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Abstract. The two-centre wave-packet convergent close-coupling approach to ion–atom collisions is
extended to study proton collisions with molecular hydrogen including electron-capture channels. We use
a model potential to represent the molecular target as an effective one-electron spherically symmetric sys-
tem. This greatly simplifies the target structure, allowing us to use already existing code developed for ion
collisions with single-electron targets. Calculated total cross sections for electron capture, single ionisation,
and excitation processes generally agree well with experimental data and other theoretical calculations
where available. However, the total electron capture cross section is found to overestimate the experimen-
tal data at low energies, while the total ionisation cross section is slightly underestimated. Additionally,
we present state-resolved cross sections for capture into the 1s, 2�, and 3� states of the projectile where
deviation between various previous calculations is substantial. Our results lead to overall improvement over
previous theoretical studies although discrepancies with experiment are observed for 3p and 3d capture.
We conclude that treating molecular hydrogen as an effective one-electron system within the two-centre
coupled-channel approach to one-electron targets can give reasonably accurate total cross sections at inter-
mediate and high energies, without the need for a complex and computationally demanding two-electron
target representation.

1 Introduction

The simplest homonuclear diatomic molecule is two-
electron molecular hydrogen. The multicentre nature
of H2 makes it difficult to accurately represent its
structure, requiring complex theoretical descriptions
and computationally demanding codes. However, as the
most abundant molecule in nature and the simplest
molecular target it represents a useful first step towards
scattering on more complex targets. Molecular hydro-
gen has attracted significant attention with a number
of recent works published analysing collisions with ions,
see e.g. Ref. [1] and references therein. This is partly
due to the emergence of hadron therapy for treatment
of cancer and the consequential requirements [2,3] for
accurate scattering calculations of ion collisions with
complex molecules.

Proton scattering on molecular hydrogen has been
extensively investigated experimentally. Stier and Bar-
nett [4] performed a comprehensive experiment to
determine both total electron-loss and electron-capture
cross sections in p + H2 collisions at low incident ener-
gies. The measurements of the total electron-loss cross

a e-mail: corey.plowman@postgrad.curtin.edu.au (correspond-
ing author)

b e-mail: a.kadyrov@curtin.edu.au

section by Hooper et al. [5] provided data for ionisa-
tion at high energies where the electron-capture contri-
bution to total electron loss is negligible in compar-
ison with ionisation. Electron capture was measured
across a wide energy range by Barnett and Reynolds
[6], McClure [7] and Toburen et al. [8]. No distinction
was made between capture that left the residual molec-
ular ion intact or in a dissociative state. However, mea-
surements by Shah et al. [9] and Shah and Gilbody [10]
of the separate dissociative and non-dissociative cap-
ture channels showed that the contribution from cap-
ture events leading to dissociation are approximately
an order of magnitude smaller than non-dissociative
capture processes. Additionally, Rudd et al. [11] made
empirical calculations and estimated uncertainties by
fitting an analytical formula to the range of available
experimental data.

Total ionisation cross sections were measured by
Toburen and Wilson [12] at high impact energies
where dissociative ionisation is negligible. Edwards et
al. [13] and Shah et al. [9] explicitly measured non-
dissociative ionisation and showed that dissociative ion-
isation becomes negligible in comparison with non-
dissociative ionisation at impact energies higher than
20 keV. Electron-capture cross sections into the 2s state
were measured by Andreev et al. [14], Bayfield [15],
Birely and McNeal [16], Hughes et al. [17], and Shah
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et al. [18], although only the apparatus of Andreev et
al. [14], Shah et al. [18] were calibrated to give absolute
cross sections. Capture into the 2p state was experimen-
tally measured by Birely and McNeal [16] and Hughes
et al. [19]. Hughes et al. [20] measured cross sections
for 3s, 3p, and 3d capture, while Williams et al. [21]
obtained data only for 3s and Dawson and Loyd [22]
for 3p and 3d. Furthermore, the total ionisation cross
section for antiproton collisions with molecular hydro-
gen was measured by Knudsen et al. [23], Hvelplund et
al. [24], and Andersen et al. [25].

Thus far, the majority of theoretical works on ion
collisions with molecular hydrogen is limited to nega-
tively charged projectiles such as antiprotons [1,26–30].
This removes the possibility of charge-exchange pro-
cesses, significantly simplifying the collisional problem.
Modelling scattering of positively charged projectiles
brings additional challenges due to electron capture
into bound and continuum states of the projectile hav-
ing significant contributions to the total electron-loss
cross section. Separating these processes from direct
ionisation requires more elaborate theories such as
two-centre expansion approaches. However, this greatly
increases computational complexity [31]. An alternative
approach that projects a bound state of the projectile
atom onto the total scattering wave function has been
recently developed to calculate electron capture using
only a one-centre expansion [32]. This significantly sim-
plifies the theory compared to a two-centre approach
and provided very good agreement with both exper-
iment and two-centre calculations for p+H collisions.
This approach was used for multielectron atom targets
and is currently being extended to molecular hydrogen.

The boundary-corrected first Born (B1B) approxi-
mation developed by Belkić et al. [33] was extended by
Corchs et al. [34] to calculate capture cross sections into
the ground state of the projectile in p+H2 collisions for
collision energies from 100 to 1000 keV. This perturba-
tive approach works well in the high-energy region, but
its assumptions break down at lower incident energies.

Another type of perturbative methods is based on the
continuum-distorted-wave (CDW) approach. The CDW
approach was used to calculate single-electron capture
cross sections to all bound projectile states in p + H2

collisions over a wide energy range from 20 keV to 10
MeV [35] and state-selective cross sections for capture
into the 2s, 3s, 2p, 3p, and 3d orbitals of the projectile.
While they generally show good agreement with exper-
iment [15,17,19–21] at intermediate impact energies,
the CDW approaches deviate from one another and
some significantly overestimate the low-energy exper-
imental data [36]. Single ionisation cross sections for
proton collisions with molecular hydrogen were cal-
culated using the continuum-distorted-wave eikonal-
initial-state (CDW-EIS) model by Galassi et al. [37].
They used an eikonal representation of the initial chan-
nel to simplify the formalism. Although good agree-
ment with the recommended data from Rudd et al. [11]
and Rudd et al. [38] was obtained at high energies,
they found it was necessary to modify the distortion
potential to better reflect the multicentre nature of the

target in order to obtain good agreement with exper-
iment in the intermediate-energy region. As with the
B1B approach, the approximations used in formulating
the CDW theory are not valid at low projectile ener-
gies. In addition, the distorting potentials can be chosen
in many ways somewhat arbitrarily, such that there is
no way of knowing which CDW formalism provides the
correct description of the scattering system.

Meng et al. [39] used the classical-trajectory Monte
Carlo (CTMC) method to calculate single-ionisation
and electron-capture cross sections. This method solves
the classical Hamilton equations arising at each time-
step of the projectile motion. In a later work, they used
the same approach to calculate state-resolved cross sec-
tions for transfer into the 2s, 2p, 3s, and 3p states of
the projectile [40]. Results from Illescas and Riera [41]
using the CTMC method show good agreement with
experimental ionisation and electron capture cross sec-
tions from Refs. [5,9,12] over an energy range from 9
to 225 keV. The CTMC approach of Meng et al. [39]
was also applied by Schultz et al. [1] to calculate total
electron-capture and ionisation cross sections from 1
keV to 25 MeV. After applying a Born correction and
normalising to recommended data from Ref. [42], their
results agree well with the experimental results reported
in Refs. [6–11,13]. However, this classical method fails
to model quantum mechanical effects which could be
a possible reason for discrepancies with experiment at
low energies.

Accurate ionisation cross sections for antiproton
scattering on molecular hydrogen were calculated by
Abdurakhmanov et al. [28,29] over a projectile energy
range from 1 to 2000 keV. The method was used
to calculate antiproton stopping power in H2 [43,44].
They used a full two-electron two-centre treatment of
the target, constructing the electronic wavefunctions
using a configuration-interaction expansion in terms of
the product of two one-electron orbitals. While they
obtained very good agreement with experiment, even
at low energies where other theories deviate signifi-
cantly, the treatment of the target structure signifi-
cantly increased the complexity of the theory and com-
putational implementation when compared to methods
that use a spherically symmetric effective one-electron
target description [27]. Lühr and Saenz [26] also used a
close-coupling method to calculate ionisation cross sec-
tions for p̄ + H2 scattering. However, the same caveats
apply whereby the two-electron non-spherical treat-
ment of the hydrogen molecule complicates the the-
ory. Furthermore, this complicates the generalisation of
these sophisticated single-centre approaches to include
the second centre required for allowing capture of one
or both electrons from the target.

To study proton collisions with H2, Kimura [45] used
a close-coupling method with a two-state basis con-
taining only the ground states of the target and pro-
jectile. They calculated the electron capture cross sec-
tion within a modified molecular-orbital (MMO) semi-
classical close-coupling formalism and provided results
for proton scattering on molecular hydrogen from 1 to
20 keV. Shingal and Lin [46] calculated ground-state
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electron-capture cross sections for proton scattering on
molecular hydrogen using a different implementation of
the semiclassical close-coupling formalism. They first
calculated the scattering amplitudes for protons collid-
ing on atomic hydrogen using the so-called travelling
atomic orbital-expansion (AO) method. Then, by con-
structing the molecular states as a linear combination
of atomic orbitals (LCAO), they used a first-order per-
turbative method to obtain scattering amplitudes for
the molecular hydrogen target in terms of the ampli-
tudes for the atomic target. Their results overestimate
the calculations by Kimura [45] for energies below 20
keV.

An alternative approach is to represent the target
using a simple model potential that can be used to gen-
erate a ground-state with an ionisation energy match-
ing that of the hydrogen molecule. Vanne and Saenz
[47] proposed such a treatment for a theoretical analysis
of the behaviour of molecular hydrogen when exposed
to ultra-short laser pulses. The potential they used
represents the target as a spherically symmetric effec-
tive one-electron system, simplifying the theoretical
requirements to a level of complexity similar to that
required for hydrogen-like atomic targets. One-centre
close-coupling calculations using this approach to the
target structure showed good agreement with experi-
ment for ionisation in collisions with antiprotons [27].
This technique was applied to positive projectiles to
calculate total electron loss from 10 to 4000 keV and
2p excitation [48] (above 100 keV) cross sections for
proton scattering on molecular hydrogen. Elizaga et al.
[49] calculated electron-loss cross sections for proton
scattering on H2 using a model potential representa-
tion in a molecular orbital (MO) treatment based on
the optimised dynamical pseudostates (ODP) method
and eikonal classical trajectory Monte Carlo (CTMC)
approach. Their results agree closely with those of Lühr
et al. [48], except below 30 keV where the CTMC results
underestimate both the experimental data [11] and the
other calculations. However, the aforementioned meth-
ods cannot give any information on electron capture.

In this work, we use the semiclassical two-centre
wave-packet convergent close-coupling (WP-CCC)
approach [31,50–53] together with the effective one-
electron model potential description of molecular hydro-
gen originally proposed by Vanne and Saenz [47].
The WP-CCC formalism represents the motion of the
projectile ion with a classical straight-line trajectory,
while the electron dynamics is described fully quantum-
mechanically. An advantage of this approach over other
theories is the simultaneous inclusion of pseudostates
(and hence inclusion of strong coupling effects between
all channels) in both target and projectile-centred
bases. It has previously been applied to calculate total
and differential state-resolved cross sections for all pro-
cesses taking place in proton and multicharged-ion scat-
tering on atomic hydrogen [31,54,55] and multielectron
targets [56–58]. Incorporating a spherically symmetric
potential to represent the hydrogen molecule with a
single active electron allows us to use the two-centre
WP-CCC formalism to calculate cross sections for all

one-electron processes in proton collisions with molec-
ular hydrogen using already available computer code
proven to be reliable.

To a certain degree, this work can be considered as an
extension of the method developed by Lühr and Saenz
[27] to explicitly include electron-capture channels. The
treatment of the target resembles the recently devel-
oped effective one-electron method [58]. The method
is based on generating a numerical pseudopotential to
reduce a multielectron target to a single-electron one.
It has been applied to proton-alkali [58] and proton-
helium [57,59] collisions and produced very good results
for electron capture and ionisation. However, here we
use the effective potential given in [47] in an analytic
form.

Unless specified otherwise, atomic units are used
throughout this manuscript.

2 Two-centre wave-packet convergent
close-coupling method

The WP-CCC approach to proton-hydrogen collisions
was developed in [50] and extended to include rear-
rangement processes in [31]. It has been applied to pro-
ton scattering on the two-electron helium target in [56].
In this section, we consider the molecular hydrogen tar-
get in a single-electron, spherically symmetric represen-
tation. The formalism is the same as for atomic targets;
however, the form of the potential for the interaction
of the active electron and projectile with the target
core ion (i.e. H+

2 ) is different. We refer the reader to
Refs. [31,54] for details of the WP-CCC approach to
single-electron targets. Here, we give a summary of the
method, focusing on the aspects that change when we
consider the different functional form of the scattering
potential.

2.1 Close-coupling formalism

Let us consider the WP-CCC approach to ion collisions
with one-electron targets. We denote the total scatter-
ing wave function developing from initial state i by Ψ+

i ,
the full three-body Hamiltonian of the collision system
by H, and the total energy by E. The total scattering
wave function satisfies the Schrödinger equation

(H − E)Ψ+
i = 0, (1)

subject to the outgoing-wave boundary conditions. In
Jacobi coordinates, the projectile position relative to
the centre of mass of the target system is given by ρ,
and the position of the projectile–electron pair relative
to the target nucleus is σ. The target nucleus is fixed
at the origin, and the projectile moves along a classical
straight-line trajectory parallel to the z-axis according
to R = b + vt. The impact parameter, b, is defined
such that b · v = 0. The position vector of the active
electron with respect to the target nucleus is rt, and the
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position of the active electron relative to the projectile
is rp. The total Hamiltonian is given by the sum of
the free three-particle Hamiltonian for the projectile,
active electron, and target nucleus, and the interaction
between each of them,

H = H0 + V. (2)

The free Hamiltonian can be expressed as

H0 = − 1
2μ

∇2
ρ − 1

2
∇2

rt
(3)

and

H0 = − 1
2μ

∇2
σ − 1

2
∇2

rp
. (4)

Here, μ is the reduced mass of the projectile–target sys-
tem. The potential is given by the sum of interaction
between the target ion and projectile nucleus, as well
as the interaction between the active electron and both
the target ion and projectile nucleus,

V = ZpVmod(R) − Vmod(rt) − Zp

rp
. (5)

where the projectile charge is Zp = +1 for a proton
and −1 for an antiproton. We define Vmod using the
following model potential [48]

Vmod(r) =
Zt

r
(1 + exp[−ζr]). (6)

Here, Zt = +1 for the hydrogen molecule target. This
gives an effective single-electron representation of the
hydrogen molecule, where the active electron is exposed
to this spherically symmetric model potential that rep-
resents the combined effect of the other electron and
the two protons. The parameter ζ is set at 5.4824 to
obtain a ground-state energy of −0.5976 au. This cor-
responds to the difference in energy between the rovi-
bronic ground states of H2 and H+

2 at the equilibrium
internuclear distance for the H2 molecule of 1.45 au.
This effectively represents the hydrogen cation as a
spherically symmetric system. In this model, there is
no possibility of the residual ion existing in a rovi-
brationally excited state after the collision. Hence, this
ground-state energy is analogous to the adiabatic ioni-
sation energy of H2, rather than the vertical ionisation
energy.

We then use a two-centre expansion of the total scat-
tering wave function in terms of target-centred (ψα) and
projectile-centred (ψβ) pseudostates and a plane wave
representing the relative motion of the other particle, to
allow us to differentiate between direct ionisation, elec-
tron capture, and electron capture into the continuum

of the projectile,

Ψ+
i ≈

N∑

α=1

Fα(t, b)ψα(rt)eiqα·ρ

+
N∑

β=1

Gβ(t, b)ψβ(rp)eiqβ ·σ , (7)

where Fα and Gβ are unknown time-dependent expan-
sion coefficients. The projectile has momentum rela-
tive to the target given by qα, and the relative motion
between the projectile–atom and residual ion in the
rearrangement channel has momentum qβ . The number
of basis functions on each centre N is the combination of
Nb negative-energy eigenstates and Nc positive-energy
pseudostates so that in total there are 2N = 2Nb +2Nc

target and projectile pseudostates. The size of the tar-
get and projectile bases is chosen to be sufficiently large
that the cross sections of interest converge.

Writing the target pseudostates in terms of radial and
angular parts as

ψα ≡ ψn�m(r) = φn�(r)Y�m(r̂), (8)

we can construct them by solving the radial Schrödinger
equation with the model potential using an iterative
Numerov approach. The positive-energy pseudostates
are described by wave-packets formed from contin-
uum waves. The continuum is divided into Nc non-
overlapping subintervals from a minimum momentum
κmin up to a maximum momentum, denoted κmax. Inte-
grating over the continuum wave from κn−1 to κn in
momentum space gives the radial wave function for the
nth positive-energy pseudostate. Combined, the nega-
tive and positive-energy states are orthonormal to each
other and diagonalise the target Hamiltonian, i.e.

〈ψα′ |ψα〉 = δα′α, 〈ψα′ |Hα|ψα〉 = δα′αεα, (9)

where εα denotes the energy of the target state
described by ψα. The bound-state energies are given by
the eigenvalues of the Schrödinger equation describing
the target.

The continuum functions used in constructing the
positive-energy pseudostates converge to a plane wave
with increasing distance from the nucleus. To prevent
ill conditioning of the scattering equations, the pseu-
dostates need to be known to a high level of precision.
This in turn ensures that the matrix elements are suf-
ficiently accurate. To ensure the radial grid extends far
enough, we use a very large r-grid (up to 15,000 au) to
generate the continuum waves used for construction of
the target positive-energy pseudostates. Then, a smaller
value of 300 au is selected when solving the scattering
equations which is checked to ensure it is sufficiently
large for the results to converge. Additionally, we set the
minimum momentum of the lowest-energy wave-packet
to 0.01 au to assist in accurately calculating the first
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pseudostate. Excluding the small section of the con-
tinuum below 0.01 au has a negligible impact on the
calculated total cross sections.

The projectile basis is constructed using the eigen-
states of the hydrogen atom and wave-packets repre-
senting negative and positive-energy states, respectively
(see Ref. [31] for details). The wave packets are defined
in terms of the Coulomb wave. Similarly to the target-
centred basis, the projectile pseudostates are orthonor-
mal and diagonalise the projectile–atom Hamiltonian,
see Eq. (9). It should be noted that the target-centred
basis and projectile-centred basis are not orthogonal to
one another.

For both the target and projectile continuum pseu-
dostates, the wave-packet energy is given by the mid-
point of the momentum bin,

εn =
κ2

n + κnκn−1 + κ2
n−1

6
, (10)

in energy space.
Substituting the expansion given in Eq. (7) into Eq.

(1), we then formulate the scattering equations in the
usual manner used in the WP-CCC approach to ion–
atom collisions with single-electron targets as given in
Ref. [31],

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

iḞα′ + i

N∑

β=1

ĠβK̃α′β =

N∑

α=1

FαDα′α +

N∑

β=1

GβQ̃α′β ,

i
N∑

α=1

ḞαKβ′α + iĠβ′ =
N∑

α=1

FαQβ′α +
N∑

β=1

GβD̃β′β ,

α′ = 1, 2, . . . , N, β′ = 1, 2, . . . , N,

(11)

and solve them for the time-dependent coefficients.
Here the dots over Fα and Gβ denote time derivatives,
Dα′α, Kβ′α, and Qβ′α are the direct-scattering matrix
elements, overlap integrals, and exchange matrix ele-
ments, respectively. Tildes denote the corresponding
quantities in the projectile centre. The difference here
compared to the WP-CCC approach to p+H scattering
is that the interaction potential with the target nucleus
has a different form to the Coulomb potential for atomic
hydrogen and the target pseudostates are constructed
by solving the Schrödinger equation of the target with
the model potential.

2.2 Solving the scattering equations

The direct-scattering matrix elements are given by the
same expressions as in the WP-CCC approach to one-
electron atomic targets,

Dα′α(R) =〈ψα′ |V α|ψα〉 exp[i(εα′ − εα)t], (12)

D̃β′β(R) =〈ψβ′ |V β |ψβ〉 exp[i(εβ′ − εβ)t], (13)

but the interaction potentials, V α and V β , have the
following modified forms:

V α = ZpVmod(R) − Zp

|rp| (14)

and

V β = ZpVmod(R) − Vmod(|rt|). (15)

In V α, the distance between the electron and the pro-
jectile is given by rp = rt − R, and in V β the dis-
tance between the electron and target nucleus expressed
in the projectile coordinates is rt = R + rp. Evalua-
tion of the integrals in the matrix elements, Vα′α(R) ≡
〈ψα′ |V α|ψα〉 and Vβ′β(R) ≡ 〈ψβ′ |V β |ψβ〉 is performed
in spherical coordinates by separating the radial and
angular momentum parts, allowing the latter to be
analytically calculated, increasing their accuracy and
decreasing the computational intensity.

First, consider the direct-scattering matrix elements
in the α → α′ channel,

Vα′α(R) =
∫

drtψ
∗
α′(rt)V αψα(rt). (16)

Equation (6) is substituted into the expression for the
potential in Eq. (14) and the interaction between the
projectile nucleus and active electron is expanded in
partial waves. Thus, the potential operator, V α, can be
expressed in the following form,

V α =
Zp

R
+

Zp

R
exp[−ζR] − Zp

|R − rt| (17)

= 4π
∑

λμ

1
2λ + 1

Uλ(R, rt)Y ∗
λμ(R̂)Yλμ(r̂t),

(18)

where

Uλ(R, r) =

⎧
⎪⎪⎨

⎪⎪⎩

δλ0ZpVmod(R) − ZpR
λ

rλ+1
, R ≤ r,

δλ0ZpVmod(R) − Zpr
λ

Rλ+1
, R > r.

(19)

After substituting Eq. (18) into Eq. (16), we explicitly
separate the radial and angular components of the inte-
gral taking into account Eq. (8). This leads to

Vα′α(R) = 4π
∑

λμ

Y ∗
λμ(R̂)

2λ + 1

×
∫

drtr
2
tφnα′�α′ (rt)φnα�α

(rt)Uλ(R, rt)

×
∫

dr̂tY
∗
α′(r̂t)Yα(r̂t)Yλμ(r̂t). (20)
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The angular integral is taken analytically according to

∫
dr̂Y ∗

α′(r̂)Yα(r̂)Yλμ(r̂)

=

√
(2�α + 1)(2λ + 1)

4π(2�α′ + 1)
C

�α′0
�α0λ0C

�α′mα′
�αmαλμ. (21)

With that, the expression for the direct matrix elements
in the target-centre simplifies to

Vα′α(R) =
∑

λμ

√
4π(2�α + 1)

(2�α′ + 1)(2λ + 1)

× C
�α′0
�α0λ0C

�α′mα′
�αmαλμY ∗

λμ(R̂)

×
∫

drtr
2
tφnα′�α′ (rt)φnα�α

(rt)Uλ(R, rt).

(22)

In Eq. (22), only the radial part of the integral need be
numerically evaluated.

Similarly, for the direct-scattering matrix elements in
the β → β′ channel we have

Vβ′β(R) =
∫

drpψ
∗
β′(rp)V βψβ(rp). (23)

However, the form of the interaction of the captured
electron with the residual target ion differs from the
α → α′ channel. There is an additional term with an
exponential factor due to the model potential acting
between the residual target ion and electron (but not
between the projectile and electron). This additional
term can be partial-wave expanded in terms of the
product of spherical Bessel and spherical Hankel func-
tions [60], leading to

V β =
Zp

R
+

Zp

R
exp[−ζR]

− 1
|R + rp| − 1

|R + rp| exp[−ζ |R + rp|]

= 4π
∑

λμ

(−1)λ

2λ + 1
Ũλ(R, rp)Y ∗

λμ(R̂)Yλμ(r̂p). (24)

The expansion coefficients are defined as

Ũλ = Uλ +

{
ζ(2λ + 1)jλ(iζR)h

(1)
λ (iζr), R ≤ r,

ζ(2λ + 1)jλ(iζr)h
(1)
λ (iζR), R > r,

(25)

where jλ and h
(1)
λ denote the spherical Bessel and spher-

ical Hankel functions of the first kind, respectively.
Evaluating these special functions with complex argu-
ments accurately is challenging. We used the coulcc
subroutine from Thompson and Barnett [61].

Following the same steps as before we separate the
radial and angular components and evaluate the angu-
lar integral analytically in terms of the appropriate
Clebsch–Gordan coefficients. Finally, we arrive at the
following expression,

Vβ′β(R) = (−1)�β′+�β

∑

λμ

√
4π(2�β + 1)

(2�β′ + 1)(2λ + 1)

× C
�β′0
�β0λ0C

�β′mβ′
�βmβλμY ∗

λμ(R̂)

×
∫

drpr
2
pφnβ′�β′ (rp)φnβ�β

(rp)Ũλ(R, rp).

(26)

Evaluating the direct matrix elements this way is more
accurate compared to a purely numerical approach.
This has a significant effect for low-energy projectile
scattering where small inaccuracies can exaggerate the
ill-conditioning caused by the lack of orthogonality
between the two basis sets. All results presented herein
conserve unitarity, meaning that the norm of the total
scattering wave function is conserved.

The overlap matrix elements in Eq. (11) are written
as

Kβ′α(R) = 〈ψβ′ | exp[−iv · rp]|ψα〉
× exp[iv2t/2 + i(εβ′ − εα)t], (27)

K̃α′β(R) =〈ψα′ | exp[iv · rt]|ψβ〉
× exp[−iv2t/2 + i(εα′ − εβ)t], (28)

and the exchange matrix elements are given by

Qβ′α(R) = 〈ψβ′ | exp[−iv · rp](Hα + V α − εα)|ψα〉
× exp[iv2t/2 + i(εβ′ − εα)t], (29)

Q̃α′β(R) =〈ψα′ | exp[iv · rt](Hβ + V β − εβ)|ψβ〉
× exp[−iv2t/2 + i(εα′ − εβ)t], (30)

where Hα and Hβ are the target and projectile–atom
Hamiltonians, respectively. The overlap and exchange
matrix elements are evaluated numerically in spheroidal
coordinates (see Ref. [51] for details). We used a Gauss–
Legendre quadrature with 96 points for low projec-
tiles energies, increasing to 1000 at the highest energies
where the highly oscillatory nature of the exponential
term renders numerical integration more difficult.

In the impact-parameter representation, expansion
coefficients in Eq. (7), Fα(t, b) and Gβ(t, b), yield the
scattering amplitudes for the associated final channel, α
and β, in the limit as t → +∞. In the limit as t → −∞
they satisfy the initial boundary condition

Fα(−∞, b) =δα1, α = 1, 2, . . . , N,

Gβ(−∞, b) =0, β = 1, 2, . . . , N.
(31)

This condition means that the active electron is in the
ground state of the target in the initial channel.
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2.3 Cross sections

Once again, we emphasise the utility of this approach is
that the formalism for one-electron atomic targets does
not need modification. Not only solving the differential
equations is performed the same way, but determining
the cross sections from the expansion coefficients is also
unchanged. Thus, we only give a brief overview here and
refer the reader to Refs. [31,54] for additional details.

After calculating the expansion coefficients, by solv-
ing Eq. (11), the integrated cross section for transition
into a given final channel is determined as

σf = 2π

∫ ∞

0

dbbPf (b), (32)

where σf denotes the total cross section for transition
into the final target (projectile) channel f = α(β). The
single-electron probability of direct scattering and elec-
tron capture is given by

P SE
α (b) = |Fα(+∞, b) − δαi|2 (33)

and

P SE
β (b) = |Gβ(+∞, b)|2 . (34)

To calculate cross sections for scattering from the two-
electron H2 target, we can write the probability entering
Eq. (32) as

Pf (b) = 2P SE
f (b), (35)

to account for the equivalent chance of either electron
transitioning to the final state f in the physical two-
electron collision system [48]. The reason for the fac-
tor of 2 is the fact that there are 2 electrons and both
of them can be modelled in exactly the same way. In
other words, the two-electron problem is cut into two
equal effective single-electron halves. When the single-
electron problem is solved, the two halves must be
brought together, hence, the factor of 2.

The total cross section for direct scattering or rear-
rangement is simply given by the sum of the corre-
sponding partial cross sections. Here, we show results
for elastic scattering, excitation, single ionisation, and
single-electron capture.

The total ionisation cross section (TICS) is the sum
of direct ionisation and electron capture into the con-
tinuum. Since total cross sections are invariant under
coordinate-frame transformations, they can be straight-
forwardly added without the need to transform the
amplitudes into a common frame of reference, i.e.

σTICS =
N∑

α=Nb+1

σα +
N∑

β=Nb+1

σβ . (36)

3 Results of calculations

In this section, we present the total cross sections for
elastic scattering, excitation, electron loss, single ioni-
sation, and single electron capture in proton collisions
with H2. Additionally, we present state-resolved cap-
ture cross sections for exchange into the 1s, 2s, 2p, 3s,
3p, and 3d states of the projectile. To test the approach,
we first calculate the total ionisation cross section for
antiproton scattering on molecular hydrogen. With no
electron capture to consider and the probability of pro-
tonium formation being negligible, a one-centre expan-
sion is sufficient. In this case, the only surviving matrix
elements in Eq. (11) are Dα′α.

Setting Zp = −1 in the one-centre expansion, we
consider antiproton scattering on effective one-electron
H2. For these calculations, the radial grid extended to
300 au. We solve the system of differential equations in
Eq. (11) using the Runge–Kutta method. The projectile
trajectory was discretised along the z = vt axis, from
−100 to +100 au relative to the target nucleus located
at the origin. We found that 400 z-points were suffi-
cient to obtain converged results. A total of 32 impact
parameter points which ranged from 0 to 22 au were
used for antiproton scattering. The probabilities for the
investigated processes fell off several orders of magni-
tude with these parameters and additional range and
discretisation made no significant contribution to the
final results. The maximum momentum value κmax for
the continuum pseudostates varied from 5 to 8 au across
the energy range from 10 to 1000 keV. Increasing κmax

further made no appreciable difference to the results.
Figure 1 shows the total cross section for ionisation

in p̄+H2 collisions as a function of projectile energy. At
high impact energies, there is good agreement between
our results and experiments by Andersen et al. [25]
and Hvelplund et al. [24]. Between 30 and 80 keV, the
WP-CCC results underestimate the experimental data
which includes the region near the peak of the electron-
loss cross section. However, the same is true of the other
theoretical results shown in Fig. 1. At low energies, our
results do not fall sufficiently to match the experimen-
tal data, as is also seen in the results of Ref. [27] which
use the same model potential representation in a close-
coupling formalism. We see small deviations from the
results of [27]. These are due to different types of the
pseudostates used. The theoretical works that use a
full two-electron treatment of the target [26,28] both
fall in a similar fashion to the experiment at low ener-
gies. The calculations by Abdurakhmanov et al. [28]
showed that the reduction of the ionisation cross sec-
tion at low energies observed in experiment is due to
the two-centre nature of the molecular target. It fol-
lows that theories which use spherically symmetric tar-
get structures would not replicate this so-called target
structure-induced suppression of the ionisation cross
section. This suggests that the simple effective potential
cannot accurately model the properties of the hydro-
gen molecule in low-energy antiproton collisions. Pro-
ton collisions are fundamentally different, however, due
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Fig. 1 Total cross section for ionisation in p̄ + H2 colli-
sions as a function of impact energy. Experimental data are
by Andersen et al. [25], Hvelplund et al. [24], and Knud-
sen et al. [23]. The theoretical results are: present WP-CCC
approach, WP-CCC without the additional factor of 2 in
Eq. (35) (Test 1), WP-CCC using the independent parti-
cle model in Eq. (37) (Test 2); effective one-electron close-
coupling method by Lühr and Saenz [27]; two-electron close-
coupling method of Lühr and Saenz [26]; two-electron CCC
approach by Abdurakhmanov et al. [28]

to low-energy collisions being dominated by electron-
capture processes.

In Fig. 1, we also compare our results with those
obtained in two test calculations. In Test 1, the factor
of 2 in Eq. (35) is dropped, while Test 2 is based on
the independent particle model (IPM) [62]. The IPM
writes the probability of a single-electron process as

P IPM
f (b) = 2P SE

f (b)[1 − P SE
f (b)]. (37)

This corresponds to one electron occupying the state
f while preventing the other electron from occupying
the same state. Agreement with experiment is signifi-
cantly worse in Test 1 at intermediate and high ener-
gies. The Test 2 results are not too bad, but clearly this
approach does not change the low-energy behaviour of
the cross section. That is because this disagreement
with experiment is purely due to the single-electron
spherical treatment of the target structure. Such an
approximation cannot account for the target-structure-
induced suppression responsible for the shape of the
low-energy p̄ + H2 ionisation cross section [28,29]. We
conclude that multiplying the single-electron probabil-
ity by 2 confirms the widely used approach. In addition,
we should note that in our approach there is no need to
explicitly prevent the second electron from occupying
the same final state as there is no second electron. We
use Eq. (35) for all following results. Since our model
cannot differentiate between one- and two-electron pro-
cesses, to avoid confusion, we label our result as a single-
electron one. We note, however, that the probability of
double electron capture, double ionisation, and transfer

ionisation is very small compared to the probability of
the single-electron processes.

Switching the charge of the projectile to +1, we cal-
culate the electron-loss cross section for proton scat-
tering on H2. Now, we use a two-centre expansion and
solve the full set of coupled equations given in Eq. (11).
The total electron-loss cross section is given by the
sum of the total ionisation and total electron-capture
cross sections. The required basis for converged results
contained bound states with principal quantum num-
bers up to nmax = 10 − � and angular momentum up
to �max = 4, except at the very high impact energies
where nmax = 8 − � and �max = 3 was found to be
sufficient. For incident energies below 25 keV the con-
tinuum was discretised with 15 bins up to a maximum
electron momentum of κmax = 4 au. Then, from 25
keV we used 20 bins and κmax was increased up to
7 au at a projectile energy of 500 keV. At the high-
est impact energies considered 35 continuum bins were
required to obtain sufficient continuum discretisation
up to κmax = 11 au. Thus, the largest basis required in
this work contained 2010 states. The z-grid extended
from −300 to +300 au with 600–1000 points depending
on the incident energy. These parameters were sufficient
for the elastic, total capture, and ionisation cross sec-
tions (and state-resolved capture cross sections), pre-
sented below, to reach 99% convergence. The net exci-
tation cross section has converged to within 95%, with
nmax = 10, however, adding additional states caused
unitarity violations at low incident energies. A total of
32 impact parameters ranging from 0 to 22 au were used
at low impact energies, while 64 points from 0 up to 40
au were required to obtain convergence in the results
at high impact energies.

The total electron-loss cross section for p + H2 colli-
sions is shown in Fig. 2. Here and in all following figures,
we show our calculated points connected with straight
lines to guide the eye. The distribution of the calcu-
lated energy points was chosen to ensure an accurate
representation of the structure in all processes we inves-
tigated. The present results agree well with available
experimental data and single-centre close-coupling cal-
culations by Lühr et al. [48] as well as MO and ODP
results by Elizaga et al. [49] from 20 to 1000 keV. The
CTMC results by Schultz et al. [1] are shown with
points connected with straight lines. They underesti-
mate the experimental results by Rudd et al. [11] and
Shah et al. [9] as well as the present ones below 70
keV, but are slightly larger than the experimental data
by Stier and Barnett [4]. However, above 100 keV the
CTMC calculations underestimate both the experiment
by Hooper et al. [5] and our calculations. At lower inci-
dent energies, our results overestimate the cross section.
As discussed below, this is due to an increasing contri-
bution from capture into the 1s state of the projectile.

Using our two-centre method, we are able to decom-
pose the electron-loss cross section into electron-capture
and single-ionisation contributions. The total electron-
capture cross section is shown in Fig. 3. Our results
overestimate the experiments of Shah et al. [9] and
McClure [7] below 30 keV, but converge to their data
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Fig. 2 Total cross section for electron loss in non-
dissociative p+H2 collisions as a function of impact energy
(top and bottom panels linear and log scales, respectively).
Experimental data are by Stier and Barnett [4], Hooper et
al. [5], Rudd et al. [11], and by Shah et al. [9]. The the-
oretical results are: present 2-centre WP-CCC approach;
eikonal classical trajectory Monte Carlo approach, molecu-
lar orbital approach, and optimised dynamical pseudostates
method by Elizaga et al. [49]; classical trajectory Monte
Carlo method by Schultz et al. [1]; effective one-electron
single-centre close-coupling method by Lühr et al. [48]

above 60 keV. The empirical data from Rudd et al. [11]
are higher than the other experimental results, and our
calculation agrees more with these data. In the high-
energy regime, our results are slightly larger than the
experimental data by Toburen et al. [8] and Barnett
and Reynolds [6]. Across the entire energy range shown,
the WP-CCC cross sections are larger than the CTMC
results of Schultz et al. [1]. We also show the CDW-EIS
calculations of Busnengo et al. [35]. Our calculations are
consistently larger than the CDW-EIS results across the
entire energy range considered.

We show the results for the non-dissociative single-
ionisation cross section in Fig. 4; however, this provides
a good representation of the total cross section for sin-
gle ionisation since the dissociative channel contributes
significantly less (see Ref. [9]). The WP-CCC results
shown agree very well with available experimental data
from 30 to 1000 keV. This indicates that the total ion-
isation cross section is less sensitive (than the electron-

Fig. 3 Cross section for single-electron capture in non-
dissociative p+H2 collisions as a function of impact energy
(top and bottom panels linear and log scales, respectively).
Experimental data are by Stier and Barnett [4], Barnett
and Reynolds [6], McClure [7], Toburen et al. [8], Rudd
et al. [11], and Shah et al. [9]. The theoretical results
are: present 2-centre WP-CCC approach; classical trajec-
tory Monte Carlo methods by Meng et al. [39], Illescas and
Riera [41], and Schultz et al. [1]; continuum-distorted-wave
eikonal-initial-state, method by Busnengo et al. [35]

capture one) to the accuracy of the target wave func-
tion. At higher energies, our calculations fall between
the experimental results of Toburen and Wilson [12]
and Shah and Gilbody [10], very close to the data from
Hooper et al.[5]. The results by Edwards et al. [13] over-
estimate the other experiments and theories around the
peak in the ionisation spectrum but converge to those
of Shah and Gilbody [10] at higher energies. Our results
agree well with the CTMC calculations in the energy
region below 100 keV. However, above 100 keV the cal-
culations of Schultz et al. [1] are somewhat higher and
those from Illescas and Riera [41] are lower than ours,
with all three sets of results being within the experi-
mental uncertainty. The CDW-EIS-MO calculations by
Galassi et al. [37] produce larger cross sections than the
WP-CCC method, especially at lower energies where
the CDW approaches are less reliable. In particular,
they overestimate the ionisation cross section in the

123



31 Page 10 of 13 Eur. Phys. J. D (2022) 76 :31

Fig. 4 Cross section for single ionisation in p + H2

collisions as a function of impact energy. Experimental
data are by Hooper et al. [5], Toburen and Wilson [12],
Edwards et al. [13], Shah and Gilbody [10], and Shah et
al. [9]. The theoretical results are: present 2-centre WP-
CCC approach; classical trajectory Monte Carlo meth-
ods by Meng et al. [39], Illescas and Riera [41], and
Schultz et al. [1]; continuum-distorted-wave eikonal-initial-
state molecular-orbital method by Galassi et al. [37]

Fig. 5 Cross section for elastic scattering in p + H2 colli-
sions as a function of impact energy. The theoretical results
are: present 2-centre WP-CCC approach and classical tra-
jectory Monte Carlo approach by Schultz et al. [1]

region of its maximum around 100 keV, whereas our
calculations agree well with the experimental results.

The total cross section for elastic scattering of pro-
tons on molecular hydrogen is shown in Fig. 5. The
only other calculation available in the literature that
we are aware of is the CTMC one by Schultz et al.
[1]. The authors state a lack of available elastic scat-
tering cross sections for this system and produced this
estimate based on their previous works. Our results
appear to significantly differ from the CTMC ones in
the entire energy range. More theoretical calculations
are required.

Fig. 6 Net cross section for excitation in p + H2 collisions
as a function of impact energy. The theoretical results are:
present 2-centre WP-CCC approach and classical trajectory
Monte Carlo approach by Schultz et al. [1]

Figure 6 presents the net cross section for excita-
tion into all states included in the target-centred basis
(nmax = 10 and �max = 4). The results of Schultz et al.
[1] are also shown. Note that unlike their other results
the excitation cross section is not normalised to the rec-
ommended experimental data from Hunter et al. [42].
The CTMC results from [1] are larger than ours above
50 keV generally agreeing in shape. Below 20 keV the
shape of our results is different. However, we should
note that this is the energy region where our model
potential is expected to become less reliable.

The state-selective electron-capture cross sections are
presented in Fig. 7 for those channels for which exper-
imental or theoretical data is available. Note that the
experimental results of Shah et al. [18] are normalised
absolutely, as are those from Andreev et al. [14]. How-
ever, the other experimental data are normalised to
cross sections from other scattering systems (see Ref.
[18] for a detailed discussion). In general, our results
reproduce the shape of experimental data but differ in
magnitude for some channels. The CDW-EIS results
by Busnengo et al. [36] agree well with experiment at
high energies but fail to reproduce the shape of the
experimental data around and below the region of the
peak. The CTMC calculations by Meng et al. [40] gen-
erally exhibit better agreement with our results and the
experimental data than the distorted-wave models but
are only available over a limited energy range. Interest-
ingly, our results significantly overestimate other theo-
retical calculations for charge transfer into the ground
state yet generally agree well with experimental data
for low energy capture into 2� and 3� states. Below, we
discuss each considered channel in more detail.

The top left panel in Fig. 7 shows that capture into
the ground state of the projectile gives the dominant
contribution to the total electron-capture cross section.
Our results are in good agreement with the B1B cal-
culations by Corchs et al. [34] at 100 keV and above.
Below 30 keV, the WP-CCC results overestimate the
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Fig. 7 State-selective electron-capture cross sections in p + H2 collisions as a function of impact energy. Experimental
data by Andreev et al. [14], Bayfield [15], Hughes et al. [20], Hughes et al. [17], Hughes et al. [19], Birely and McNeal [16],
Dawson and Loyd [22], Shah et al. [18], Williams et al. [21]. The theoretical results are: present 2-centre WP-CCC approach;
boundary-corrected first Born approximation by Corchs et al. [34]; modified molecular-orbital close coupling calculations
by Kimura [45]; atomic orbital close-coupling method by Shingal and Lin [46]; classical trajectory Monte Carlo method by
Meng et al. [40]; continuum-distorted-wave eikonal-initial-state method by Busnengo et al. [36]

close-coupling calculations of Kimura [45] and Shingal
and Lin [46]. Although above 40 keV the AO calcula-
tions are larger than both the boundary-corrected first
Born calculations and our results.

For capture into the 2s state of the projectile (mid-
dle left panel), our results agree well with the absolute
measurements of Shah et al. [18] and Andreev et al.
[14]. The experimental results of Hughes et al. [20] are
slightly smaller than the WP-CCC calculation, partic-
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ularly around the peak region, although our calculation
converges to their data above 70 keV. Data from Bay-
field [15] agree with our calculations below 10 keV but
are similarly smaller in the peak region. However, the
authors of that work estimate a 55% normalisation error
in addition to the displayed error bars. CTMC calcu-
lations by Meng et al. [40] agree well with our result.
Our result reproduces the shape and magnitude of the
experimental works at all energies, except for overesti-
mating the data from Hughes et al. [20].

Capture into the 2p projectile state is shown in the
bottom left panel. We see very good agreement with the
experimental results of both Birely and McNeal [16] and
Hughes et al. [19] at low and intermediate energies. The
CDW-EIS results from Busnengo et al. [36] agree well
with the WP-CCC method above 30 keV. The CTMC
calculations by Meng et al. [40] generally agree with
the shape of experiment and our results. As with cap-
ture into the 2s state, here we find that the WP-CCC
results reproduce the magnitude and shape of the avail-
able experimental data very well.

Agreement between other theories and our results for
electron capture into the 3s state (top right panel) is
very similar to capture into the 2s state. Our calcula-
tions are consistently larger than the CDW-EIS calcu-
lations. The CTMC calculations agree fairly well with
the WP-CCC results, but deviate below 40 keV. Our
results agree well with the experiment of Williams et
al. [21] above 20 keV, but underestimate it below this
energy. Experimental data from Hughes et al. [20] are
smaller than the WP-CCC results like for 2s capture.

In the middle right panel, we see that the WP-CCC
results overestimate the experimental data from Hughes
et al. [20] for capture into the 3p projectile state. How-
ever, at low energies our calculations agree with the
data from Dawson and Loyd [22], although not in the
same shape as their points suggest. The CDW-EIS
agrees well with our results above 50 keV. The CTMC
calculations by Meng et al. [40] again agree with the
WP-CCC results.

We finally consider subshell capture into the 3d state
of atomic hydrogen. Here, our result is slightly larger
than the experimental data by Dawson and Loyd [22]
below 10 keV. Above 40 keV, we underestimate the
experimental points of Hughes et al. [20]. The CDW-
EIS calculation of Busnengo et al. [36] is the same as
ours above 50 keV but suggests a different shape to the
experimental data at lower energies.

4 Conclusion

Using an effective one-electron model potential to
describe the H2 target within the two-centre WP-CCC
approach, we have calculated total cross sections for
all one-electron processes taking place in p + H2 col-
lisions. This approach allows us to utilise the efficient
computational techniques developed in our one-electron
code and avoid significant complexities associated with
a two-electron target description. Despite the simplicity

of the approach, the converged total cross sections for
single-electron capture and ionisation show good agree-
ment with experiment in a wide energy range. While
previous close-coupling methods applied to this sys-
tem used only a single-centre expansion, our two-centre
method allows differentiation between ionisation and
electron capture, providing a more detailed picture of
the collision process. We also calculate state-resolved
capture cross sections and find reasonably good agree-
ment with experiment. Overall, our results improve over
previous theoretical studies. Next, we plan to apply our
approach to calculate angular differential electron cap-
ture and excitation and differential ionisation cross sec-
tions.
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