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Effective-medium theory of a filamentous triangular lattice

Xiaoming Mao,1,2 Olaf Stenull,1 and T. C. Lubensky1
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We present an effective-medium theory that includes bending as well as stretching forces, and we use it to
calculate the mechanical response of a diluted filamentous triangular lattice. In this lattice, bonds are central-force
springs, and there are bending forces between neighboring bonds on the same filament. We investigate the diluted
lattice in which each bond is present with a probability p. We find a rigidity threshold pb which has the same
value for all positive bending rigidity and a crossover characterizing bending, stretching, and bend-stretch coupled
elastic regimes controlled by the central-force rigidity percolation point at pCF � 2/3 of the lattice when fiber
bending rigidity vanishes.

DOI: 10.1103/PhysRevE.87.042601 PACS number(s): 61.25.H−, 87.16.Ka, 62.20.de, 05.70.Jk

I. INTRODUCTION

Random elastic networks provide attractive and realistic
models for the mechanical properties of materials as diverse
as randomly packed spheres [1–3], network glasses [4–8], and
biopolymer gels [9–20]. In their simplest form, these networks
consist of nodes connected by central-force (CF) springs to
an average of z neighbors. They become more rigid as z

increases, and they typically exhibit a CF rigidity percolation
transition [21–23] from floppy clusters to a sample spanning
cluster endowed with nonvanishing shear and bulk moduli
at a threshold z = zCF very close to the Maxwell isostatic
limit [24,25] of 2d, where d is the spatial dimension, at which
the number of constraints imposed by the springs equals the
number of degrees of freedom of individual nodes. Generalized
versions of these networks, appropriate for the description of
network glasses [4,5] and biopolymer gels [13–15], include
bending forces favoring a particular angle between bonds
(springs) incident on a given node. For a given value of
z, networks with bending forces are more rigid than their
CF-only counterparts, and they exhibit a rigidity transition
at z = zb < zCF.

While numerical calculations, including the pebble game
[23,26], have provided much of our knowledge about the
properties of random elastic networks, effective-medium theo-
ries (EMTs) [27–31] have provided complementary analytical
descriptions of CF networks that are simple and at minimum
qualitatively correct. EMTs [32–36] and heuristic approaches
[37] that describe both bending and stretching forces have
only recently been developed. Here we present details of
the derivation of a bend-stretch EMT introduced in Ref. [35]
and its application to a bond diluted triangular lattice, whose
maximum coordination number is zmax = 6. Sets of contiguous
collinear bonds on the lattice are treated as elastic rods,
characterized by one-dimensional stretching and bending
moduli μ and κ , that provide central-force springs that connect
neighboring nodes and that resist bending across nodes. Elastic
beam networks were introduced in studies of the Mikado
model [14,15] for crosslinked networks of semiflexible poly-
mers with length L less than their persistence length Lp.
Replacing semiflexible polymers, whose stretching elasticity is
purely entropic and quite nonlinear, with elastic rods produces
a purely mechanical model that greatly simplifies simulations

[16] and allows a more detailed numerical study of the effects
of the interplay between bending, stretching, and network
architecture on linear elastic response. Our EMT calculates
the effective-medium moduli μm and κm, in the regime of
linear elasticity, as a function of μ and κ and the probability
p = z/6 that a bond is occupied. Both the EMT bulk and
shear moduli are proportional to μm. When κ = 0, our EMT
reduces to that considered by others [29,30] and successfully
predicts a second-order CF rigidity threshold at zCF � 4 <

zmax (pCF = 2/3 in EMT and of order 0.64 to 0.65 under
various numerical estimates [35,38,39]) with μm increasing
linearly in p − pCF near pCF and approaching the undiluted
triangular-lattice value of μ at p = 1. When bending forces
are introduced, our EMT predicts a second-order rigidity
threshold pb < pCF for all κ > 0. This qualitatively agrees
with the results of an alternative EMT in Ref. [36], although our
theory predicts pb � 0.56 in poorer agreement with the value
pb � 0.44 obtained in simulations than the value pb � 0.457
predicted there. Near pb we find that μm ∼ κ(p − pb) for
κ/(μa2) � c1 ≈ 0.1 and μm ∼ μ(p − pb) for κ/(μa2) � c1,
where a is the lattice spacing. Near pCF, κ is a relevant variable
moving the system away from the CF rigidity critical point to
a broad crossover regime [35,37] in which μm ∼ κ1/2μ1/2

as shown in the phase diagram of Fig. 1. This crossover
is analogous to that for the macroscopic conductivity in a
resistor network in which bonds are occupied with resistors
with conductance σ> with probability p and with conductance
σ< < σ> with probability 1 − p [40].

Though the model we study has both stretching and bending
forces, it differs in important ways from previously studied
models for network glasses [4–8] and for filamentous gels
[13–20]. The maximum coordination number for both of these
systems is less than or equal 2d, and thus neither has a CF
rigidity transition for p < 1 when there are no bending forces.
As a result neither exhibits the bend-stretch crossover region
near pCF that our model exhibits. Network glasses are well
modeled by a randomly diluted fourfold-coordinated diamond
lattice in which there is a bending-energy cost, characterized
by a bending modulus κ , if the angle between any pair of
bonds incident on a site deviates from the tetrahedral angle of
109.5◦. The architecture of the undiluted diamond lattice (with
zmax = 4 < 2d = 6) is such that its shear modulus vanishes
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FIG. 1. (Color online) Phase diagram of the diluted filamentous
triangular lattice showing the central-force and bending rigidity
thresholds, respectively, at p = pCF and p = pb, the bending-
dominated regime at small κ in the vicinity of pb, the crossover
bend-stretch regime near pCF, and the stretching-dominated regime
at large κ . (Adapted from Ref. [35].)

linearly with κ [7] and elastic response is nonaffine. When
diluted, it exhibits a second-order rigidity transition from a
state with bending-dominated nonaffine shear response to a
state with no rigidity. As dilution decreases, rigidity is still
controlled by κ , but response becomes less nonaffine.

It is important to emphasize that our model, as well as
those of Refs. [12–20,32–36,41,42], applies to permanently
crosslinked networks in which collisions between segments of
different filaments between crosslinks are unimportant [15].
All elastic response is determined by the force-extension and
bending properties of individual filaments along with the
topology of the network of crosslinks. This approximation
to the real world provides a remarkably accurate description
of the low-frequency elastic response of a wide range of real
crosslinked biopolymer networks [17,43]. In uncrosslinked
solutions, collisions between filaments give rise to confining
tubes for individual filaments, whose relaxation controls
rheological response. There is a well defined isotropic “tightly
entangled” regime [44] of concentration of semiflexible poly-
mers (with L < Lp) in which the shape and overall orientation
of each filament are constrained by the presence of other
filaments. In this regime, the complex shear modulus exhibits
a complex dependence on frequency ω [45–48] vanishing
at ω = 0, flat on a plateau extending over a wide range of
ω, and growing as ω3/4 at large ω [49,50]. In a series of
papers [44,51,52], Morse, building on the work of many
others, has developed a comprehensive theory, based on the
Doi-Edwards tube model [53], of the viscoelastic response of
solutions of semiflexible polymers in the the tightly entangled
regime that reproduces well the experimentally measured
response. These papers focus on finite-frequency behavior
and, in particular, on the plateau modulus which is calculated
in a type of effective-medium theory. They do not address
the zero-frequency elastic response in crosslinked systems
studied here except to note that the zero-frequency modulus
that results when crosslinks are added is identical to that
calculated by MacKintosh et al. [13] in which filaments
between neighboring nodes provide a central-force entropic
spring and in which affine response is assumed.

Filamentous networks in two dimensions are often de-
scribed by the Mikado model [14–16] in which semiflexible
filaments of a given length L are deposited with random center-
of-mass position and random orientation on a two-dimensional
plane and in which the points where two filaments cross are
joined in frictionless crosslinks. As in our model, there is
no energy cost for the relative rotation of two rods about a
crosslink, but there is an energy cost for bending the rods at
crosslinks. This model is characterized by the ratio η ≡ L/lc
of the filament length L to the average mesh size, i.e., the
average crosslink separation lc > a along a filament, where a is
the shortest distance between crosslinks. In the limit η → ∞,
all filaments traverse the sample, and the system has finite,
κ-independent shear and bulk moduli: There is effectively
a CF rigidity transition at z = 4 when η is decreased from
infinity. There is a transition at η = ηc ≈ 5.9 from a floppy
to a rigid state with nonaffine response [14,54], and there
is a wide crossover region between η = ηc and η = ∞ in
which the shear modulus changes from being bend dominated,
nonaffine, and nearly independent of μ at small η to being
stretch dominated, nearly affine, and nearly independent of
κ at large η. Our EMT applied to the kagome lattice [41],
whose maximum coordination number like that of the Mikado
model is 4, captures these crossovers. Interestingly, 3d lattices
composed of straight filaments with zmax = 4 exhibit similar
behavior [42]. When filaments are bent, however, elastic
response in one case at least [20] is more like that of the
diluted diamond lattice with the shear modulus vanishing with
κ even at large L/lc or z near 4.

External tensile stress (i.e., negative pressure) can cause a
floppy lattice to become rigid [55]. Random internal stresses
can do so as well in a phenomenon called tensegrity [25].
Thus a lattice with internal stresses may have a lower rigidity
threshold than the same lattice without internal stresses [20].
Systems such as network glasses can exhibit two rigidity
transitions [8,56]: a second-order transition from a floppy to
a rigid but unstressed state followed closely by a first-order
transition to a rigid but stressed state. These effects are beyond
the scope of EMT and will not be treated.

The outline of our paper is as follows. Section II reviews
properties of semiflexible polymers and defines our model for
the harmonic elasticity of crosslinked semiflexible polymers
on a triangular lattice; Sec. III sets up our effective-medium
theory; Sec. IV presents the results of this theory; and Sec. V
compares our EMT with other versions of bend-stretch EMTs
and summarizes our results. There are three appendices:
Appendix A derives the energy, which is critical to our version
of EMT, of a composite bent rod, Appendix B presents the
detailed form of the dynamical matrix, and Appendix C
provides a detailed comparison of our EMT and that of
Refs. [32,36].

II. FILAMENTOUS POLYMERS ON A TRIANGULAR
LATTICE

A. Elastic rods: Continuum and discretized energies

Following previous work [14,15], we model individual
filaments as homogeneous elastic rods characterized by a
stretching (or Young’s) modulus μ and a bending modulus
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κ . We restrict out attention to two dimensions. The filament
energy is thus

E = 1

2

∫ L

0
ds

[
μ

(
du(s)

ds

)2

+ κ

(
dθ (s)

ds

)2
]
, (2.1)

where s is the arclength coordinate, L is the unstretched con-
tour length of the polymer, and u(s) and θ (s) are, respectively,
the longitudinal displacement and angle of the unit tangent
to the polymer at s. We treat this as a purely mechanical
model in which μ and κ are fixed, and we do not consider the
entropic contributions to the energy that arise from thermally
induced transverse fluctuations of the filaments [13,17,57].
Three length scales can be identified in this elastic energy.
The first is the contour length of the polymers, L. The second,
lbend ≡ √

κ/μ, characterizes the relative strength of stretching
and bending. For an elastic rod made of a homogeneous
material, lbend is simply proportional to the radius of the rod.
A third length, the mesh size lc characterizing the connectivity
of the network, can be identified for crosslinked polymer
networks. The ratio L/lc is a measure of the connectivity
of the lattice. Finite filaments of length L with this energy
act like springs with stretching spring constant κ‖ = μ/L and
bending constant κ/L3.

In order to develop a model of crosslinked filaments on a
lattice with a random distribution of stretching and bending
moduli of the sort that we will encounter in our EMTs, we
need first to develop a discretized form of the continuum beam
energy [Eq. (2.1)] with inhomogeneous stretching and bending
moduli. We begin by dividing a filament of length L into
N segments (bonds) of length a, labeled i = 1, . . . ,N and
terminated by nodes (sites) i = 0, . . . ,N . In equilibrium in the
absence of external forces, the filament is straight, and node i

is at position si = ia while that of the center of bond i, which
lies between sites nodes i − 1 and i, is at position si − (a/2) as
shown in Fig. 2. Individual stretching and bending moduli μi

and κi are associated with bond i as shown in Fig. 2. Individual
stretching and bending moduli μi and κi are associated with
bond i.

The derivation of the discretized stretching energy is
straightforward: Associated with each node i is a longitudinal

i

i

1i −

1i −

0 1

1
a

(a)

(b)
i
θ

1i
θ −

FIG. 2. (Color online) Schematic of a filament of length 5a di-
vided into 5 segments of length a (a) in the equilibrium configuration
and (b) in a distorted configuration. Circles mark lattice nodes (located
as positions ia), and crosses mark the centers of bonds located at
positions [i − (1/2)]a. The different colors of the bonds indicate
different values for the stretching and bending moduli. The angle of
the bonds i − 1 and i are indicated in (b). In the limit of slow changes
in θi , the slope of the h(s) ≡ u⊥(s) is constant in bond i, and bond
angle i is the angle of the line connecting site i − 1 with site i for
small θi .

displacement u
||
i and with each bond i an energy

Es
i = 1

2

μi

a
(u||

i+1 − u
||
i )2. (2.2)

The total stretching energy of a filament is the sum of these
bond energies. The discretized equations of motion arising
from this inhomogeneous discrete model agree with those
arising from a continuum model in the continuum a → 0 limit.

The derivation of a discretized bending energy is more
subtle. Consider first a homogeneous model in which κ is
the same in each segment. Here we assign an angle θi to
each bond, and an energy (1/2)(κ/a3)(θi+1 − θi)2 to the node
i, which lies between bonds i and i + 1. This energy is, of
course, constructed so that in the continuum (a → 0) limit
(θi − θi−1)/a → dθ/ds and the bending part of Eq. (2.1) is
retrieved. This works because the filament segment between
the center of bond i [at position sia − (a/2)] and that of
bond i + 1 [at position sia + (a/2)] is uniform with bending
modulus κ , and as a result, the energy of that segment is the
bond energy given above. But what happens if the bending
moduli in these two segments are different, i.e., κi �= κj ? We
show in Appendix A that the energy of a filament segment
encompassing half of bond i with bending modulus κi and
half of bond i + 1 with bending modulus κi+1 is

Eb
i,i+1 = 1

2

κi

a3
(θi+1 − θi)

2, (2.3)

where

κi = 2κiκi+1

κi + κi+1
; (2.4)

i.e., the two halves of the bending spring connecting bond i to
bond i + 1 add like springs in series. Note that κi satisfies the
required limits that it reduce to κi when κi+1 = κi and that it
vanish if either κi or κi+1 = 0. The total bending energy of a
filament is thus

Eb
fil = 1

2

N∑
i=1

κi(θi+1 − θi)
2. (2.5)

Minimization of this energy gives a series of difference
equations for θi . We show in Appendix A that the solution to
these equations faithfully reproduces θ (s) calculated from the
continuum equations resulting from the minimization of the
continuum bending energy for the particular case of κ’s having
one value for 0 < s < s1 and another value for s1 < s < L. A
generalization of this calculation to more general distributions
of κ is straightforward and yields the same results for the
discrete and continuum models.

Ultimately, we are interested in the positions of the nodes,
and we need an expression relating these positions to the
bond angles. In the ground state, all of the bonds of the
filament are aligned along a common direction specified by
a unit vector e, and the ground-state positions are ri = sie.
Distortions of the filament are described by the displacement
vectors ui = u

||
i e + u⊥

i e⊥, where e⊥ is unit vector perpendic-
ular to e. As discussed more fully in Appendix A, within
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the linearized theory we use, the angle that bond i makes
with e is then θi = (u⊥

i − u⊥
i−1)/a. Thus the bending en-

ergy (1/2)κi(θi+1 − θi)2 ≈ (1/2)κi(2u⊥
i − u⊥

i+1 − u⊥
i−1)2 cou-

ples the displacements of sites i − 1, i, and i + 1, and it can
be viewed as an interaction defined on a kind of next-nearest
neighbor (NNN) connecting sites i − 1 and i + 1. This bond,
however, only exists if both NN bond i and i + 1 are occupied.
In what follows, we will refer to the bending NNN bonds
as phantom bonds since they do not have an independent
existence. We will also employ an alternative notation in which
a bond connecting nodes � and �′ on a lattice will be denoted by
〈�,�′〉 and the angle that bond makes with the horizontal axis by
θ〈�,�′〉. The NNN bending energy is then (1/2)κ(θ�,�′,�′′ )2, where
θ�,�′,�′′ = θ〈�,�′〉 − θ〈�′,�′′〉 with the understanding that sites �, �′,
and �′′ all lie on a single filament.

B. Triangular lattice of filamentous polymers

To create a network of crosslinked semiflexible polymers
we randomly remove bonds on a triangular lattice. Polymers
correspond to lines of connected, occupied collinear bonds,
and crosslinks correspond to sites at which two or three
polymers cross. Each bond in the lattice can be assigned one of
the three directions designated by the unit vectors en shown in
Fig. 3. All of the bonds in a given filament are aligned along one
of these directions and the filament itself is directed. Sites on
the lattice are labeled by a two-component index � = (l1,l2),
and their equilibrium positions are r� = a(l1e1 + l2e2). We
adopt the convention that NN bonds 〈�,�′〉 connect sites with
equilibrium positions r� and r�′ = r� + aen for one of the
directions en. Upon distortion, the position of site � changes
to R� = r� + u�, where u� is the displacement vector of site
�. We define all bond angles to be zero in the undistorted
lattice. In the distorted lattice, the angle of bond 〈�,�′〉 becomes
θ〈�,�′〉 ≈ u�,�′ · r̂⊥

�,�′/a, where u�,�′ = u�′ − u� and r̂⊥
�,�′ is the

unit vector perpendicular to the bond direction along r�′ − r�

and is equal to one of the unit vectors e⊥
n perpendicular to en.

We now assign stretching energies to each bond and bending
energies to each phantom NNN bond along a lattice direction
in accordance with the discretized energy of an individual
filament [Eqs. (2.2) and (2.3)] to obtain the harmonic energy

1
2

3

0

FIG. 3. (Color online) Filamentous triangular lattice with bonds
randomly occupied with probability p. The unit vectors e1, e2, e3 are
marked by “1, 2, 3,” the 3 stretch energy vectors Bs

n are marked by the
3 red single lines, and the 3 bending energy vectors Bb

n are marked
by the 3 green double lines. The purple dashed double line marks the
bending vector Bb

4 if the origin is marked by 0.

on a diluted lattice

E = Es + Eb, (2.6a)

Es = 1

2

μ

a

∑
〈�,�′〉

g�,�′(u��′ · r̂��′)2, (2.6b)

Eb = 1

2

κ

a

∑
�′,n

g�,�′g�′,�′′ (θ��′�′′)2

= 1

2

κ

a3

∑
〈�,�′,�′′〉

g�,�′g�′,�′′ [(u��′ − u�′�′′) · r̂⊥
�,�′]2, (2.6c)

where g�,�′ = 1 if the bond 〈�,�′〉 is occupied and g�,�′ = 0 if
it is not. This is the model that was introduced in Refs. [15]
and [16] in their study of the Mikado model. A version of this
model in which there is a bond-angle energy between all pairs
of bonds sharing a common site rather than only between pairs
of parallel bonds was introduced earlier in Ref. [22].

When p = 1, all bonds are occupied and E becomes
homogeneous. In this limit, the long-wavelength elastic energy
reduces to the elastic energy of an isotropic 2d medium,

E =
∫

d2x

[
λ̄

2

(
Tru

)2 + μ̄Tru2

]
, (2.7)

where u is the linearized symmetric Cauchy strain tensor
with Cartesian components uij , and λ̄ and μ̄ are the Lamé
coefficients, λ̄ = μ̄ = (

√
3/4)(μ/a), which depend only on

μ and not on κ . μ̄ is the macroscopic shear modulus. The
bending constant κ only appears in the higher order gradients
of the displacement vector. Upon dilution, each of the bonds
is present with a probability p, and the resulting lattice
corresponds to a random network of semiflexible filaments
of finite random lengths L, whose average as a function of p is
〈L〉 = a/(1 − p) [35]. It is a straightforward exercise to show
that the average distance lc between crosslinks (i.e., nodes at
which two or more filaments cross) differs by at most a factor
of 2 from a, and we will treat them as the same quantity in
what follows. In EMT, μ is replaced in diluted samples by its
effective-medium value μm, and the macroscopic EMT shear
modulus of these samples is

G = (
√

3/4)(μm/a). (2.8)

In the undiluted limit the shear modulus is G0 = (
√

3/4)(μ/a),
and G/G0 = μm/μ. Because our calculations are centered on
the evaluation of μm rather than G, we will in what follows use
μm as a proxy for G, reminding the reader where appropriate of
this simple relation between the effective-medium parameter
and G.

III. EFFECTIVE-MEDIUM THEORY

We study the elasticity of our network using an effective-
medium approximation [27,28] in which the random inhomo-
geneous system is replaced with an effective homogeneous
one constructed so that the average scattering from a bond
(or chosen set of bonds) with the probability distribution of
the original random lattice vanishes. In more technical terms,
the effective medium is chosen so that average T -matrix
associated with the bond vanishes. This approximation has
been shown to be a powerful tool for the calculation of
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properties of random systems, from the electronic structure
of alloys [27,58] to the elasticity of random networks [29,59].

Our elastic energy is a bilinear form in the 2N -dimensional
displacement vector u determined by the 2N × 2N dynamical
matrix D, where N is the number of sites in the lattice. We
will represent these two quantities in both the lattice basis
and the wave number basis where the components of u are,
respectively, the 2-dimensional vectors u� and uq for each
of the N lattice positions � or wave numbers q and the
components of D are respectively the 2 × 2 matrices D�,�′

and Dq,q′ for each pair (�,�′) or (q,q′). We use the convention
in which arbitrary vectors v or matrices M in the two bases are
related via

vq =
∑

�

v�e
−iq·r� , v� = 1

N

∑
q

vqe
iq·r� , (3.1)

Dq,q′ =
∑
�,�′

e−iq·r�D�,�′eiq′ ·r�′ ,

(3.2)

D�,�′ = 1

N2

∑
q,q′

eiq·r�Dq,q′e−iq′ ·r�′ .

The elastic energy is thus

E = 1

2
u · D · u = 1

2

∑
�,�′

u� · D�,�′ · u�′

= 1

2N2

∑
q,q′

u−q · Dq,q′ · uq′ , (3.3)

where here and in the following the “dot” signifies the
multiplication of a matrix and a vector or of two matrices. The
zero-frequency phonon Green’s function (which is a 2N × 2N

matrix) is minus the inverse of the dynamical matrix:

G = −D−1. (3.4)

In EMT, the inhomogeneous and random dynamical matrix
D is replaced by a homogeneous, translationally invariant one
D(m), with D(m)

�,�′ = D(m)
�−�′ and

D(m)
q,q′ = Nδq,q′D(m)

q , (3.5)

along with a perturbation matrix V, which we will specify in
detail shortly:

D = D(m) + V = −(G(m))−1 + V = −G−1, (3.6)

where the superscript (m) stands for “effective medium.”The
full Green’s function can thus be expressed as

G = [(G(m))−1 − V]−1 = G(m) + G(m) · T · G(m), (3.7)

where T is the T -matrix describing the scattering resulting
from V:

T = V · (I − V · G(m))−1 = (I − V · G(m))−1 · V

= V + V · G(m) · V + · · · . (3.8)

This expresses the T -matrix in general form. Our next step is
to specify both D(m) and V.

We begin with D(m). Normally, the effective-medium elastic
energy would simply be the random one of Eq. (2.6) with μ

and κ replaced by their respective effective-medium values
μm and κm and g�,�′ replaced by 1. It turns out, however,

μm

λm

κm

FIG. 4. (Color online) Positions of sites �1,�2,�3,�4, and interac-
tions in the effective medium, including NN stretching term of rigidity
μm, NNN bending term of rigidity κm, and third neighbor effective
coupling term of rigidity λm.

as we will shortly demonstrate, that the effective-medium
equations, determined by setting the average T -matrix equal to
zero, consists of three independent equations whose solutions
requires three independent parameters. If the above simple
procedure for constructing the effective-medium energy is
followed, there are only two parameters, μm and κm, and to
solve the EMT equations, it is necessary to introduce a new
term to this energy with a new parameter, which we denote by
λm. This additional energy, whose form is dictated, as we shall
see, by the EMT equations, couples angles on neighboring
NNN phantom bonds:

Ebb(λm) = λm

a3

∑
�2

θ�1,�2,�3θ�2,�3,�4 , (3.9)

where it is understood that the sites �1,�2,�3,�4 are sequential
sites along a filament as shown in Fig. 4. The total effective-
medium energy is thus

E(m)(μm,κm,λm) = Es(μm) + Eb(κm) + Ebb(λm), (3.10)

and its associated dynamical matrix is

D(m)
q (μm,κm) = μm

a

3∑
n=1

Bs
n,qBs

n,−q + κm

a3

3∑
n=1

Bb
n,qBb

n,−q

+λm

a3

3∑
m=1

2 cos(q · em)Bb
m,qBb

m,−q, (3.11)

where

Bs
n,q = (1 − e−iq·en )en, (3.12a)

Bb
n,q = 2[1 − cos(q · en)]e⊥

n (3.12b)

are two-dimensional vectors and where a simplified notation
is used in which two of these vectors in a row denote a direct
product creating a 2 × 2 matrix.

The perturbation V arises from the removal of a single
bond, whose end points, �2 and �3, we take to be contiguous
sites along a filament parallel to the e1 axis with �2 located at
the origin and �3 at position e1. If there is no bending energy
(i.e., κ = 0), the energy of this bond relative to the effective
medium is thus

Es
V = 1

2

μs − μm

a

[(
u�2 − u�3

) · e1
]2

, (3.13)

where μs = μg�2,�3 so that its probability distribution is

P (μs) = pδ(μs − μ) + (1 − p)δ(μs). (3.14)

This bond-stretching energy defines Vs :

Vs
q,q′ = a−1(μs − μm)Bs

1,qBs
1,−q′ . (3.15)
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Note that Vs
q,q′ factorizes into a product of a term depending

only on q and a term depending only on q′. This is a property,
shared by the other contributions to V, that, as we shall see,
makes the calculation of the T -matrix from Eq. (3.8) tractable.

Replacing bond 〈�2,�3〉 changes the bending as well as the
stretching modulus of that bond. As discussed in Sec. II and
Appendix A, this leads to a change in the bending constant
of the NNN bonds 〈�1,�2,�3〉 and 〈�2,�3,�4〉 that share the
replaced bond 〈�2,�3〉 along a filament from κm to

κc = 2
( 1

κs

+ 1

κm

)−1
, (3.16)

where κs ≡ κg�2,�3 equals zero if the bond 〈�2�3〉 is vacant and
κ if it is occupied. The probability distribution for κs is thus

P (κs) = pδ(κs − κ) + (1 − p)δ(κs), (3.17)

and the joint probability distribution for both μs and κs is

P (μs,κs) = pδ(μs − μ)δ(κs − κ) + (1 − p)δ(μs)δ(κs).

(3.18)

If 〈�2�3〉 is occupied κc = 2κκm/(κ + κm) is a nonlinear
function of κ and κm. These considerations determine the
bending contribution to EV ,

Eb
V = 1

2

κc(κs) − κm

a3

[(
θ�1,�2,�3

)2 + (
θ�2,�3,�4

)2]
= 1

2

κc(κs) − κm

a3

{[(
2u�2 − u�3 − u�1

) · e⊥
1

]2

+[(
2u�3 − u�4 − u�2

) · e⊥
1

]2}
, (3.19)

and the bending contribution to V,

Vb
q,q′ = a−3[κc(κs) − κm]Bb

1,qBb
1,−q′

+a−3[κc(κs) − κm]Bb
4,qBb

4,−q′ , (3.20)

where the vectors Bb
1,q [Eq. (3.12b)] and Bb

4,q ≡ e−iq·e1 Bb
1,q

represent the bending of the bond pair connecting sites �1,�2,�3

and �2,�3,�4, respectively. Finally, the original energy had no
term corresponding the coupling between θ�1,�2,�3 and θ�2,�3,�4

that appears in the effective-medium energy [Eq. (3.9)], so that
replacement of the bond 〈�2,�3〉 with its form in the original
energy removes the energy associated with that bond in E(m)

and creates the contribution

Vbb
q,q′ = −λm

a3

[
Bb

1,qBb
4,−q′ + Bb

4,qBb
1,−q′

]
(3.21)

to V. The complete V is thus V = Vs + Vb + Vbb, which can
conveniently be expressed as

Vq,q′ (μs,κs) =
∑
α,β

Ṽ αβ(μs,κs)Bα
qBβ

−q, (3.22)

where α = {(s,1),(b,1),(b,4)} labels the three vectors
{Bs

1,q,B
b
1,q,B

b
4,q}. The scattering potential in this basis is

Ṽ (μs,κs,λm)

=

⎛
⎜⎝

(μs − μm)/a 0 0

0 (κc(κs) − κm)/a3 −λm/a3

0 −λm/a3 [κc(κs) − κm]/a3

⎞
⎟⎠.

(3.23)

We are now in a position to calculate the T -matrix. Consider
first the first nontrivial term in its series expansion [Eq. (3.8)]:

V · G · V → 1

N

∑
q1

Vq,q1·G(m)
q1

·Vq1,q′

=
∑

α,β,α′,β ′
Bα

qṼ αβ · (G̃(m))βα′ · Ṽ α′β ′
Bβ ′

−q′ , (3.24)

where G̃ is defined as

(G̃(m))β,α′ ≡ 1

N

∑
q1

Bβ
−q1

·G(m)
q1

·Bα′
q1

. (3.25)

It is clear that subsequent terms in the Taylor series for T
decompose in a similar way and that

Tq,q′ =
∑
α,β

Bα
q T̃ αβBβ

−q′ , (3.26)

where the 3 × 3 matrix T̃ satisfies

T̃ = Ṽ (Ĩ − G̃(m)Ṽ )−1 = (Ĩ − Ṽ G̃(m))−1Ṽ = (Ṽ −1 − G̃)−1,

(3.27)

where Ṽ G̃(m) signifies a matrix product.
There are now a couple of points that must be attended to

before we present the details of our calculation. First, we show
in Appendix B that G̃(m) is a symmetric matrix whose 12 and
13 components vanish and whose 22 and 33 components are
equal whether or not λm is zero. Importantly, the 23 component
of G̃(m) is nonzero even if λm is zero. Thus, G̃(m) has the same
structure as Ṽ :

G̃(m) =

⎛
⎜⎝

G
(m)
1 0 0

0 G
(m)
2 G

(m)
3

0 G
(m)
3 G

(m)
2

⎞
⎟⎠ , (3.28)

where G
(m)
1 = (G̃(m))11, G

(m)
2 = (G̃(m))22, and G

(m)
3 =

(G̃(m))23. This implies from Eq. (3.27) that T̃ also has the
same structure as G̃(m) with three independent components
(T̃ 11,T̃ 22 = T̃ 33, and T̃ 23) even if λm = 0. Thus, the EMT
equation

〈T̃ 〉 = pT̃ (μs = μ,κs = κ) + (1 − p)T̃ (μs = 0,κs = 0) = 0

(3.29)

reduces to three independent equations whose solution re-
quires three independent parameters. The addition of the
energy E

(m)
bb [Eq. (3.9)] adds the needed third parameter, λm,

to μm and κm and gives Ṽ the same structure as T̃ and G̃.
To solve Eq. (3.29), we first write it as

pṼ (μ,κ)[Ĩ − G̃(m)Ṽ (μ,κ)]−1

+(1 − p)[Ĩ − Ṽ (0,0)G̃(m)]−1Ṽ (0,0) = 0, (3.30)

where we used both forms of Eq. (3.27). Multiplying this
equation on the left by [Ĩ − G̃(m)Ṽ (0,0)]−1 and on the right
by [Ĩ − Ṽ (μ,κ)G̃(m)]−1, we obtain

pṼ (μ,κ) + (1 − p)Ṽ (0,0) − Ṽ (0,0)G̃(m)Ṽ (μ,κ) = 0,

(3.31)

which has the advantage that it contains no inverse matrices.
At this point, it is convenient to introduce the reduced Green’s
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function

H̃ (bm,lm) ≡ −μm

a
G̃(m)(μm,κm,λm). (3.32)

From the definition of G̃(m) it is straightforward to see
that H̃ only depends on the ratios bm ≡ κm/μm and lm ≡
λm/(μma2). Clearly H̃ has the same structure as G̃(m) with
Hσ = −(μm/a)G(m)

σ , for σ = 1,2,3. With these definitions,
the 11 component of Eq. (3.31) is

μm = μ
p − H1(bm,lm)

1 − H1(bm,lm)
, (3.33)

and the 22 and 23 components are, respectively,

2

(
1

b
+ 1

bm

)−1(
p − 1

2

(
1 + bm

b

)
− bmH2 − lmH3

)
+ (

b2
m + l2

m

)
H2 + 2bmlmH3 = 0, (3.34)

−lm − 2

(
1

b
+ 1

bm

)−1

(lmH2 + bmH3)

+ 2bmlmH2 + (
b2

m + l2
m

)
H3 = 0, (3.35)

where b = κ/(μma2). Thus we have 3 unknowns {μm,bm,lm}
(or equivalently, {μm,κm,λm}) and 3 equations Eq. (3.33),
Eq. (3.34), and Eq. (3.35). These are our exact EMT equations.

A. Scaling solutions near pCF

Here we solve the EMT self-consistency equations,
Eqs.7nbsp;(3.33) to (3.35), near pCF at small κ . When κ =
0 the problem reduces to that of a central-force rigidity
percolation [21] with zeroth-order solutions κ0

m = 0, λ0
m = 0,

and

μ(0)
m = μ

p − pCF

1 − pCF
, (3.36)

where pCF = H1(0,0) = 2/3 which can also be obtained via
symmetry arguments [29]. As κ increases from zero, μm

increases, bm and lm become nonzero, and the rigidity threshold
jumps to a lower value pb as shown in Fig. 5(b). For small κ ,
we have κ/(μa2) � 1, we can assume that bm,lm � 1 (which
we will verify later), and we find that to the leading order the
three Eqs. (3.33), (3.34), and (3.35) become

μm � μ
p − pCF − H1,1(0,0)κm/(μma2)

1 − pCF
, (3.37a)

κm � κ(2p − 1), (3.37b)

λm � κH3(0,0)
κ

μma2

1 − p

p
(2p − 1)2, (3.37c)

where H1,1(0,0) = ∂H1/∂bm|bm=0,lm=0 � −2.413 and
H3(0,0) = 1.520. For convenience we define A ≡ −H1,1(0,0)
and B ≡ H3(0,0). From these relations, we find that at
p = pCF

μm ∼ κ1/2, (3.38a)

κm ∼ κ, (3.38b)

λm ∼ κ3/2, (3.38c)

indicating that μm � κm � λm and thus bm,lm � 1 as we
assumed. Using these relations, together with the fact that as

0.6 0.7 0.8 0.9 1.0
10 7

10 5

0.001

0.1

p

m
μ

10 0
10 1
10 2
10 3
10 4
10 5
10 6

(a)

0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

p

μ m
μ

(b)

μ
FIG. 5. (Color online) (a) Semilog plot for the EMT solu-

tion μm/μ = G/G0 as a function of p for μ = 1 and κ =
1,10−1,10−2,10−3,10−4,10−5,10−6 from top to bottom, as indicated
in the legend. (b) Linear plot of μm/μ as a function of p, with
parameters and color code the same as in (a). The red solid line
indicates μm for the case of a central force triangular lattice (κ = 0).
Here and in Figs. 6 to 8, we have set a = 1. The contents of (a)
appeared in a different form in Ref. [35].

κ → 0, μm → p − pCF, we solve Eqs. (3.37) to obtain

μm = μ|p|t1g1,±

(
κ

a2μ|p|φ
)

, (3.39a)

κm = μa2|p|t2g2,±

(
κ

a2μ|p|φ
)

, (3.39b)

λm = μa2|p|t3g3,±

(
κ

a2μ|p|φ
)

, (3.39c)

where

φ = 2, (3.40a)

t1 = 1, (3.40b)

t2 = 2, (3.40c)

t3 = 3, (3.40d)

and

g1,±(x) � 3

2

(
±1 +

√
1 − 4A

9
x

)
, (3.41a)

g2,±(x) � 1
3x, (3.41b)

g3,±(x) � B
27

(
±1 +

√
1 − 4A

9
x

)−1

x2. (3.41c)
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These scaling relations are analogous to that found in
random resistor networks with two different types of resistors
[40], and central force spring networks with strong and weak
springs [37].

Thus, the EMT modulus in the vicinity of pCF is

μm = μ|p|3

2

(
± 1 +

√
1 − 4A

9

κ

a2μ|p|φ
)

�

⎧⎪⎨
⎪⎩

√
A
a

μ1/2κ1/2 if κ
a2μ|p|φ � 1,

3μ|p| if κ
a2μ|p|φ � 1 and p > 0,

A
3a2

κ
|p| if κ

a2μ|p|φ � 1 and p < 0.

(3.42)

These crossover regimes correspond exactly to those found
in Ref. [37] using known behavior of the density of states
and mode structure of systems near the CF isostatic limit and
general scaling arguments.

B. Solutions near pb

Equations (3.33) to (3.35) can also be used to solve for
the asymptotics near the rigidity threshold pb. In particular,
because lm,bm converge to constants that are much smaller than
unity and independent of κ near pb, the asymptotic solution
near pb in this section is not limited to small κ .

First, we solve for the value of the rigidity threshold pb for
the case of κ > 0 using these EMT equations. At pb, we have
μm = 0,κm = 0,λm = 0 and as a result b → ∞. The ratios bm

and lm are, however, not zero, and we solve for them. So the
equations that determine pb,bm = bb,lm = lb are

pb − H1(bb,lb) = 0,

2bb

(
pb − 1

2

)
+ ( − b2

b + l2
b

)
H2(bb,lb) = 0, (3.43)

−lb + ( − b2
b + l2

b

)
H3(bb,lb) = 0,

where bb and lb are the values of bm and lm at pb. This set
of equations is independent of κ . Numerical solutions to these
equations are given by

pb � 0.5584, bb � 0.06355, lb � 0.004235, (3.44)

which agrees with the results we obtained by solving the EMT
equations numerically.

Second, we solve for the asymptotic behaviors near pb. To
achieve this, we suppose p = pb + δp, and to first order we
have

μm = 0 + δμm, bm = bb + δbm, lm = lb + δlm. (3.45)

We put these expansions back into Eqs. (3.33), (3.34), (3.35),
and we get the first-order perturbation equations

δμm = μ

1 − pb
(δp − A1δbm − A2δlm),

(
2pb − 1 − 2bbH2,0

)
δbm = −2bbδp + 2

δμma2

κ
pbb

2
b,

δlm = −2bbH3,0δbm, (3.46)

where A1 ≡ H1,1(bb,lb) � −1.371 and A2 ≡ H1,2(bb,lb) �
1.474. In deriving these equations we used the fact that
lb � bb � 1 and bm

b
= κm

κ
� 1 near pb. Thus we arrive at

the asymptotic solution of the effective-medium stretching
stiffness

μm = μκ
c2δp

κ + c1a2μ
, (3.47)

where

c1 = A1 − 2bbH3,0A2

2pb − 1 − 2bbH2,0

2pbb
2
b

1 − pb
,

(3.48)

c2 = 1

1 − pb

(
1 + 2bb

A1 − 2bbH3,0A2

2pb − 1 − 2bbH2,0

)
are constants determined by the architecture of the lattice and
are independent of p or κ/(μa2). In the case of triangular
lattice we have c1 = 0.1018 and c2 = 5.132.

IV. NUMERICAL RESULTS

Numerical solutions to Eqs. (3.33) to (3.35) for any value
of κ/μ are easily calculated, and the results for the effective-
medium elastic parameters are plotted in Figs. 5 and 6. There
are several properties of these plots that are worthy of note:

(1) μm vanishes at the CF Maxwell rigidity threshold
pCF = 2/3 when κ = 0 and at p = pb = 0.56 for all κ > 0.
Simulations of the same model yield a slightly smaller value of
pCF � 0.659 [35,60] and a considerably smaller pb � 0.445
[35]. (Using a variation of the Maxwell floppy mode count,
we estimated the rigidity threshold in the presence of filament
bending stiffness and obtained pb � 0.448 in good agreement
with simulation results. This calculation has been reported in
the Supplementary Information of Ref. [35].)

0.6 0.7 0.8 0.9 1.0
10 9

10 7

10 5

0.001

0.1

p

κ m

(a)

0.6 0.7 0.8 0.9 1.0
10 14

10 11

10 8

10 5

0.01

p

λ m

(b)

FIG. 6. (Color online) The EMT solution for κm expressed in
terms of the dimensionless combination κ̂m = κm/(μa2) (a) and λm

expressed in terms of the dimensionless combination λ̂m = λm/(μa2)
(b). Parameters and color code are the same as in Fig. 5.
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.001 .002 .005 .01
10 7

10 6

10 5
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10 3

10 2

δp

μ m
μ

FIG. 7. (Color online) Asymptotic solution (dashed lines) and nu-
merical solutions (data points) of μm/μ = G/G0 near pb. Parameters
and color code are the same as in Fig. 5.

(2) μm increases with κ for all p > pb.
(3) For small κ/(μa2), there is an interesting and nontrivial

crossover near pCF, which follows the analytic solution,
Eq. (3.42), to the EMT equations, whereas for large κ/(μa2),
memory of the CF threshold is effectively lost and μm rapidly
reaches values near its saturation value μ for p > pb.

(4) κm vanishes as p → pb and rises smoothly to its
saturation value κ without any evidence of crossover behavior
near pCF.

(5) λm vanishes at pb and in the undiluted lattice (p = 1),
which it must by construction. It exhibits crossover behavior
near p = pCF for small κ/(μa2).

In Figs. 7 and 8 we respectively plot our numerical solutions
to the EMT equations near pb and pCF using the analytic
scaling forms of Eqs. (3.33) and (3.42). As required the
numerical solutions agree with the analytic ones.

V. DISCUSSION

Two other approaches, one by Das et al. [32,36] and one by
Wyart et al. [37], produce results similar to ours, and below
we briefly compare them to ours. References [33,34], which
develop an EMT for fiber networks like the Mikado model
with a maximum coordination number of 4, do not consider
rigidity development on a triangular lattice with a maximum
coordination number of 6, and we will not discuss them
further.

Stretching forces are easily described by CF springs, which
reside on bonds, each of which can have a distinct spring
constant. Bending forces, on the other hand, couple angles
on neighboring NN bonds, or equivalently NNN sites along a
filament to the site between them via phantom NNN bonds.
Because removing one NN bond from a pair defining a
phantom NNN bending bond effectively removes that phantom
bond, bending and stretching are not independent in the diluted
lattice. This presents real challenges for the development of a
consistent bend-stretch EMT.

Our approach to this problem appeals to the underlying
polymer nature of our model in which constituent polymers
are endowed with local stretching and bending moduli μ and
κ . We can modify these moduli along any bond. Different
stretch moduli lead to independent effective CF stretch force
constants k|| = μ/a for each bond. Modification of the bending

10 4 0.01 1 100 104
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0.01

1

100

104

κ μ a2

p pCF φ

μ m
μ

p
p C
F
t 1

(a)

0.001 0.1 10 1000
0.001

0.1

10

1000

κ μ a2

p pCF φ

κ m
p
p C
F
t 2

(b)
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10 7
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0.1
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105

κ μa2

p pCF φ

λ m
p
p C
F
t 3

(c)

FIG. 8. (Color online) (a), (b), and (c) show rescaled plots of the
EMT solutions μm/μ, κm, and λm using the scaling forms (3.39a)
for μ = 1 and κ = 10−2,10−3,10−4,10−5,10−6, with color code the
same as in Fig. 5, and exponents taking the value as in Eq. (3.40a).
The thin black lines represent the asymptotic forms of Eq. (3.41a) for
small κ . The brown dash-dotted lines, the thick blue solid lines, and
the purple dashed lines plot the functional form of μm obtained in
the crossover, the stretching-dominated, and the bending-dominated
regimes of Eq. (3.42), respectively. The contents of (a) appeared in a
different form in Ref. [35].

modulus κ on a given NN bond, however, modifies the bend
force constant k⊥ = κ/a3 for both phantom NNN bonds
that that NN bond partially defines in the manner described
above. With this approach, we develop a consistent EMT
that includes the statistical correlation between bend and
stretch.

Das et al. begin by ignoring the correlation between real
NN bonds and phantom NNN bonds and assume that a stretch
spring on a given NN bond can be removed without affecting
the bending energy on the phantom NNN bonds that include
that NN bond and that bending springs on the phantom NNN
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bonds can be removed without affecting the stretch springs
on the two bonds that define the NNN bond. In other words,
the phantom bond is effectively elevated to a real bond with
existence independent of the underlying NN bonds. In general,
the NNN bonds can be present with an arbitrary probability q

and absent with probability 1 − q. To provide an approximate
description of the constraint that the phantom bond does not
exist unless both of the NN bonds defining it are present, Das
et al. assign a probability q = p2 (p is the probability that a NN
bond is occupied) to the occupancy of a NNN bending bond,
but continue to treat the NN and NNN bonds as statistically
independent. Again the result is a set of closed self-consistent
equations for μm and κm, which we analyze in our formulation
of EMT in Appendix C.

Both approaches yield pCF = 2/3 in good agreement with
numerical estimates [35,38,39], which yield pCF of order 0.64
or 0.65. Our approach yields a value for pb (0.56) that is well
above that (0.445) observed in simulations [35] whereas that
of Ref. [36] yields a value (pb = 0.457) in good agreement
with simulations. The latter method produces results in better
agreement with simulations over the entire range of values of
p than does ours if no approximations to the EMT equations
are used in the numerical evaluation of the shear modulus
(see Appendix C). It is not clear to us why this is so. Both
approaches yield a nontrivial bend-stretch crossover, with the
same algebraic form but with slightly different parameters (see
Appendix C) in the vicinity of pCF in qualitative agreement
with simulations.

In Ref. [37], Wyart et al. consider random off-lattice
elastic networks derived from two-dimensional packings of
spheres [61] with a coordination number above the Maxwell
CF isostatic limit of z = 4 in which CF springs are assigned to
each sphere-sphere contact. They use numerical simulations
to study the nonlinear relation between shear stress σ and
shear strain γ as springs are cut, thereby reducing z, and they
find a scaling relation σ = γ |δz|f (γ /|δz|), where δz = z − 4,
f (x) → constant for x → 0+, f (x) → 0 for x → 0−, and
f (x) ∼ x for x → ∞. This scaling form predicts σ ∼ γ for
δz � γ > 0, σ = 0 for δz � −γ < 0, and σ ∼ γ 2 for γ �
δz. Reference [37] then provides a theoretical justification for
this behavior based on the existence of a plateau in the density
of states [62] above ω∗ ∼ δz and reasonable assumptions
about statistical independence of eigenvectors associated with
different normal modes in the isostatic network [63] and about
the nature of nonaffine response of nearly isostatic systems.
Finally, they extend this line of reasoning to nearly isostatic
systems with extra weak bonds and find three regimes of
elastic response that are identical to those we identify in
Eqs. (3.39a) to (3.41a) if the weak bonds are of a bending
type.

To summarize we developed an effective-medium theory
that can include bending energy of filaments, and we used it
to study the development of rigidity of a randomly diluted
triangular lattice with central-force springs on occupied bonds
and bending forces between occupied bond pairs along a
straight line. We obtained a rigidity threshold for positive
bending stiffness and a crossover, controlled by the isostatic
point of the central-force triangular lattice, characterizing
bending-dominated, stretching-dominated, and stretch-bend
coupled elastic regimes.
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APPENDIX A: DISCRETIZATION OF A CONTINUOUS ROD

In this appendix, we will derive the discretized bending
energy for an inhomogeneous rod from the continuous bending
energy of Eq. (2.1). We divide the rod into bonds of length a

whose end points are at nodes i (which coincide with vertices
of our lattice) as shown in Fig. 2. Segment i, which lies between
nodes i − 1 and i, is endowed with a bending modulus κi ,
and the angle at its center is constrained to be θi . Within
each segment i, the angle θi(t) with −a/2 < t < a/2 (i.e.,
within segment i, t = s − ia) minimizes the bending energy in
that segment and satisfies the equation d2θi(t)/dt2 = 0 subject
to the boundary conditions (BCs) for each i:

(1) θi(t = 0) = θi,

(2) θi+1(−a/2) = θi(a/2), (A1)

(3) κi

dθi

ds

∣∣∣∣
t=a/2

= κi+1
dθi+1

ds

∣∣∣∣
t=−a/2

.

BC (1) is the constraint that θ (t) take on the value θi at the
center of bond i; BC(2) is the condition that θ (t) be continuous
at node i; and BC(3) is the condition that the torque on node i

be zero. Thus, within segment i,

θi(t) =
{
θi + A−

i s if − a/2 < t < 0,

θi + A+
i s if 0 < t < a/2.

(A2)

This form immediately satisfies boundary condition (1).
Boundary condition (2) requires

θi + a

2
A+

i = θi+1 − a

2
A−

i+1, (A3)

and boundary condition (3) requires

κiA
+
i = κi+1A

−
i+1. (A4)

The solution of Eqs. (A3) and (A4) for A+
i and A−

i+1 is

A+
i = 2

a

κi+1

κi + κi+1
(θi+1 − θi) = κi+1

κi

A−
i+1. (A5)

With this result, we can calculate the bending energy of the
segment running from the midpoint of bond i to the midpoint
of bond i + 1:

Ei = 1

2
κi

∫ a/2

0

(
dθi

ds

)2

+ 1

2
κi+1

∫ 0

−a/2

(
dθi+1

ds

)2

= 1

2

a

2

[
κi(A

+
i )2 + κi+1(A−

i+1)2
]

= 1

2a
κeff

i (θi)
2, (A6)

where θi = θi+1 − θi and

κi = 2κi+1κi

κi+1 + κi

. (A7)
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When κi = κi+1, this reduces to κi . The total energy, apart from
boundary terms, which we ignore, is then E = ∑

i Ei . When
all κi are equal, this is indeed exactly the discretized form
that we use. If the bending modulus κi on segment (bond) i

differs from the modulus κ on all of the other bonds, then the
bending energies associated with site i − 1 and i will have
an “effective” modulus 2κiκ/(κi + κ) in agreement with our
EMT treatment.

It is instructive to verify that the continuum and the
discretized theory give the same result for a particular
inhomogeneous κ . For simplicity, we consider a filament of
length L whose left and right ends coincide with bond centers
(rather than nodes) at positions t = 0 and t = L, respectively.
There are thus N − 1 contiguous bonds of length a terminated
by two half bonds of length a/2. We assume that the bending
modulus is equal to κ1 in regions I defined by 0 � t < tp =
[p − (1/2)]a and to κ2 in regions II defined by tp < s � L, and
we assign boundary conditions that θ (0) = 0 and θ (L) = �.
Consider first the continuum case. d2θ (t)/dt2 = 0 in both
regions I and II, and as a result the solutions for θ in these two
regions that satisfy the boundary conditions are, respectively,
θ1 = B1(t/a) and θ2 = � + B2[(t − L)/a]. The additional
boundary conditions are that θ and κdθ/dt be continuous
at t = tp, implying

(B1/a)tp = � + (B2/a)(tp − L),
(A8)

κ1B1/a = κ2B2/a.

These equations are easily solved for B1 and B2:

κ1 = κ2�

(κ2 − κ1)(t/a) + κ1(L/a)
= κ2

κ1
B2. (A9)

In the discrete case, nodes i = 1 to p − 1 have bend-
ing energy (1/2)κ1(θi+1 − θi)2, nodes i = p + 1 to (N − 1)
have bending energy (1/2)κ2(θi+1 − θi)2, and site p has
bending energy (1/2)κ(θp+1 − θp)2. The equations for θi ,
i = 1, . . . ,N − 1, are thus

dE

dθi

= κb(2θi − θi+1 − θi−1) = 0, 1 < i < p − 1;

dE

dθp−1
= κb(θp−1 − θp−2) + κ(θp−1 − θp) = 0;

dE

dθp

= κ(θp − θp−1) + κa(θp − θp+1) = 0;

dE

dθi

= κa(2θi − θi+1 − θi−1) = 0, p < i � N − 2. (A10)

These linear difference equations subject to the boundary
conditions θ0 = 0 and θN = � are solved by setting θi = D1i

in region I (0 � i � p) and θi = � + D2(i − N ) in region II
(p < i � N ). The equilibrium equations for θp and θp−1 are

[κ1 + κ(p − 1)]D1 − κ(p − n)D2 = κ�,
(A11)

−κ(p − 1)D1 + [κ(p − N ) − κ2]D2 = −κ�.

These equations, along with the relation κ = 2κ1κ2/(κ1 + κ2),
yield D1 = B1 and D2 = B2 verifying that the discrete and
continuum solutions agree.

Finally, we need to specify the relation between angles θi

and the vertical displacements hi (i.e., u⊥
i ). Let h′

i be the height
at the center of bond i. To linear order in continuum theory,
dh(t)/ds = θ (t). Integration of this equation [using Eq. (A2)]
then yields

hi − h′
i =

∫ a/2

0
θi(t)dt = (a/2)θi + a2

8
A+

i ,

(A12)

h′
i − hi−1 =

∫ 0

−a/2
θi(t)dt = (a/2)θi + a2

8
A−

i ,

with the same convention as that of Eqs. (A1) and (A2). From
Eq. (A5), A+

i ∝ (θi+1 − θi)/a and A−
i ∝ (θi − θi−1)/a. Thus

for slowly varying θ and small a, a2A+
i and a2A−

i can be
ignored relative to aθi . This is true whether or not κ changes
from bond to bond. The result is that the slope of h(s) within
bond i is simply θi , and

hi − hi−1

a
≈ θi + 1

8
a(A+

i − A−
i ). (A13)

APPENDIX B: THE DYNAMICAL MATRIX AND THE
PHONON GREEN’S FUNCTION OF THE

EFFECTIVE MEDIUM

From Eq. (3.11), it is straightforward to calculate the
components of the dynamical matrix of the effective medium:

D(m) =
(

Dxx Dxy

Dyx Dyy

)
, (B1)

where

Dxx = μm[3 − 2 cos qx − cos(qx/2) cos(
√

3qy/2)] + 3κm[3 − 4 cos(qx/2) cos(
√

3qy/2) + cos(qx) cos(
√

3qy)]

+3λm[−4 + 7 cos(qx/2) cos(
√

3qy/2) − 4 cos(qx) cos(
√

3qy) + cos(3qx/2) cos(3
√

3qy/2)],

Dxy =
√

3(μm − 4κm + 7λm) sin(qx/2) sin(
√

3qy/2) +
√

3(μm − 4λm) sin qx sin(
√

3qy) +
√

3λm sin(3qx/2) sin(3
√

3qy/2),

Dyx = Dxy,

Dyy = 3μm[1 − cos(qx/2) cos(
√

3qy/2)] + κm[9 − 8 cos qx + 2 cos(2qx) − 4 cos(qx/2) cos(
√

3qy/2) + cos(qx) cos(
√

3qy)]

+λm[−12 + 14 cos qx − 8 cos(2qx) + 2 cos(3qx) + 7 cos(qx/2) cos(
√

3qy/2) − 4 cos(qx) cos(
√

3qy)

+ cos(3qx/2) cos(3
√

3qy/2)]. (B2)
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The symmetry properties of the above components of D(m) will
determine which components of G̃(m) are nonzero. D11(qx,qy)
and D22(qx,qy) are even under qx → −qx and under qy →
−qy whereas D12(qx,qy) is odd under the same operations.

The effective-medium phonon Green’s function is the
negative of the inverse of D(m):

G(m) = −(D(m))−1

= (DetD(m))−1

(
Dyy −Dxy

−Dyx Dyy

)
. (B3)

The determinant DetD(m) = DxxDyy − DxyDyx is even un-
der qx → −qx and under qy → −qy , and thus xx and yy

components of G(m) are both even and the xy component of
G(m) is odd under qx → −qx and under qy → −qy . With this
information and the properties of Bs

n,q and Bb
n,q, we can infer

which components of G̃(m) are zero and which are equal to
each other. First consider the 12 and 13 components, which
from Eq. (3.25) are given by

(G̃(m))12 = 1

N

∑
q

Bs
1,−qG(m)

q Bb
1,q, (B4)

(G̃(m))13 = 1

N

∑
q

Bs
1,−qG(m)

q Bb
4,q. (B5)

Bs
1,−q is a vector parallel to the x axis (i.e., to e1), whereas both

Bb
1,q and Bb

4,q are parallel to the y axis (i.e., to e⊥
1 ). In addition,

Bs
1,−q, Bb

1,q, and Bb
4,q are all even under qy → −qy . Thus the

integrands in Eq. (3.25) are equal to Gxy times a function
even under qy → −qy . Since Gxy is odd under this operation,
both integrals vanish, and the 12 and 13 components of G̃(m)

vanish by symmetry. There are no symmetry operations that
make the other components of G̃(m) vanish, but the relation
Bb

1,−qBb
1,q = Bb

4,−qBb
4,q sets the 22 and 33 component of G̃(m)

equal to each other and leads to Eq. (3.28) for G̃(m).

APPENDIX C: COMPARISON WITH EMT RESULTS
OBTAINED USING METHODS IN REFS. [32,36]

In this Appendix we derive Das’s EMT equation from our
approach (by changing some assumptions as detailed below)
and calculate it for the triangular lattice. We also compare it
to both our EMT and simulation results.

We start from the same effective-medium dynamical matrix
D(m) as we defined in the main text (D(m) with μm,κm but
λm = 0), but we make different assumptions about the changed
bond in the EMT. In particular, the perturbative potential is now

EV,Das = 1

2

μs − μm

a

(
u�1�2 · r̂�1�2

)2 + 1

2

κs − κm

a3
θ2
�1�2�3

, (C1)

and the differences comparing with our version are (i) there is
only 1 bending energy term θ2

�1�2�3
and the other term θ2

�0�1�2
is

not included, (ii) the bending stiffness is directly κs instead of
our composite one κc(κs), and (iii) there is no λm term.

The matrix form of V in the space of {Bs
1,B

b
1} is then (now

Bb
4 is not relevant)

ṼDas =
(

(μs − μm)/a 0
0 (κs − κm)/a3

)
. (C2)

Thus it is clear that

T̃Das = (
Ṽ−1

Das − G̃(m)
)−1

(C3)

is also a diagonal matrix (we have already proved in the text
that G̃(m) is diagonal due to symmetry).

Correspondingly the probability distribution is now

PDas(μs,κs) = [pδ(μs − μ) + (1 − p)δ(μs)]

× [p2δ(κs − κ) + (1 − p2)δ(κs)], (C4)

with the distribution of μs and κs factorized.
Therefore the EMT matrix equation∫

dμsdκsPDas(μs,κs)T̃Das(μs,κs) = 0 (C5)

decouples to two equations of the two diagonal elements (they
still share the same variables) that

μm

μ
= p − a∗

1 − a∗ ,
κm

κ
= p2 − b∗

1 − b∗ , (C6)

where

a∗ = μm

a

1

N

∑
q

Bs
1,−q · D(m)

q · Bs
1,q,

(C7)

b∗ = κm

a

1

N

∑
q

Bb
1,−q · D(m)

q · Bb
1,q,

which is exactly the equations from Ref. [36].
In contrast the distribution in our EMT is

P (μs,κs) = pδ(μs − μ)δ(κs − κ) + (1 − p)δ(μs)δ(κs),

(C8)

with the distribution of μs and κs correlated. This is more
reasonable because they describe the same replaced bond.
Furthermore, κs affects two bending terms. To summarize,
the stretching bonds and “bending bonds”are treated as
independent in Das’s EMT, whereas we model them as
describing filament properties and thus correlated.

From the definition of D(m) it is clear that

a∗ + b∗ = 2

z
tr

{
1

N

∑
q

[
D(m)

q

]−1
D(m)

q

}
= 2d

z
= 2/3. (C9)

The self-consistency equation (C6) can be solved numerically
for any given p, μ, and κ . In particular, the rigidity threshold
pb can be solved analytically from

0 = p − a∗, 0 = p2 − b∗, (C10)

which leads to

pb = 1

2

(
−1 +

√
1 + 8d

z

)
(C11)

and for the triangular lattice it gives

pb � 0.4574. (C12)

The EMT self-consistency equation (C6) can be solved
numerically, and we plot the results along with ours and the
simulation data from Ref. [35] in Fig. 9. The curves calculated
from Eq. (C6) differ in detail from those presented in Ref. [36]
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FIG. 9. (Color online) Comparison between the shear modulus
(normalized by the shear modulus at p = 1, so it is equivalent to
μm/μ) obtained from numerical simulations from Ref. [35] (data
points), Das’s EMT (solid lines), and our EMT (dashed lines).
Different colors mark different values of κ with the same color code
as in Fig. 5, and from top to bottom the corresponding values of κ are
1, 10−1,10−2, . . . ,10−6.

because the latter reference used approximate forms for a∗ and
b∗ in its numerical evaluations [64].

Near pCF we can also expand Das’s EMT solution to get
the asymptotic behaviors. The functions a∗ and b∗ are related
to the integrals we defined via

a∗ = H1(bm,0), b∗ = bmH2 (bm,0) . (C13)

At κ = 0, because

H1(0,0) = pCF, H2(0,0) = 0, (C14)

it is straightforward to see that Das’s EMT leads to the same
central force solution as our EMT:

μm = μ(p − pCF)�̃(p − pCF), κm = 0, (C15)

where �̃ is the Heaviside step function. For small κ > 0
we expand around small bm = κm/(μma2). We have already
discussed the expansion of H1 and H2 at this limit, and thus

a∗ = pCF + H1,1bm, b∗ = H1,1bm. (C16)

Because H1,1 is of order unity, b∗ ∼ bm is very small. Therefore
we can ignore the b∗ terms in the equation of κm and get

κm � κp2, (C17)

which differs from our EMT solution

κm � κ(2p − 1) (C18)

by the dependence on p, but this difference is small and does
not show singularity near pCF. We can then plug this solution
back into the equation for μm, which turns into a quadratic
equation similar to the equation for μm in our EMT, with the
only difference being the different p dependence of κm. We
thus arrive at

μm = μ|p|3

2

(
±1 +

√
1 − 16A

27

κ

a2μ|p|2
)

, (C19)

which takes a very similar form to Eq. (3.42) just with a
different constant factor before κ/(a2μ|p|2). Therefore the
two EMTs produce the same scaling behavior near pCF.
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