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Effective Permittivity of Mixtures: Numerical
Validation by the FDTD Method

Kimmo Kalervo Kärkkäinen, Ari Henrik Sihvola, and Keijo I. Nikoskinen

Abstract—The present paper reports the results of an extensive
numerical analysis of electromagnetic fields in random dielectric
materials. The effective permittivity of a two-dimensional (2-D)
dielectric mixture is calculated by FDTD simulations of such
a sample in a TEM waveguide. Various theoretical bounds are
tested in light of the numerical simulations. The results show how
the effective permittivity of a mixture with random inclusion posi-
tionings is distributed. All possible permittivity values lie between
Wiener limits, and according to FDTD simulations the values
are almost always between Hashin-Shtrikman limits. Calculated
permittivity distribution is also compared with theoretical mixture
models. No model seems to be able to predict the simulated
behavior over the whole range of volume fraction.

Index Terms—Effective permittivity, FDTD, mixing rules.

I. INTRODUCTION

I N an earlier paper [1], we presented a way to calculate nu-
merically the effective dielectric constant of a random mix-

ture. The mixture was two-dimensional (2-D). In other words,
the randomness of the structure was limited to a plane, and along
the third dimension, the geometry would not vary. The mixture
was a two-component mixture with a homogeneous background
in which circles of another material were embedded in random
positions. The circles were allowed to touch and overlap, which
means that the mixture also contained more complex cluster ge-
ometries than the 2-D spheres.

The result of the study was that the effective permittivity
of the simulated mixtures fell between the predictions of two
classical mixing rules: the Maxwell Garnett formula and the
Bruggeman formula. Of course, every new simulation of the
random medium is individually different even if they have the
same volume proportions of the phases, and hence a variation is
to be expected in the results. In theoretical modeling of random
media, not only predictions for the permittivity of a mixture
have been given but also bounds between which the permittivity
should be. The aim of the present study is to test how well these
bounds are valid, in light of the numerically solved effective per-
mittivities for the simulated mixtures. Each mixture is solved
numerically by the FDTD method.

The results bear hopefully statistical significance because the
number of simulations is thousands. In addition to studying the
way how the results of a large number of simulations fall be-
tween the predicted bounds, we also test the validity of a class of
so-called exponential mixing formulas and-models. Although
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many numerical studies have been performed to analyze the ef-
fective response of mixtures [2]–[4], we believe that our ap-
proach is the first that applies the dynamical solution method
(FDTD) for this quasistatic problem.

II. TWO-DIMENSIONAL (2-D) MIXING MODELS

As mentioned previously, we limit the attention in the fol-
lowing to 2-D mixtures. Also, the mixture consists of two dielec-
tric components, of which one is treated as host and the other as
the inclusion phase. In the literature, many mixing models can
be found for the effective dielectric permittivity of such a mix-
ture. Here we present only some.

For the case of circular inclusions, the prediction of the ef-
fective permittivity of the mixture according to the Maxwell
Garnett mixing rule reads1 [5], [6]

(1)

Here, circular cylinders (2-D spheres) of permittivityare
located randomly in a homogeneous environment and oc-
cupy a volume fraction . The quasistatic nature of the mixture
means that the wavelength of the field is much larger than the
inclusion diameter.

Another famous mixing rule is the Bruggeman formula [7]

(2)

In remote sensing studies, Bruggeman rule is perhaps better
known as Polder–van Santen formula [8]. The mixing approach
presented in [9] collects dielectric mixing rules into one family

(3)

This formula contains a dimensionless parameter. For dif-
ferent choices of , the previous mixing rules are recovered.

gives the Maxwell Garnett rule, gives the Bruggeman
formula, and gives the Coherent potential [10], [11] ap-
proximation.

In modeling analysis, quite often power-law models are used.
These give the effective permittivity of the mixture as

(4)

where is a dimensionless parameter. Known examples are the
Birchak formula [12] and Looyenga formula

[13]. Also, the Lichtenecker formula [14]

(5)

is a special case of the power-law models, for the limit .

1In the present paper, the permittivity� is arelativequantity compared to the
free-space permittivity� = 8:854 � 10 F/m.
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III. T HEORETICAL BOUNDS FOR THEEFFECTIVEPERMITTIVITY

Different mixing models predict different effective permit-
tivity values for a given mixture. However, there are bounds
that limit the range of the predictions. The loosest bounds are
the so-called Wiener bounds [15]. These effective permittivity
bounds are

(6)

and

(7)

These two cases correspond to capacitors that are connected in
parallel or series in a circuit. It is worth noting also that these
two cases are the effective permittivities from the mixing for-
mulas with aligned ellipsoids, where the depolarization factors
are 0 and 1, respectively. Note that the bounds retain the min-
imum and maximum character independently of the type of the
mixture, in other words (6) is the maximum for both
and . Also, (7) is the minimum for both cases.

For a statistically homogeneous and isotropic mixture, other
bounds have been generally accepted in the literature [16]. The
following Hashin-Shtrikman bounds are based on a variational
treatment of the energy functional for the mixture where the
inhomogeneity is distributed in three dimensions

(8)

and

(9)

where it is assumed that . For a 2-D mixture, the bounds
would read

(10)

and

(11)

Note that the lower limit is in fact exactly the Maxwell Gar-
nett mixing rule, and the upper limit is the Maxwell Garnett
prediction for the “complementary” mixture. A complementary
mixture emerges with the change , , .

IV. PRINCIPLE OFNUMERICAL CALCULATION

The effective permittivity of a mixture is determined by cal-
culating the reflection from a sample. The sample is put in a
TEM waveguide and fields are solved by the FDTD method. The
sample is composed of host material and randomly positioned
circular inclusions. Clustering of inclusions is allowed which
means that inclusions can form connected sets when overlap-
ping each other. The size distribution of the inclusions need not
be uniform, but all particles have to be within the quasistatic
limit. However, from numerical analysis point of view, it is con-
venient to have a constant radius of inclusion. Hence, the in-

Fig. 1. Mixture sample in TEM-waveguide.

clusion volume fraction is controlled with the number of inclu-
sions. Fig. 1 illustrates the simulation setup. The voltage pulse
is excited to travel in the waveguide and the reflected pulse is
observed.

With the help of transmission line theory, the effective permit-
tivity can be determined. Based on the transmission line theory,
the absolute value of the reflection coefficient acting at the left
boundary of the slab is

(12)

where is free space impedance (this is also appli-
cable to the TEM waveguide), and is the “input impedance”
of the slab/free space system. If the width of the slab isand
effective relative permittivity is , then

(13)

where and is angular frequency, and is the
velocity of light in a vacuum. From (12) and (13), one obtains
the following transcendental equation for the effective relative
permittivity

(14)

Thus, by knowing the absolute value of the reflection coeffi-
cient, one is able to estimate the effective relative permittivity
by numerically solving (14). The absolute value of the reflec-
tion coefficient is calculated by simulating wave propagation
in structure with an FDTD method. The FDTD method is a
time-domain method, which means that reflected voltage is ob-
tained as a function of time. The resulting time series is Fourier
transformed to frequency domain. Only the lowest frequency
points of the transformation are used to determine effective per-
mittivity. In this way, we get a quasistatic solution that is valid
when the radius of inclusion is much smaller than wavelength.
Within the Rayleigh scattering approximation [17], the imag-
inary part of the effective permittivity of a lossless mixture is
proportional to the third power of product of wave number and
scatterer size

(15)

Because the wavelength is much larger than the scattering parti-
cles, we ignore scattering. The transcendental equation is solved
iteratively for effective permittivity with bisection method [18].
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Fig. 2. Total electric field amplitude detected during low frequency simulation.

This method finds a value near the point in which the sign of the
left-hand side of (14) is changed.

The technique is described more accurately in our earlier pub-
lication [1]. In this paper, however, the permittivity values for
computation lattice were calculated with the technique intro-
duced by Kaneda, Houshmand, and Itoh [19]. When computa-
tion domain size is 300 100 cells and 32 768 time steps are
calculated, one simulation takes about 7.5 min to carry out with
a PII 400 MHz PC processor.

V. RESULTS

All results in this paper are calculated for two-phase mixtures
having permittivity contrast 16. We treat two types of mixtures:
raisin pudding, where the inclusion permittivity is higher than
the environment permittivity , and Swiss cheese, an
inverted mixture where the inclusion permittivity is lower than
the environment permittivity . The computation do-
main size is m m ( m, m, of
Fig. 1). These two types of mixtures have drastically different
field distributions, as illustrated for two samples in Fig. 2. There,
the contour plots of the electric field amplitude in low frequency
simulation is plotted. Also, the positions of inclusions can be
clearly seen. As expected, the field amplitudes are smaller in
areas where the permittivity is higher. Hence, in the raisin pud-
ding mixture, the electric field is attenuated inside inclusions,
while in the case of inverted mixture, there is an increase in field
strength.

A. Bounds

In Fig. 3, one can see the effective permittivities achieved
from 1000 simulations for raisin pudding. In every simulation,
both the volume fraction and positioning of inclusions were
randomly chosen. Therefore, the calculated effective permittiv-
ities are distributed to the area between the Wiener bounds. No
sample can fall outside those absolute limits. Of course, it is
possible that a sample can give a permittivity of Wiener limit,
but that is very unlikely to happen. It would mean that all the in-
clusions form linear clusters in the horizontal or vertical direc-
tion. In fact, that type of situation was experimented with just to
test FDTD-algorithm. Instead of a mixture sample, a number of

Fig. 3. Effective permittivities of random raisin pudding mixtures
(� = 16; � = 1) compared with theoretical bounds.

Fig. 4. Effective permittivities of random Swiss cheese mixtures(� = 1,
� = 16) compared with theoretical bounds.

straight inclusion walls were modeled. Simulation results were
in very good agreement with the Wiener limits.

In Fig. 3, Hashin-Shtrikman bounds are also shown. It can
be seen that the effective permittivity of random mixture lies
almost always between those bounds. In Fig. 4, one can see cor-
responding plot for inverted mixture, and the simulation results
here also fall mainly between the theoretical limits.

At certain volume fractions, the mixture simulations compose
a distribution. The distribution derived from 3600 simulations
at volume fraction 0.5 can be seen in Fig. 5 as a histogram.
The distribution is calculated for an inverted mixture. The shape
of distribution seems to be rather close to Gaussian distribution
with mean value 4.80 and standard deviation 0.437.

From this large set of 3600 mixtures, we chose the samples
with minimum and maximum effective permittivity values. The
microgeometry of those samples is shown in Fig. 6. It can be
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Fig. 5. The distribution of effective permittivities derived from 3600
simulations for Swiss cheese mixtures having volume fraction 0.5(� = 1;
� = 16). The mean value is 4.80 and standard deviation is 0.437.

Fig. 6. Mixture samples that offered minimum and maximum permittivities
in the distribution of Fig. 5 (a set of 3600 samples). Dark color stands for
environment� = 16 and white for inclusions� = 1.

clearly seen that in samples offering minimum permittivity in-
clusions form clusters in the horizontal direction (perpendicular
to electric field polarization of TEM mode). The sample with
maximum permittivity inclusions forms clusters in the vertical
direction (parallel to electric field polarization of TEM mode).
This is very natural, because in theory, the absolute minimum
or maximum value of mixture permittivity is achieved with the
inclusions, which are actually plates in the horizontal or vertical
direction.

B. Mixing Models

In Figs. 7 and 8, the set of 1000 FDTD simulation results is
compared with general theoretical models of (3). Of the well-
known formulas that the model contains, the Bruggeman model
appears to be closest to the numerical results. But it should be
noticed that not any single value ofprovides globally good
agreement with FDTD simulations. However, with-value circa
0.7, the model is optimum in the case of raisin pudding, while

Fig. 7. Simulated FDTD results of raisin pudding mixtures compared with the
�-models calculated from (3).

Fig. 8. Simulated FDTD results of Swiss cheese mixtures compared with the
�-models calculated from (3).

provides reasonably good results in the case of inverted
mixture.

In Figs. 9 and 10, a few exponential model curves are plotted
along with the FDTD results. As in the case of-models, it is
seen that no single exponential model can provide good predic-
tion for the full range of volume fraction . If -value is
fitted so that that model agrees well in low volume fractions, the
model predicts poor results at high volume fraction values and
vice versa. On the average, rather lowvalues show the best fit.
Of the used exponential models, seems to agree best
with the raisin pudding simulations, and for the Swiss cheese
mixture, might be a reasonable choice. This is studied
in detail in Fig. 11. A sixth-order polynomial curve is fitted to
the FDTD data in the least squares sense. Fig. 11 shows the rela-
tive difference of the and models, and the nonglobal validity
of the models can be observed.
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Fig. 9. Simulated FDTD results of raisin pudding mixtures compared with the
exponential models calculated from (4).

Fig. 10. Simulated FDTD results of Swiss cheese mixtures compared with the
exponential models calculated from (4).

VI. A CCURACY OFALGORITHM

In the numerical permittivity determination, reflection
coefficients of frequencies below 26 MHz were used. The
cutoff frequency of the simulated waveguide is circa 600 MHz.
Random mixture samples generate a theoretically infite number
of modes, but every higher mode is exponentially damped along
the waveguide at the frequencies below cutoff. The attenuation
factor for the first mode above TEM is [20]

m
(16)

at 26 MHz. In simulations, the reflected voltage was observed at
0.25 m from the mixture. Therefore, at that distance, this second
lowest mode is attenuated 28 dB. But of course, the error is much
smaller than this, because very little of the power is transformed
to the reactive field of second lowest mode. And higher modes

Fig. 11. Relative difference between mixing models and curve fitted to FDTD
data as a function of inclusion volume fraction.

Fig. 12. Effect of the grid size�x = 5 mm and�x = 2:5 mm on the
calculated permittivities of the samples. A sixth-order polynomial is fitted to
the data set for both grid sizes.

are damped even more heavily. Hence, at the frequencies below
600 MHz, the only possible way the power can escape is basic
TEM mode. The mixture slab acts like a resonator that has re-
active fields close to it. Finally, because of lossless material, all
the field power is transformed back to TEM mode and escapes
through absorbing boundaries.

However, to test the effect of higher-order modes, ten random
mixtures were also calculated with a longer waveguide such that
the reflected voltage was observed at 0.5 m from the mixture
slab. The result was that these simulations gave practically the
same results as in the case of the smaller computation domain.
In all ten cases, the calculated effective permittivity difference
was less than 0.04%. Therefore, it can be argued that 0.25 m is
far enough from mixture to measure voltage.

In calculations, the absorbing boundary was Mur's first-order
boundary condition [21]. This very simple absorbing boundary
is useful in this case, because it is fast and very efficient for
waves that come perpendicularly to boundary. Also, Berenger's
PML [22] with 16 layers was experimented with, and it was
found that results always diverged less than 0.5%.

The largest error source seems to be the roughness of the grid
when modeling circular inclusions. This problem turns out to
be more severe in the case of the raisin pudding mixture than in
the inverted mixture. The effect of the grid size was studied next.
One hundred simulations were run with twice denser (
mm) computation mesh than what we normally used (
mm). A polynomial, sixth-order curve is fitted to these data.
The corresponding curve in case of normal gridsize is also cal-
culated for comparison. Fig. 12 illustrates this comparison. It
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can be seen that in the case of the raisin pudding mixture, av-
erage results decrease slightly when grid size is reduced (i.e., the
field is calculated more accurately). But in case of the inverted
mixture, this trend cannot be seen. Therefore, in simulations of
raisin pudding mixtures, this denser mesh ( mm) was
used for all results, and in the case of the Swiss cheese mixture,
the coarser mesh mm was used in order to optimize
the speed of simulation.

VII. CONCLUSION

For this paper, we have run thousands of FDTD simulations
to get a good picture of the average characteristics of random
dielectric mixture. One should always remember that no one
of the mixing models could offer the absolute truth for a cer-
tain volume fraction, because in random mixtures, all values be-
tween Wiener limits are possible. Instead, we can try to predict
the most likely value for effective permittivity. Mixture sam-
ples with randomly positioned inclusions build a probability
distribution for effective permittivity. However, it is very prob-
able that a mixture with a large number of inclusions is almost
isotropic and therefore, Hashin-Shtrikman bounds seem to offer
reasonable limits. When looking at Figs. 3 and 4, one might even
consider more strict bounds. But it is difficult to derive bounds
or mixing models based on the FDTD results, because then we
should also study the number of different permittivity contrasts.
In this paper, only one contrast was studied.
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