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Abstract

The problem of predicting web-user accesses has re-
cently attracted significant attention. Several algo-
rithms have been proposed, which find important ap-
plications, like user profiling, recommender systems,
web prefetching, design of adaptive web sites, etc.
In all these applications the core issue is the devel-
opement of an effective prediction algorithm. In this
paper, we focus on web-prefetching, because of its im-
portance in reducing user perceived latency present in
every Web-based application. The proposed method
can be easily extended to the other aforementioned
applications.
Prefetching refers to the mechanism of deducing

forthcoming page accesses of a client, based on ac-
cess log information. We examine a method that is
based on a new type of association patterns, which
differently from existing approaches, considers all the
specific characteristics of the Web-user navigation.
Experimental results indicate its superiority over ex-
isting methods.
Index Terms — Prediction, Web Log Mining,
Prefetching, Association Rules, Data Mining.

1 Introduction

The problem of modeling and predicting a user’s
accesses on a web-site has attracted a lot of re-
search interest. It has been used [18] to improve
the web performance through caching [5, 12, 36] and
prefetching [31, 20, 32, 25, 34, 35], recommend re-
lated pages [17, 33], improve search engines [9] and
personalize the browsing in a web site [34].
The core issue in prediction is the development of

an effective algorithm that deduces the future user
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requests. The most successful approach towards this
goal has been the exploitation of the user’s access
history to derive predictions. A thoroughly studied
field in this area is Web prefetching. It shares all the
characteristics that identify the Web prediction appli-
cations like the previously mentioned. Nevertheless,
web prefetching presents some particularities involv-
ing the underlying communication medium, i.e., the
Internet. However, developments in predictive Web
prefetching algorithms can be easily adapted to the
related topics, e.g., user profiling, recommender sys-
tems, design of adaptive web sites, etc.
The objective of prefetching is the reduction of the

user perceived latency. Since the Web’s popularity
resulted in heavy traffic in the Internet, the net effect
of this growth was a significant increase in the user
perceived latency. Potential sources of latency are
the web servers’ heavy load, network congestion, low
bandwidth, bandwidth underutilization and propaga-
tion delay. The obvious solution, that is, to increase
the bandwidth, does not seem a viable solution, since
the Web’s infrastructure (Internet) cannot be easily
changed, without significant economic cost. More-
over, propagation delay cannot be reduced beyond a
certain point, since it depends on the physical dis-
tance between the communicating end points. The
caching of web documents at various points in the
network (client, proxy, server [5, 12, 36]) has been
developed to reduce the latency. Nevertheless, the
benefits reaped due to caching can be limited [24],
when Web resources tend to change very frequently,
resources cannot be cached (dynamically generated
web documents), they contain cookies and when re-
quest streams do not exhibit high temporal locality.
On the other hand, prefetching refers to the pro-

cess of deducing client’s future requests for Web ob-
jects and getting that objects into the cache, in the
background, before an explicit request is made for
them. Prefetching capitalizes on the spatial local-

1



ity present in request streams [1], that is, corre-
lated references for different documents, and exploits
the client’s idle time, i.e., the time between succes-
sive requests. The main advantages of employing
prefetching is that it prevents bandwidth underuti-
lization and hides part of the latency. Nevertheless,
an over-aggressive scheme may cause excessive net-
work traffic. Additionally, without a carefully de-
signed prefetching scheme, several transferred docu-
ments may not be used by the client at all, thus wast-
ing bandwidth. Nevertheless, an effective prefetch-
ing scheme, combined with a transport rate control
mechanism, can shape the network traffic, reducing
significantly its burstiness and thus improve network
performance [11].
In general, there exist two prefetching approaches.

Either the client will inform the system about its
future requirements [30] or, in a more automated
manner and transparently to the client, the system
will make predictions based on the sequence of the
client’s past references [14, 31]. The first approach is
characterized as informed and the latter as predictive
prefetching. In the design of a prefetching scheme for
the Web, its specialties must be taken into account.
Two characteristics seem to heavily affect such a de-
sign: a) the client server paradigm of computing the
Web implements, b) its hypertextual nature. There-
fore, informed prefetching seems inapplicable in the
Web, since a user does not know in advance its future
requirements, due to the “navigation” from page to
page by following the hypertext links.

1.1 Mechanism of Predictive
Prefetching

Web servers are in better position in making pre-
dictions about future references, since they log a
significant1 part of requests by all Internet clients for
the resources they own. The prediction engine can
be implemented by exchange of messages between the
server and clients, having the server piggybacking in-
formation about the predicted resources onto regular
response messages, avoiding establishment of any new
TCP connections [13]. Such a mechanism has been
implemented in [13, 19] and seems the most appropri-
ate, since it requires relatively few enhancements to
the current request-response protocol and no changes
to HTTP 1.1 protocol.
In what follows in this article, we assume that there

is a system implementing a server-based predictive
prefetcher, which piggybacks its predictions as hints

1They only miss the requests satisfied by browser or proxy
caches.

to its clients. Figure 1 illustrates how such an en-
hanced Web server could cooperate with a prefetch
engine to disseminate hints every time a client re-
quests a document of the server.
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Figure 1: Proposed architecture of a prediction-
enabled Web server.

1.2 Paper contribution

In this paper we focus on predictive prefetching.
First, we identify three factors: a) the order of depen-
dencies between page accesses, b) the noise present
in user access sequences due to random accesses of
a user (i.e., access that are not part of a pattern),
c) the ordering2 of accesses within access sequences,
that characterize the performance of predictive web
prefetching algorithms. We develop a new algorithm
that takes into account the above factors. An ex-
tensive experimental comparison of all algorithms,
for the first time (the performance of existing algo-
rithms have been examined only independently), in-
dicates that the proposed algorithm outperforms ex-
isting ones, by combining their advantages without
presenting their deficiencies.
The rest of the paper is organized as follows. Sec-

tion 2 reviews related work and outlines the motiva-
tion of this work and Section 3 describes the proposed
algorithm. Section 4 provides the experimental re-
sults and finally, Section 5 contains the conclusions.

2 Related Work

Research on predictive web prefetching has involved
the important issue of log file processing and the de-
termination of user transactions (sessions) from it3.
Several approaches have been proposed towards this
direction [15, 16]. Since it is a necessary step for ev-
ery web prefetching method, more or less similar ap-
proaches on transaction formation from log files have

2The term ordering refers to the arrangment of accesses in
a sequence, whereas order to the dependencies among them.

3Notice that this issue is not required for prefetching in the
context of file systems.



been proposed in [31, 32, 25]. However, the most im-
portant factor for any web prefetching scheme is the
prediction algorithm, which is used to determine the
actual documents to be prefetched.
The prediction scheme described in [31] uses a

prefetching algorithm proposed for prefetching in the
context of file systems [21]. It constructs a data struc-
ture, called Dependency Graph (DG), which main-
tains the pattern of access to different documents
stored at the server. The left part of Figure 2 il-
lustrates an example of a dependency graph. For a
complete description of the scheme see [21, 31]. The
work described in [7] uses essentially the dependency
graph, but makes predictions by computing the tran-
sitive closure of this graph. This method was tested
and did not showed significantly better results com-
pared to the simple dependency graph.
The scheme described in [32, 20] also uses a

prefetching algorithm from the context of file sys-
tems [14]. It is based on the notion of an m-order
Prediction-by-Partial-Match (PPM) predictor. An
m-order PPM predictor maintains Markov predictors
of order j, for all 1 ≤ j ≤ m. This scheme is also
called All-mth-Order Markov model [18]. The right
part of Figure 2 illustrates a 2nd order PPM pre-
dictor, where paths emanate from the tree root with
maximum length equal to m+1 (=3). For a complete
description of the scheme see [14, 23, 32, 20].
Recently, several algorithms have been proposed

for mining patterns from web logs [16, 8, 10, 15, 29,
27]. Although these patterns can be characterized as
descriptive, since they indicate regularities discovered
from user access information, algorithms for web log
mining and for predictive web prefetching share the
common objective of determining statistically signif-
icant user access sequences, i.e., access patterns. The
web prefetching strategy proposed in [25] develops a
specialized association rule mining algorithm to dis-
cover the prefetched documents. It discovers depen-
dencies between pairs of documents (association rules
with one item in the head and one item in the body).
Other related work includes [26], which describes

a prefetching algorithm that is also based on asso-
ciation rule mining. However, the subject of this
paper is Web-server caching, and more particularly
the prefetching of documents from the Web server’s
disk to its main memory. This approach differs from
web prefetching, which concerns the prefetching of
documents from the server into the client’s cache.
Improvements on the efficiency of PPM is examined
in [18] (which uses the name All-mth-Order Markov
model for PPM). Three pruning criteria are pro-
posed: a) support-pruning, b)confidence-pruning, c)
error-pruning. The subject of [18] is mainly the effi-

ciency (experimental results indicated only marginal
improvements in the effectiveness of PPM). Never-
theless, support-pruning is also examined in [25, 26]
and in this paper as well. The other two criteria
are used in a post-processing step, on the set of dis-
covered rules, and can be applied to any prefetching
scheme, thus they are orthogonal issues to the sub-
ject examined in this paper. Finally, two variations
of the PPM prefetcher are described in [34, 35]. The
first one is a subset of the PPM whereas in the sec-
ond one the selection of prefetching rules to activate
is determined by “weights” assigned on them.

2.1 Motivation

Most of the existing web prefetching schemes differ
from the corresponding ones proposed in the context
of file systems only because they use techniques for
the identification of user transactions. For the core
issue in prefetching, i.e., prediction of requests, exist-
ing algorithms from the context of file-systems have
been utilized. Consequently, existing web prefetching
algorithms do not recognize the specialized charac-
teristics of the web. More precisely, two important
factors are:

• The order of dependencies among the documents
of the patterns.

• The interleaving of documents belonging to pat-
terns with random visits within user transac-
tions.

These factors arise from both the contents of the doc-
uments and the site of the structure (the links among
documents), and are described as follows.
The choice of forthcoming pages can depend, in

general, on a number of previously visited pages.
This is also described in [18]. The DG, the 1-order
PPM and the scheme in [25] consider only first or-
der dependencies. Thus, if several visits have to be
considered and there exist patterns corresponding to
higher order dependencies, these algorithms do not
take them into account in making their predictions.
On the other hand, the higher-order PPM algorithms
use a constant maximum value for the considered or-
ders. However, no method for the determination of
the maximum order is provided in [32, 20]. A choice
of a small maximum may have a similar disadvantage
as in the former case, whereas a choice of a large max-
imum may lead to unnecessary computational cost,
due to maintenance of a large number of rules.
A web user may follow, within a session, links to

pages that belong to one of several patterns. How-
ever, during the same session, the user may also navi-
gate to other pages that do not belong to this pattern



A/4

C/6

B/4

D/1

3

3 41

1

3
3

2

R

A/4

C/1

B/1C/2

B/2

B/4

D/1C/3

A/2 B/1

D/1C/6

A/3

C/1 B/1 A/1

C/1

C/1 D/1

B/1

Figure 2: Left: Dependency graph (lookahead window 2) for two request streams ABCACBD and
CCABCBCA. Right: PPM predictor of 2nd order for two request streams ABCACBD and CCABCBCA.

(or that may not belong to any pattern at all). Hence,
a user transaction can both contain documents be-
longing to patterns and others that do not, and these
documents are interleaved in the transaction. How-
ever, PPM (of first or higher order) and [25] prefetch-
ers consider only subsequences of consecutive docu-
ments inside transactions. On the other hand, the
DG algorithm does not require the documents, which
comprise patterns, to be consecutive in the transac-
tions. However, since the order of the DG algorithm is
one, only subsequences with two pages (not necessar-
ily consecutive in the transactions) are considered4.
Consequently, none of the existing algorithms con-

siders all the previously stated factors. The objective
of this paper is the development of a new algorithm
that considers all the factors and subsequently the
evaluation of their significance.

3 Proposed Method

3.1 Type of prefetching rules

Associations consider rules of several orders [3] (not
of one only). The maximum order is derived from the
data and it does not have to be specified as an arbi-
trary constant value [3]. For the support counting, a
transaction T , supports sequences that do not neces-
sarily contain consecutive documents in T . However,
although the ordering of document accesses inside a
transaction is important for the purpose of prefetch-
ing, it is ignored by the association rules mining al-
gorithms [3]. The approach in [16] takes into account
the ordering within access sequences, however, sim-

4It has to be noticed that the use of thresholds for statisti-
cal significance, e.g., support values [3], does not address the
intervening of random accesses within the patterns. The pat-
terns cannot be retrieved with larger values of support, since
they will still remain broken to pieces. The problem is ad-
dressed with appropriate candidate generation procedure (c.f.,
Section 3).

ilar to PPM algorithm [32], it considers only sub-
sequences with consecutive accesses within transac-
tions.
The required approach involves a new definition

of the candidate generation procedure and the con-
tainment criterion (for the support counting proce-
dure). At the k-th phase, the candidates are de-
rived from the self-join Lk−1 ✶ Lk−1 [3]. However,
to take the ordering of documents into account, the
joining is done as follows. Let two access sequences
be S1 = 〈p1, . . . , pk−1〉 and S2 = 〈q1, . . . , qk−1〉,
both in Lk−1. If p1 = q1, . . . , pk−2 = qk−2, then
they are combined to form two candidate sequences,
which are: c1 = 〈p1, . . . , pk−2, pk−1, qk−1〉 and c2 =
〈p1, . . . , pk−2, qk−1, pk−1〉 (i.e., c1 and c2 are not con-
sidered as identical, as in [3]). For instance, se-
quences 〈A, B, C〉 and 〈A, B, D〉 are combined to pro-
duce 〈A, B, C, D〉 and 〈A, B, D, C〉. The same holds
for the second phase (k = 2). For instance, from
〈A〉 and 〈B〉, 〈A, B〉 and 〈B, A〉 are produced. The
containment criterion is defined as follows:

Definition 1 If T = 〈p1, . . . , pn〉 is a transaction,
an access sequence S = 〈p′1, . . . , p′m〉 is contained by
T iff:

• there exist integers 1 ≤ i1 < . . . < im ≤ n such
that p′k = pik

, for all k, where 1 ≤ k ≤ m. ✷

A sequence, S, of documents contained in a transac-
tion, T , with respect to Definition 1 is called a subse-
quence of T and the containment is denoted as S � T .
Related to the above scheme are the ones presented

in [27, 28]. By considering user-sessions as customer-
sequences , the problem can also be transformed to
the setting of [4] for mining sequential patterns (each
request corresponds to a customer transaction). Nev-
ertheless, the special phases of [4] for the processing
of customer-transactions (i.e., elements of customer-
sequences) are not applicable, since the latter are of



length one when considering user-sessions. Therefore,
the direct application of the approach in [4] is not
efficient. The scheme proposed in [22] uses a simi-
lar approach, called mining of path fragments. The
main objective of path fragments is to consider subse-
quences with non-consecutive accesses within trans-
actions (for handling noise), i.e., the issue that is
addressed by Definition 1. The method in [22] is
based on discovering patterns containing regular ex-
pressions with the ∗ wild-card between accesses of a
sequence.
Although the use of wild-cards presents differences

in a semantic level (it may distinguishes the sequences
that explicitly do not contain consecutive accesses),
for the purpose of web-prefetching, the use of Defini-
tion 1 assures the addressing of noise within transac-
tions without the need for wild-cards. Path fragments
[22] where only examined against the approach in [16]
(subsequences with consecutive accesses). However,
[4, 27] had addressed the handling of subsequences
with non-consecutive accesses5. Moreover, the use
of wild-cards requires the modification of the fre-
quency counting procedure. The candidate-trie [3]
should store, additionally to ordinary candidates, the
ones containing wild-cards. Consequently, a signifi-
cant space and time overhead (since the wild-cards
may appear in a number of combinations that grows
rapidly with the size of candidates). Also during the
probing of a trie by a transaction, at each trie-node
with the wild-card ∗, every child of the node has to
be followed. This increases the time complexity of
support counting. However, [22] does not present
any method for the support counting phase to ad-
dress the above issues, and no experimental results
are provided to examine its performance.
In the sequel, the web prefetching scheme that is

based on the type of rules determined by Definition 1
is denoted as WMo (o stands for ordered web mining).

3.2 Algorithm

The candidate generation procedure of WMo, due to
the preservation of ordering, impacts the number of
candidates. For instance, for two “large” documents
〈A〉 and 〈B〉, both candidates 〈A, B〉 and 〈B, A〉 will
be generated in the second phase (differently, Apriori
[3] would produce only one candidate, i.e., {A, B}).
The same holds for candidates with larger length, for
each of which the number of different permutations
is large (nevertheless, ordering has to be preserved to
provide correct prefetching).

5In [22] the approaches in [4] and [16] are treated as iden-
tical, despite the difference that [4] handles subsequences with
non-consecutive accesses.

In order to reduce the number of candidates, prun-
ing can be applied according to the site of the struc-
ture [27]. This type of pruning is based on the as-
sumption that navigation is performed following the
hypertext links of the site, which form a directed
graph. Therefore, an access sequence, and thus a
candidate, has to correspond to a path in this graph.
The candidate generation procedure and the apriori-
pruning criterion [3] have to modified appropriately,
and are depicted bellow.

Algorithm genCandidates(Lk, G)
// Lk the set of large k-paths and G the graph
begin
foreach L = 〈�1, . . . , �k〉, L ∈ Lk {

N+(�k) = {v|∃ arc �k → v ∈ G}
foreach v ∈ N+(�k) {

//apply modified apriori-pruning
if v 
∈ L and L′ = 〈�2, . . . , �k, v〉 ∈ Lk {

C = 〈�1, . . . , �k, v〉
if (∀S � C, S 
= L′ ⇒ S ∈ Lk)

insert C in the candidate-trie
}

}
}
end

For the example depicted in Figure 3a, candidate
〈B, E, C〉 corresponds to a path in the graph. On
the other hand, candidate 〈B, C, E〉 does not, thus it
can be pruned. The reason of pruning the later candi-
date is that no user transaction will contain 〈B, C, E〉,
since there are no links to produce such an access se-
quence that will contain (according to Definition 1)
this candidate and increase its support. For instance,
assuming the example database of Figure 3b, candi-
date 〈B, E, C〉 will have support equal to two (con-
tained in first and fourth transaction), whereas can-
didate 〈B, C, E〉 is not supported by any transaction.
The same applies for the example presented earlier in
this section. Among candidates 〈A, B〉 and 〈B, A〉,
the former can be pruned. Evidently, 〈B, A〉 is con-
tained in three transactions, whereas 〈A, B〉 in none.
Containment is tested with respect to Definition 1.
For example, candidate 〈B, A〉 (which corresponds
to a path) is contained in the third transaction, i.e.,
〈B, D, A〉, although documents B and A are not con-
secutive in the transaction.
As it is illustrated, instead of generating every pos-

sible candidate and then pruning with respect to
the site structure, a much more efficient approach
is followed. More particularly, candidate generation,
candidate storage and representation, and support
counting over the transactions database take into ac-
count the structure of the site during all these steps
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and not in a post-processing one, thus improving the
efficiency. As it is shown, candidate generation is per-
formed by extending candidates according to their
outgoing edges in the graph, thus with respect to
the site structure. Consequently, the ordering is pre-
served and, moreover, only paths in the graph are
considered. Additionally, the apriori-pruning crite-
rion of [3] is modified, since, for a given candidate,
only its subsequences have to be tested and not any
arbitrary subset of documents, as it is designated for
basket data [3]. Candidates are stored in a trie struc-
ture. Each transaction that is read from the database
is decomposed into the paths it contains and each of
them is examined against the trie, thus updating the
support of the candidates. Due to space restrictions,
more details can be found in [27, 28].
The overall execution time required for the sup-

port counting procedure is significantly affected by
the number of candidates [3], hence its efficiency is
improved by this pruning criterion. Although several
heuristics have been proposed for the reduction of the
number of candidates for the Apriori algorithm, they
involve basket data. The pruning with respect to
the site structure is required for the particular prob-
lem, due to the ordering preservation and the large
increase in the number of candidates. The effective-
ness of pruning is verified by experimental results in
Section 4.

4 Performance Results

This section presents the experimental results on
the performance of predictive web prefetching algo-
rithms. We focus on DG, PPM, LBOT6, WM (de-
noting the plain association rules mining algorithm
[3]) and WMo algorithms. Both synthetic and real

6In the experiments the algorithm proposed in [25] will be
referenced as LBOT

data were used. The performance measures used are
the following (their description can be found also in
[32]): Usefulness (also called Recall or Coverage):
the fraction of requests provided by the prefetcher.
Accuracy (also called Precision): the fraction of the
prefetched requests offered to the client, that were
actually used. Network traffic: the number of docu-
ments that the clients get when prefetching is used
divided by the one when prefetching is not used.
First, we briefly describe the synthetic data gener-
ator. Then, we present the results, and finally we
provide a discussion.

4.1 Generation of Synthetic Work-
loads

In order to evaluate the performance of the algo-
rithms over a large range of data characteristics, we
generated synthetic workloads. Each workload is a
set of transactions. Our data generator implements a
model for the documents and the linkage of the Web
site, as well as a model for user transactions.
We choose so that all site documents have links to

other documents, that is, they correspond to HTML
documents. The fanout of each node, that is, the
number of its outgoing links to other nodes of the
same site, is a random variable uniformly distributed
in the interval [1..NFanout], where NFanout is a pa-
rameter for the model. The target nodes of these links
are uniformly selected from the site nodes. If some
nodes have no incoming links after the termination
of the procedure, then they are linked to the node
with the greatest fanout. With respect to document
sizes, following the model proposed in [6], we set the
maximum size equal to 133KB and assign sizes drawn
from a lognormal distribution7 with mean value equal
to 9.357KB and variance equal to 1.318KB.
In simulating user transactions, we generated a

pool of P paths (“pattern paths”, in the sequel).
Each path is a sequence of linked in the site and
pairwise distinct Web server documents, and will be
used as “seeds” for generating the transactions. Each
of these paths is comprised of 4 nodes (documents),
simulating the minimum length of a transaction. The
paths are created in groups. Each group comprises
a tree. The paths are actually the full length paths
found in these trees. The fanout of the internal tree
nodes is controlled by the parameter bf . Varying this
parameter we are able to control the ‘interweaving’
of the paths. The nodes of these trees are selected
using either the 80-20 fractal law or from the nodes

7Without loss of generality, we assume that HTML files are
small files. Thus, according to [6] their sizes follow a lognormal
distribution.



that were used in the trees created so far. The per-
centage of these nodes is controlled by the parameter
order, which determines the percentage of node de-
pendencies that are non-first order dependencies. For
example, 60% order means that 60% of the dependen-
cies are non-first order dependencies. Thus, varying
this parameter, we can control the order of the de-
pendencies between the nodes in the path. The use
of the fractal law results in some nodes to be selected
more frequently than others. This fact reflects the
different popularity of the site documents, creating
the so-called “hot” documents.

In order to create the transactions, we first asso-
ciate a weight with each path in the pool. This weight
corresponds to the probability that this path will be
picked as the “seed” for a transaction. This weight
is picked from an exponential distribution with unit
mean, and is then normalized so that the sum of
the weights for all the paths equals 1. A transac-
tion is created as follows. First, we pick a path, say
〈A, B, C, x〉, tossing a P -sided weighted coin, where
the weight for a side is the probability of picking the
associated path. Then, starting from node A we try
to find a path leading to node B or with probabil-
ity corProb to node C, whose length is determined
by a random variable, following a lognormal distribu-
tion, whose mean and variance are parameters of the
model. This procedure is repeated for every node of
the initial path except from those that, with probabil-
ity corProb, were excluded from the path. The mean
and variance of the lognormal distribution determine
the “noise” inserted in each transaction. Low values
for mean and variance leave the transaction prac-
tically unchanged with respect to its pattern path,
whereas larger values increase its length with respect
to the pattern path. Table 1 summarizes the param-
eters of the generator.

N Number of site nodes

NFanout Max num of nodes’ links

T Number of transactions

P Number of pattern paths

bf Branching factor of the trees

order Order of the dependencies

noiseMean Mean value of the noise

noiseV ar Variance of the noise

corProb Prob. excluding a path pattern

Table 1: The parameters for the generator.

4.2 Comparison of all algorithms

In order to carry out the experiments we generated
a number of workloads. Each workload consisted of
T=100,000 transactions. From these, 35,000 trans-
actions were used to train the algorithms and the
rest to evaluate their performance. The number of
documents of the site for all workloads was fixed to
N=1000 and the maximum fanout to NFanout=100,
so as to simulate a dense site. The branching factor
was set to bf=4 to simulate relatively low correlation
between the paths. The number of paths of the pool
for all workloads was fixed to P=1000. With several
experiments, not shown in this report, it was found
that varying the values of the parameters P and N
does not affect the relative performance of the con-
sidered algorithms. For all the experiments presented
here, the order of the PPM algorithm was set equal to
5, so as to capture both low and higher order depen-
dencies. For the experiments, the lookahead window
of the DG algorithm was set equal to the length of
the processed transaction, in order to be fair with re-
spect to the other three algorithms. Also, in order to
decouple the performance of the algorithms from the
interference of the cache, we flushed it after the com-
pletion of each transaction. Each measurement in the
figures that follow is the average of 5 different runs.
At this point, we must note that the used perfor-
mance measures are not independent. For example,
there is a strong dependence between usefulness and
network traffic. An increase in the former cannot be
achieved without an analogous increase in the latter.
This characteristic is very important for the interpre-
tation of the figures to be presented in the sequel. In
order to make safe judgments about the relative per-
formance of the algorithms, we must always examine
the two measures, while keeping fixed the value of the
third metric, usually the network traffic, for all the
considered algorithms.

The first set of experiments assessed the impact of
noise on the performance of the prediction schemes.
For this set of experiments, we selected a confidence
value such that each scheme incurred about 50% over-
head in network traffic (i.e., all methods were normal-
ized to the same network traffic, which is the measure
of resource utilization – the same applies also to the
forthcoming experiments). The confidence value for
DG and LBOT was set equal to 0.10, for PPM equal
to 0.25 and for the other two methods equal to 0.275
(for WMo and WM the support threshold was set to
0.1%, which used as the default value). The results
of this set of experiments are reported in the left part
of Figure 4. From these figures, it can be seen that
WMo clearly outperforms all algorithms in terms of
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Figure 4: Performance as a function of noise (left) and order (right).



accuracy and usefulness for the same network traf-
fic. It is better than PPM as much as 40% and than
DG as much as 100%, in terms of accuracy. PPM
is better than WMo for small values of noise, but it
achieves this in the expense of larger network traf-
fic. It can also be seen that the accuracy of WMo

is not affected by the increasing noise at all, imply-
ing that WMo makes correct predictions even at the
presence of high noise. The usefulness for all algo-
rithms drops with noise. In particular, the usefulness
of PPM drops more steeply for noise mean values
of up to 2.3. Beyond this value, usefulness for PPM
seems to be stabilized, but this is achieved in expense
of higher network traffic.
The second set of experiments evaluated the im-

pact of the varying order on the performance of the
methods. For this set of experiments, the confidence
value for each method was the same as in the last set,
whereas the mean value and variance of noise was set
to 2.15 and 0.8, respectively. The results of this set
of experiments are reported in the right part of Fig-
ure 4. The general result is that only DG and LBOT
are affected from the varying order, since in order to
keep its usefulness and accuracy in the same values,
they increase their network traffic. The rest of the al-
gorithms seem insensitive to the varying order with
WMo performing the best among them, in terms of
both accuracy and usefulness.
Next, we evaluated the benefits of the prefetching

algorithms for an LRU cache and compared it with
the performance of the same cache with no prefetch-
ing at all. For this experiment the range of cache
size was selected to be in the range of a few hundred
KBytes, to simulate the fact that not all, but only
a small part of the Web client cache is “dedicated”
to the Web server documents. The confidence was
set so that all algorithms incur network traffic 150%.
The results of this experiment are reported in Fig-
ure 5. From this figure, it is clear that prefetching
is beneficial, helping a cache to improve its hit ratio
as much as 50%. The figure shows that the hit ra-
tio increases steadily. This is due to the fact that,
when the cache size becomes large enough to hold all
the site documents, then any future reference will be
satisfied by the cache and its hit ratio will approach
100%. The same figure shows that interference due to
cache does not “blur” the relative performance of the
prefetching algorithms. Therefore, WMo outperforms
all other algorithms. The performance gap would be
wider in environments with higher noise and higher
order of dependencies between the accesses. For small
cache sizes, WMo, PPM and DG have similar perfor-
mance because for these sizes, the cache is not large
enough to hold all prefetched documents, and thus

many of them are replaced before they can be used.
On the other hand, for very large cache sizes, the per-
formance of all algorithms converges, since almost all
the site documents are cached, as explained before.
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4.3 Real Datasets

We conclude the evaluation of the examined prefetch-
ing algorithms by presenting some experiments that
were conducted using real web server traces. In the
following, due to space limitations, we present the re-
sults obtained from one trace, namely the ClarkNet
(available at http://ita.ee.lbl.gov/html/traces.html).
We used the first week of requests and we cleansed the
log (e.g., by removing CGI scripts, staled requests,
etc.). The user session time was set to 6 hours and
75% of the resulted transactions were used for train-
ing. The average transaction length was 7, with the
majority of the transactions having length smaller
than 5, so we set the order of the PPM prefetcher to
5 and the lookahead window of the DG prefetcher to
5. For WMo we turned off the structure-based prun-
ing criterion, since the site structure for this dataset
is not provided (however, for a real case application,
the site structure is easily obtainable).
Table 2 presents the results from this experiment.

The measurements where made so that the network
traffic incurred was the same for all algorithms. As
it is illustrated, WMo achieves better performance
than all the other algorithms, in all cases, in terms of
accuracy and usefulness. This also verifies the per-
formance results obtained from synthetic data. It
has to be noticed that publicly available log files, like
the ClarkNet (this log is from year 1995), are not
characterized by high connectivity and many alterna-
tive navigation possibilities, which impact the num-



DG (w=5) LBOT 5-order PPM WM WMo

T A U A U A U A U A U

1.9 0.13 0.12 0.08 0.075 0.19 0.17 0.07 0.06 0.20 0.18

1.8 0.16 0.13 0.09 0.072 0.20 0.17 0.05 0.04 0.22 0.17

1.7 0.19 0.13 0.10 0.070 0.22 0.14 0.06 0.04 0.24 0.17

1.6 0.16 0.11 0.05 0.035 0.23 0.13 0.07 0.04 0.27 0.17

1.5 0.11 0.06 0.06 0.032 0.25 0.12 0.08 0.04 0.29 0.15

Table 2: Comparison of prefetchers with real data

ber and the characteristics of the navigation patterns.
Thus, synthetic data can better simulate the latter
case, for which the performance gain obtained due
to prefetching is more significant, because this kind
of applications are high demanding (e.g., e-commerce
sites).

4.4 Efficiency of WMo

Finally, we examined the effectiveness of the proposed
pruning criterion. We use a synthetic dataset with
the same characteristics as the ones used in the ex-
periments of Section 4.2. This experiment compares
the proposed WMo algorithm with a version that does
not use pruning with respect to the site structure,
and is denoted as WMo/wp (WMo without pruning).
Moreover, we examined the WM algorithm (Apri-
ori algorithm for basket data), in order to provide
a comparatively evaluation of the result. Figure 6
illustrates the number of candidates for these meth-
ods with respect to the support threshold (given as a
percentage). As it is depicted, WMo significantly out-
performs both WMo/wp and WM for lower support
thresholds, where the number of candidates is larger.
For larger support thresholds, WMo still outperforms
WMo/wp and presents a comparative number of can-
didates with those produced by WM . Nevertheless,
as shown by the previous experiments, the perfor-
mance of WM for the overall prefetching purpose is
significantly lower than that of WMo.

The number of candidates significantly impacts the
performance of this type of algorithms. This is in ac-
cordance with related work on association rule min-
ing [3]. Therefore, the efficiency of WMo is improved
by the proposed pruning. Moreover, pruning is ef-
ficiently applied by considering the site structure in
every step of the rule discovery algorithm (see Section
3.2). Detailed experimental results on the execution
time of this procedure can been found in [28].
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5 Conclusions

We considered the problem of predictive Web
prefetching, that is, of deriving users’ future requests
for Web documents based on their previous requests.
Predictive prefetching suits the Web’s hypertextual
nature and reduces significantly the perceived la-
tency. Web prefetching has common characteristics
with other Web applications that involve prediction
of user accesses, like user profiling, recommender sys-
tems and design of adaptive web sites. Hence, the
proposed method can be easily extended to these kind
of applications.
We presented the important factors that affect the

performance of Web prefetching algorithms. The first
factor is the order of dependencies between Web doc-
ument accesses. The second is the interleaving of re-
quests belonging to patterns with random ones within
user transactions and the third one is the ordering of
requests. None of the existing approaches has con-
sidered the aforementioned factors altogether.
We proposed a new algorithm called WMo, whose

characteristics include all the above factors. It com-
pares favorably with previously proposed algorithms,



like PPM, DG and existing approaches from the ap-
plication of Web log mining to Web prefetching. Fur-
ther, the algorithm addresses efficiently the increased
number of candidates.
Using a synthetic data generator, the performance

results showed that for a variety of order and noise
distributions, WMo clearly outperforms the exist-
ing algorithms. In fact, for many workloads WMo

achieved large accuracy in prediction with quite low
overhead in network traffic. Additionally, WMo

proved to be very efficient in terms of reducing the
number of candidates. These results were validated
with experiments using a real Web trace.
In summary, WMo is a effective and efficient pre-

dictive Web prefetching algorithm. Future work in-
cludes:

• Investigation of the interaction between caching
and prefetching. The goal of such an effort would
be the development of adaptive Web caching
policies that dynamically evaluate the benefits of
prefetching and incorporate the prefetching de-
cisions with the replacement mechanism.

• The extension of the present work towards the
direction of using another data mining method,
namely clustering, as proposed in [37], to deal
with Web users access paths.
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