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Piezoelectric composites consisting of spherically anisotropic piezoelectric inclusions �i.e., piezoceramic
material� in an infinite nonpiezoelectric matrix under a uniform electric field are theoretically investigated.
Analytical solutions for the elastic displacements and the electric potentials are derived exactly. Taking account
of the coupling effects of elasticity, permittivity, and piezoelectricity, formulas are derived for the effective
dielectric and piezoelectric responses in the dilute limit. A piezoelectric response mechanism is revealed, in
which the effective piezoelectric response vanishes irrespective of how much spherically anisotropic piezo-
electric inclusions are inside. Moreover, the effective coupled responses of the piezoelectric composites show
that the effective dielectric responses decrease �increase� as the inclusion elastic �piezoelectric� constants
increase.
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I. INTRODUCTION

Piezoelectric composites have been extensively investi-
gated theoretically due to their technological importance.1–6

In particular, the effective responses of piezoelectric compos-
ites can be used to design smart materials, which have wide
applications in ultrasonic transducers, underwater acoustics,
biomedical imaging, etc.2 Due to these applications, the the-
oretical and experimental investigations of the effective
properties of piezoelectric composites become very impor-
tant. Recently, many authors focused their attention on the
analysis and estimation of the effective response of piezo-
electric composites based on various methods. For example,
Furukawa et al.7 gave approximate expressions for the effec-
tive piezoelectric response of 0–3 composites based on the
theoretical and experimental investigations. Under the as-
sumption of very large dielectric constant of the inclusions,
Jayasundere et al.8 derived an effective piezoelectric formula
for binary composites. Olson et al.9 and Wong et al.5,10,11

obtained explicit formulas for the effective piezoelectric co-
efficients for ferroelectric 0–3 composites and discussed the
effects of electric conductivity on the effective dielectric and
piezoelectric responses by effective-medium approximations.
For piezoelectric fibrous composites, Benveniste and
co-worker12–14 derived a set of results for discussing univer-
sal relations between the effective responses and the local
fields by means of uniform field and virtual work theorems.
In addition, using the Green’s function method and Eshelby’s
tensors, Chen,15 Wang,16 and Dunn and Taya17 discussed the
effective responses of the piezoelectric composites. While
the above investigations had made a significant contribution
to the analysis of the effective responses of piezoelectric
composites, there are, however, few analytical results for pi-
ezoelectric composites due to the complexity of the piezo-
electric problems. In this paper, we attempt to derive analyti-
cal solutions in the case of spherically anisotropic
piezoelectric inclusions embedded in an infinite nonpiezo-
electric matrix and to investigate the effective response
mechanism for this kind of composites.

This research has a practical background because there
are already many piezoelectric composites formed by piezo-
electric inclusions suspended in nonpiezoelectric matrix.
This kind of piezoelectric composites has been used in elec-
troelastic sensors. Theoretically, for transversely isotropic pi-
ezoelectric composites, Furukawa et al.18 and Furukawa and
Fukuda19 investigated the piezoelectric properties in the di-
lute limit, and Jiang et al.20 obtained closed-form solutions
for effective electroelastic moduli.

Despite spherically anisotropic piezoelectric materials
have not been prepared experimentally, they were investi-
gated theoretically by Kirichok21 and the vibration property
in rotating spherically anisotropic piezoceramic material was
studied by Chen and Ding.22 However, for spherically aniso-
tropic piezoelectric composites, there are no investigations of
their effective responses except for the elastoelectric field
and thermoelastic problem.23,24 Our aims are to study the
dielectric and piezoelectric responses of the spherically an-
isotropic piezoelectric composites and to disclose their re-
sponse mechanisms. In this paper, the piezoelectric compos-
ites with spherically anisotropic piezoelectric inclusions
suspended in nonpiezoelectric matrix are treated theoreti-
cally, and analytical solutions for the elastic displacement
and electric potential are derived. Based on these solutions,
the formulas for effective dielectric and piezoelectric con-
stants are formulated in the dilute limit of inclusion concen-
tration.

In Sec. II, analytical solutions for the elastic displacement
and the electric potentials are derived exactly for the spheri-
cally anisotropic piezoelectric composites having an isotro-
pic nonpiezoelectric matrix under a uniform electric field. In
Sec. III, effective dielectric and piezoelectric response for-
mulas are given in the dilute limit and numerical results are
performed to discuss the effects of elastic and piezoelectric
properties on the effective dielectric responses. In Sec. IV, a
brief conclusion is given.
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II. ANALYTICAL SOLUTIONS OF A SPHERICALLY
ANISOTROPIC PIEZOELECTRIC COMPOSITE

Consider an infinite isotropic nonpiezoelectric matrix con-
taining a spherically anisotropic piezoelectric particle, where
the origin of a spherical coordinate system is located at the
center of the spherical inclusion. The matrix is assumed to be
elastically and dielectrically isotropic. The constitutive equa-
tions in the inclusion and host regions are, respectively,

�ij
i = cijkl

i �kl
i − ekij

i Ek
i , Di

i = eikl
i �kl

i + �ik
i Ek

i in �i, �1�

�ij
h = cijkl

h �kl
h , Di

h = �ik
h Ek

h in �h, �2�

where �h ��i� denotes the region occupied by matrix �inclu-
sion�, the subscripts i , j ,k , l=1,2 ,3 denote the �, �, r direc-
tions, respectively, and the superscripts i and h denote the
quantities in the inclusion and the host regions, respectively.
�, �, D, and E are the stress, strain, electric displacement,
and electric field, respectively, and c, e, and � are the elastic
stiffness, piezoelectric coefficient, and dielectric constant, re-
spectively. In the absence of both the body forces and free
electric charges, the governing equations in the inclusion and
host regions are �ij,j

p =0 and Di,i
p =0 �p= i ,h�, and the bound-

ary conditions at the interface between inclusion and matrix
are the continuity of the elastic displacement, electric poten-
tial, normal traction, and electric displacement. In spherical
coordinates, the governing equations are
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In general, for a spherical particle with a radial polarization
�i.e., a spherically anisotropic piezoelectric particle�, the con-
stitutive relations in the inclusion region in spherical coordi-
nates are given as follows:1

��� = c11��� + c12��� + c13�rr − e31Er,

��� = c12��� + c11��� + c13�rr − e31Er,

�rr = c13��� + c13��� + c33�rr − e33Er,

��r = 2c44��r − e15E�,

�r� = 2c44�r� − e15E�,

��� = �c11 − c12����,

D� = 2e15�r� + �11E�,

D� = 2e15��r + �11E�,

Dr = e31��� + e31��� + e33�rr + �33Er, �3�

where we have omitted the superscript i �inclusion� for con-
venience. The subscripts i, j for the coefficients cij and eij in
Eqs. �3� are used according to Nye’s rule.1 Because the ma-
trix is a nonpiezoelectric and isotropic material, the constitu-
tive relations in the host region are obtained from Eqs. �3� by
simply omitting the piezoelectric coefficients eij and letting
cijkl=�	ij	kl+
�	ik	 jl+	il	 jk� and �11=�22=�33, where � and

 are the Lame constants and 	ij is the Kronecker delta. In
spherical coordinates, the strain tensor � can be expressed in
terms of the elastic displacements:
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In the following, we will derive analytical solutions for the
elastic displacement and the electric potential in the piezo-
electric composite under a uniform electric field E0 along the
ẑ direction.

In this case, owing to the symmetry about the ẑ axis, the
electric potential and the elastic displacement in the inclu-
sion region can be written as

ur
i = f1�r�cos �, u�

i = f2�r�sin �, u�
i = 0, �i = f3�r�cos � ,

�4�

where f i�r� are the unknown functions. Using the elastic
strain-displacement relations and substituting Eq. �4� into Eq.
�3�, we obtained three equations to determine these unknown
functions:

c33f1� + 2c33�f1�/r� + 2�c13 − c12 − c11 − c44��f1/r2�

+ �2c13 + 2c44��f2�/r� + 2�c13 − c12 − c11 − c44��f2/r2�

+ e33f3� + 2�e33 − e31��f3�/r� − 2e15�f3/r2� = 0, �5�

− �c44 + c13��f1�/r� + �− 2c44 − c11 − c12��f1/r2� + c44f2�

+ 2c44�f2�/r� + �− 2c44 − c11 − c12��f2/r2� − �e15 + e31�

��f3�/r� − 2e15�f3/r2� = 0, �6�
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e33f1� + 2�e31 + e33��f1�/r� + 2�e31 − e15��f1/r2� + 2�e31 + e15�

��f2�/r� + 2�e31 − e15��f2/r2� − �33f3� − 2�33�f3�/r�

+ 2�11�f3/r2� = 0, �7�

where we have used symbols f i� and f i� to denote the first-
order and the second-order derivatives with respect to the
radial variable r, respectively. These equations are rewritten
in a compact form,


 ji
2 Fi

2 + 
 ji
1 Fi

1 + 
 ji
0 Fi

0 = 0, j = 1,2,3, �8�

where Fi
2= f i��r�, Fi

1= �f i��r� /r�, and Fi
0= �f i�r� /r2�. The coef-

ficients 
ij
2 , 
ij

1 , and 
ij
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33
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The unknown functions can be solved simply by setting
f i�r�=Air

t and substituting them into Eq. �8�, and the proce-
dure leads to

� jiAi = 0, j = 1,2,3, �9�

where the matrix � ji�
 ji
2 t�t−1�+
 ji

1 t+
 ji
0 . For nontrivial co-

efficients Ai, the condition ��ij�=0 must be satisfied, and t
can be solved from this condition. Let t1

+, t2
+, and t3

+ denote
the three real roots of Eq. �9�. Thus, we have
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+,1rt1

+
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+
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+
. �10�

In fact, the coefficients A1
+,j and A2

+,j can be expressed in
terms of A3

+,j:

A1
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j �tj
+�A3

+,j ,

A2
+,j = �2,3
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+�A3

+,j ,

where �1,3
j �tj

+� and �2,3
j �tj

+� �j=1,2 ,3� are solved from Eq.
�9�. The unknown coefficients A3

+,j are determined by apply-
ing the boundary conditions, i.e., matching with the solutions
for the host regions. The elastic displacement, electric poten-
tial, stress, and electric displacement in inclusion region can
be expressed in terms of the unknown coefficients A3

+,j:
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where the new notations are defined by

�rr
k = �2c13�1,3

k + 2c13�2,3
k + c33�1,3

k tk
+ + e33tk

+� ,

�r�
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k − e15� ,
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As the host region is an isotropic material, the elastic
displacement and the electric potential under an external
electric field along the ẑ direction can be obtained by using
Goodier’s method,25

ur
h = �− 2

B1

r2 − 2B2 + �−1B2� cos �

r
,

u�
h = − �B1

r2 + B2� sin �

r
,

�h = �− E0r + B3/r2�cos � , �12�

where �−1= �10–12�h� / �3–4�h�, 2�h=�h / �
h+�h�. Here �h

and 
h are the Lame constants in the host region. The un-
known coefficients Bi can be determined by applying the
boundary conditions. The elastic stress tensor and electric
displacement in the host region are given by

�rr
h = 2
h�	2 − 8�h

1 − 2�h +
− 1 + 3�h

1 − 2�h �−1
B2 + 6
B1

r2 � cos �
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h�6B1

r2 + 4B2 − �−1B2� sin �

r2 ,

Dr
h = �h�E0 + 2B3/r3�cos � . �13�

Next, we apply the boundary conditions at the surface of
inclusion to solve the unknown coefficients A3

+,j and Bi. The
boundary conditions at the surface of a spherical inclusion
with radius a are as follows:

ur
i�r� = �ur

h�r��r=a, u�
i �r� = �u�

h�r��r=a,

u�
i �r� = �u�
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i �r� = ��r�

h �r��r=a, �r�
i �r� = ��r�

h �r��r=a,
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�i�r� = ��h�r��r=a, Dr
i�r� = �Dr

h�r��r=a.

Thus, we obtained a set of algebraic equations for the six
unknown coefficients A3

+,j and Bi:
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where the new notations are defined by
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k /�2
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1
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k�2 − 8�h + �−1�3�h − 1��/�1 − 2�h� ,


1
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k /
h − 6
1
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2

k ,

�̄D
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k /�h.

Therefore, analytical solutions of the piezoelectric com-
posite under an electric field along the ẑ direction are de-
rived. Similarly, the analytical solutions for an electric field
in the x̂ direction can be derived.

III. EFFECTIVE DIELECTRIC AND PIEZOELECTRIC
RESPONSES

Based on the analytical solutions for the elastic displace-
ments and the electric potentials for the piezoelectric com-
posites, we will formulate a set of formulas to evaluate the
effective dielectric constant �e, the effective elastic moduli
ce, and the effective piezoelectric constant ee in these sys-
tems. As usual, these effective constants are connected by the

effective constitutive relations: �̄ij =cijkl
e �̄kl−ekij

e Ēk and D̄i

=eikl
e �̄kl+�ik

e Ēk, where Ā=1/V��i+�h
AdV, and V is the total

volume occupied by the composite. We build a set of equa-
tions to calculate the averages of these quantities,

1

V
�

�i

��cijkl
i − cijkl

h ��kl − �ekij
i − ekij

h �Ek�dV

= �̄ij − cijkl
h �̄kl + ekij

h Ē , �15�

1

V
�

�i

��eikl
i − eikl

h ��kl + ��ik
i − �ik

h �Ek�dV = D̄i − eikl
h �̄kl − �ik

h Ēk.

�16�

Combining effective constitutive equations with Eqs. �15�
and �16�, we obtain

eikl
e �̄kl + �ik

e Ēk = �ik
h Ēk +

1

V
�

�i

�eikl
i �kl + ��ik

i − �ik
h �Ek�dV ,

�17�

cijkl
e �̄kl − ekij

e Ēk = cijkl
h �̄kl +

1

V
�

�i

��cijkl
i − cijkl

h ��kl − ekij
i Ek�dV .

�18�

In order to estimate the effective dielectric constant �zz
e ,

we apply an electric field E0 along the ẑ direction. At dilute
limit of the inclusion concentration, the formula for this ef-
fective dielectric constant is

�zz
e = �zz

h +
1

VE0
�

�i

�ezkl
i �kl + ��zk

i − �zk
h �Ek�dV, k,l = x,y,z .

�19�

Meanwhile, the piezoelectric constant ezij
e can be estimated

as well,

ezij
e = −

1

VE0
�

�i

��cijkl
i − cijkl

h ��kl − ekij
i Ek�dV, i, j,k,l = x,y,z .

�20�

Here, the quantities in Eqs. �19� and �20� are expressed in the
Cartesian coordinates. Using transformations between the
components in the spherical coordinates and the Cartesian
coordinates, we have

Dz
i = �e31��� + e31��� + e33�rr + �33Er�cos � − �2e15�r�

+ �11E��sin � . �21�

Furthermore, we get the following formulas:

�zk
h Ek = �rk

h Ek cos � − ��k
h Ek sin � , �22�

ezkl
i �kl = �e31��� + e31��� + e33�rr�cos � − �2e15�r��sin � .

�23�

Substituting Eqs. �21�–�23� into Eq. �19�, we derive the ana-
lytical formula for the effective dielectric constant,

�zz
e = �h − p��rr − �h��A3

+,1�1t1
+ + A3

+,2�2t2
+ + A3

+,3�3t3
+� − 2p����

− �h��A3
+,1�1 + A3

+,2�2 + A3
+,3�3� + p��1A3

+,1 + �2A3
+,2

+ �3A3
+,3� − 2pe15��1A3

+,1 + �2A3
+,2 + �3A3

+,3� , �24�

where p is the volume fraction of the inclusions, and the
definitions of the new notations are

�k = atk
+−1/�tk

+ + 2� ,
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�k = atk
+−1�2e31��1,3

k + �2,3
k � + e33tk

+�1,3
k �/�tk

+ + 2� ,

�k = atk
+−1�− �1,3

k − �2,3
k + tk

+�2,3
k �/�tk

+ + 2� .

Equation �20� can be applied to estimate the effective pi-
ezoelectric response ezij

e �i , j=x ,y ,z�. For example, ezzz
e in the

dilute limit is

ezzz
e = −

1

VE0
�

�i

��czzkl
i − czzkl

h ��kl − ekzz
i Ek�dV . �25�

With the tensor transformations between the spherical coor-
dinates and the Cartesian coordinates, we have

�zz
i = �c13��� + c13��� + c33�rr − e33Er�cos2 � − 2�2c44�r�

− e15E��cos � sin � + �c11��� + c12��� + c13�rr

− e31Er�sin2 � .

Substituting this formula into Eqs. �23� and �25� and consid-
ering the orthogonality, we can show

ezzz
e = 0. �26�

Similarly, we have derived ezij
e =0 �i , j=x ,y ,z�. By applying

electric field along the x̂ direction, we can show that the
effective piezoelectric constants exij

e and eyij
e �i , j=x ,y ,z�

vanish as well. The effective piezoelectric responses that
vanish in this case are due to the symmetry of spherically
anisotropic piezoelectric composite system. When the spheri-
cally symmetry of the system is destroyed, the bulk effective
piezoelectric properties will appear. For example, if a trans-
versely isotropic piezoelectric spherical inclusion is im-
mersed in a nonpiezoelectric matrix, there will be effective
piezoelectric responses.20

In order to discuss the coupling effects of the elastic and
piezoelectric properties on the effective dielectric constant,
the effective dielectric constant �zz

e is calculated and the re-
sults are shown in Fig. 1. The volume fraction of the inclu-
sion is p=0.1, and the elastic moduli and dielectric constant
of the host material are �h=0.25, 
h=32 GPa, and �h=6
�10−9 C2 N−1 m−2. For the spherical inclusions, we
introduce n to denote the variations in the elastic, piezoelec-
tric, and dielectric constants: c11=16.6�n�GPa, c33
=16.2�n�GPa, c12=7.7�n�GPa, c44=4.3�n�GPa,
c13=7.8�n�GPa, e31=−0.44�n�C m−2, e33=1.86�n
�C m−2, e15=1.16�n�C m−2, ���=���=�rr=1.12�n
�10−9 C2 N−1 m−2. In Fig. 1, the value of n is varied from 1
to 20 to show the effects on effective constants of the piezo-
electric composite. For the “Elastic effect” curve in Fig. 1, n
in elastic moduli varies from 1 to 20, while its value in
dielectric and piezoelectric constants is set at 10. For the
“Piezoelectric effect” curve in Fig. 1, n in piezoelectric co-
efficient varies from 1 to 20, while its value in dielectric
constants and elastic moduli is taken as 10. For the “Dielec-
tric effect” curve in Fig. 1, the value of n in dielectric con-
stant changes from 1 to 20, and its value in piezoelectric
constants is chosen as 10.

In order to test these formulas, we calculate the pure di-
electric effect by using Eq. �24� and setting the piezoelectric
constants zero. Thus, we can compare the result of Eq. �24�

with that of classical Maxwell’s effective dielectric response
formula of spherical composites in the dilute limit. Excellent
agreement is, indeed, shown in Fig. 1, where the dashed line
and the solid line represent the results of Eq. �24� and Max-
well’s dilute formula, respectively. The square-solid line
�elastic effect� denotes the effect of the particle elastic
moduli on the effective dielectric constant. It is clear that the
effective dielectric constant decreases as the elastic moduli
increase. This means that the elastic property of piezoelectric
composites will reduce the bulk effective dielectric behavior.
The effect of the piezoelectric property of inclusions on the
effective dielectric property is denoted by the triangular-solid
line �piezoelectric effect� in Fig. 1. The result shows that
increasing the piezoelectric constant of the inclusion material
enhances the effective dielectric constant. Of course, the ef-
fective dielectric constant also increases with the dielectric
constant of inclusions. This is denoted by the circular-solid
line in Fig. 1. In addition, we find that the effective dielectric
response of the piezoelectric composite with fixed elastic and
piezoelectric constants is larger than that of a pure dielectric
composite by comparing the circular-solid line �piezoelectric
composites having fixed elastic and piezoelectric constants�
with the dashed line or the solid line �pure dielectric com-
posites without piezoelectric properties�. Moreover, for a
fixed piezoelectric constant of the particles �n is set at 10�,
decreasing in elastic stiffness may induce a higher effective
dielectric constant, as indicated by the square-solid line and
the solid line in Fig. 1. These results show that the dielectric
response of a piezoelectric composite is much more complex
than that of a nonpiezoelectric composite. The results also
indicate that there are, indeed, complex correlation and inter-
actions among the elastic, the piezoelectric, and the dielectric
properties.

IV. CONCLUSIONS

Spherically anisotropic piezoelectric composites having a
nonpiezoelectric matrix are investigated theoretically, and

FIG. 1. The effective dielectric constants �zz
e /�h versus the pa-

rameter factor n.
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analytical solutions of the elastic displacement fields and
electric potentials under an external electric field are derived.
In the dilute limit, we have derived the effective dielectric
and piezoelectric response formulas. The present work shows
that spherically anisotropic piezoelectric composites do not
have the bulk piezoelectric behavior due to the symmetry of
the composite system and the radial polarization of the
spherical particles. This means that piezoceramic composites
can be designed for technological applications and the di-
electric response of the composite can be enhanced by in-
creasing the particle piezoelectric properties. However, we
also found that if the elastic stiffness of the particles is too
large, the effective dielectric response will be reduced. Also,
we noted that if the elastic stiffness of the piezoelectric par-
ticles is reduced, it may increase the effective dielectric re-
sponse because of the higher piezoelectric properties. This
implies that the piezoelectric property of the particle material
plays an important role in the coupled effective response of a
piezoelectric composite. Moreover, based on the analytical
solutions obtained, the effective response at higher concen-

tration of the inclusions can be developed by means of an
effective-medium approximation.

In this paper, we have derived the exact solution of the
spherically anisotropic composites with nonpiezoelectric ma-
trix. Furthermore, the spherically anisotropic properties of
piezoelectric inclusions imply gradient profiles of properties
in Cartesian coordinates. Thus, based on our results, one can
also study the graded piezoelectric composites having graded
inclusion materials,26–30 so that the effective elastic, dielec-
tric, and piezoelectric properties are controllable by changing
the external electric field or the gradient profile of the mate-
rials. Furthermore, the nonlinear piezoelectric composites
can be investigated because the electroelastic interactions are
related to the nonlinear dielectric responses.31–35
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