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Abstract

Motivated by numerous technological applications, there is current interest in the study of the

conductive properties of networks made of randomly dispersed nanowires. The sheet resistance

of such networks is normally calculated by numerically evaluating the conductance of a system

of resistors but due to disorder and with so many variables to account for, calculations of this

type are computationally demanding and may lack mathematical transparency. Here we establish

the equivalence between the sheet resistance of disordered networks and that of a regular ordered

network. Rather than through a fitting a scheme, we provide a recipe to find the effective medium

network that captures how the resistance of a nanowire network depends on several different pa-

rameters such as wire density, electrode size and electrode separation. Furthermore, the effective

medium approach provides a simple way to distinguish the sheet resistance contribution of the

junctions from that of the nanowires themselves. The contrast between these two contributions

determines the potential to optimize the network performance for a particular application.
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I. INTRODUCTION

Randomly dispersed nanowires networks (NWN) are flexible, electrically active materials

with great promise for use as transparent conductors [1–3], thin-film solar cells [4–6], and

sensor devices [7, 8]. NWNs are most typically comprised of metallic nanowires, of which

each wire is coated with either a surface functionalisation or oxide passivation layer to

facilitate solution phase processing by preventing flocculation. The exploitation of NWNs

for any of these applications involves the activation or switching on of the junctions between

wires in the network, which is typically accomplished by using heat[9, 10], pressure[11] and

electrical stressing[12] to yield a material with definitive properties, e.g., sheet resistance

and transparency.

Fig. 1(a) shows an SEM image of a typical NWN, where hundreds of high aspect-ratio

wires are randomly deposited onto an insulating substrate and contacted by two metallic

electrodes on opposite ends of the image. Whilst such NWN devices may require no precise

spatial ordering, accurately predicting the physical responses of such a system is challeng-

ing due to the large uncertainties caused by two main types of disorder: the randomness

with which wires are spatially distributed and the inherent fluctuations on the individual

characteristics of the wires. This calls for averaging strategies that reduce the impact of

these fluctuations in any calculations. With that in mind, we have recently introduced a

method that processes SEM microscopy images of NWNs and captures the precise locations

of all wires of a given sample[13]. This establishes the exact connectivity the NWN pos-

sesses and removes the need for averaging over the wire locations, consequently reducing the

fluctuations induced by spatial disorder.

This image-processing technique is a welcome tool to improve the descriptive power of

simulations but the study of the electrical response of these films remains challenging because

it also depends on a multitude of other factors such as material type, wire length and

diameter, interwire contact quality, wire density, network connectivity, etc. It is frequently

assumed to facilitate calculations of this type that the overall network resistance is dominated

by the junction resistances formed between adjacent wires of the network[14]. However,

calculated junction resistances based on this assumption have now been shown to be orders

of magnitude higher than those subsequently measured[15], indicating that the internal

contribution of the individual nanowires cannot be neglected and is one more factor to be
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FIG. 1: (a) SEM micrograph image of a Ag-NWN with hundreds of wires randomly distributed

on top of an insulating substrate. Two electrodes on both sides of the sample, shown as vertical

gray bars, are connected by numerous paths formed by the wires. (b) After the image is processed,

the digitized version of the image records each wire location and provides full information about

the intersection points of each wire; (c) Mathematical graph showing voltage nodes as points and

connecting resistors as edges; (d) The simplified graph of a square lattice representing a regular

ordered network.

accounted for. With so many ingredients affecting the sheet resistance of these films, a

closed-form expression for the conductance of such heavily disordered networks would be

very welcome.

At present, there is no theoretical description based on real-world NWNs in which their

far-from-perfect physical characteristics are accounted for in a closed-form mathematical

representation. This is typically done by means of laborious Monte-Carlo procedures used

to determine universal behaviours of simplified computer-generated NWNs [16–19]. Indeed,

such techniques are so computationally demanding that the dependence of the sheet re-
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sistance on all the possible physical characteristics of real NWN such as the wire density,

material properties, connectivity, etc, can only be estimated numerically. However, closed-

form analytical expressions for the conductance of ordered homogeneous networks are known

[20]. These are spatially ordered networks (e.g. square, triangular, hexagonal, etc) connected

by identical resistors throughout. Whether these expressions can be of use to describe heav-

ily disordered structures, even though they are far from ordered and homogenous, is the

question posed here. In this manuscript we show that by mapping the disordered structures

onto a corresponding effective medium, we can obtain the sheet resistance of NWN with an

arbitrarily large density of wires. Further manipulation of these expressions enables us to

describe the conductivity of these films under real experimental conditions. In fact, we show

that dense networks composed of nanowires of non-uniform lengths and diameters contacted

by finite-sized electrodes can be fully described by this approach. Furthermore, we argue

that not only can we reproduce experimental measurements but we are also able to search

for optimization conditions that will minimize the sheet resistance of a NWN.

The sequence adopted in this paper is as follows. For the sake of completeness, we start

by writing the equivalent resistance (or conductance) of a network comprised of identical

resistors forming an infinitely large regular ordered lattice. Because Kirchhoff’s laws on

networks are expressed in terms of a Laplacian matrix, it is useful to solve this problem

using Green Function (GF) methods. Indeed, writing it in terms of GF becomes extremely

convenient when disorder is included since there is a vast body of knowledge on solving

Laplacian-like equations[20] for disordered matrices[21, 22]. We then present the effective

medium theory (EMT) that allows us to express the problem of calculating the conductance

of a inhomogeneous disordered network in terms of an ordered regular network that has

a homogeneous resistance[23]. Without any fitting parameter, we are able to demonstrate

that this closed-form expression for the conductance provides an excellent match both with

simulations and with experimental results. We conclude by illustrating how this approach

can be useful in the study of NWNs as well as in other disordered materials.

II. THEORETICAL METHOD

We start this section by describing how the NWN depicted in Fig. 1(a) is transformed

into a resistor network. Fig. 1(b) shows the digitized version of the original image on the top
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left panel and contains full information about the position, orientation and the intersection

points of all wires [13]. Each intersection point is mapped onto a voltage node connected

by resistors, the value of which depends on whether the nodes it connects are on the same

wire or on different ones. In the case of nodes on different wires, a resistance is assigned

according to the distribution of measured individual junction resistances recently reported

[15]. In the case of neighbouring nodes on the same wire, the corresponding resistance value

assigned depends on the wire resistivity and is simply proportional to the length of the

wire section connecting the nodes. It is worth mentioning that this length distribution is

different from the wire length distribution and simply results from the randomness of the

intersection points on all wires, i.e., it follows a Poisson distribution. While it is not so

difficult to visualize this network for a small number of wires, it becomes far too complex for

any reasonably sized NWN. Representing the network by a mathematical graph that depicts

voltage nodes as points and connecting resistors as edges, as illustrated in Fig. 1(c), one can

see how complex the visualization becomes in the case of high-density NWN. A considerably

simpler graph is shown on Fig. 1(d) where a regular homogeneous network is represented

by a square lattice. By establishing the conditions under which the networks of Figs. 1(c)

and 1(d) have similar responses, we can find closed-form expressions that describe the sheet

resistance of films like the ones shown in Fig. 1(a). In what follows, we consider the case of

a regular homogeneous network with external current injected and extracted on two nodes

a certain distance apart, for which closed-form expressions can be easily obtained.

A. Inter-node resistance of a regular network

By using Kirchhoff’s and Ohms laws, the inter-node Resistance Green’s Function

(RGF)[20] is ideal to obtain the equivalent conductance of regular networks. In the case

of infinitely large networks represented by e.g . square, hexagonal and triangular lattices,

closed-form expressions give rise to simple analytical expressions that describe the equivalent

resistance between any two points of the network a certain distance apart. We summarise

a derivation of this expression in this section as it also illustrates what is needed to deal

with disordered finite networks in the presence of extended electrodes, which is more closely

related to the realistic experimental setup of NWN films.

The RGF describes the resistance between two nodes on an infinite regular lattice sepa-
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rated by the vector ~r. We shall consider a square circuit lattice, as shown in Fig. 1(d). Thus

the position vector of nodes is given by ~rℓ1,ℓ2 = ℓ1~a1 + ℓ2~a2, ~ai are the primitive vectors

of the square lattice and ℓi ∈ Z. The primitive vectors ~ai have reciprocal lattice vectors

~ki. We set |~ai| = 1 for simplicity. Resistors, the edges connecting nodes in the lattice, are

assumed to have the same value R. In order to obtain the resistance between two nodes in

the network, a current I is injected to a node at position ~r and extracted at point ~r ′. The

potential at the site ~r is V (~r). From Kirchhoff’s and Ohm’s laws:

I(~r)R =
∑

~n

[V (~r)− V (~r + ~n)] (1)

~n are the vectors connecting ~r to its nearest neighbours. The right hand side can be described

using the lattice Laplacian,

−∆~rf(~r) =
∑

~n

[f(~r)− f(~r + ~n)] (2)

which leads to

∆~rV (~r) = −I(~r)R . (3)

Let the current be injected at the origin and extracted at an arbitrary site ~r0. Thus I(~r)

can be written as I(~r) = I(δ~r,0 − δ~r,~r0), where δx,y is the Kronecker delta function. Bringing

this together the resistance between the two nodes is:

Rn(~r0) =
V (~0)− V (~r0)

I
(4)

We introduce a lattice Green’s function and define it as

∆(~r ′)G(~r − ~r ′) = −δ~r,~r ′ (5)

Eq. (3) is a Poisson-type equation and can be solved using the lattice GF, which is defined

simply as the inverse of the Laplacian matrix ∆ [24],

V (~r) = R
∑

~r ′

[G(~r − ~r ′)I(~r ′)] = R[G(~r −~0)−G(~r − ~r0)]. (6)

Combining Eqs. (4) and (6), and the fact that the lattice GF is even one finds

Rn(~r0) = 2R[G(~0)−G(~r0)] (7)

Up to this point, nothing specific about the network size has been mentioned. In fact, in

the case of a finite-sized network the GF definition of Eq. (5) gives rise to a square matrix
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of size S × S, where S is the total number of voltage nodes. In the case of infinitely large

networks we make use of the symmetries of the infinite square lattice and take the Fourier

transform of G(~r),

G(~r) =

∫

~k∈BZ

G(~k)ei
~k·~r. (8)

The integral is performed over the square lattice Brillouin Zone. Using Eq.(3) one finds

G(~k) =
1

2(2− cos(k1)− cos(k2))
(9)

Substituting these equations into Eq. (7)

Rn(~r0) = R

∫

~k∈BZ

d~k

(2π)2
1− e

~k·~r0

2− cos(k1)− cos(k2)
(10)

Let ~r = l1~a1 + l2 + ~a2; this integral has an asymptotic form for large values of li,

Rn(|~r|) ≈
R

π

(

ln |~r|+ γ +
ln 8

2

)

(11)

where γ = 0.57721... is the Euler-Mascheroni constant. To verify the validity of Eq. (11), we

FIG. 2: Plot of the equivalent resistance Rn(~r) between two point electrodes a distance |~r| apart. The

solid line corresponds to the analytical expression of Eq. (11) whereas the triangular dots are the numerical

calculations of Rn for a square lattice of size 500× 500. Circular dots correspond to numerical calculations

of the average equivalent resistance between pairs of nodes at a given node separation on a NWN, such as

one shown in Fig. 1(a).

performed a numerical calculation of the equivalent resistance for a square lattice network
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of size 500×500 nodes. The resistance was obtained by solving Kirchhoff’s circuit equations

written in matrix form. The resistances were probed for distinct point electrode separations

and they are depicted in Fig. 2. This result shows that the Eq. (11) is indeed a good

approximation for moderately large separations |~r|. For much larger separations finite size

effects causes the numerical simulations to diverge from theory, which is not shown in the

plot.

The agreement between the solid line and the triangular dots is not so surprising since

both calculations are done for square-latticed networks. The latter corresponds to the nu-

merical calculation of the equivalent resistance between two voltage nodes a distance ~r apart

in a finite-sized network whereas the former is for infinitely large systems. The surprising

feature here is the agreement shown between Eq. (11) and the circular dots of Fig. 2. These

were evaluated numerically for the complex graph shown in Fig. 1(c) through a method to

be described in the following sections and correspond to the realistic sample seen in Fig.

1(a). This is a clear indication that the sheet resistance of that complex NWN can be very

well described by a regular network. We argue that the agreement is not coincidental and

that there is always a suitable value for R in Eq. (11) that reproduces the conductance be-

haviour of the NWN, no matter how disordered it is. It is worth mentioning that instead of

a fitting scheme, our goal is to provide a simple recipe to find the effective-medium network

that captures all the features seen in the realistic sample.

B. Extended Electrodes embedded in a finite network

We now wish to generalize the RGF to a system that is closer to the geometry commonly

seen in experiments of this type. Rather than point electrodes embedded in infinite lattices,

we now focus on the case of extended electrodes. Fig.3(a) shows the graph associated with

a NWN in the presence of finite-sized electrodes represented by two separate vertical red

lines. Ny = 7 is the average number of wires contacted by the electrodes that are a certain

distance apart. See Appendix for a description of how Ny is calculated. Fig. 3(b) shows

the equivalent homogeneous square lattice with electrodes that span the same number Ny of

resistors. Similarly to the case of point electrodes, the panel (c) shows excellent agreement

between the numerical results associated with the networks shown in panels (a) and (b),

confirming that the agreement is far from coincidental and reflects the similarities between
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FIG. 3: (a) Digitized image of a real NWN with two separate finite-sized electrodes represented by vertical

red lines. Ny = 7 wires cross the electrodes. (b) Square lattice with finite-sized electrodes (represented by

red dots). The number of black squares on either side corresponds to the value of Ny = 7 electrode nodes

obtained from panel (a). Nx represents the characteristic number of junctions and wire segments needed to

form a path between the electrodes; (c) Sheet resistance as a function of Nx. Circular dots are the calculated

results for the realistic network whereas triangular dots correspond to the results of the square lattice shown

in panel (b) with R ≈ 8.3Ω.

the sheet resistances of both geometries. The equivalent resistance between the electrodes

in Fig.3(b) can be expressed as [25]

Re(Nx, Ny) = R
Nx

Ny

, (12)

and has a straightforward interpretation: one considers chains of Nx resistors of resistance

R connected in series, and there are Ny of these chains connected in parallel.

Whilst the values of Nx and Ny are obtained by purely geometric arguments, shown

in Appendix A, the quantity R is the key quantity to describe the sheet resistance of a

NWN. As previously seen in Figs. 2 and 3, a suitable choice for the value of R makes the
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regular-network results coincide with those associated with disordered NWN. Rather than a

fortunate coincidence or even a fitting scheme, we can obtain this value from first principles,

as we demonstrate next.

Consider a circuit lattice where the individual edge conductance, represented by the

quantity g, follows some distribution f(g). If all conductors are replaced with the effective

conductance, the average electrical behaviour of the network is maintained[23]. The effective

conductance gm can be calculated for a square circuit lattice using the following equation,
∫

dgf(g)

(

gm − g

g + gm

)

= 0. (13)

The solution to this integral equation will therefore provide the effective value of gm and

consequently the value of R = 1/gm as seen in Figs. 2 and 3. Note that this solution is

crucially dependent on f(g) and for that reason we need to describe well how the individual

resistances connecting the neighbouring voltage nodes are distributed.

As previously mentioned, the assumption that the conductivity is dominated by the

junction resistances is not always accurate and can lead to a gross overestimation of the

individual resistances [14, 15]. Multi-nodal representation (MNR) was recently developed in

order to include the effects of intra-wire resistance on the sheet resistance of NWN [13]. In

the MNR scheme, network nodes are associated with intersection points on each network.

The nodes are then connected with edges weighted by a wire junction conductance or an

intra-wire conductance. For the case of nodes near the ends of the wires, an infinite resistor

must also be included in the overall distribution to account for the two non-electrically active

wire segments per wire. Therefore, a tri-conductance distribution on a square circuit lattice

is used to calculate the effective resistance for a NWN.

The resistors in the NWN can be separated into 3 different categories: (i) the inter-

wire junctions following a conductance distribution σj(g), (ii) the inner-wire conductance

following a distribution σi(g), and (iii) non-electrically active resistors. The total number of

wire segments Ns (both current carrying segments and non-electrically active wire segments)

can be written as

Ns = 2Nj +Nw (14)

where Nj is the total number of junctions and Nw is the number of wires. This can be

understood in the following way; The number of wire segments starts as the number of wires

in the system. For every wire junction, two new wire segments are formed (one on each wire).
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The number of non-electrically active wire segments ND is simply ND = 2Nw, i.e, two per

wire. Thus the number of current carrying wire segments Nc is Nc = Ns −ND = 2Nj −Nw.

The total number of conductors Nt is the sum of inter-wire junctions Nj and wire segments

Ns, so Nt = Nj +Ns = 3Nj +Nw.

The probabilities for a junction conductor (Pj), an inner conductor (Pi) and, a non-

electrically active segment, or a ”dead-end” segment, (Pd) are given by:

Pj =
Nj

Nt

Pi =
2Nj −Nw

Nt

Pd =
2Nw

Nt

(15)

Combining these expressions together, the conductance distribution to be inserted into Eq.

(13) is thus:

f(g) = Piσj(g) + Pjσj(g) + Pdδ(g) (16)

Bellew et al. made physical measurements of individual junction resistances and an

associated resistance distribution was obtained[15], which can be seen in Fig.(4). The intra-

FIG. 4: Junction Resistance distribution from Bellew et al.[15].The width of each bin in the histogram is

10 Ω. A peak occurs in the distribution in the 10 − 20Ω bin. The mean resistance occurs at approximately

11Ω.

wire resistance (Ri) is given by the usual identity relating it with its length and diameter,

Ri =
ρ li
A

(17)

where ρ, li, A are the resistivity, wire segment length and cross sectional area of the wire,

respectively. Having Ag wires in mind, the values used are taken from physical measurements
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found in our recent publication [13]. The resistivity is taken as 22.6nΩm and wire diameters

are 50 nm. The lengths of the nano-wires (L) are given by a Gaussian distribution centered

at 6.7µm. By considering the intersection of wires as a Poisson point process one expects the

segment length distribution li to follow a Poisson distribution. Combining these distributions

one csn construct the intra-wire conductance distribution σi(g).

In order to simplify the calculation of the effective conductance, we replace σi(g) and

σj(g) with their mean values gi and gj respectively. In order to calculate gi, we must first

find the average segment length < l >. This is calculated by dividing the total length of all

wires by the number of wire segments,

< l >=
NwL

Ns

=
NwL

2Nj +Nw

. (18)

This is combined with the experimental parameters given above. The conductance distri-

bution then becomes:

f(g) = Piδ(g − gi) + Pjδ(g − gj) + Pdδ(g) (19)

Applying this expression to Eq. (13) and solving the resulting quadratic equation we obtain

gm:

gm =
giNj − gjNj − 3giNw − gjNw

2Nt

+

+
1

2Nt

√

12gigj(Nj −Nw)(3Nj +Nw) + (gi(Nj − 3Nw)− gj(Nj +Nw))2 (20)

It is worth mentioning that if one wishes to work with wire density (nw) and junction density

(nj) instead of total numbers the form of the above expressions remains the same. Simply

set Nj → nj and Nw → nw. It is possible to relate the wire density with junction density;

Heitz et al.[26] found that for a given wire density nw of identical wires of length L, the

junction density is given by

nj =
1

2
PπL2n2

w (21)

where P , the contact probability, was calculated numerically by Heitz et al. and found to

be 0.2027. The wire lengths of our experimental NWN samples mostly follow a Gaussian

distribution centered on 6.7µm. Subbing this value in to Eq. (21) one finds that nj ≈

15.6n2
w. However results of simulations for wire lengths that follow a Gaussian distribution

gives the relation nj ≈ 13n2
w or nj ≈ 0.265L2n2

w. From here on we shall use the notation
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nj = α(L)n2
w with α ≈ 13. Thus, in terms of wire density alone Eq. (20) becomes

gm =
giαnw − 3gi − gj − gjαnw

2(3αnw + 1)
+

+
1

2(3αnw + 1)

√

12gigj(αnw − 1)(3αnw + 1) + (gi(αnw − 3)− gj(αnw + 1))2 (22)

and provides a closed-form expression that maps the conductance of a disordered NWN with

that of a ordered homogeneous lattice composed of edge resistors of resistances R = 1/gm.

As repeatedly mentioned in this manuscript, the agreements displayed in Figures 2 and 3

were not coincidental nor were they generated through a fitting scheme. They were in fact

obtained with the use of Eq. (22).

III. RESULTS

In addition to the results seen in Figs. 2 and 3, where the sheet resistance is shown as

a function of electrode separation, our method is also capable of demonstrating how the

resistance depends on the wire density. With that in mind, we consider disordered NWNs

that were either randomly generated through a simulation or were image processed and

corresponded to experimentally deposited networks (see Figs. 1(a) and 1(b)) [13].

Simulations involved generating NWN with resistances that follow the distributions out-

lined above. Networks of physical size W × W and wire density nw are then contacted by

finite-sized electrodes also of size W, as shown in Fig. 3(a). The inter-electrode resistance is

recorded and averaged over. The number of nodes along each electrode (Ny) and the path

length between electrodes of each sample (Nx) can be calculated using methods outlined in

Appendix A. We recall that, following Eq. (12), the value of R alone is not sufficient to

calculate the sheet resistance, but depends on the fraction Nx

Ny
as well. Eq. (12) becomes

Re(nw) =
R(nw)πC

l2nwPi

log
(

6l2αnwPi

)

(23)

where C is a constant and Pi is defined in Eq. (15). In Figure 5 the sheet resistance is

shown as a function of the wire density. Once again, points correspond to the numerically

evaluated results with the error bars indicating the fluctuations that arise each time a new

wire configuration is considered. The solid line indicates the effective-medium result obtained

through Eq. (23). Two scaling regions can be identified in Fig. 5(a), namely nw / 0.25 and

nw ' 0.25. In the low-density range, the sheet resistance has a varying scaling behaviour
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FIG. 5: In figure (a), data points show the sheet resistance for a given wire density, averaged over a number

of spatial configurations. The solid line represents the dependence of Eq. (23) on nw. The inset figure shows

that theory converges to a power law ∝ n−1.7

w
. Figure (b) is a comparison of experimental sheet resistance and

values determined by Eq. (23). The data points correspond to experimental measurements on Ag NWNs that

have been reported in our previous publication [13]. The solid line is the sheet resistance given when there

are no outliers included in the Junction resistance distribution. The dashed line is when 10% of junction

resistors are outliers. The dotted line shows R0 as a function of wire density. R0 is the sheet resistance

when every junction has 0 resistance.

but converges to a power law ∝ n−1.7
w in the latter region. The top panel shows results for

computer-generated NWNs, with an inset depicting the same results in logarithmic scale.

The inset indicates the appearance of a clear power-law behaviour when the density increases.

The dashed line of slope −1.7 serves as a guide to the eyes and highlights the exponent of

the said power law. It is worth pointing out that the size of the error bars is much smaller in
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the high-density region (nw ' 0.25) since the fluctuations resulting from spatial dispersion

of the wires on the network area are smaller in this range.

Finally, instead of computer-generated networks, we made use of experimentally deposited

Ag NWN samples that were image processed in order to generate the location and orienta-

tion of all wires in the network. Samples are the same as reported in our recent publication

[13]. Values of Nx and Ny are taken from simulations of NWNs of the same size as the

samples (∼ 20 µm × 20 µm). It is important to highlight a fundamental difference be-

tween the computer-generated simulations and the experimentally deposited samples. In

the former, besides having full information about the wire locations, we also have access

to the assigned junction resistances. In the latter, while we also have information about

the spatial distribution of the wires after the image processing is carried out, we can only

infer about the actual junction distribution for a given sample. We make use of the recently

measured distribution [15] of junction resistances shown in Fig. 4 with the assumption that

this distribution is representative of all NWNs.

As shown in Fig. 4, a continuous distribution for the junction resistance can be found up

to 75 Ω with a few outliers (junctions with characteristic resistances of R > 200Ω) located

at high-resistance range. The existence of these high-resistance outliers in the distribution

is associated with wires that were not electrically stressed and are still dormant, not taking

active part in the transport of electric current. Bellew et al. [15] argued that no matter how

strongly the network is electrically stressed, there will always be a small percentage of these

high-resistance junctions. Because our effective model depends crucially on the resistance

distributions, as seen in Eq. (19), whether or not these high-resistance outliers are included

in the junction-resistance distribution is expected to have an impact on our results. Indeed,

Fig. 5(b) clearly indicates that the agreement between the numerically evaluated results

and those obtained by the effective medium improves after such high-resistance outliers are

included in the distribution.

Another use for the effective-medium theory presented here is that we can estimate how

close (or far) a particular sample is from operating at its minimum resistance state R0.

The optimization-capacity coefficient γ was recently introduced and it quantifies how much

room for improvement a given network has for reducing its sheet resistance upon electrical

stress.[13] It is defined as γ = 1 − R0/Rexp, where Rexp is the experimentally measured

resistance and R0 is the resistance that the network would have if all interwire contacts were
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perfect. Values of γ close to 1 represent networks whose conductivities can be considerably

improved since their sheet resistances are far from the optimal value R0. For relatively

small values of γ, on the other hand, the network is close to its optimum conductivity and

is unlikely that it can be further optimized. In reference [13], the value of R0 was obtained

through numerical simulations that involved solving the complete set of Kirchhoff’s circuit

equations. A much faster way of obtaining the same quantity is to use the effective-medium

theory to find the optimal resistance by simply adapting the distribution in Eq. (19) to

the characteristics of real NWN samples. The dotted line in Fig. 5(b) displays R0 as a

function of the wire density. It is evident in this graph that the discrepancy between the

experimental points and the optimal resistance R0 increases with the wire density. This is

further confirmed by the inset of Fig. 5(b) showing how the optimization-capacity coefficient

depends on the the wire density. Besides proving to be a very efficient way of assessing how

much scope for optimization a given sample may have, this also indicates that the junction-

resistance contribution is less important for low-density networks. This can be explained by

the fact that the spacing between nodes on the same wire is inversely proportional to nw,

which causes R0 to increase as the network becomes more sparse. Therefore, the greater R0

the closer it gets to the experimentally measured values, which in turn gives less scope for

optimization.

IV. CONCLUSION

In summary, we have outlined a simple method that establishes the correspondence be-

tween the sheet resistance of a heavily disordered NWN with that of an ordered network.

In doing so we provided a closed-form expression for the effective conductance of the NWN

that reflects the setup commonly seen in real experiments of this type, i.e., finite-sized elec-

trodes embedded into a network made of wires with a distribution of physical characteristics

(length, diameter, resistivity, etc). It is important to stress that this is done without the

need of any fitting scheme. Excellent agreement with both computer-generated and ex-

perimentally grown networks was observed. Besides identifying how the sheet resistance

of disordered NWN depends on the wire density, we can assess in a far more efficient way

how relevant the intra-wire resistivity is in determining the overall sheet resistance of the

network. This framework can be easily generalized to investigate how the sheet resistance of

16



NWNs changes with a range of other parameters and it proves to be very useful in guiding

further experimental attempts to optimize the conductivity of NWN films.
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V. APPENDIX

Consider a wire of length L. If the center point of the wire is a distance x < L
2
from an

electrode, the two will intersect if the angle θ is in the range

θ ≤ cos−1

(

2x

L

)

(24)

where θ is the angle the wire makes with the horizontal.

A wire at a distance x intersects the electrode with a probability 2
π
θ. In order to obtain a

probability that a wire intersects the y axis once its center is x ≤ L
2
we perform an integration

over x:
2

π

∫ 1

0

dx cos−1(θ) =
2

π
. (25)

We now consider how many wires lie in the range that they could potentially intersect the

electrode. If wires are distributed homogeneously with a density of nw and over a vertical

width range of W, the relevant area is WL/2 which contains WLnw/2 wires. Combining

this with the value of pe, the expected total number (Ny) of intersections can be written as

Ny =
LWnw

π
. (26)

A Watts-Strogatz (WS) network is an example of a small-world network [27]. A WS

network is created by taking a regular lattice network where each node has z nearest neigh-

bours. A percentage p of links are removed and are then used to connect random pairs of

nodes. Braunstein et al[28] showed that when weak disorder is introduced to the weight
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values of links the optimal path qopt that minimises the total weight of the path connecting

two nodes scales as:

qopt ∝
1

pz2
log(Npz) (27)

Where N is the number of nodes in the network.

We assume that NWNs of size l× l behave as small-world networks, where l is the typical

length of a NW. In our model the number of nodes in the network is 2Nj. Each node is

connected to one junction resistor, a wire segmant and either another wire segmant or a

dead end. The degree of each node is thus z = 3. p is taken to be the percentage of current

carrying intra-wire segments in the network as they can connect two nodes that have a large

separation. Therefore p = Pi =
2Nj−Nw

3Nj+Nw
from section II.B. Subbing this into Eq.27, qopt

scales as

qopt ∝
1

Pi

log(6NjPi) =
3Nj +Nw

2Nj −Nw

log

(

6Nj

2Nj −Nw

3Nj +Nw

)

(28)

Consider a network of size W × W, W >> L and node A that lies on the electrode of

the NWN. The optimal path between node A and node B that are separated by a distance

qopt defined above. Similarly the distance between node B and another node C that are

again separated by a distance qopt and so on. Therefore the optimal path between the two

electrodes, Nx is found by multiplying Eq.(28) by a prefactor of W
L
. Thus

Nx =
W

L

C

Pi

log(6NjPi) (29)

where C is a constant ≈ 1.
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