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Abstract
Robust autonomy, in the sense of performing tasks in the
face of dynamic changes to the environment, requires that
an autonomous system be capable of responding
appropriately to such changes. One such response is to
effectively adapt the allocation of resources from planning
to execution. By adapting the resource allocation between
deliberation and execution, an autonomous system can
produce shorter plans more frequently in environments
with high levels of uncertainty, while producing longer,
more complex plans when the environment offers the
opportunity to successfully execute complex plans.

In this paper we propose the idea of the “effective
planning horizon” which adapts to environmental changes
to bound the deliberation in an interleaved
planning/execution system. The effective planning horizon
is developed from an analysis of the advantages and
disadvantages of three classic autonomous system
architectures as feedback control systems. This leads to the
development of an analytic model which suggests the use
of maximizing the expected value of plans by adjusting the
planning horizon.

Introduction   

If autonomous systems are to be deployed outside of
research institutions, and if they are to perform useful
functions, they must be able to continue to function in the
face of uncertainty and in dynamic environments. There
have been numerous approaches to providing robust
autonomy, and by examining some of these approaches,
we can extract some general features that can be used to
categorize autonomous systems.

For the purposes of this analysis we evaluate ‘robust
autonomy’ in the following sense: the ability of an
autonomous system to continue to satisfy goals by
adapting its behavior in response to changes in the
environment. Using this definition, robust autonomy
would include the ability to cope with failures such as
damaged sensors or effectors, the ability to adapt to
changes in the rates of exogenous events in the
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environment, and to modify behaviors in response to
changing mission demands on the system.

Feedback control models are a mature mechanism for
providing robust control in dynamic environments. These
models address goal maintenance as a process of sensing
the current distance from the desired state, and producing
a corrective signal, with the correct magnitude and
direction to bring the system to the goal state in optimal
time. We use this framework to analyze common
architectures of autonomous systems, and propose the
effective planning horizon model as a mechanism which
can be used to provide robust goal satisfaction for
autonomous planning systems

Feedback Control Model

One traditional approach to goal satisfaction under
uncertainty is by closed-loop control (See Figure 1).  The
system consists of two main sub-components: a controller,
and a controlled system, connected in a feedback loop. In
one phase, the state of the controlled system and the
environment is sensed, and if the system is not in its
desired goal state, a corrective action is selected. This
corrective action is passed as a control signal into the
execution phase, where the controlled system applies the
action, and affects the environment. The effect of this
change is sensed and the results are passed back to the
controller, which closes the loop.  Since this system is
constantly sensing the changes to the environment and
comparing them with the desired state, it is very robust
with respect to uncertainty in the sensors, actuators, and
external events in the environment. One critical feature of
these feedback control systems is the gain of the
controller. Clearly, if the controller does not react
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sufficiently to changes in the controlled system, the goals
will not be met, however if the system is too responsive, it
over-reacts to small fluctuations and the goals are also not
met.

This type of system is very common in robotics. It is
used in servomotors, where the motor tries to minimize
the difference between its current orientation and the
control signal; video servoing is frequently used in
industrial robotics to precisely position effectors with
respect to a part; and drive motors frequently use encoder
feedback to maintain a constant velocity across varying
terrain.

Multi-tier architectures as feedback controllers
Another way to look at the feedback control model is that
the controller uses a model of the world state, updated by
sensors, and a goal state and produces an output that is
intended to change the world from its current state to the
desired state. While these controllers are traditionally
used to maintain the goal state, during startup they must
first achieve the goal.

This corresponds very closely to the traditional model
of a planning system, which uses a model of the current
world state and the desired world state, and produces a
plan (or sequence of changes) to achieve the goal. Thus a
planning system can be represented by Figure 2. The
typical difference between a planner and a feedback
controller is that the planner produces a single plan to
achieve a single goal, rather than a sequence of plans to
maintain a state. However, in deployed systems, which
must be able to handle uncertain and dynamic
environments, hybrid architectures have been developed.

Hybrid System Architecture

One of the most popular architectures for autonomous
systems is a layered, hybrid system. These systems are
popular because they work, that is to say they provide a
robust architecture for autonomous systems (Simmons
1994). One characteristic of multi-layered architectures is
that they interleave the deliberative process with the
execution of actions. In this model a period of
deliberation occurs in which the system produces a plan to
achieve its goals. This plan may take the form of a
partially ordered sequence of actions, a selection and
ordering of skills, or a structuring of behaviors, but the

system has made choices with the intent to satisfy a goal

or goals. Once this plan is developed, it is put into effect,
and the autonomous system attempts to change the world
from its current unsatisfactory state into a world state that
is preferred.

However, it has been said that “No plan survives
contact with the enemy”, and in a dynamic and uncertain
world, no plan is guaranteed to succeed. As a result, steps
in the plan may fail, or the skills or behaviors selected
may not be sufficient to achieve the goals. In this case, if
the system is to be robust, it must achieve goals in spite of
these failures, and so, the deliberation is again
undertaken, a new plan is formed and the system tries
again as in Figure 3.

Interleaved Planning and Execution

So, one might argue that every autonomous system is
an interleaved planning/execution system. This is clear for
a traditional, multi-tier system. But is less straightforward
for both reactive, behavior-based systems, and for
classical planners.

Classical Planning
Classical planners, such as the original STRIPS system
(Fikes and Nilsson 1971), were given a world model, and
operator set, and a goal state, and produced a plan to
achieve the goal. This classical planning paradigm has
been implemented in numerous other deployed systems.

For a classical, task-based planner, the sequence is:

1. Input the goal state and the current world state
2. Produce a plan which achieves the goal
3. Output the plan

This sequence is iterated once, and it is assumed that
the world model is accurate, the execution is flawless, and
no other events occur during planning and execution.
After this, the planner is shut down, and the next planning
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episode occurs with no reference to the previous
sequence.

After the goal is achieved, a new goal is proposed, and
the planning stage is entered again, to begin the next
iteration.  However, the planner is not scrapped after a
single planning episode, it is used again and again,
sometimes on very different domains, and sometimes on
very similar domains.  Thus we can represent a traditional
planner as an interleaved planning/execution system with
an empty or void execution phase as in Figure 4a. It is
repeatedly invoked to produce plans, and simply assumes
that the execution will take place flawlessly.

Reactive, Behavior Based System
In the case of a ‘hard-coded’ reactive system, the

controller senses the environment, chooses an action, and
executes it. The resulting world is sensed, and the process
repeats, with the controller selecting the best action for
each sensed world state. These actions are often modeled
as competing behaviors in a subsumption architecture
(Brooks 1986). This system most closely resembles a pure
feedback controller, with one important difference: in a
typical feedback controller the complex relationship
between conditions and actions are modeled as continuous
functions (differential equations, usually) and the effects
of each action are precisely captured. This allows the
controller to select precisely the correct type and amount
of change to apply to the world to return to the goal state.
Unfortunately, we have no such differential equations to
capture the effects of behaviors in the general planning
problem. Thus the developer frequently uses ad hoc
heuristics to establish the precedence of the competing
behaviors and adjusts these to achieve each particular
goal.

With reactive systems, one question is: who does the
deliberation? Is the reactive system deliberating when it
selects an action based on its percieved world state, or

was the deliberation done when the behaviors and skills
were assembled and prioritized. Under the latter view, the
planning phase is void (or, perhaps it occurs once when
the behaviors are hand crafted for the current task) and the
execution phase is repeatedly invoked (Figure 4c).

It might be argued that the production of an optimal
behavior structure will do the best possible in the domain,
and so no ‘re-planning’ is required.  However, one can
argue that an empty or void planning stage occurs, in
which the same mix of skills or behaviors is produced,
and the plan is re-executed.

Common Framework

What do we gain by adding these void stages? One gain
is that we can place these models into a space in which
they can be compared. We can also examine why these
characteristics are present in these systems, and suggest
additional ways to benefit from them.

Why does the architecture of a traditional planner
assume that the plan will execute flawlessly? In part this
is due the historical development of deliberative planners
from theorem provers, and in part it is due to the
partitioning of the goal satisfaction problem into two
disjoint phases: first figure out what to do, then do that
thing. Classical planning made the assumption that if we
only knew what to do, the problem would be solved:
planning was the hard part.

Unfortunately, it turned out that the ‘doing’ was equally
difficult. Significantly before the earliest work on General
Problem Solvers (Newell and Simon 1963) was going on,
purely reactive systems were being developed by W. Grey
Walter (Walter 1950). The turtles developed in the 1950s
were hard wired, vacuum tube based, mobile robots,
which wandered down hallways, avoided light or dark,
and in some cases sought out energy sources to recharge
themselves. These systems had no deliberative layer,

Figure 4 Comparative models for three common planning systems
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other than the design of their hardwired circuits, and
simply reacted to their environments by enabling and
inhibiting behaviors, an early foreshadowing of Brooks
subsumption architecture.

Modern hybrid systems have evolved out of the failings
of both of these earlier architectures. An autonomous
system cannot assume the flawless execution of the plan
produced by its deliberation, nor can a purely reactive
system easily achieve complex goals by a single set of
interacting behaviors. Hybrid systems attempt to solve the
problem by joining the two approaches together. The
result is a loose coupling of deliberation and reaction,
with very different approaches by each layer.

Robust Autonomy

It has been long accepted that as uncertainty and
dynamism increase in an environment, the greater the
need for more reactive systems. In recent work
(Gunderson and Martin 2000) quantitative relationships
have been suggested for the impact of three types of
domain uncertainty on the ability of an autonomous
system to achieve goals.

This work classifies domain uncertainty into three
categories:
1. Sensor uncertainty,
2. Effector uncertainty, and
3. Exogenous events.

These are used in a simulation system that measures the
goal satisfaction of a simulated maintenance robot under
widely varying levels of each of these types of
uncertainty. The results suggest that autonomous systems
are very sensitive to even low levels of uncertainty in the
environment, with overall goal satisfaction dropping to
75% with the introduction of 10% sensor errors. In
addition, this research reported that the ability to retry on
failure was very effective at maintaining goal satisfaction
in the face of all types of uncertainty. The simulated robot
was more robust (i.e., able to satisfy goals as the
environment changed) when it used different deliberation
and execution mixes in response to different levels of
uncertainty in the environment.

Adapting to failure
Our recent work has focused on the use of probability-
aware planning systems, which actively update the
probability of success of possible operators to produce the
“Plan most likely to succeed,” rather than the shortest
feasible plan. These systems use lightweight uncertainty
models to provide key insights into selecting between
alternative feasible plans based on predicted plan success.
In addition, these systems function as integrated
planning/execution systems, with low-level support for
operator probability values, and adaptive goal
prioritization (Gunderson 2000). This gives the planning
system the ability to adapt to failures in its environment,

including adapting to mechanical breakdown of sensors
and effectors.

However, being able to function effectively in the
designed environment may not be sufficient for a
deployed autonomous system. There will be errors in any
characterization of an environment, and environments
change. If an autonomous system is to be robust in the
face of changes, it must be able to adapt. The system must
have a ‘knob to twist’ to respond to change.

The three architectures depicted in Figure 4 suggest
that such a knob exists: turned to one extreme, it provides
a classical planner, turned to the other extreme it produces
a purely reactive system, and in between it provides a
hybrid system with greater or lesser proportions of
planning and reacting. But what is the scale associated
with the knob?

Planning Horizon
One way to establish the scale is to look at the
characteristics of the three systems. Table 1 compares two
salient features of these three: plan length and number of
executions. In the table, N is used to indicate that the
feature can be as large as needed, while K indicates a
fixed number.

A classical planner, produces a plan as long as needed
to satisfy the goal (size N), and provides a single
execution. A reactive system issues single operation plans
(or enables a single behavior) but does so as many times
as needed to achieve its goal (size N). The hybrid system
issues plans of varying length, and executes them until
they complete or until a failure occurs, and then repeats
the process as needed. The plan length is frequently
bounded to control the exponential growth of the planning
process (plan length K), and the execution is often
bounded as well: “try three times, then fail” is a common
technique, hence size K. This suggests that the knob we
are looking for is the length of the plan considered.

Table 1 Comparison of Architecture characteristics

CLASSICAL HYBRID REACTIVE

Plan Length N K 1
Execution Cycles 1 K N

It is commonly accepted that as the levels of uncertainty
and dynamism in the environment increase, the value of
long plans decreases. In effect, the value of each plan step
is discounted by the likelihood that the world state will
meet its preconditions at the time it is executed (Bratman,
Israel and Pollack 1988). So our system can adapt to
changes in the environment by adjusting is planning
horizon to be effective.

Control Theory Revisited
By reducing the length of the plans that are considered,
the planning process speeds up. In addition, shorter plans
execute more swiftly, which has the effect of shortening



the planning/execution cycle. One effect of this shorter
planning execution cycle is that the autonomous system
can apply more corrections (execute more plans) in the
same amount of time. If there is no uncertainty, this has
no real impact, since presumably the first plan will
achieve the goal. However, when the plans are being
executed in an uncertain and dynamic domain, the first
plan may fail, or only achieve some of the goals needed to
achieve the task. In this case, the ability to develop and
execute a second plan increases the robustness of the
system, since only if all the plans fail will the goal be
unsatisfied. This means that as the plan length decreases
the system is more reactive to uncertainty in the
environment. So why not reduce the plan length to one,
and always run in a reactive mode?

Using the feedback control model, we know that there
is a penalty associated with a control loop that is under
damped (Franklin, Powell, and Emami-Naeini 1994). But
does this carry over into the deployed robot domain? In
recent work (Kaga et al 2000) on fault tolerance in mobile
robot based target tracking, the results indicate that with
complex tasks reacting too quickly does, in fact, lower the
quality of the solution. Clearly, dependent on the
uncertainty in the environment, there is an “effective
planning horizon”: a bounded plan length that produces
robust behavior.

Effective Planning Horizon

Our current work focuses on determining empiric
relationships between levels of uncertainty in the
environment and the effective planning horizon. The
current model suggests that the effective planning horizon
is the plan length that maximizes the expected value of
the plan. To develop this expected value, we use the
following assumptions:

1. Preconditions make plan steps conditionally
independent.

2. The levels of uncertainty in the environment
determine the probability of success of each plan
step.

3. Satisfying some of the goals of the system is
better than not satisfying any (partial goal
satisfaction)

4. Plan steps are ‘fail negative’, in that they either
succeed, achieving their result, or the world state
is unchanged.

Given these simplifying assumptions, one can ask “What
does planning buy me?” What is the worth of planning to
goal satisfaction? Since these autonomous systems are
operating in domains characterized by uncertainty, this
becomes “What is the expected value of planning?” by
definition, the expected value of any given plan can be
given as:

and the expected value of planning is the sum of the
expected values of all plans.

To determine this expected value, we will need
expressions for both the probability of the plan
succeeding, and an estimate of the value of the plan.
Recall that we are working in an interleaved
planning/execution model. We cannot assume that the
elaboration of a plan implies its successful execution.
Furthermore, it may require several planning/execution
sequences to achieve the systems goals.

Plan Probability
From assumptions 1 and 2, (above), it is reasonable to
model the successful execution of the entire plan as the
product of the probabilities of success of each step in the
plan. As a result, the probability of successful execution is
a monotonically non-increasing function of plan length,
and can be modeled as

Since the plan steps are presumed to be independent, and
all steps must succeed if the entire plan is to execute
successfully, the probability of the entire plan executing is
the product of the probabilities of the individual steps.
Estimating the value of the plan will be less straight
forward, and so a mild diversion is in order.

Plan Value
Traditionally, the value of a plan is considered to be a
binary value: 1 if the plan achieves the goal, and 0 if it
does not. Beyond this, in classical planning, the shortest
feasible plan is considered optimal. However, There are
other possible measures of plan success, especially in a
domain where plan steps fail, and unexpected events
occur.

In feedback control models, there is the notion of an
error term. In the case of a single variable controller (such
as a system that maintains a temperature set-point), the
error term is simply the difference between the desired
temperature and the actual temperature.

Using a state-space model of planning, the world can
be represented as a high dimensional state vector, and
plan steps cause transitions from one state to another. In
this model, any two distinct world states are separated by
some distance and the goal of the autonomous planning
and execution system is to reduce this distance to zero.
This distance might be calculated as a Hamming distance,
an edit distance, or some other measure.

Using such a distance measure allows the system to
express partial goal satisfaction, since the value of a plan
can be viewed as the amount of reduction of the distance
between the resulting world state and the goal state. The
value of a plan which reduces the error term to zero can
be normalized to 1.0, and the value of a plan which does
nothing can be defined as zero. Clearly, at any
intermediate point in a plan, the world state might be
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further away from the goal than the initial state, resulting
in an intermediate negative plan value. However, any plan
that has a final negative value would be rejected by the

planning system.
These plan values can be classified by the number of

steps in the plan, and grouped accordingly (See Figure 5).
From this, a mean can be established for the value all
plans of length 1, length 2, length 3, and so on.
Presumably, shorter plans will be capable of decreasing
the error term less than longer plans (simply because the
longer plans can apply more operators) and above some

length K, all plans will achieve the goal, producing the
maximum value. By this argument, we should expect to
see a mean Value curve that looks like Figure 6 (below).

This function can be approximated with a logistic
curve, where the ‘a’ term is related to the distance from
the initial state to the goal state. This approximation for
the value of a plan, is used primarily to express the
predicted shape of the plan value curve, and has not yet
been experimentally confirmed.

Expected Plan Value
Since the expected value of an event is the product of

the probability and the value, we can construct a very
rough approximation of the expected value of a plan as a
function of plan length (see Figure 7). The relationship
between the expected value of a plan and plan length is
the result of two aspects in a dynamic tension. First, the
idea that it is possible to solve more problems, and
possibly produce higher quality solutions with longer
plans, suggests that the value of longer plans is higher.
Second, the fact that when operating under uncertainty,
the value of the later steps in a plan must be discounted,
since the probability that all the preceding steps will
succeed decreases. The result of these two competing
aspects is that to be robust in the face of uncertainty,

plans must be long enough to be effective, but not so long
that they are unlikely to succeed.

As Figure 7 clearly shows, there is a plan length at
which the expected value is a maximum. This length is
dependent on three things: the goal, the world state, and
the levels of uncertainty in the environment.

Current Research
Our current research includes embedding effective
planning horizon functionality into our existing simulator
and probability-aware planning system to empirically
validate the effective planning horizon concept. In
addition we will investigate the relationship between
probability aware planning systems and the effective
planning horizon concept, by using our existing planners
in comparison with traditional planning systems.

Prediction of Expected Plan Value as a function 
of plan length
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Conclusions

It is generally accepted that making long, detailed plans in
uncertain environments is not effective. In economics, it
is common to ‘discount’ the value of future investments,
because the uncertainty in the marketplace reduces the
likelihood that they will pay off. For an autonomous
system, the question is how to estimate the value of
planning, and when to limit deliberation.

Using an underlying, common framework loosely based
on feedback control, we have presented a structure for the
comparison of common robotic architectures, and
guidelines for controlling the allocation of resources to
deliberation and execution in an interleaved
planning/execution system.

This framework allows the extraction of a control
parameter – plan length, which can be adapted to respond
to changes in the environment. This ability to
autonomously adapt to the environment promises to make
autonomous systems more robust in the face of changing
environments, and to increase their ability to achieve
goals.

Ongoing work to quantify the relationship between
environmental uncertainty and the effective planning
horizon will result in guidelines to allow situated
autonomous systems to adapt to their environments as
those environments change.
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