coupled mode theory is derived using Lorentz reci-
procity, and the unconjugated form of Lorentz reciprocity
states that, for two solutions to Maxwell’s equations
{E1,H1,P1,M1} and {E2,H2,P2,M2},

∇ · (E1 ×H2 −E2 ×H1) =

iω (P1 ·E2 − µ0M1 ·H2 −P2 ·E1 + µ0M2 ·H1) .
(A12)

First, we will derive the Rayleigh-Carson reciprocity the-
orem from eq. (A12) by requiring {E,H,P,M} to be the
particular solution to Maxwell’s equations that we are
seeking, and {E2,H2,P2,M2} = {E+

µν ,H
+
µν ,P

+
µν ,M

+
µν},

and taking the volume integral of eq. (A12) over all space.
This yields,∫ (

E×H+
µν −E+

µν ×H
)
· da =

iω

∫ (
P ·E+

µν − µ0M ·H+
µν −P+

µν ·E + µ0M
+
µν ·H

)
dV.

(A13)

If the sources P and M do not extend to infinity so that
all of the modes that compose E and H at infinity are
outgoing waves, then the orthogonality relationship in
eq. (A11) will guarantee that the surface integral will
vanish. The result is the Rayleigh-Carson reciprocity
theorem,∫ (

P ·E+
µν − µ0M ·H+

µν

)
dV =

∫ (
P+
µν ·E− µ0M

+
µν ·H

)
dV.

(A14)

Now, let {E,H,P,M} remain as the solution to
Maxwell’s equations that we are seeking, but set
{E2,H2,P2,M2} = {E−µν ,H

−
µν ,P

−
µν ,M

−
µν}. The elec-

tric and magnetic fields E and H may moreover be ex-
panded using eqs. (A3a) and (A3b). Using eqs. (A3a)
and (A3b) in eq. (A12) and taking the volume integral
of both sides, and applying the orthogonality condition

in eq. (A11) yields

Aµν =
ik2

4Lε0(1 + δν0)
×∫ (

P ·E−µν − µ0M ·H−µν −P−µν ·E + µ0M
−
µν ·H

)
dV.

(A15)

Using the particular property of the cylindrical Hankel
sources that P−µν = −P+

µν and M−µν = −M+
µν , and ap-

plying eq. (A14), we obtain

Aµν =
ik2

4Lε0(1 + δν0)

∫
P·(E+

µν+E−µν)−µ0M·(H+
µν+H−µν)dV.

(A16)
The result in eq. (A16) allows the calculation of the cou-
pling of a dipole to cylindrical Hankel functions, because
the singularity at the origin is canceled in the sum of
incoming and outgoing waves.

As an example of the new coupled mode theory equa-
tion eq. (A16), consider an electric dipole placed at po-
sition (x, y, z) = (0, 0, d), with dipole moment p = pz ẑ.
The coupling to the surface plasmon is calculated using
the quantity,

ETM+
νz + ETM−νz = 2nspZ(z) cos(νθ)Jν(βr) (A17a)

ETE+
νz + ETE−νz = 0. (A17b)

where nsp = β/k, and the index µ has been removed since
there is only one bound mode (µ = 0), which corresponds
to the surface plasmon. The mode amplitudes excited by
this source are then,

ATMc
ν =

pzβ
2Z0

4L
ZTM (d)δν0 (A18a)

ATMs
ν = 0 (A18b)

ATEcν = 0 (A18c)

ATEsν = 0. (A18d)

The z-component of the electric field emitted by this
source is therefore

Ez =
pz
ε0

iβ5
√
−ε

2k2(1− ε)
e−k

+
z (z+d)H

(2)
0 (βr). (A19)

The power dissipated into the surface plasmon by this
dipole is given by Psp = (ω/2)Im{p∗ ·E}, which is

Psp = ω
|pz|2

ε0

β5
√
−ε

4k2(1− ε)
e−2k+z d (A20)

The result in eq. (A20) agrees with equation 3.21 in [33]
for the power emitted into the surface plasmon. Alterna-
tively, we can consider an electric dipole placed parallel
to the surface. A similar calculation using these same
methods will also yield the same result as equation 3.21
in [33] for the horizontal electric dipole.
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Appendix B: Solutions to Maxwell’s Equations in
Cylindrical Coordinates

We want to find the solutions to Maxwell’s equations in
cylindrical coordinates. This kind of expansion has been
done before, and the results in reference [29] are summa-
rized here. We start with the z-component of the electric
and magnetic fields, which must follow the Helmholtz
equation,

(∇2 + εk2)

{
Ez
Hz

}
= 0 (B1)

where k = ω/c is defined as the free space wavenumber.
By splitting the Laplacian operator into normal and pla-
nar components, expressing it in cylindrical coordinates,
and then using the curl equations, one can express all of
the components of the electric and magnetic fields solely
in terms of derivatives of the z-components[28, 29]:

Er =
1

β2

[
∂2Ez
∂z∂r

− ikZ0

r

∂Hz

∂θ

]
Eθ =

1

β2

[
1

r

∂2Ez
∂θ∂z

+ ikZ0
∂Hz

∂r

]
Hr =

1

β2

[
ikε

Z0r

∂Ez
∂θ

+
∂2Hz

∂r∂z

]
Hθ =

1

β2

[
−ikε
Z0

∂Ez
∂r

+
1

r

∂2Hz

∂θ∂z

]
(B2)

We define TE waves as those where Ez = 0, and TM
waves as those where Hz = 0. Using these definitions,
we perform separation of variables on the z-component
of the field:

Ez(r, θ, z) = Rµν(r)Θν(θ)Zµ(z). (B3)

This provides the solution for TM modes. TM modes are
found by assuming

Hz(r, θ, z) = Rµν(r)Θν(θ)Zµ(z). (B4)

Plugging these expressions into (B1) one at a time, with
the laplacian expressed in cylindrical coordinates, we can
separate the variables as,

d2Zµ
dz2

+ k2ε(z)Zµ = β2
µZµ (B5a)

d2Θν

dθ2
= −ν2Θν (B5b)

r
d

dr

(
r
dRν
dr

)
+ [(βµr)

2 − ν2]Rν = 0 (B5c)

where the variables βµ and ν are constants of separa-
tion. The Θν(θ) and Zµ(z) functions must be indexed by
mode numbers ν and µ respectively, since we assume here
that the boundary conditions are applied in the z and θ

coordinates, which turns eqs. (B5a) and (B5b) into an
eigenvalue problem with β2

µ and ν2 as eigenvalues. The
r-coordinate is assumed to have no boundary conditions,
so Rµν(r) inherits it’s mode numbers from the Θν(θ) and
Zµ(z) functions through the separation of variables pro-
cess.

The solutions to eq. (B5b) are given immediately as,

Θν(θ) = eiνθ, (B6)

and since the expression for Θν(θ) must be 2π periodic,
ν must be an integer.

The boundary conditions corresponding to the z-
coordinate will yield an eigenvalue problem for Zµ(z),
with β2

µ as the eigenvalue. The boundary conditions
themselves will come from substituting Zµ(z) into (B2),
and requiring that the fields either decay to zero at in-
finity (which yields the surface plasmon guided solution),
or satisfy the radiation condition at infinity (which yields
the radiation modes).

The Zµ(z) functions that correspond to bound modes
can be normalized so that

∫ ∞
−∞

ε(z)[ZTMµ (z)]2dz = L (B7a)∫ ∞
−∞

[ZTEµ (z)]2dz = L (B7b)

for bound (SPP) modes, where L is an arbitrary nor-
malization constant with units of length. This particular
normalization needs to be used in order for the orthog-
onality relationship given in eq. (A11) to have the same
normalization for TM and TE modes, and ensures that
the Zµ(z) functions will be dimensionless.

In the particular example of the interface between a
dielectric and a metal film, there is only one TM bound
mode, which is the SPP. In this case, the z-dependence
is given by

ZTM (z) =


k−z
k

√
2k+z L
1−ε e

−k+z z z ≥ 0

−k+z
k

√
2k+z L
1−ε e

k−z z z ≤ 0

(B8)

where k+
z = ik/

√
ε+ 1, and k−z = −iεk/

√
ε+ 1, and

the eigenvalue that corresponds to this solution is β =
k
√
ε/(ε+ 1).

The solutions for the Rν(r) equation are the Hankel

functions H
(2)
ν (βµr) for outgoing waves and H

(1)
ν (βµr)

for incoming waves (assuming an eiωt time dependence).
Putting all of this together and substituting into (B2),
we have an expansion for the TM modes in terms of the
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cylindrical Bessel functions,

ETMµνz = nµH
(2)
ν (βµr)e

iνθZTMµ (z) (B9a)

ETMµνr =
1

k

∂

∂(βµr)
H(2)
ν (βµr)e

iνθ
dZTMµ (z)

dz
(B9b)

ETMµνθ =
iν

k

H
(2)
ν (βµr)

βµr
eiνθ

dZTMµ (z)

dz
(B9c)

HTM
µνz = 0 (B9d)

HTM
µνr =

−νε
Z0

H
(2)
ν (βµr)

βµr
eiνθZTMµ (z) (B9e)

HTM
µνθ =

−iε
Z0

∂

∂(βµr)
H(2)
ν (βµr)e

iνθZTMµ (z) (B9f)

and the TE modes,

ETEµνz = 0 (B10a)

ETEµνr = ν
H

(2)
ν (βµr)

βµr
eiνθZTEµ (z) (B10b)

ETEµνθ = i
∂

∂(βµr)
H(2)
ν (βµr)e

iνθZTEµ (z) (B10c)

HTE
µνz =

nµ
Z0
H(2)
ν (βµr)e

iνθZTEµ (z) (B10d)

HTE
µνr =

1

Z0k

∂

∂(βµr)
H(2)
ν (βµr)e

iνθ
dZTEµ (z)

dz
(B10e)

HTE
µνθ =

iν

Z0k

H
(2)
ν (βµr)

βµr
eiνθ

dZTEµ (z)

dz
(B10f)

Note that the electric field of the eigenmodes has been
normalized here to be dimensionless, and the magnetic
field has units of inverse impedance. The modes have
also been normalized by a factor of nµ = βµ/k in or-
der for both the TE and TM modes to obey the same
orthogonality relationship in eq. (A11).

It is useful to express the modes in a {sin(νθ), cos(νθ)}
basis instead of the complex exponential basis. In that
basis, the TM modes are given by

ETMc
µνz = nµH

(2)
ν (βµr) cos(νθ)ZTMµ (z) (B11a)

ETMc
µνr =

1

k

∂

∂(βµr)
H(2)
ν (βµr) cos(νθ)

dZTMµ (z)

dz
(B11b)

ETMc
µνθ =

−ν
k

H
(2)
ν (βµr)

βµr
sin(νθ)

dZTMµ (z)

dz
(B11c)

HTMc
µνz = 0 (B11d)

HTMc
µνr =

−iνε
Z0

H
(2)
ν (βµr)

βµr
sin(νθ)ZTMµ (z) (B11e)

HTMc
µνθ =

−iε
Z0

∂

∂(βµr)
H(2)
ν (βµr) cos(νθ)ZTMµ (z) (B11f)

ETMs
µνz = nµH

(2)
ν (βµr) sin(νθ)ZTMµ (z) (B12a)

ETMs
µνr =

1

k

∂

∂(βµr)
H(2)
ν (βµr) sin(νθ)

dZTMµ (z)

dz
(B12b)

ETMs
µνθ =

−iν
k

H
(2)
ν (βµr)

βµr
cos(νθ)

dZTMµ (z)

dz
(B12c)

HTMs
µνz = 0 (B12d)

HTMs
µνr =

iνε

Z0

H
(2)
ν (βµr)

βµr
cos(νθ)ZTMµ (z) (B12e)

HTMs
µνθ =

−iε
Z0

∂

∂(βµr)
H(2)
ν (βµr) sin(νθ)ZTMµ (z) (B12f)

The TE modes in the {sin(νθ), cos(νθ)} basis are,

ETEcµνz = 0 (B13a)

ETEcµνr = −νH
(2)
ν (βµr)

βµr
sin(θ)ZTEµ (z) (B13b)

ETEcµνθ = − ∂

∂(βµr)
H(2)
ν (βµr) cos(θ)ZTEµ (z) (B13c)

HTEc
µνz =

inµ
Z0

H(2)
ν (βµr) cos(θ)ZTEµ (z) (B13d)

HTEc
µνr =

i

Z0k

∂

∂(βµr)
H(2)
ν (βµr) cos(θ)

dZTEµ (z)

dz
(B13e)

HTEc
µνθ =

−iν
Z0k

H
(2)
ν (βµr)

βµr
sin(θ)

dZTEµ (z)

dz
(B13f)

ETEsµνz = 0 (B14a)

ETEsµνr = ν
H

(2)
ν (βµr)

βµr
cos(θ)ZTEµ (z) (B14b)

ETEsµνθ = − ∂

∂(βµr)
H(2)
ν (βµr) sin(θ)ZTEµ (z) (B14c)

HTEs
µνz =

inµ
Z0

H(2)
ν (βµr) sin(θ)ZTEµ (z) (B14d)

HTEs
µνr =

i

Z0k

∂

∂(βµr)
H(2)
ν (βµr) sin(θ)

dZTEµ (z)

dz
(B14e)

HTEs
µνθ =

iν

Z0k

H
(2)
ν (βµr)

βµr
cos(θ)

dZTEµ (z)

dz
. (B14f)
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