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Abstract

Many distributed applications have a strong requirement for efficient dissemination of large amounts

of information to widely spread consumers in large networks. These include applications in e-commerce

and telecommunication. Publish/subscribe is considered one of the most important interaction styles to

model communication at large scale. Producers publish information for a topic and consumers subscribe

to the topics they wish to be informed of. The decoupling of producers and consumers in time, space,

and flow makes the publish/subscribe paradigm very attractive for large scale distribution, especially in

environments like the Internet.

This paper describes the architecture and implementation of DACE (Distributed Asynchronous Com-

puting Environment), a framework for publish/subscribe communication based on an object-oriented

programming abstraction in the form of Distributed Asynchronous Collection (DAC). DACs capture the

different variations of publish/subscribe, without blurring their respective advantages. The architecture

we present is tolerant to network partitions and crash failures. The underlying model is based on the

notion of Topic Membership: a weak membership for the parties involved in a topic. We present how

Topic Membership enables the realization of a robust and efficient reliable multicast for large scale. The

protocol ensures that, inside a topic, even a subscriber that is temporarily partitioned away eventually

receives a published message.

Keywords: Concurrency, scalability, reliability, multicast, membership, partitions

1 INTRODUCTION

This paper presents the multicast capabilities ofDACE (Distributed Asynchronous Computing Environment):

a middleware solution based on publish/subscribe interaction schemes. In particular, this paper focuses on
∗This work is partially supported by Agilent Laboratories and Lombard Odier & Co.
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how DACE enables the efficient and reliable multicast of information at large scale, despite process and

network failures.

1.1 Motivation

Most research efforts in the context of distributed computing is either undertaken to find protocols for

various reliability requirements [39], or to develop more easy-to-use programming abstractions for remote

interaction [5]. The multitude of existing multicast protocols for various system and failure models are very

good examples of the first class. The second research axis has brought out, within others, derivatives of the

commonly employed remote procedure call (RPC): middleware packages, like CORBA [35], DCOM [30] and

Java RMI [44], seem to show the path for the future of practical distributed computing. However, remote

object invocations are intuitive but tie applications to rigid client/server-like interactions. On the other hand,

protocols developed without programming models in mind lead to low-level service implementations which

are very cumbersome to use. We present in this paper an approach where the programming abstractions are

tailored to reflect the underlying protocols, and conversely these protocols have been designed with a clear

vision of the programming abstraction that will encapsulate them.

1.2 Communication model and programming abstraction

The most popular programming abstraction for distributed computing nowadays is the remote procedure

call. The success of object-oriented middleware solutions originates from the relatively short learning phase

which enables them to be put to work quickly. However, derivatives of the remote procedure call communica-

tion model present two major drawbacks. First, they do not address the increasing demand for one-to-many

invocation semantics. Multicast and broadcast mechanisms have been a topic of intense research and devel-

opment for many years. A recent study [28] shows that 30 percent of internet traffic is multicast and forsees

a growth up to 50 percent in the next few years. Second, solutions based on the remote method invocation

model try to hide distribution, which is both dangerous and misleading, since distributed interactions are

inherently unreliable and often introduce a significant latency that is hardly comparable to that of a local

interaction, especially in the presence of network or component failures [21].

The publish/subscribe interaction style has proven its ability to overcome these shortcomings [37]. In

contrast to the remote procedure call paradigm, it does not force synchronization between information

producers and consumers; the participants are anonymous with respect to each other, i.e., they do not have

to be known whether by number nor by identity or location. The participants are therefore decoupled in

time, space as well as in flow, and this threefold decoupling represents a key to scalability (time decoupling:

the interacting parties do not need to be up at the same time; space decoupling: the interacting parties do

not need to know each other; flow decoupling: information sending/receiving does not block the main thread

of control).

There are different established variants of the publish/subscribe interaction model, each one presenting

its respective advantages as well as shortcomings. The classical topic-based or subject-based style involves
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a static classification of the messages by introducing group-like notions [39], and is incorporated by most

industrial strength solutions, e.g., [9, 45]. A more recent alternative is content-based (property-based [42])

publish/subscribe [10, 43, 2]. The latter removes entirely the “arbitrary” division of the message space, and

lets consumers delineate their individual interests by expressing properties of messages they wish to receive.

However it introduces an important overhead due to matching of the messages with the subscribers criteria.

In [15], we furthermore introduce a new variant, called type-based, which uses a classification of message

objects based on their type. These alternatives are very promising and still being explored.1

Instead of emphasizing their differences, we bring all these variants to a common denominator. To capture

the variants of publish/subscribe, we propose a high-level abstraction called Distributed Asynchronous Col-

lection (DAC). A DAC differs from a conventional collection by its distributed nature and the way objects

interact with it: besides representing a collection of objects (set, bag, queue, etc.), a DAC can be viewed as a

publish/subscribe engine of its own. In fact, when querying a DAC for objects fulfilling certain conditions,

the client expresses its interest in such objects. In other words, the invocation of an operation on a DAC ex-

presses the notion of future notifications and can be viewed as a subscription. The DAC abstraction enables

the unification of different publish/subscribe styles in a single framework. The Distributed Asynchronous

Computing Environment (DACE) can be seen as an extension of a conventional collection framework, like

JGL [34]. It is composed of a hierarchy of DAC interfaces and classes, spanning multiple publish/subscribe

variants and qualities of service. In this paper we describe the protocols underlying the implementation of

a DACE sample class, which guarantees reliable delivery of events to all subscribers in spite of failures.

1.3 System and failure model

The protocols we use in DACE have been designed specifically to meet the properties of our DAC pro-

gramming abstraction, which means that they are targeted at large scale applications. In that context,

partitionings (in the context of this paper, we define partitioning as the creation of at least two partitions,

while a partition is a subset of the participating processes) of the communication network is an extremely im-

portant aspect. It might result in service degradation but it should not affect the liveness of an application.

There are several partition models in distributed group communication, like the primary-partition model

(e.g., [6]), where only processes in the partition that contains a majority of processes are allowed to make

progress. With the minority-partition or partitionable model (e.g., [26]), processes in multiple partitions

progress even if they receive only a subset of the messages, increasing the availability of the system.

In the context of this paper, we focus on a new failure model made-to-measure for the strongly decoupled

nature of publish/subscribe. It tolerates crash failures as well as partitionings, and does not rely on a strongly

consistent view shared by members, but achieves its goal through an exchange of views that is strongly self-

stabilizing in a sense similar to the notion of self-stabilizing systems defined by Dijkstra [12]. The approach is

comparable to anti-entropy protocols [19, 40]. It is less restrictive than the majority-partition and minority-

partition models that rely on consensus, and requires less application support than the partition-aware [4]
1For brevity, these styles are not presented in detail in this paper.
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model.

The Topic Membership protocol we present in this paper coordinates the local views of participants of

a topic in two phases. During the stabilization phase, participants exchange their views. Eventually, they

converge to the same view. Then, the participants are in a stabilized phase. With the stabilization property

and with partition information sharing, we are able to realize a reliable broadcast in partitions on top of

Topic Membership.

The reliable broadcast protocol for topic-based publish/subscribe called Topic Broadcast that we present

as an example, ensures that every subscriber eventually receives a message even if the publisher or the

subscriber, itself, has crashed or has been partitioned away temporarily.2 In the stabilized phase, the protocol

uses partition information to efficiently route messages. During the stabilization phase, the protocol enables

the sending of messages, although these might not be delivered in an optimal manner.

1.4 Roadmap

The remainder of this paper is organized as follows. Section 2 gives an overview of our publish/subscribe

system focusing on topic-based publish/subscribe. Section 3 presents the DACE framework and the under-

lying DAC programming abstraction. The system and failure model we adopt are outlined in Section 4,

which allows us to formally specify the lightweight topic membership used in DACE in Section 5. As an

example Section 6 illustrates our reliable broadcast based on TopicMembership. In Section 7 we outline the

implementation of our framework and discuss some performance issues, and Section 8 contrasts our efforts

with related work. Finally Section 9 summarizes our work and concludes the paper.

2 OVERVIEW OF DACE

This section gives a general overview of our DACE framework for large scale communication. DACE can be

seen as a message-oriented middleware solution. It is inherently object-oriented, and is used as a lightweight

library. The different layers are shown in Figure 1 and introduced in a top-down order. They are presented

in more detail in the following sections. As mentioned above, we focus on topic-based publish/subscribe in

the context of this paper.

2.1 The application layer

Applications using the DACE publish/subscribe framework basically interact with a DAC (Distributed Asyn-

chronous Collection). The add() method for instance enables the addition of new objects to the collection,

which comes to publishing new message objects. The interaction scheme shown in Figure 1 illustrates the

push model where subscribers are called back (primitive notify()) upon incoming messages. However,

DAC s offer a variety of possibilities of interacting with them, as we will see in Section 3.
2Of course this is only provided if the publisher crashes after it finished publishing the message and the subscriber eventually

recovers.
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Figure 1: Layers

2.2 The DAC layer

This layer is composed of the classes that implement the API of the DAC programming abstraction for

publish/subscribe interaction. They are rather lightweight classes, which delegate general functionality to

the underlying layer. Their tasks are similar to centralized container classes, i.e., they mainly take care of

the local management of message objects. Section 3 explains in more detail how a DAC represents a topic

in the context of topic-based publish/subscribe.

The DAC applies a predefined threading model, by assigning notifications to threads. The class we use as

an illustration in this paper is the DAStrongSet class, which guarantees exactly-once delivery semantics to

a publisher. Published messages are passed to the underlying broadcast layer through the TR-broadcast()

primitive, and messages are received through the TR-deliver() primitive.

2.3 The topic multicast/broadcast layer

This layer enables the multicast and broadcast of messages with different semantics to the subscribers of a

topic. While the Topic Broadcast enables the broadcast of messages to all subscribers of a topic, the Topic

Multicast is used in the context of content-based publish/subscribe [15]. As depicted earlier, a subscriber

can delineate its individual requirements based on the properties of the messages. In such a scenario, a

message must not be broadcast to all subscribers, but only to a subset, which proves the need for a multicast

primitive. Section 6 gives an inside view of this layer focusing on broadcast issues.

Both broadcast and multicast come with reliable, stubborn [20] or simple (best-effort) semantics. This

layer also takes care of broadcasting subscription information if a subscriber wants to join in or modify its
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subscription parameters. To send and receive messages, the subscriber uses the primitives TM-cast() and

TM-deliver() respectively. The upper layer receives acknowledgements for successful message sends through

TM-ack().

2.4 The topic membership layer

The Topic Membership layer maintains a local view of the present and reachable subscribers for every

given topic. The Topic Membership protocol is basically represented through the states of communication

channels with other participants. This layer receives channel state updates either locally from the channel

failure detector (FD) or externally from other processes, exactly like information about subscriptions and

unsubscriptions. This layer indicates membership changes to the Topic Multicast/Broadcast layer with the

primitive TM-updateView(), and sends and receives messages through the primitives send() and receive()

of the UDP layer.

2.5 The failure detector layer

The Channel Failure Detector layer is used to administer a network topology and define the views of

reachable subscribers. It is shared by several DAC instances hosted by the same process. Channel state

changes as perceived by the failure detector are advertised to the Topic Membership layer through the

FD-updateChannelState() primitive.

2.6 The UDP layer

Our entire publish/subscribe architecture is implemented on top of UDP. As conveyed by its name, UDP is a

non reliable protocol, which offers the looseness required for the decoupled nature of publish/subscribe. Our

Java implementation of DACE uses the standard Java classes for UDP sockets and datagrams (i.e., classes

java.net.DatagramPacket and java.net.DatagramSocket), which are pretty close to the metal. These

classes are wrapped into more powerful abstractions for communication channels (see Section 4).

3 DACE PROGRAMMING MODEL: A GENERAL SURVEY

This section gives a brief summary of our DACE (Distributed Asynchronous Computing Environment) frame-

work for publish/subscribe interaction. We start by presenting the Distributed Asynchronous Collection

(DAC) as programming abstraction, which enables the capture of the different styles of publish/subscribe

(topic-based, content-based, type-based) without blurring their respective advantages. We then outline the

interfaces related to topic-based publish/subscribe, and we show an overview of the corresponding classes.
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3.1 Distributed Asynchronous Collections

Like the group abstraction which has been widely used as a basic model for replication [6], a topic enables the

regrouping of several entities, which can thus be addressed atomically. For a publisher (in the case of group-

based systems one could refer to an invoker) the set of subscribers appears as a single opaque entity, where

subscribers remain anonymous to the application. Thanks to its decoupled nature, the publish/subscribe

interaction model is the ideal way to express such one-to-many semantics at large scale.

3.1.1 DACs as object containers

Just like any collection, a DAC is an abstraction of a container object that represents a group of objects.

It can be seen as a means to store, retrieve and manipulate objects that form a natural group. Unlike

conventional collections or distributed collections described in [34] however, a DAC is not centralized on

a single host, in order to guarantee its availability despite certain failures. In contrast, the distributed

collections presented in [34] are centralized collections that can be remotely accessed through Java RMI.

3.1.2 The asynchronous flavor of DACs

Our notion of Distributed Asynchronous Collection represents more than just a distributed collection. In fact,

a synchronous invocation of a distributed object can involve considerable latency, hardly comparable with

that of a local interaction. Therefore we enforce an asynchronous interaction with our DAC s. By calling an

operation of a DAC, one expresses an interest in future notifications. According to the terminology adopted

in the observer design pattern [17], the DAC is the subject and its client is the observer. When querying a

DAC for objects of a certain kind, the party interacting with the DAC expresses its interest in such objects.

Therefore, when such an object is eventually “pushed” into the DAC, the interested party is asynchronously

notified.

3.1.3 Topic-based publish/subscribe with DACs

Expressing ones interest in receiving information of a certain kind can be viewed as subscribing to information

of that kind. By viewing event notifications as objects, a DAC can be seen as an entity representing related

event notifications. Clearly, if a collection is a set of somehow related objects, a DAC can be seen as a set

of related “events”. When considering the classical topic-based approach to publish/subscribe, a DAC can

be pictured as an extension of a conventional collection but also as a representation for a topic.

Such a topic is denoted by a name, like “EPFL”. Topics can have specializations, or subtopics, and

connecting to a topic requires the name in a URL-type format. Typically, “/EPFL/DSC” is a reference to

the topic called “DSC” which is a subtopic of “EPFL”. Subscribing to a topic can trigger subscriptions for

the subtopics as well, as illustrated in Figure 2. Subscriber S1 subscribes to topic “EPFL” and claims its

interest in all subtopics. Hence S1 does not only receive message m2 but also message m1 published for topic

“/EPFL/DSC”. In contrast, S2 only subscribes to “/EPFL/DSC” and thus does not receive message m2,

which belongs to the supertopic.
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Figure 2: Topic-Based Publish/Subscribe with DACs

Unlike other existing publish/subscribe systems (e.g., [22]), our approach frees the application programmer

from the burden of marshalling and unmarshalling data into and from dedicated messages. In our context,

a message can be basically any kind of object. In Java, this is expressed by allowing any object of class

java.lang.Object to be passed as a message.3

3.2 DAC interfaces

Figure 3 summarizes the main methods of the base DAC interface. More sophisticated interfaces like the DASet

all derive from this interface, but are omitted for the sake of brevity. We roughly distinguish synchronous

and asynchronous methods.

3.2.1 Synchronous methods

Since a DAC is in the first place a collection, the DAC interface inherits from the standard Java interface

java.util.Collection. The inherited methods are adapted, and we denote them as synchronous. [15]

gives more examples than shown here.

• get(). Similarly to a centralized collection, calling this method enables the retrieval of objects. This

implements the pull model. Which element will be returned depends on the nature of the collection,

as explained in [15].

• contains(Object m). A DAC is first of all a representation of a collection of elements. This method

enables the query of a collection for the presence of an object. Note that in the context of topic-based

publish/subscribe, an object that is contained in a DAC belongs to (was published for) the topic

represented by that DAC.

• add(Object m). This method enables the addition of an object to the collection. The corresponding

meaning for a DAC is straightforward: it allows to publish a message for the topic represented by that

collection.

3In order to be conveyable, a Java object should furthermore implement the java.io.Serializable interface [23], which

contains no methods.
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public interface DAC

extends java.util.Collection

{

public Object get();

public boolean contains(Object m);

public boolean add(Object m);

...

public boolean contains(Notifiable n);

...

public boolean containsAll(Notifiable n);

...

public boolean remove(Notifiable n);

...

public void clear(Notifiable n);

...

}

Figure 3: Interface DAC (Excerpt)

3.2.2 Asynchronous methods

We have added several asynchronous methods to express the decoupled nature of publish/subscribe inter-

action specific to DAC s. In these methods, asynchrony is expressed by an additional argument, denoting a

callback object which implements the Notifiable interface given in Figure 4.

• contains(Notifiable n). The effect, for instance, of invoking this method is not to check if the

collection already contains an object revealing certain characteristics, but is to manifest an interest

in any such object, that is eventually pushed into the collection. The interested party advertises its

interest by providing a reference to an object implementing the Notifiable interface, through which

it will be notified of events. There are different signatures for this method, among which certain enable

for instance the specification of a filter for content-based subscribing.

• containsAll(Notifiable n). This method offers the same signature(s) as the previous method. The

difference is that a subscription is generated for all subtopics of the topic represented by this DAC.

This conveys the situation of Figure 2.

• remove(Notifiable n). By calling this method, a subscriber does not trigger the removal of an object

already contained in the collection, but expresses its interest in being notified whenever an object

matching its criteria is inserted in the collection, after which the object will be removed immediately.

This expresses that a message is delivered to one single subscriber only . This is frequently called
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public interface Notifiable

{

public void notify(Object m, String topicName);

}

Figure 4: Interface Notifiable

one-for-all or one-of-n [45] in contrast to one-for-each implemented by the two previous methods.

Again there are several signatures for this method.

• clear(Notifiable n). While the conventional argument-less clear() method enables the erasure of

all elements from the collection, this asynchronous variant expresses the action of unsubscribing.

3.3 DAC classes

Our DACE framework consists of a variety of DAC s spanning different semantics and guarantees, since

different applications have different requirements. These semantics can be seen as different Qualities of

Service (QoS). While some properties reflect in the interfaces, others concern the implementing classes (see

Figure 5). Among those parameters is the delivery semantics of message objects “pushed” into the DAC.

A related aspect is the possible occurrence of duplicates. Other parameters are more related to collections,

like the order of storage, insertion or extraction of objects. We relate latter one to pull style interaction, and

therefore omit the details in this paper.

3.3.1 Delivery semantics

When a producer publishes a message, it does not directly interact with subscribers. The details of the under-

lying multicast protocols are concealed, and might lead to different classes implementing the same interface.

The DASet (Distributed Asynchronous Set) interface for instance is implemented by multiple classes. The

first one does not offer more than plain unreliable delivery (DAWeakSet), whereas others guarantee reliability

(e.g., DAStrongSet).

3.3.2 Duplicates

Just like it is possible to have duplicate elements in centralized collections, it is possible in DAC s that the

same message is delivered more than once. The simple DAWeakBag class for instance does not prevent a

notification from being delivered more than once, whereas the DAWeakSet class gives stronger guarantees by

eliminating duplicate elements. This property is orthogonal to other characteristics of our DAC s.
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Figure 5: DACE Framework Classes

3.3.3 Storage vs. delivery order

Collections are often characterized by the way they store their elements. Sets or bags do not rely on a

deterministic order for their elements. Conversely, sequences can store their elements in an order given

explicitly or implicitly based on properties of the elements. In DAC s however, the notion of space is

somehow replaced by the notion of time. If some centralized collections reveal a deterministic storage order,

a distributed asynchronous sequence may offer a deterministic ordering in terms of order of delivery to the

subscribers. In the Java collection framework for instance, a sorted set is a sequence which is characterized

by an ordering of the elements based on their properties. This can be seen as an implicit order. With our

DAC s, an implicit order is a global delivery order on which the DAC itself decides. The DASortedSet class

for instance presents a total order delivery. Inversely, a FIFO delivery order can be seen as an explicit order:

it is given by the order in which events are notified to the DAC by a publisher.

3.3.4 Insertion order

In different centralized collections, the insertion order may have an impact on the storage order. A position

can be given as an additional argument to an insertion into a list for instance. In an asynchronous collection

however, the order of insertion corresponds to the order of publishing. It seems obvious that inserting an

element at a specific position cannot translate to delivering a message at a certain moment in time relative

to other messages: when inserting a message m at the beginning of a list, m would have to be sent before

messages that have possibly already been delivered to subscribers. Therefore there is never any explicit
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argument for the order when “inserting” a new element into a DAC.

4 DACE SYSTEM MODEL

In order to describe the protocols used for the implementation of DAC classes and to prove their correctness,

we first introduce the underlying system and failure model. We adopt a notation and a terminology similar

the one introduced in [11]. We consider asynchronous message-passing distributed systems in which there is

no bound on message delay, relative speed of processes, or the time necessary to execute a step.

The system is always considered with respect to a topic, since every topic is managed separately. The

system consists of a finite set of processes or topic participants. A participant can act as publisher, subscriber,

or as both for a given topic. It is then said to be a participant for that topic. A process can incorporate

participants for several topics (it can participate in several topics). Our communication layer based on UDP

implements (virtual) channels connecting pairs of participants, and furthermore offers the primitives send()

and receive() (see Figure 1) for sending and receiving messages over them.4 We use a discrete global clock

whose range ticks T is the set of natural numbers. This notation is used to simplify presentation and not to

introduce time synchrony since participants cannot access the global clock.

4.1 Participants

A topic involves a finite ordered set of n topic participants τ = {p1, p2,..., pn}. A participant p has a

unique identifier denoted p-id(p), and identifiers are ordered. We do not consider byzantine failures, i.e.,

participants do not behave maliciously. Participants can fail by crashing and may recover later. Formally:

a failure pattern F (t) of a topic is a function from T to 2τ , where F (t) denotes the set of participants for

that topic that do not run at time t. We say that participant p is up at time t (in F) if p �∈ F (t), and p is

down at time t (in F) if p ∈ F (t). We state that p crashes at time t if p is up at time t-1 and p is down at

time t. We can induce that p recovers at time t ≥ 1 if p is down at time t-1 and p is up at time t. We define

Correct(t) as the set of participants that are up at time t.

4.2 History

At each clock tick, each participant p performs an event chosen from a set S. Set S includes at least the

null event (denoted as ε) and the sendp and receivep events, corresponding to the primitives send() and

receive() depicted above. The global history of a run of a distributed algorithm is a function σ from τ ×
T to S. If a participant p executes an event e ∈ S at time t, then σ(p, t) = e. If p executes no specific event

at t, then σ(p, t) = ε.
4To make the model more comprehensible, two participants p and q each participating in topics x and y communicate through

two distinct channels with each other; one for each topic. The implementation saves resources by using a single channel.
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4.3 Channels

A participant p sends a message m to a participant q with the event sendp(m,q), and receives a message m

from q through the event receivep(m,q).

A communication channel between participant p and q is bidirectional but not FIFO (i.e., messages can

be lost, duplicated, or unordered). If communication is possible from p to q at time t, then p →t q. A

channel between p and q is said to be open at time t if the connection between p and q is open on p and on

q at time t, and communication is possible in both directions. We denote this property p ↔t q. Intuitively,

p ↔t q ⇔ p →t q ∧ q →t p. In any other case, a channel is closed at time t (p �↔t q). We assume that

communication channels satisfy the following properties (which are formally proven in Appendix 2):

• Eventual Symmetry. If communication is possible from p to q, unless p or q crashes or they are

partitioned, communication is eventually possible from q to p. Formally,

∃t0, ∀t ≥ t0 : p →t q ⇒ ∃t1, ∀t′ ≥ t1 : q →t′ p

• Fairness. If p ↔t q, only one sendp(m,q) from p is required for q to eventually receive m. This property

can be guaranteed since our channels transparently resend messages as long as these have not been

acknowledged by the recipient. Formally,

∀t : p →t q ∧ σ(p, t) = sendp(m,q) ⇒ ∃t0 ≥ t : σ(q, t0) = receiveq(m,p).

4.3.1 Channels and partitionings

Closed network links create communication failures which may partition the network. We assume that

network partitions are only temporary and will be repaired eventually. We introduce the notion of topic

partitioning as the effect of a network partitioning of the (sub)system composed of the participants of a topic.

Figure 6 shows a simple scenario of a partitioned topic. Participants p1 and p2 can very well communicate,

while p3 is isolated from them. The sets {p1, p2} and {p3} represent partitions, since they have no means of

communicating with each other.

Communication links fail and recover more often than participants, and transitivity is not assured. As an

example, we might have for a given t p1 →t p2 and p2 →t p3, but p1 �→t p3.
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4.3.2 Definitions

We define Openp(t) as the set of all open channels of p at time t, and Closedp(t) which denotes all closed

channels of p at time t. Consequently, Openp(t) ∩ Closedp(t) = ∅. Furthermore, we define:

Can Communicate With. Holds true at time t for p and q if there is a sequence of participants p =

p0,...,pl+1 = q such that ∀i ∈ [0, l], pi ↔t pi+1.5 We denote this relation by p ❀t q. This relation indicates

whether participant q can be reached by participant p at time t or not. If p cannot reach q, we will denote

it as p �❀t q.

Causal Message Chain. A causal message chain from p to q between t0 and t1 , noted ✵p,q(t0, t1),

is a causal sequence of messages m0,...,ml and a sequence of participants p = p0,...,pl+1 = q such that:

∀i ∈ [1, l] ∃ti0 < ti1 : σ(pi, ti0) = receivepi(mi−1, pi−1), σ(pi, ti1) = sendpi(mi, pi+1) and ∃tp, tq ∈ [t0, t1]:

σ(p, tp) = sendp(m0, p1) and σ(q, tq) = receiveq(ml, pl).

4.4 Topic stability and partition

As described previously, communication channels can crash and recover. Topic Stability describes a sta-

ble state of the communication channels, while Topic Partition represents the partitioning of the system

composed of the participants for a topic.

4.4.1 Topic stability and minimal topic stability

The state of the communication channels of a topic is stable from time t on, if the states of all communication

channels between all participants of the topic do not change. In other words, all communication channels

that are open at t0 stay open and all communication channels that are closed at t0 stay closed. Formally,

∀t ≥ t0, ∀p ∈ τ , Openp(t) = Openp(t0) ∧ Closedp(t) = Closedp(t0).

However, it is very unrealistic that a system remains stable forever. We derive from topic stability, a less

restrictive property called minimal topic stability that assures stability for a certain period sufficient for a

causal message chain to be established between every pair of participants in the system.6 Formally,

∃t0, t1, ∀t ∈ [t0, t1], ∀p ∈ τ , Openp(t) = Openp(t0) ∧ Closedp(t) = Closedp(t0) ∧ ∀(p, q) ∃ ✵p,q(t0, t1).

4.4.2 Topic partition

For a stable state of the communication channels, the relation ❀ defines an equivalence relation on the set

of correct participants. The equivalence classes are called partitions. The partition of a participant p (the

partition in which p is) at time t is denoted partition(p,t).7 We can now define a partition pattern function P

from τ × T to 2τ , where P(p,t) indicates at time t the set of participants that are not in the same partition
5In fact, →t is sufficient to guarantee this property.
6To simplify, we could also require a message to be exchanged between every pair of participants. However, the total number

of messages sent would be greater or equal than with the causal message chain approach.
7If p ∈ F(t) then partition(p,t) = ∅.
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as p. Formally, P (p, t) = {q | p �❀t q}. If Figure 6 represents the situation for topic x at time t0, then

P (P3, t0) = {P1, P2}.

5 TOPIC MEMBERSHIP

We have designed the protocols underlying our implementation of DACE to manage partitioning as well as

crashes. The marriage of large scale, high throughput and fault tolerance has led us to consider weak consis-

tency protocols. This section presents Topic Membership, which can be viewed as a lightweight membership

protocol for the participants of a topic. First, we introduce our notions of topic view and stable topic view.

We then describe our Channel Failure Detector and its properties. Finally, we formally define our notion of

Topic Membership.

5.1 Views

Topic Membership is a weakly consistent membership notion which is different from the traditional notion

of group membership [39]. Approaches like virtual synchrony [7] offer strongly consistent views, but do not

scale well. Our notion of view is less restrictive, i.e., there is no explicit agreement on views. We distinguish

between two kinds of views: the topic view and the stable topic view. In fact, the system can be viewed as a

sequence of alternations of stable and unstable (stabilization) phases. Latter ones begin with the occurrence

of failures, and may result in differences in local views. Eventually, the views of the participants inside a

partition converge to a stable topic view.

5.1.1 Topic view

The topic view corresponds to the local participant view for a topic and reflects the participant’s perception

of reachable and present participants. These views resemble the views defined by [4] by being concurrent. A

topic view is bound to a single topic, and a process which participates in different topics maintains separate

views for each topic. Note that subtopics are handled like independent topics, which implies that a topic

view is required for each (sub)topic.

5.1.2 Stable topic view

Once the system is in a stable phase and views of the participants inside the partition have converged, the

participants are said to have reached a stable topic view. To achieve a stable topic view, the system must

undergo minimal topic stability.

A stable topic view stv represents a set of participants. stview(p, t) represents the last stable topic view

that was reached by p before time t. If stvj succeeds stvi at p, then stvi ≺p stvj . Formally,

∃t0 ≤ t1 ≤ t2, ∀t ∈ [t0, t2] : Openp(t) = Openp(t0) ∧ Closedp(t) = Closedp(t0) ∧ ∀(p, q) ∃ ✵p,q(t0, t1)

⇔ ∃ stv, ∀t′ ∈ [t1, t2] : stview(p, t′) = stv.
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5.2 Topic channel failure detector

Each participant p has access to a local failure detector module which outputs hints about the closed channels

of p with other participants. The topic channel failure detector history CH is a function from τ × T to 2τ

that outputs the closed channels of the participant. Formally,

q ∈ CH(p, t) ⇔ p �→t q; q �∈ CH(p, t) ⇔ p →t q.

We assume that the topic channel failure detector is perfect with respect to our (virtual) channels. A

channel loss due to a failure in the network is always detected eventually. If the failure affected the existing

connection, but the network still offers a correct physical path between the participants, the channel will be

re-established. The same action takes place in the case of false suspicion. During such glitches, the system

is considered being in an unstable phase.

5.3 Topic membership specification

As explained previously, a topic view represents a participant’s view of all participants of a topic at any

moment. We have shown that when the system is stable long enough to satisfy minimal stability, the views

of all participants of a topic inside a partition (or the entire system) are identical. The view becomes stable,

and is hence called stable topic view. In contrast to [4], which specifies a membership based on properties

of local views, we specify our Topic Membership by properties of stable topic views, and do not consider

inconsistent views, since these correspond to unstable phases.

(TM1) Stable Topic View Agreement. If participant p reaches stable topic view stv1 and its immediate

successor stv2, both containing q, then p reaches stv2 after q reached stv1. Formally,

∀p, q, stv1, stv2 : stv1 ≺p stv2 ∧ p, q ∈ stv1 ∩ stv2 ∧ ∀t ∈ [t0, t1], sview(p,t) = svt1 ∧
∀t′ ∈ [t2, t3], sview(q,t’) = svt1 ⇒ t2 < t1.

(TM2) Stable Topic View Accuracy. If p ❀ q holds forever, then eventually when the system reaches

stable topic view stv, p and q eventually have the same view. Formally,

∃t0, ∀t ≥ t0 : p ❀t q ⇒ ∃t1, ∀t′ ≥ t1 : sview(p,t’) = sview(q,t’).

(TM3) Stable Topic View Completeness. If all processes q in some partition Ω hold p �❀ q forever, then

eventually when the system reaches stable topic view, p will not have any processes q ∈ Ω in its stable topic

view. Formally,

∃t0, ∀q ∈ Ω, ∀p �∈ Ω, ∀t ≥ t0 : p �❀t q ⇒ ∃t1, ∀t′ ≥ t1 : sview(p, t′) ∩ Ω = ∅.

(TM4) Stable Topic View Integrity. Every participant p that reaches a stable topic view is included in

that stable topic view. Formally,

∀p, t : p ∈ sview(p, t).
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6 TOPIC RELIABLE BROADCAST

This section sketches the properties of our Topic Reliable Broadcast protocol, which is used to efficiently and

reliably multicast messages despite partitionings. Topic Reliable Broadcast, hereafter called TR Broadcast,

is based on Topic Membership, and enables the broadcasting of messages to all subscribers of a topic. The

realization of the DAStrongBag class, shown in Figure 5, is based on this protocol. The simplified algorithm

is given in Appendix 1.

6.1 Specification of TR broadcast

We recall the properties of reliable broadcast (in the sense of [11]). It guarantees that (a) all correct

processes deliver the same set of messages, (b) all messages broadcast by correct processes are delivered

and (c) no spurious messages are ever delivered. These properties can be transposed to partitioning and

topics. Formally, our notion of TR Broadcast (Topic Reliable Broadcast) is based on the two primitives

TR-broadcast and TR-deliver, which satisfy the following properties:

(a) Validity. If a correct publisher p TR-broadcasts a messagem, then unless p crashes, a correct subscriber

eventually TR-delivers m.

(b) Agreement. If a correct subscriber s TR-delivers a message m, then all correct subscribers eventually

TR-deliver m.

(c) Uniform Integrity. For any message m and any subscriber s that TR-delivers m, s TR-delivers m at

most once and only if m was previously TR-broadcast by publisher(m).

6.2 General concepts

The overall goal of TR Broadcast is to ensure that a message broadcast by a publisher reaches all subscribers

of the topic. For that purpose, we require the knowledge of identifiers of the received messages of each

participant. We introduce here the general concepts of our algorithm.

6.2.1 Messages

Each application message m has a unique identifier, denoted m-id(m). Messages are composed of two

fields. The data field carries application messages. The control field carries updates of the states of the

communications channels (see Section 7 for more details) as well as identifiers of received messages for every

participant. These acknowledgements are used especially for garbage collection. By piggybacking them with

other messages we reduce the overall network traffic.

6.2.2 First participant

When a participant p receives a message m, it tries to determine for every neighbour participant q with

which it has a channel if it is the participant with the lowest identifier that has received m and has a channel

with q. If these conditions are fulfilled, p will forward m to q. This reduces the amount of redundant message
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transfers, without violating the Agreement property. For a participant q and a message m, there is only one

first participant p in the whole system which will send m to q.8

6.2.3 Check & forward

In the case of remerging partitions, participants who were in different partitions must exchange the messages

they have delivered in the meantime. Therefore, upon changes in the state of communication channels,

participant p checks for every participant q which messages p has received and q has not acknowledged to

p. Process p then forwards every such m to q if p is first participant of q with respect to m. This way, we

ensure that all messages are received eventually despite unstable phases.

6.2.4 Subscriptions and unsubscriptions

When a process wants to subscribe to a topic, it must know at least one participant p, which will reliably

broadcast a subscription request vicariously for the new participant q. Participant q will receive all messages

that p receives after q’s subscription request. When unsubscribing, a participant reliably broadcasts an

unsubscription request, which guarantees that every participant will receive it. Note, that neither the

subscription nor the unsubscription of a participant requires any agreement protocol.

7 IMPLEMENTATION

This section depicts some implementation issues of DACE and illustrates the performance of TR Broadcast.

This gives an idea of the overall efficiency of our protocols.

7.1 Topic network knowledge

We call topic network knowledge the information that a participant p has about the states of all channels

between participants of the topic. To learn about the states of all channels connecting participants of the

topic, participants must exchange their information.

7.1.1 Topic channel state

The information p has about all the channels between participants of the topic are stored in a n × n matrix

called channelStatep. The value of channelStatep[q, r] represents the state of the channel between q and r

(q → r) as assumed by p. The matrix channelStatep is divided in n channelState vectors, each corresponding

to a line of the channelStatep matrix. channelStatep(q) is the q-th channelState vector of participant p. It

represents p’s view of the channels q has all with other participants. A logical timestamp tsp(q) is associated

with each channelStatep(q). Figure 7 shows a typical channelState matrix in a stable system where all

participants share the same channelState; × means that the link is closed or does not exist and © that the

link is open.
8In fact, there is exactly one in stable phases. In unstable phases, there might be more than one.
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Figure 7: channelState derived from the Link Status

7.1.2 Propagation of knowledge

When participant p sends a message m to q, p checks if channelStatep has changed since the last message

sent to q. This happens whether p actually published the message itself or only forwards it. Message m

piggybacks the updated channelStatep (with the associated updated timestamps). When q receives m from

p, q compares all received timestamps and replaces all channelState vectors that are older. In the absence

of application messages, each participant p periodically sends its own channelStatep matrix to a randomly

picked neighbour (gossip). The receiver q updates its own channelStateq matrix, and sends its more up-to-

date values to p. This keeps the channelStates from diverging when no messages are published for a certain

time. When participant p receives a message from a new participant, p increases the size of channelStatep.

7.2 Performance

We give here performance measurements of our prototype which were made on two LANs interconnected by

Fast Ethernet (100MB/s) on normal working days. The first LAN consisted of 60 SPARCstation 20 (model

502: 2 SuperSPARC CPU, 64Mb RAM, 1Gb Harddisk) machines, and the second one of 60 UltraSUN 10

(256Mb RAM, 9 Gb Harddisk) machines. All stations were running Solaris 2.6, and DACE was running on

Solaris JVM (JDK 1.2.1., native threads, JIT). The message objects were of a size of 1Kb in serialized form.

Figure 8(a) summarizes the results of the throughput measurements and compares TR Broadcast with an

unreliable broadcast in a topic. Figure 8(b) shows the percentage of sent messages that are delivered by the

unreliable broadcast algorithm. The complete results can be found in Appendix 3.

As conveyed by the measurement results, the performance of TR Broadcast remains stable over an in-

creasing number of participants. After 100 participants, the performance varies very little. On the other

hand, the performance of the unreliable broadcast is less stable. It is limited by the overall performance of

the network, which can be seen by the quickly decreasing throughput. When the number of participants

exceeds 100, the two curves converge, since the TR Broadcast protocol reaches the limits of the network

earlier.
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Figure 8: Performance of Unreliable and Reliable Topic Broadcast

8 RELATED WORK

In the past few years, the need for effective large scale multicast interaction schemes and protocols have been

widely recognized and much effort has therefore been invested in this domain. A multitude of approaches

have emerged from academic as well as industrial researches. We present here the main characteristics of

these approaches and we compare them with our Distributed Asynchronous Computing Environment.

8.1 Publish/subscribe messaging systems

In order to integrate the publish/subscribe communication style into existing middleware standards, speci-

fications have been conceived by both the Object Management Group [36] and Sun [22, 1, 8]. The OMG’s

CORBA service for publish/subscribe-oriented communication, called the CORBA Event Service, is based

on the notion of event channels. These channels are denoted by names, and basically incorporate top-

ics. In all implementations we know about, channels are centralized components and therefore manifest

a strong sensitivity to any component failure, which makes them unsuitable for critical applications. The

Java Messaging Service [22] is a specification from Sun. Its goal is to offer a unified Java API around

common publish/subscribe engines. Certain existing services implement the JMS, but to our knowledge no

publish/subscribe system has been implemented with the mere goal to support the JMS API directly. Its

generic nature, required in order to match a maximum number of existing systems, appears to be rather

cumbersome. Other specifications from Sun are more aimed at particular environments, like the Java Dis-

tributed Event Specification [1] in the context of Jini and the InfoBus 1.2 Specification [8] describing an

information bus for dynamic data exchange between JavaBeans.

Established industrial strength solutions, like TIB/Rendezvous [45] or Smartsockets [9] tolerate crash

failures by applying entity redundancy, and Smartsockets even take network failures into account. Neverthe-

less, even though such solutions might offer fault tolerance, they provide a rather complicated programming
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model.

Systems like Siena [10], Elvin [43] or Gryphon [2] provide a flexible programming model with content-

based capabilities. These solutions however focus on the effective dissemination of information, without

sufficiently addressing fault tolerance.

JGL [34] was designed to provide a more advanced series of collections, since the Java environment by

default only offers limited support for data collections and algorithms. JGL extends the basic Java collections

with more refined types. The notion of distributed collection in JGL though describes a centralized collection

object, accessible through Java RMI. This is especially prone to failures, while DAC s are especially designed

for fault tolerance.

Clearly, none of these solutions provides a generic approach to publish/subscribe interaction. DACE

introduces an easy to use high-level programming abstraction which enables the grouping of different styles

without blurring their advantages. At the same time, our framework blends these different publish/subscribe

variants with a multitude of QoS among which certain offer strong reliability guarantees without penalizing

efficiency. This allows for instance to easily realize a JMS-compliant service on top of DAC s. Inversely,

DAC s could, to some extent, also be build on top of a JMS implementation. In particular, the selector

concept in JMS could be used to express the content-based features of DAC s [16], and the generally weak

specification of JMS would enable the translation of QoS and subtopics in DAC s (the JMS Destination is

represented by an empty interface).

8.2 Network partition models

Several partition models have emerged, advocated by different types of applications. The requirement for

strong consistency, for instance in database or file system applications [18], has driven an approach where

services have to be suspended completely in all but one partition that contains a majority of processes. This

is known as following the primary-partition model, adopted for instance by Isis [6], Amoeba [27], [33], or

[41]. The overhead introduced by strong consistency is not well adapted to large scale, and such systems

might block as long as the majority condition is not satisfied. Furthermore, members of minority partitions

are forced to quit applications.

Applications relying on mobile units or wireless links as well as application at large scale are forced to

consider more than one partition; they often follow the minority-partition model (or partitionable model).

Partitions occur when units are deliberately (or unintentionally) unplugged from the network. Applications

such as the Coda [26] or the Ficus file systems [38], and Rover [25] rely on that model, and furthermore

apply to large scale. In contrast to the previous model, this class of applications must be able to make

progress without blocking even under numerous partitions.

[4] introduces partition-aware applications. The system provides the necessary hooks such that the appli-

cation itself decides which of its services will be available in each partition and at what QoS levels. Total

order delivery is possible in concurrent partitions, and the states of the objects in different partitions are

merged when the partitions remerge [32]. This however forces the applications to offer such merging facilities,
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which constitutes a non-trivial issue.

Recently, many attempts have been made to formalize a specification of a partitionable group membership

in asynchronous systems. [4] presents a formal specification for partitionable group membership and its

algorithms. Another known attempt is [13]. Systems such as Horus [46], Transis [14], or Totem [31] manage

minority-partitions. They handle concurrent views in different partitions. The membership incorporated by

those approaches however introduces important overheads in order to guarantee a consistency which is too

strong for our case.

The model underlying our environment differs from the above proposals in many aspects. First, our model

is based on an unreliable datagram transport. Second, the Topic Membership model is less restrictive in

the sense that no consensus is required and it does not enforce view changes. Third, most of these system

models (primary-partition and minority-partitions) are applied to local area networks and do not scale well

to wide area networks. The partition-aware model is aimed at large scale, but requires considerable support

from the application for the state merging of participants who were partitioned. It is aimed at more specific

applications, like replication, while DACE is a generic messaging system, in which we do not consider “states”

of participants.

9 SUMMARY AND CONCLUSIONS

Current research in the context of distributed computing encompasses two major and often separated trends:

distributed algorithms and distributed programming models. The first trend is strongly guided by the devel-

opment of sophisticated protocols for a multitude of semantics or QoS based on a variety of different systems

and failure models. As an example, the need for multicast primitives tailored to large scale environments,

like the Internet, has been recognized and has led to a variety of protocols with diverse semantics. Such

protocols are often developed without considering the look-and-feel in which they will be enclosed, i.e., the

actual programming model. Applications that want to benefit from such facilities are hence bound to rather

primitive and unwieldy services which are close to the metal.

On the other hand, the practice of distributed computing models is largely driven by the desire of handling

distribution as an implementation issue, i.e., all aspects related to distribution are hidden behind traditional

centralized constructs. This has led to a variety of so-called “object-oriented middleware” solutions, which

promote objects as “autonomous entities communicating via message passing”. One fundamental idea be-

hind this is the illusion to be able to reuse, in a distributed context, a centralized program that was designed

and implemented without distribution in mind.

As argued in [47, 29, 21], distribution transparency is a myth that is both misleading and dangerous.

Distributed interactions are inherently unreliable and often introduce significant latency that is hardly com-

parable to that of local interactions. The possibility of partial failures can fundamentally change the se-

mantics of an invocation. High availability and masking of partial failures involves distributed protocols

that are expensive and hard to implement in the presence of network partitions. Conventional protocols

might conform well to local area networks, but scale poorly. Another important mismatch lies in the missing
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support for one-to-many invocations in middleware based on client/server-like interactions.

We have been considering an approach that bridges the gap between the two trends: (1) distributed pro-

tocols and (2) distributed programming models. In our approach the programmer is aware of distribution

but the ugly and complicated aspects of distribution are encapsulated inside a specific abstraction with a

well-defined interface. The Distributed Asynchronous Collection [15] is such an abstraction. It is a simple

extension of the well-known collection abstraction. DAC s add an asynchronous and distributed flavor to

traditional collections [5], and enable the expression of various forms of publish/subscribe interaction. The

Distributed Asynchronous Computing Environment we present in this paper is a framework for large scale

event dissemination based on DAC s, and can be viewed as a middleware solution for publish/subscribe

interaction.

We define an adequate underlying system and failure model for the implementation of our DAC s. This

allows us to seamlessly weave programming models and underlying protocols, instead of just gluing them

together. This paper exemplifies this by presenting the realization of a DAC class for topic-based pub-

lish/subscribe from bottom to top, i.e., from the system model all the way up to the resulting programming

abstraction and its interface. The DAStrongSet class used as an illustration, guarantees reliable event deliv-

ery to all subscribers of a topic, and demonstrates our underlying partitioning model made-to-measure for

loosely coupled interaction at large scale. Our model is less restrictive than majority-partition, minority-

partition or partition-aware, but nevertheless guarantees a useful reliability.

The Topic Membership protocol we present in this paper is a lightweight membership protocol for topics.

It was guided by our programming model, namely DAC s. It handles network partitions in asynchronous

distributed systems. It makes no assumption on the network used to transport messages, except that it must

guarantee the absence of byzantine failures, i.e., processes do not behave maliciously. The Topic Reliable

Broadcast protocol provides a reliable broadcast for topic-based publish/subscribe, under the assumption

that partitions will eventually remerge. A subscriber will eventually receive the message even if the publisher

was partitioned away temporarily. The number of messages sent is minimized in stable phases by using the

first participant function. We have also made broad use of an augmented version of that function for our

multicast protocol [3].
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10 Appendix 1: Topic reliable broadcast protocol

This section presents the TR Broadcast algorithm without the parts related to gossiping of network knowledge

and acknowledgements (anti-entropy).

1: this-p: this participant

2: channelState(i,j): channel exists between i and j as seen by this-p (true or false)

3: channelState(i): i-th row of channelState; has a timestamp tsp(channelState(i)) associated

4: messagesReceived : set of messages received by this-p

5: idMessagesReceived(q): set of ids of messages received by participant q as seen by this-p

6: maxGarbagedId(q): highest id of messages received by all and published by q as seen by this-p

7: awaitedIdMessages(q): set of ids of messages that have not yet been acknowledged by all

8: function firstParticipant(m,q) {return true if this-p is the firstParticipant to send m to q}
9: neighbours = {r | channelState(r,q) is true} {ordered with increasing p-id()’s}
10: for all p-id(r) | r ∈ neighbours up to p-id(this-p) - 1 do

11: if m-id(m) ∈ idMessagesReceived(r) then

12: return false

13: return true

14: procedure updateIdMessages(idMessagesReceivedq , maxGarbageIdq , awaitedIdMessagesq , q)

15: for all participant r �= this-p do {update ids}
16: idMessagesReceived(r) ←− idMessagesReceived(r) ∪ idMessagesReceivedq(r)

17: for all id ∈ maxGarbageIdq \ awaitedIdMessagesq do

18: idMessagesReceived(q) ←− idMessagesReceived(q) ∪ id

19: procedure check&forward() {upon a change in channelState}
20: neighbours = {r | channelState(r, q) is true}
21: for all r ∈ neighbours do

22: for all m ∈ messagesReceived and m-id(m) �∈ idMessagesReceived(r) do

23: if firstParticipant(m,r) then

24: TM-cast(m, idMessagesReceived, r)

25: To execute TR-broadcast(m):

26: messagesReceived ←− messagesReceived ∪ m

27: idMessagesReceived(this-p) ←− idMessagesReceived(this-p) ∪ m-id(m)

28: neighbours = {r | channelState(r, q) is true}
29: for all r ∈ neighbours do

30: TM-cast(m, idMessagesReceived, maxGarbageId, awaitedIdMessages, r)

31: TR-deliver(m) {delivers m to itself}
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32: TR-deliver(-) occurs as follows:

33: when TM-deliver(m, idMessagesReceivedq , maxGarbageIdq , awaitedMessagesq , q)

34: if m-id(m) > maxGarbagedId(q) and m-id(m) �∈ awaitedIdMessages(q) then

35: updateIdMessages(idMessagesReceivedq , maxGarbageIdq , awaitedIdMessagesq , q)

36: if m �∈ messagesReceived then

37: messagesReceived ←− messagesReceived ∪ m

38: idMessagesReceived(q) ←− idMessagesReceived(q) ∪ m-id(m)

39: TR-deliver(m) {delivers m}
40: check&forward()

41: To execute TM-cast(m, idMessagesReceived, maxGarbageId, awaitedMessages, q):

42: for all participant r do

43: if [channelState(r) changed since the last message sent to q] then

44: tsp(channelState(r)) = tsp(channelState(r))+1 {update tsp}
45: channelStateq ←− channelStateq ∪ channelState(r) {update channelState}
46: send(m, idMessagesReceived, maxGarbageId, awaitedMessages, channelStateq) to q

47: TM-deliver(-) occurs as follows:

48: when receive(m,idMessagesReceivedq ,maxGarbageIdq ,awaitedMessagesq ,channelStateq) from q

49: for all [participant r | ∃ channelStateq(r)] do

50: if tsp(channelStateq (r)) < tsp(channelState(r)) then

51: channelState(r) = channelStateq(r)

52: tsp(channelState(r)) = tsp(channelStateq (r))

53: TM-deliver(idMessagesReceivedq , maxGarbageIdq , awaitedMessagesq , q)

54: when messagesReceived �= ∅
55: for all m ∈ messagesReceived do

56: if [∀ participant r | m-id(m) ∈ idMessagesReceived(r)] then

57: messagesReceived ←− messagesReceived \ m

58: for all participant r do

59: idMessagesReceived(r) ←− idMessagesReceived(r) \ m-id(m)

60: if maxGarbagedId(m) > m-id(m) then

61: awaitedIdMessages(m) ←− awaitedIdMessages(m) \ m-id(m)

62: else

63: maxGarbagedId(m) = m-id(m)

64: for all m-id(m) > j > maxGarbagedId(m) do

65: awaitedIdMessages(m) ←− awaitedIdMessages(m) ∪ j
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11 Appendix 2: Topic reliable broadcast properties

This appendix sketches the properties of our TR Broadcast algorithm given in Section 6. For this, we suppose

that the system has reached an agreement on channelState.

Validity is implicit since at line 31 p delivers it directly by appending m to messagesReceived. That way,

when p TR-broadcasts m, p will automatically TR-deliver m. Even if p does not incorporate a subscriber,

the message will still be buffered.

Agreement is fulfilled if one participant p eventually TR-delivers m, then every participant q of the topic

delivers m. Partitions remerge eventually, and therefore there will be a time t at which p ❀t q. A message m

is only garbage collected when all neighbours have acknowledged it (line 56), and the algorithm will forward

missing messages to lagging processes in task check&forwardp. Therefore, every participant (and thus every

subscriber) will eventually TR-deliver m.

Uniform Integrity is ensured in procedure TR-deliver. In fact, a participant knows at every moment if it

has already delivered message m, by storing m-id(m). The algorithm keeps track of the identifiers of garbage

collected messages. Furthermore, since we are in an environment devoid of byzantine failures, no spurious

messages are delivered.
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12 Appendix 3: Detailed performance measurements

We present here the detailed results of our performance measurements summarized in Figure 8(a). Figure 9

shows the performance of both broadcast protocols, together with the variance of the measurements.

In the case of the unreliable broadcast, the variation decreases when the number of participants increases,

as conveyed by Figure 9(a). This is due to the fact that the performance is bound by the global performance

of the network. In the case of Figure 9(b) in return, the variance remains more stable since the limits of the

network are reached very quickly.
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