Effective Proximity Retrieval

by Ordering Permutations

EDGAR CHAVEZ, Universidad Michoacana, Mexico
KARINA FIGUEROA, Universidad Michoacana, Mexico,

and Universidad de Chile, Chile

GONZALO NAVARRO, Universidad de Chile, Chile

Supported by CONACyT (first and second author) and Millenmiducleus Center for Web Research, Grant P04-067-F,
Mideplan, Chile (second and third author). A preliminarytsa version of this paper appearedRmnoc. 4th Mexican International
Conference on Atrtificial Intelligence (MICAI 20Q5)p. 405-414, LNAI Series vol. 3789.

September 3, 2007 DRAFT

Abstract

We introduce a new probabilistic proximity search algaritfor range and<-nearest neighbot(-
NN) searching in both coordinate and metric spaces. Althahgre exist solutions for these problems,
they boil down to a linear scan when the space is intringidailjh-dimensional, as is the case in many
pattern recognition tasks. This, for example, rendersARBIN approach to classification rather slow
in large databases.

Our novel idea is to predict closeness between elementsdingdo how they order their distances
towards a distinguished set of anchor objects. Each eleinght space sorts the anchor objects from
closest to farthest to it, and the similarity between ordaras out to be an excellent predictor of the
closeness between the corresponding elements.

We present extensive experiments comparing our methodstgaate-of-the-art exact and approxi-
mate techniques, both in synthetic and real, metric andmetrnic databases, measuring both CPU time
and distance computations. The experiments demonstrateotit technique almost always improves

upon the performance of alternative techniques, in someschg a wide margin.

I. INTRODUCTION

The classical Pattern Recognition process has three magest segmentation, feature ex-
traction, and classification [29]. Segmentation consi$tsxtracting the individual objects from
the digitalized data. Feature extraction consists in mapphhe digital objects onto a (usually
high-dimensional) vector space, where each coordinatesepts the degree of presence of a
certain feature in the object. Classification consists sfggsng each object to one out of a set
of predefined classes of objects. This model encompassesetempattern recognition tasks such
as speech recognition, speaker identification, signataehing, handwriting recognition, face
recognition, biometric identification, and so on [22].

Feature extraction converts the original classificatioobfgm into a geometric problem.
Objects in the same class tend to be spatially close if theufes are selected properly. The
most popular classification techniques, such as suppotbivetachines, neural networks, &f
nearest neighbors, are defined in terms of geometry. Amarggi’ nearest neighborgs(-NN)
classifiers are attractive because the training is implicit

The K-NN approach translates the problem of classification inpsaximity searchproblem

(find the K representative objects closest to a new given element) igladimensional feature

2

space. Unfortunately, current methods for proximity seig suffer from the so-calledurse of
dimensionality{16]: Any method for proximity searching, no matter how welivorks in low
dimensionalities, ends up scanning the whole set of objactsgh dimensionalities. Dimen-
sionality reduction techniques are effective and wellsknpbut they pose an extra overhead on
the system when the datairstrinsically high-dimensional, and the classification accuracy will
drop if the distances in the lower dimensional space are et pveserved. That is, the data
will be miss-classified when using /&-NN approach in a mapped space distorting the original
distances.

To avoid mapping onto a lower dimensional space, an abstreattic could be defined
among objects (e.g., the edit distance or dynamic time wgrpdp match sequences) and can
be transparently used as a black box i'a@N classifier. In some cases this is preferred over
either mapping onto a vector space (to classify with a nenefvork) or defining a suitable
kernel function (to classify with a kernel-based supportoe machine).

In the so-calledmetric spacesintrinsic dimensionality can be defined in many ways, for
example as the minimum dimensionality of a vector space waich the metric space objects
can be mapped without distorting much their pairwise disganHigh-dimensional metric spaces
have a concentrated histogram of distances, and just asgbadimhensional vector spaces, no
proximity search algorithm can avoid comparing the quersiragt all of the database.

Apart from classification, there are many other applicataweas for proximity searching:
searching for similar objects in multimedia databasestcb@ag for similar documents in in-
formation retrieval, searching for similar biological seqces in computational biology, data
prediction, correction, or compression in signal proaggsand so on. In all cases, the general
model is that of a black-box database of objects that can bprpressed so as to answer
proximity queries against new objects that are given latbe only tool to obtain information
from the objects is the computation of their distance towaother objects. The curse of
dimensionality shows up in all these applications as welimany cases rendering index-based
methods as bad as a linear scan over the database or even worse

Such a linear scan does not scale well when the set of objectgdrch is large or the

distance function is computationally expensive. Différeslaxations on the precision of the

result have been proposed in order to obtain a computalyofeasible solution in those cases.
This is calledinexact proximity searchings opposed to the classi@dact proximity searching
Inexact proximity searching is reasonable in many appboat because the feature-extraction
or the metric-space modelizations already involve an appration to reality, and therefore a
second approximation at search time is usually acceptable.

In the literature we find basically two alternatives for iaek proximity searching. A first
one uses a distance relaxation parameter: It is ensuredhinalistance to the nearest neighbor
answer they find is at most+ ¢ times the distance to the true nearest neighbor. This qones
to approximation algorithms in the usual algorithmic sersse is considered in depth in [41],
[16], [18]. A second alternative takes a probabilistic agmh, ensuring that the answer of the
algorithm is correct with high probability. This corresmento probabilistic algorithms in the
usual algorithmic sense. A generic method to convert exdatarobabilistic algorithms is studied
in [14], [10].

In this paper we present a new probabilistic proximity seaatgorithm for metric spaces
(which include vector spaces as a particular case). Theatddea is to predict the closeness
between any two objects in a metric space by comparing thetihese two objects order their
distances towards a set of anchor objects cgllesnutants The index does not store any actual
distance, but just permutations of the anchor objects asepexd by each database element.

We show that the similarity among permutations is a remdykgood predictor of the
proximity among the corresponding objects. Thus, the d@de@abcan be traversed from the
permutation most to the least similar to the permutationhef query object, and we expect
to find early most of the relevant answers.

The probabilistic algorithm that results from traversingigen percentage of the database and
returning the closest elements seen up to then, is extrezffedient and outperforms any existing
alternative we are aware of. This is remarkable because thleeady exist very successful
probabilistic techniques. We also tested our technique nwe-metric databases, using quasi-
distances where the triangle inequality does not hold, andd that the retrieval effectiveness

is comparable to that on metric databases.

[I. BASIC CONCEPTS ANDRELATED WORK
A. Basic Terminology

Formally, the proximity searching problem may be stated d®ws: There is a universe
X of objects and a nonnegativdistance function : X x X — R* defined among them.
The distance satisfies the axioms that make the seetic space reflexivity (d(x,z) = 0),
strict positivenessy(# y = d(z,y) > 0), symmetry {(z,y) = d(y,x)) and triangle inequality
(d(z,z) < d(x,y) + d(y, z)). This distance is assumed to be expensive to compute (tfonk
instance, in comparing two fingerprints). We have a fidig¢abasdU C X, of sizen, which is a
subset of the universe of objects. The goal is to preprodessdtabasé to efficiently answer
(i.e., with as few distance computations as possitdage queriesand K -nearest neighbor K -
NN) queries. Range queries are expressef;as (a point inX and a tolerance radius), which
should retrieve all the database points at distance less fromg, i.e., {u € U, d(u,q) < r}.
On the other handi-nearest neighbor queries retrieve thieelements ofU that are closest to
q.

Most of the existing approaches to solve the search probteexact algorithmsvhich retrieve
exactly the elements dfl as specified above. In [16], [27], [38], [44] most of those raaghes
are surveyed and explained in detail. It is usually easiatetsign range search algorithms, and

then apply standard techniques to deriveNN search algorithms from those.

B. Inexact Proximity Searching

In this work we are interested in inexact algorithms, whielax the condition of delivering
the exact solution. This relaxation uses, in addition to glery, aprecision parameters to
control how far away (in some sense) can the outcome of theydreefrom the correct result.

Approximation algorithms are surveyed in depth in [41]. A@ammple is [4], which proposes a
data structure for vector spaces under Minkowski metficsThe structure, called the BBD-tree,
is inspired inkd-trees and can be used to finfl “+) nearest neighbors”: instead of finding
such thatd(u, q) < d(v,q) Yv € U, they findu* such thatd(u*, q) < (1 + ¢)d(v,q) Vv € U.

The essential idea behind this algorithm is to locate theyquén a cell (each leaf in the tree

is associated with a cell in the decomposition). Every pwiside that cell is processed so as to

obtain the nearest neighboiof ¢ within the cell. The search continues with neighboringseatid
stops when the radius of a ball centered and intersecting any cell not yet considered exceeds
d(q,u)/(1+ ¢). The query time isO([1+ 6D /<] Dlogn), where D is the dimensionality of
the space.

Probabilistic algorithms have been proposed both for vespaces [4], [43], [41], [23] and
for general metric spaces [20], [18], [14], [10]. We survefew of them.

In [43], the data structure is a standakd-tree. The author uses “aggressive pruning” to
improve the performance. The idea is to increase the nunilianches pruned at the expense of
losing some candidate points in the process. This is doneameolled way, so the probability of
success is always known. The data structure is useful foinfyianited-radius nearest neighbors,
that is, nearest neighbors within a fixed distance to theyquer

In [23] the distance between two vectors is approximated bgrevex combination of ahape
measure of the vectors and their magnitudes. The shape redasisome resemblances with our
technique, as they sort the coordinates of vectors by istargavalue. Yet, our method applies
to the more general metric spaces, and does not use any lemqit@the magnitudes.

In [20], the author chooses a “training set” of queries anittbla data structure able to answer
correctly only queries belonging to the training set. Thesids that this setup is enough to answer
correctly, with high probability, an arbitrary query. Undsme probabilistic assumptions on the
distribution of the queries, it is shown that the probapitif not finding the nearest neighbor
is O((logn)?/k), wherek can be made arbitrarily large at the expenseX¢fna) space and
O(kalogn) expected search time. Heteis the logarithm of the ratio between the farthest and
the nearest pairs of points in the unionfand the training set.

In [10], the authors use a technique to obtain probabiligkyorithms that is relevant to this
work. They use different techniques $ort the databasaccording to som@romise valueAs
they traverse the database in such order, they obtain mdrmare relevant answers to the query.
In other words, given a limited amount of work allowed, thgaalthm finds each correct answer
with some probability, and it can improve the answer incretakly if more work is allowed. A
good database ordering is one that obtains most of the rélerswers by traversing a small

fraction of the database. Thus, the problem of finding a gomdabilistic search algorithm

translates into finding a good ordering of the database gavgueryq. Our contribution in this
paper falls within this general approach.

Finally, there are approaches that combine approximatnmhpaobabilistic techniques, such
as the PAC (probably approximately correct) method [17]sTi& also the case of [14], which
present a general method based on stretching the triangdgiafity.

C. Indexing

All metric space search algorithms rely on emlex that is, a data structure that maintains
some information on the database in order to save some distavaluations at search time.
There exist two main types of data organizations [16], wvighcover next.

1) Pivoting SchemesA pivot is a distinguished database element, whose distance to some
other elements is precomputed and stored in an index. Iredbat we have precomputé(p,)
for some pivotp and everyu € U. At search time, for a range query with radiuswe compute
d(p, q). Then, by the triangle inequality(q, u) > |d(p, q) — d(p,u)|, so if |d(p, q) — d(p,u)| > r
we know thatd(q,u) > r, thusu can be filtered out without need of computing distadge u).

The most basic pivoting scheme choogegivots p; ...p, and computes all the distances
d(pi,u), u € U, into a table ofkn entries. Then, at query time, all the distancesd(p;, q)
are computed and every elementsuch thatD(q,u) = max;—y_x |d(pi,q) — d(p;,u)| > r is
discarded. Finallyg is compared against the elements not discarded.

As k grows, we have to pay more comparisons against pivots/iyt«) becomes closer to
d(q,u) and more elements may be discarded. It can be shown thatithaneoptimum number
of pivots k£*, which grows fast with the dimensionality and becomes duiagkreachable because
of memory limitations. In all but the easiest metric space® simply uses as many pivots as
memory permits. There exist many variations over the bataea,i including different ways to
store the table ofn entries to reduce extra CPU time, e.g. [13], [11], [32], [BR].

Several tree data structures are built on the same pivotingept, e.g. [42], [9], [30]. In most
of them, a pivot is chosen as the root of a tree, and its subtrees correspoaddes ofi(p, u)
values, being recursively structured. In some cases the distances!(p, «) are not stored, just
the range can be inferred from the subtree the elemestin. Albeit this reduces the accuracy

of the index, the tree usually take&3(n) space instead of th&(kn) needed withk pivots.

7

Moreover, every internal node is a partial pivot (which kisosistances to its subtree elements
only), so we actually have many more pivots (albeit local aith coarse data). Finally, the
trees can be traversed using sublinear extra CPU time.

Different tree variants arise according to the tree aritibs way the ranges of distances are
chosen (trying to balance the tree or not), how local are et (different nodes can share
pivots, which do not belong anymore to the subtree), the rmaurobpivots per node, and so on.
Very little is known about which is best. For example, thedgol rule of preferring balanced
trees, which works well for exact searching, becomes a padreice against unbalancing as
the dimensionality increases. For very high dimensiontd dagood structure is almost a linked
list (i.e., a degenerate tree) [15]. Also, little is knowrabhow to choose the pivots.

2) Local Partitioning SchemesAnother scheme builds on the idea of dividing the database
into spatially compact groups, meaning that the elemen&aah group are close to each other.
A representative is chosen from each group, so that congparagainst the representative has
good chances of discarding the whole group without furtieengarisons. Usually these schemes
are hierarchical, so that groups are recursively divided subgroups.

Two main ways exist to define the groups. One can define “c&ntath a covering radius,
so that all elements in its group are within the coveringuadiistance to the center, e.g. [19].
If a group has center and covering radius. then, ifd(q, c) > r + r., the whole group can be
discarded. The geometric shape of the above scheme condsspm a ball centered arournd

In the second approach, e.g. [8], [33], a set of centers isanand every other point is added
to the group of its closest center. At query timegifs closest to centet;, andd(q, c;) —r >
d(q,c;) + r, then we can discard the whole group@f The geometric shape in this approach
corresponds to a Dirichlet domain of the space (a genetaizaf the Voronoi diagram for

metric spaces), without overlaps between groups.

IIl. AN EFFECTIVE INDEX BASED ON ORDERING PERMUTATIONS

Since the objects in the metric space are seen as black bhoxesvhich we can only compute
their distances toward other objects, all indexes in therdiure are bound to store distance
information. Actually, the most information an index cawrst is then x n matrix of all the

distances among objectslh This is actually what algorithm AESA [40], a pivot-basedtieme,

8

pivot-based algorithms
P P2 P3

Uy

Distances

Distance Matrix

Uy Ug ?%

U,

r
S
e G

U

U,

Us

u, - .
51| I (I permutation—based algorithms

Uz
Ug Up [P Py P
U U, Uy Uy, Ug Ug Uy Ug Uz | Py| P3| P2
Us | P3| py| P

Uy [Py Py| P

Us | Py| Po| P

Us | P2| Pg| Py

U7 | p3| Pl P2

Us [P3| P2| Py

Fig. 1. On the left, the matrix of all distanceslih On the right, on top, a pivot-based algorithm chooses sasherms of the
distance matrix. On the bottom right, our algorithm onlyawets the order of the pivots, from closest to farthest to feenent.
Actually, only the permutation is stored, so for example skeond row is stored as 1,3,2.

stores as its index. This makes AESA an unbeatable exactitalgo yet usually impractical
because of its high storage consumption.

The design of metric space indexes can be regarded as a queste the most useful data
from the distance matrix within bounded space. Pivot-basddxes storé: columns from the
full distance matrix, that is, for each element they stosalistances té fixed pivots. Clustering
algorithms store only some of the smallest distances in theixpthat is, for each cluster center
they store the distances to the elements in that clustereSdgorithms do not store the actual
distances but just a range containing them, so as to store distances with less precision.

Within this framework, our approach can be stated as follaes choosé columns from the
distance matrix and store, for each row, the order in whicé golumns are read to obtain the
distances in increasing orde€Compared to a classical pivot-based scheme, we do not $tere t
exact distances, but just the order in which each databaseeak sees the pivots, from closest
to farthest to the element. That is, to each element we adsoapermutationof the & pivots.

Figure 1 illustrates.

Just as two close elements will have similar distances totpjwclose elements will see the
pivots in similar order of closeness, and thus will have Empermutations. A difference in the
order between two permutations will hint that the corresjiog elements are not too close to
each other. However, those differences do not permit usdeephow far away from the query

is a database element, thus we will obtain a probabilisgorahm.

A. Overview of Our Method

We need a bit of terminology. Lét C U be a set of distinguished objects from the database,
called permutants Each element of the space, € X, defines apermutationIl,, where the
elements off are written in increasing order of distancettories are broken using any consistent
order, for example the order of the elementsPin

Definition 1: Let P = {p;y, po,...,pr} andz € X. Then we defindl, as a permutation of
(1...k) so that, for alll <i < k it holds eitherd(pu,), x) < d(pm,(it1),), OF d(p,), ©) =
d(pr, (i+1), ©) andIl, (i) < I, (z + 1).

We are now ready to describe the indexing process, the indestgre, and the search process.

1) Indexing: Our index will be just the permutatiori$, for everyu € U, with respect to a
set of permutant® = {py,...,px} C U.

The construction of the index is carried out as follows:

1) We choose a parametér which is the number of permutants to use. The largethe
more effective the index, but it will need more spaée [log, k] bits) and also sorting
the database to traverse it in the desired order will be slowe

2) We chooséP = {p,...,px}, a set ofk permutants, at random frofid. We will show in
Section IV that other selection heuristics of linear-tineenplexity make no difference in
the effectiveness of the indexing algorithm.

3) For eachu € U, we computed(u, p;) for all p; € P, and store permutatioH, according
to Definition 1.

The result is a table ot rows (one per database element) a&ncblumns (one per permutant).

Each cell needglog, k| bits to store one permutation at each row. The indexing coéni

distance computations plus(nklog k) CPU time to sort all the permutations.

10

2) Searching:At query time we computel, and traverséJ in the order induced byI,. In
this order an element will be smaller than an elementif II, is more similar toll, thanIL,.
As we expect that elements with permutations more similaid fawill also be spatially closer
to ¢, we will review them earlier.

The search is carried out as follows:

1) We computel(q, p;) for all p; € P, and compute permutatidi, according to Definition 1.

2) Given a similarity measurg@ between permutations, we sdiit according toS(II,, I1,)
(thoseu € U with smaller S() value go first). Given that we will need just a (small)
subset of the first elements after this sorting, we have usedaemental sorting method
[36], which gives the elements in order as we need them. Qttethods such as a full
QuickSort or BucketSort were usually inferior.

3) We traverse the sorted elements U and computei(u, q) for each suchu. For range
queries, we report any such thatd(u, q) < r. For K-NN queries, we remember th€
database elements that yielded the smalégtu) values so far.

4) We stop the scanning df at some point, and then deliver the result as obtained up to

then, hoping that it will be close to the result we would obthy a full scan.

Say that we are willing to traversé n elements ofU. The total time complexity of the search
process isk distance computations ar@(klog k) CPU time for step 10(kn) CPU time to
compute theS() values (we see later that the measfirere use can be computed (k) time)
andO(n + fnlogn) CPU time for the incremental sorting at step 2; and findllyn further
distance computations for step 3. This adds(n + fnlogn) CPU time andk + fn distance
computations. We tried some alternatives to avoid computif) for the whole database, but
the result was not practical.

The stopping criterion deserves some discussion. The sghjd to scan a fractioh < f < 1
of the database, so that the amount of work is fixed beforehaddve have no control over the
quality of the answer. Alternatively, we could like to fix arpected fractior) < p < 1 of the
correct answer retrieved. Fdt-NN queries, this can be obtained by previously buildingtplo
like those in the Appendix with a set of training queries. S&é@lots depend on the space but

not on K. Later, given ai-NN query, we consider in the plot the points belgpw K /n x 100%

11

in the y-axis. Now we find the point in the z-axis so that a fractiop of those points are to the
left of z. This x value is the fraction of the database we should traverse t@irobn average a
fractionp of the K correct nearest neighbors. For range queries the mechansmilar, using

a plot that on the, axis gives the distance to the points found, gnd r.

B. Measuring Similarity between Permutations

It remains to specify how we measure the difference betwaen germutations. We use
Spearman Rho [24], denote$},(II,,I1,), as our similarity measure: We sum the squares of
differences in the relative positions of each element irhbpérmutations. That is, for each
pi € P we compute its position ifl, and II,, namelyII;'(i) and IT,;'(:), and sum up the
squares of the differences in the positions. A formal dedinifollows.

Definition 2: Given permutationsl, andIl, of (1...k), Spearman Rho is defined'as

(M Ty) = D (I — 1, (9)"

Let us give an example & ,(I1,,I1,,). LetII, = 6,2, 3, 1,4, 5 be the permutation of the query,
andIl, = 3,6,2,1,5,4 that of an element. A particular elemenps in permutationlI,, is found
two positions off with respect to its position ii,. The differences between permutations are:
1-2,2-3,3-1,4—4,5-6,6 -5, and the sum of their squares $5(I1,,I1,,) = 8.

There are other similarity measures between permutati¥jsguch as Kendall Tau and Spear-
man Footrule. Kendall Tau is defined as follows: For every pap, € P, if p, andp; are in the
same order ifl, andIl,, (that isII; ' (i) < II;*(j) < II,; (i) < II;'(5)) then K, ,, (IL,, I1,) =
0; otherwise it is 1. Kendall Tau is given bl (IL,, Il;) = >, - K, p, (I1y, I1), which turns
out to be equal to the number of exchanges needed by a bubbl® sonvert one permutation
into the other. The Spearman Footrule between two permutais

F(IL,I,) =) |6 — I ().

1<i<k

1The actual definition in [24] corresponds 1S, (14, IL,) in our terminology. We omit the square root because it is
monotonous and hence does not affect the ordering.

12

10,000 objects, 256 permutants
100 T T T

% Retrieved

Using Kendall Tau
Using Spearman Rho -------
UsinqI Spearman Foqtrule o

1 3 5 10 15 20

80
% Database compared

Fig. 2. Using different similarity measures between pesatiohs (log scale). The space is a random uniformly disteithset
of 10,000 points in the unitary cube of dimension 128 with IEléan distance. 256 permutants were used.

In Figure 2 we show thaf’() is not as good as$,() for our purposes (similar results were
obtained in other metric spaces). On the other hdti(), performs similarly toS,(), but it is
more cumbersome to compute. Thus we stick to Spearman Rine iseguel.

We promised thats, would be computable in linear time. According to DefinitiontRis is
easy if we store theversepermutationdI; ! andH;l. As we prove next, it is enough to invert
one of them to comput§, in O(k) time. Therefore we actually udé, ' instead ofTI,.

Lemma 1:Definition 2 is equivalent to

S, ML) = S (=1, (IL,G)) .

1<j<k

Proof: It is a matter of callingj = IT,;!(:) and summing in different order. [|
Algorithm 1 gives the complete pseudocode for range seaagchti receives the queryy, r)
and the fraction of the databa8e< f < 1 to examine. The permutatiomk,, as well as the sefs
andP, are global variables. The database andShealues are stored as tuples, S,(I1,,, I1,))
in an array A, which is computed and then partially traversed to retrithe (approximate)

answer. For simplicity we describe the algorithm as fullytieg A, not incrementally.

13

Algorithm 1 Sort-rangeQuery(r, f)

1: INPUT: ¢ is a query and- its radius, f is the fraction of the database to traverse.
OUTPUT: Reports a subset of thogec U that are at distance at mosto q.
Let A[1,n] be an array of tuples and = {us,...,u,}
Computell !
for : — 1 ton do

Ali] — (ui, Sp(Iy;, ITg))
end for
SortincreasingA) // by second component of tuples
for :<—1to f-ndo

Let Afi] = (u, s)

if d(g,u) <r then

Reportu

end if

. end for

R o e =
AWM RO

IV. EXPERIMENTAL EVALUATION

In this section we evaluate and compare the performancerafechinique in different metric
spaces, such as synthetic vectors on the unitary cube astkr@dd data (multivariate Gaussian
distribution), as well as real-life databases like facegesand text documents. We also tested the
algorithm in non-metric spaces, where the triangle inaguedbes not hold. All the experiments
reported excellent results for our method. The experimeme carried out on a Intel Xeon
workstation with 2.6 GHz CPU and 4GB of RAM with Red Hat Linuxnning kernel 2.4.20-9.

A. Unitary Cube

We made some experiments using uniformly distributed setO@®00 points in the unitary
cube, in 128, 256, 512 and 1024 dimensions, under Euclidestande. As we can precisely
control the dimensionality of the space, we use this expamnirto show how the predictive power
of permutants varies with the dimensionality, comparechwaither methods. We tested range
gueries with a search radius that retrieved on average 0diS¥e database (that is, 5 points).
We emphasize that no exact algorithm can avoid a linear stdrealatabase when we go over
dimensionality 30 with uniformly distributed points, onpyobabilistic algorithms work.

We consideredk = 128 and £ = 256 permutants in our experiments. We compare our

technique with a standard pivot-based method using the samoaintk of pivots, even though

14

Permutants 128. 10,000 objects Permutants 256. 10,000 objects
100

90 E E
80 E E
70 E E
=} el
o 60 _ B |
2 .Q
5 o0] g]
’Ic 40 Permutations dim 128 _ 'x:, Permutations dim 128 —— ||
s Piv dim 128 ------- s Piv dim 128 -------
30 Permutations dim 256 ——— (4 Permutations dim 266 —— |
Piv dim 256 -------- Piv dim 256 --------
20 Permutations dim 512 —— (4 Permutations dim 512 —
J: Piv dim 512 e Piv dim 512 s
10 f: Permutations dim 1024 — Permutations dim 1024 —
. Piv dim 1024 --:=-- A Piv dim 1024 ===
T T T T T 0 T T T T T
0 10 20 30 40 50 60 70 8 90 100 0 10 20 30 40 50 60 70 80 90 100
% Database compared % Database compared

Fig. 3. Performance of ours versus pivot-based probabilédgorithms in different dimensionalities. On the left wee 128
pivots/permutants, and 256 on the right. Series with thedwav refer to the standard pivot-based algorithm.

this represents at least 4 times the memory we use for ouritigo If we used the same amount
of memory for the two algorithms, the comparison would benewere favorable to us.

The pivot-based probabilistic alternative we tested [1dlfalates, for each database element
u, estimateL, (¢, v) = max,ep |d(¢,p) — d(p, u)|. The database is then sorted by increading
value and compared against the query in this order.

Figure 3 shows the comparison. Thaxis represents the percentage of the database examined,
and they axis is the percentage of the actual answer that was redriées estimates the
probability of returning a given answer element).

Retrieving 90% of the answer is good enough for most proyisetarching applications. With
128 pivots, in dimensionality 128, 60% of the database mestXxamined to retrieve 90% of the
results. For our permutation-based algorithm, with 128meants we must examine only 10%
of the database to retrieve 90% of the outcome. This rais€@9% if we use 256 permutants.
With 256 pivots, instead, one needs to compare 85% of thebdsgato retrieve 99% of the
answers.

In general we observe that, as the dimensionality growsgeldraction of the database must
be examined to obtain a given fraction of the result. Thisoletion is true for the pivot-based
algorithm as well as for ours. Yet, the pivot-based algoniis more affected by dimensionality

than ours. Note that an algorithm that traverses the dataipasandom order would achieve a

15

10,000 objects. 256 pivots
100

fQr e

B e -
O]

60
50 |
40 ff
30 fif 4
20 §.77

L, dim 128 ——
L, dim 128 =eee-- n
L., dim 256 ——
Ly dim 256 e B
L, dim 512 ——
Ly dim 512 --o---o-
L, dim 1024 |
L, dim 1024 -------

% Retrieved

10)

T
0 10 20 30 40 50 60 70 80 90 100
% Database compared

Fig. 4. Comparison betweel;, and L., Minkowski metrics to sort the database with pivot-baseadlms, using 256 pivots.

straight line from the bottom-left to the top-right corntrat is, it needs to examine 90% of the
database to obtain 90% of the answer. It can be seen thatlmged algorithms actually behave
almost randomly on very high dimensionalities.

Note that in this synthetic data we may be using more pernwtdoan space coordinates.
Since the permutation similarity is more expensive to camgban plain Euclidean distance,
this may seem nonsense. We remark that this experimenttitojaemonstrate the performance
of the technique in terms of distance computations. Rea afaty have thousands of coordinates
or no coordinates at all. We include real CPU times for all dkiger metric spaces that follow.

One might wonder whether the,, distance used by the pivot-based probabilistic algorithm
is a good predictor. Although there are good reasons tad.us€l0], one can also argue in favor
of Li: AESA, the best exact algorithm [40], usés metric as the oracle to select next-best
candidates for pruning the database, thatliglg, u) = > p|d(g, p) — d(p,u)|. We tested in
Figure 4 thel; distance to sort the database for the probabilistic algwribased on pivots,
versus thelL., choice used above. It can be seen that the results are mixatielfirst part
(e.g., scanning less than 20% of the database in dimen#od&8) distancel; retrieves a
larger percent of the database compared.fa Yet, once a turn point is reached, the result is
reversed. The same behavior is observed in all the dimegigies considered. We emphasize
that, anyway, the results are very far from what we obtaimwiir new technique.

In the Appendix we display the power of the sorting methodagislouds of points. These

16

32 clusters, variance 0.09, 32 pivots/permutants. [0,1]1024 32 cluster, variance 0.09, 128 pivots/permutants. [0,1]1024

100

- T T ol T
80 E E
e} °
g 60 1 ¢ 1
Q K]
1] I
@ @
N 40 - < .
Ordering using L, ------- Ordering using L; -------
20 Ordering using Ly -------- | Ordering using Ly -------- |
Ordering using L, Ordering using Ly, s
Ordering using permutations Ordering using permutations
Sequentialscan = Sequentialscan _ ®
O H 1 I I I I | I I 1 I I —
0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.1 0.15 0.2 0.25 0.3
Time (seconds) Time (seconds)

Fig. 5. Retrieving the nearest neighbor on a 1024-dimeasiGaussian space with 32 clusters, using 32 (left) and 1g8tjr
pivots/permutants. We show the retrieval percentage setsel total time to obtain the results.

clouds show how often our technique put nearest neighbaoiiseiriirst positions.

B. Gaussian Spaces

Uniformly distributed data is full-dimensional. Real ds¢ts behave more like clustered data,
which is easier to index. We tested our algorithm on a Gansspace. The data was generated
for a 1024-dimensional spad@ 1]'** with 10,000 points obtained from a multivariate Gaussian
distribution with 32 clusters (centers). The variance & tenter distribution was 0.09, and the
variance inside the clusters was 0.01.

Figure 5 shows experiments of the CPU time needed for ratigethe nearest neighbor using
32 and 128 pivots/permutants. Notice that the orderinggusgrmutations retrieves 100% of the
answer faster than the others. On the left, using 32 pivetsiptants, ordering using permutations

retrieves 100% of the answer in just 0.03 seconds, while thers require 0.17 seconds.

C. Face Recognition

In many real-world scenarios, objects are modeled as va@ty-timensional feature vectors.
Spatial access techniques cannot be used efficiently icéisis, due to the curse of dimensional-
ity. An alternative is to work without coordinates, using ttistance just as a black box, that is,
resorting to the metric space model. Yet, in several casesasulting intrinsic dimensionality

is still very high and no exact search method can avoid anuestive scan of the database.

17

In this section we consider the FERET database [37], whictsists of 762 grayscale frontal
face images of 254 different persons (3 images per persdrg. pictures are ofi28 x 128
pixels, that is, each face is represented by 16,384 featlites query set has 254 images (1
image per person). To speed up searches, the vectors weséotraed by eigenspace methods,
which project the input faces onto a 761-components (coatds) space where the recognition
is carried out.

We considerK-NN search, as this is the most frequent query in this apidica For the
probabilistic algorithms, we measure the number of digtasamputations performed (averaged
over all the queries) until the algorithms obtain the carrEcnearest neighbors. We used all
the 254 queries for eacR value tested.

Since the size of the database allows it, we included AESA {dGhe comparison, as it
is considered a baseline to compare exact searching dlg®itAESA uses the entire distance
matrix to answer queries, and it is the best exact algoritAmmthe distance is Euclidean, we
also experiment with &d-tree [7] as an exact search method that attempts to redudetiGre.

Figure 6 (top) shows the results, using 64 permutants. It lm&arseen that the best exact
technique (AESA) requires scanning 30%—40% of the datatoaed the nearest neighbor, and
this quickly raises to 80%—-90% for largéf. Kd-trees need 50% to find the nearest neighbor.
Our technique performs better, scanning around 10% of thabdae on average to find the
nearest neighbor, and 30%—40% for 20 nearest neighborgh&grobabilistic algorithm based
on pivots we chose thé; distance to sort the database. It requires to traverse arlé&artion
of the database to achieve the same result of permutants-gPwofor X' = 20 neighbors). The
results for thel, distance were not included as they are worse than for

Figure 6 (bottom) shows real CPU times. It can be seen théipudh permutations pose a
CPU time overhead higher than pivots, the result is stillaadi@geous in terms of CPU time.
(Note that AESA is more expensive in practice than a segalestan.)

Figure 7 displays the results in a form more similar to prasiplots. We show the percentage
of queries successfully solved (that is, all th&irnearest neighbors are found) after traversing
a given percentage of the database. We also displagetagve errorratio between the distance

to the K-th nearest neighbor found divided by the distance to the iftth nearest neighbor

18

Original faces database

Projected faces Database

T T T T T T T T T T T
Sequential scan —+— Se -
quential scan (PCA) —+—
P AESA (PCA) %+
- iy T KD-tree (PCA) —-m-—
- Ordering using L, - -e-- - ° Ordering using L,, EPCA} B SN
g ~ Ordering using Ly ----a--- g Ordering using Ly (PCA) ---a---
3 Ordering using permutations ---v--- g Ordering using permutations (PCA) ---v---
£ 100} + P — 5
S + + + + + S
o o
% 80 L § 100 |
E 8 s8o0f
< 60 ISl
[a) [a] 60 |
X L X
40) 0F)
20 | L ol
| | | | | | | | (-—\
0 4 6 8 10 12 14 16 18 20 0 2 4 6 8 0 12 14 16 18 20
Kth Nearest Neighbor Kth Nearest Neighbor
Original faces database Projected faces database
lo T T T T T 10 T T T T T
PR Kononnn [N Howmnmemm e n s e (O PP RRERETETEEEREE Heommnmnes HKeorooe K
- 3 ' * Sequential scan (PCA) —+— |]
z 14 ¥ 9 & AESA (PCA) --%--
e = . KD-tree (PCA) —-—=—
S <} Ordering using L, (PCA) -- -e-- -
@ @ 01k Ordering using Ly (PCA) ---a--- | |
% i % ’ Ordering using permutations (PCA) ---v---
-
B i E
=0l Sequential —+— F S,
. AESA ---%--- 001 b g m—— L R S i
b KD-tree —-—a— - RS SR *
Ordering using L, -- -®-- - 3
Ordering using Ly ----a---
Ordering using permutations ---v---
001 | | 1 ! 1 1 ! 0001 | | | | | | | | |
0 4 6 8 0 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Kth Nearest Neighbor

Kth Nearest Neighbor

Fig. 6. Comparing techniques over a real database of faceshiiv the percentage of the database compared (top) and CPU
time (bottom) to find the corredk nearest neighbors, using 64 pivots/permutants. On theviefivork with the original space;
on the right with the projected space.

(computed only over the unsuccessful queries). It can be g, even when the algorithm
fails to find the true answer, the approximation it finds isheatgood.

Again, in the Appendix we display the power of the sorting Imoels for this database.

D. Documents

A central problem in Information Retrieval consists in fingidocuments relevant to a given
guery. The relevance is measured using a specialized dest@efinition. Documents are rep-
resented as unitary vectors, where every coordinate gunels to a term, and the value of a
document vector along each coordinate is proportionaléaight of the term in that document.
The number of different terms in a collection is in the ordenandreds of thousands, resulting in

a very high-dimensional vector space with the usual dinweradity curse problems. The distance

19

100 1.2 7 ; I I I I
------ i Probablisitic using Permutants
1.18 ! ‘. Probabilistic using Ly, -------- bl
90 - [Probabilistic using L; -------
116 D L -
[
il
7] S i
& o i 1.14 p !
[= 1
2 2 112 i E
= oS 5} !
2 70 H s ¢ 11 i g
173 i B i
8 : f_ﬂ 1
% ¥ & 1.08 . b
60 i B |
< 1.06 B
i A N OO
| —___ 1.04 J
50 [Probablisitic using Permutants N
{ Probabilistic using L, -------- 1.02 -
Probabilistic using L, -------
40 L L T T T T T T T 1 e o Bkl b Bttt 2 = el ! L 3
0 10 20 30 40 50 60 70 80 90 100 50 60 70 80 90 100
% Database compared % Database compared
100 1.08 I I I I I
Probablisitic using Permutants
90 B Probabilistic using Ly, -------- |
R Probabilistic using L, ------
80 -
8 70 J
g 5 .
> 60 Bl £
s | s D Il
g 50 i 2 i
©
g 40| . 2]
%] ;i
£ 30 .
20 H _ i
b Probablisitic using Permutants
10 H Probabilistic using Ly, -------- B []
Probabilistic using Ly, =-—-— [[\ T T T e
0 1 | T T T T T T T T — T
0 10 20 30 40 50 60 70 80 90 100 50 60 70 80 90 100
% Database compared % Database compared

Fig. 7. Comparing techniques over a real database of faceso®for X = 2 and on the bottom foiX = 4. On the left,
percentage of queries where all thé nearest neighbors are correctly found. On the right, redatiror for those queries that
do not find all the correct neighbors.

between two documents can be taken as the angle betweengesenting vectors (the cosine
of this angle is a similarity measure heavily used in Infatiora Retrieval [6]).

We used a subset of collection TREC-3 [26] to compare theopmdince of our approach
against the best previous results using probabilistic rélgos [10]. The database consists of
24,960 documents. We averaged 1,000 range queries chossmmdatn, with a radius retrieving
on average 0.035% of the database (9 documents). No examitlabg performs well in this
setup: Even AESA needs to compare the query against 60% afatiadase to solve this query.

The results can be seen in Figure 8, using 128 pivots or pamtaitPermutations quickly
reach a good percentage of retrieval: We review just 2% ofdtitabase to retrieve 95% of the

outcome, while the classical pivot-based algorithm (iusing L., ordering) needs to review

20

24.960 documents. Retrieving 0.035% of the database Documents, K=5
100

4 90

100

90
80 |-
80 | ;s

0F |t .
70 60 4

sof | ,

% Retrieved
% Retrieved

40 g

30 [-

50 |k Ordering using Ly -------- H
i Ordering using Ly, ------- 20
Orderirg using permutations
Dynamic Beta --——-
40 T 0 | |
1 10 100 0 02 04 06 08 1 1.2 14 16 18

% Database compared Time (seconds)

- Orderingusing L ------- u
: Ordering using Ly -------

10 Ordering using Ly, i
: Ordering using permutations

I I T S E—

Fig. 8. Comparing our technique with others in a real damfmslocuments. On the left, retrieval performance, on tobtyi
the CPU time compared against retrieval performance fothallprobabilistic algorithms.

almost 20% of the database to achieve the same retrievarpefnce. A pivot-based algorithm
using L, (not tried before as far as we know) performs almost as welleamutations. Finally,
in [10] a method calledynamic Betais proposed, which needs to review about 10% of the
database to reach the same retrieval performance. We rait®yimamic Beta, after paying that
10% of comparison, surpasses by far the pivot-based metmad,from then on it becomes
similar to permutations.

Figure 8 (right) shows the result of a 5-NN query, this timeusing on CPU times. Again
using permutations is (slightly) faster than the others.

We again display the power of the sorting methods on thisbda& using clouds of points in
the Appendix.

E. Non-Metric Databases

There are several real-life applications where similas#ggrching has to be carried out over a
space that is not even metric, i.e., where the triangle iakigudoes not hold. In this case exact
proximity search algorithms are useless in general, a® tiseno way to prove that an element
is sufficiently far away from the query. A probabilistic algorithm, instead, has a chance of
still proposing an appealing order to traverse the databaseriation of this idea, forging a
monotonous transformation of the database, is indeed ug88] as a good alternative to search

in non-metric databases.

21

In particular, our probabilistic algorithm does not make wd the triangle inequality, as it
never discards an element; it just hints which are the ma@shising candidates to consider first.
As such, it can be used on non-metric databases.

We apply ourK-NN algorithm over a couple of non-metric spaces, in ordedémonstrate
its suitability. The first space is a synthetic uniform vecipace just as those in Section IV-A

using, instead of Euclidean distance, a so-caftadtional normL,, with 0 < p < 1:

Lp((fla--.,xD)a(yla---,yD)) = (Z \xz‘—yz‘|p>p'

1<i<D

Fractional norms are sometimes preferred over the usuakddiski normsL,, L, or L,
because they lead to lower intrinsic dimensionality [2], [R1], [28]. (Please do not confuse
this norm, that is used as thalistance in the metric space, with the and L., norms explained
in Section IV-A to sort the database. These are independent.

Figure 9 compares the performance of our ordering based onupations with those based
on L, and L., as in previous sections. It can be seen that permutationsvacthe best result,
followed by ;. The problem is easier asgrows and the space gets closer to be metric.

The second space is that of sequences usorgnalized edit distance (NEOB1], [3]. The
usual edit distance (which is a metric) favors short segeemver long ones, given the same
fraction of similarity between the two sequences. The NEDnterweights this bias by dividing
the cost of a sequence of operations by the length of thatesegu The result is not anymore
a metric, but it works better in several applications.

Figure 10 shows the results over 40,000 words from a dictionging this distance, for a
range search with radius 1. In this case, the permutatiodstlaa, orderings yield similar

results, superior to those df,..

F. Selecting Permutants

Permutants are central to our method. Hence, it is worthyhestigate the role of permu-
tant selection. We tested heuristics based on selectingytants with minimum or maximum

Spearman Rho in the set. We start with a set with only one eilgnamd the next permutant

22

% Retrieved

% Retrieved

2NN, p=0.2, |P|=256

100 -
90 5 E
80 g |
70 i

5 :
60 : OF; : |
50 Probabilistic using Permutants Dim=32 ——— = / Probabilistic using Permutants Dim=32 ——— ||
Probabilistic using Ly Dim=32 «:xxxeee 14 A Probabilistic using L; Dim=32 «xxxsexs
40 § Probabilistic using L, Dim=32 ====--- i X 40 | (A Probabilistic using L,, Dim=32 =====-- i
30 Probabilistic usin? Permutants Dim=64 30 :/' Probabilistic usin? Permutants Dim=64
| Probabilistic using L; Dim=64 Iy Probabilistic using L, Dim=64
20 B Probabilistic using L, Dim=64 _l 20 k7 Probabilistic using L., Dim=64 _l
Probabilistic using Permutants Dim=128 —— Probabilistic using Permutants Dim=128 ——
10 Probabilistic using L, Dim=128 -------- m 10 F Probabilistic using L, Dim=128 -------- m
Probabilistic using L, Dim=128 ------- Probabilistic using L., Dim=128 -------
O 1 T T T T T T T 0 1 1 T T T T T T T
0 10 20 30 40 50 60 70 8 90 100 0 10 20 30 40 50 60 70 80 90 100
% Database compared % Database compared
2NN, p=0.8, |P|=128 2NN, p=0.8, |P|=256

100 e T T
90 — —
80 B B
70 E E

60 . g , 7

50 Probabilistic usin? Permutants DIim=32 =——— | s s0f/; Probabilistic usin? Permutants DImM=32 =—— |

Probabilistic using L; Dim=32 14 T Probabilistic using L; Dim=32

40 Probabilistic using L, Dim=32 i X 40 Y Probabilistic using L,, Dim=32 i

30 B Probabilistic using Permutants Dim=64 —— || 30 i/ Probabilistic using Permutants Dim=64 —— ||
Probabilistic using L; Dim=64 -------- |/ Probabilistic using L; Dim=64 --------

20 f Probabilistic using L, Dim=64 ------- | 20 b Probabilistic using L, Dim=64 ------- |
Probabilistic usin? Permutants Dim=128 ——— i Probabilistic usin? Permutants Dim=128 ——

10 Probabilistic using L; Dim=128 -------- a 10 b Probabilistic using L, Dim=128 -------- a
Probabilistic using L, Dim=128 ------—- Probabilistic using L, Dim=128 -------

O 1 T T T T T T T 0 1 1 T T T T T T T
0 10 20 30 40 50 60 70 8 90 100 0 10 20 30 40 50 60 70 80 90 100

% Database compared % Database compared

Fig. 9. Comparing our technique with others in uniformlytdisited vector spaces using, distance (non-metrigy < 1), to
retrieve two nearest neighbors. On tpp= 0.2 and on the bottonp = 0.8; using 128 pivots on the left and 256 on the right.

will be selected minimizing (or maximizing) the sum= min,, cy ZMGP Sp(u;, pj). This type
of heuristic has been successful to choose pivots [10].dispiexity is O(k*n).

We show experiments in Figure 11, for uniformly distributgata (top) and Gaussian data
(bottom), with the setup of previous sections. As can be ,seensignificant improvement
is obtained with the different heuristics. In some casesloan selection is even better than
the alternatives. Other experiments, choosing artificille permutants as the centers used to

generate the Gaussian data, failed as well.

23

40000 words
100 T

%
80 - .
70
60 .

50 | e

40 i
Probabilistic using Permutants, |P|=128 ——
30 Probabilistic using Ly, |P[=128 «------- X
20 | Probabilistic using L, |P|=128 ------- |
Probabilistic using Permutants, |P|=32
10 |+ Probabilistic using L,, |[P|=32 -------- |
Probabilistic using L, |P|=32 -——--—-

% Retrieved

0.1 1 10
% Database compared

Fig. 10. Comparing our technique with others in a space @figgrusing normalized edit distance. Range search witlusadi
1.

V. CONCLUSION AND FUTURE WORK

We have presented a new method for probabilistic proximggrehing in metric spaces. It
is based on comparing the proximity ordering towards a sedistinguished objects (called
permutants). We show that this ordering is a very good ptedif the relevance of points to
the query. This leads to a very strong probabilistic prognsiearch algorithm, which needs to
scan just a small fraction of the database to obtain mosteofélevant answers. Our technique
is by far better than any other existing proposal we are aware

Our proposal is very simple to implement and has immediaf@iGgiions to many pattern
recognition problems, as well as in other areas that useirpityxsearching and can tolerate
(very good) approximations to the exact solutions to pratyingueries. One application we
have pursued was to use our technique as an oracle to chamgmvtis in AESA, the best
exact proximity search algorithm: We usg instead ofL; [25]. The result, IAESA, achieves
an interesting reduction over an algorithm that had stammlédas unbeatable for 20 years.
Another idea we are pursuing is to use our algorithm to bupjdreximate/’-NN graphs, which
are useful for many applications including proximity sdang [34]. Our preliminary results
indicate that we obtain almost always the corréGiNN graph at very low cost compared to
exact construction algorithms such as [35].

On the other hand, several aspects of our technique deseame nesearch. One challenge is

24

Dimension 128 Dimension 256

° o
Qo]
P >
Q @
g Minimum P32 —— 5 / Nimimum (P32 ——
S Random [P|=32 ------- s 20) Random [P|=32 -----—-—-
= Maximum |P|=32 -------- i > [Maximum [P[=32 --------
Minimum |P|=64 Minimum [P|=64
Random |P|=64 ------- Random |P|=64 -------
Maximum |P|=64 -------- Maximum |P[=64 --------
20 Minimum |P|=128 N 10 Minimum |P|=128 .
Random |P|=128 ------- ; Random |P|=128 -------
Maximum |P|=128 -------- Maximum |P|=128 --------
5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50
% Database compared % Database compared
K=1, 32 clusters, variance 0.01. [0,1]° K=1, 256 clusters, variance 0.01. [0,1]%°
—— 100 g
1 80 7
3 g g e0f S g
> 4 /
2 @
° Minimum p=8 —— ° e Minimum p=8 ——
L Random p=8 ------- H e 40/ Random p=8 ------- ,
Maximum p=8 -------- i Maximum p=8 ««-====-
Minimum p=16 Minimum p=16
Random p=16 ------- ; Random p=16 -------
Maximum p=16 -------- H 20 Maximum p=16 ------- H
Minimum p=32 Minimum p=32
Random p=32 ------- Random p=32 -------
! Maximum p=32 ---—--- 0 ‘ Maximum p=32 --------
0.1 1 10 100 0.1 1 10 100
% Database compared % Database compared

Fig. 11. Different heuristics to select permutants. On t@mge searching that retrieves 0.05% of the database oarmmif
data. On the bottom, 1-NN on clustered data.

to reduce CPU times. Although we have shown that permutarttsmgood CPU times when
the distance function is moderately expensive to comptt@jght be possible to do better. In
particular, our best current solutions still take time mdnal to the database size (albeit with
a small constant in practice). Another is to devise new nagho determine where to stop the
scanning so as to achieve some expected quality in the an®uemethod to do this requires
training. Maybe it is possible to use the history of the updab the answer produced by the

current query to predict its future behavior.

REFERENCES

[1] C. Aggarwal. Re-designing distance functions and distabased applications for high dimensional d&&M SIGMOD
30(1):13-18, 2001.

25

(2]

(3]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]
(23]

[24]

C. Aggarwal, A. Hinneburg, and D. Keim. On the surprisinghavior of distance metrics in high dimensional spaces. In
Proc. 8th Intl. Conf. on Database ThegoiyNCS 1973, pages 420-434, 2001.

A. Arslan and O. Egecioglu. Efficient algorithms for naatized edit distancel. Discrete Algorithms1(1):3-20, 2000.

S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wun Aptimal algorithm for approximate nearest neighbor
searching in fixed dimension. IIRroc. 5th Symposium on Discrete Algorithms (SOD#ges 573-583, 1994.

R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximmgtching using fixed-queries trees.Rroc. 5th Combinatorial
Pattern Matching (CPM)LNCS 807, pages 198-212, 1994.

R. Baeza-Yates and B. Ribeirddodern Information RetrievalAddison-Wesley, 1999.

J. Bentley. Multidimensional binary search trees usadassociative searchin@omm. of the ACIM18(9):509-517, 1975.
S. Brin. Near neighbor search in large metric spacesrbt. 21st Very Large Databases (VLDBpges 574-584, 1995.
W. Burkhard and R. Keller. Some approaches to best-mfilielsearching.CACM, 16(4):230-236, 1973.

B. Bustos and G. Navarro. Probabilistic proximity sgaalgorithms based on compact partitiodsDiscrete Algorithms
2(1):115-134, 2003.

E. Chavez and K. Figueroa. Faster proximity searclngetric data. IrProc. Mexican Intl. Conf. in Artificial Intelligence
(MICAI), LNAI Series, pages 222-231, 2004.

E. Chavez, J. Marroquin, and R. Baeza-Yates. Sptghah array based algorithm for similarity queries in rieesipaces.
In Proc. 6th String Processing and Information Retrieval (SB) IEEE Computer Science Society, 1999.

E. Chavez, J.L. Marroquin, and G. Navarro. Fixed cerarray: A fast and economical data structure for proximity
searching.Multimedia Tools and Applications (MTAP}4(2):113-135, 2001.

E. Chavez and G. Navarro. Probabilistic proximityreba Fighting the curse of dimensionality in metric spadeformation
Processing Letters35(1):39-46, 2003.

E. Chavez and G. Navarro. A compact space decompositip effective metric indexing.Pattern Recognition Letters
26(9):1363-1376, 2005.

E. Chavez, G. Navarro, R. Baeza-Yates, and J. Marrodefoximity searching in metric spacesCM Computing Surveys
33(3):273-321, 2001.

P. Ciaccia and M. Patella. PAC nearest neighbor queAgproximate and controlled search in high-dimensional an
metric spaces. IfProc. 16th Intl. Conf. on Data Engineering (ICDF)ages 244-255. IEEE Computer Society, 2000.
P. Ciaccia and M. Patella. Searching in metric spacéls uger-defined and approximate distand&SM TODS 27(4):398—
437, 2002.

P. Ciaccia, M. Patella, and P. Zezula. M-tree: an efficigccess method for similarity search in metric spacesPrat.
23rd Conf. on Very Large Databases (VLDBRpges 426-435, 1997.

K. Clarkson. Nearest neighbor queries in metric spaBsscrete Computational Geomefr22(1):63-93, 1999.

K. Doheryu, R. Adams, and N. Davey. Non-euclidean noamnd data normalisation. IRroc. 12th European Symposium
on Artificial Neural Networks2004.

R. Duda, P. Hart, and D. StorlRattern Classification Wiley, 2nd edition, 1973.

Omer Egecioglu. Parametric approximation algorithimshigh-dimensional euclidean similarity. @onf. on Principles
and Practice of Knowledge Discovery in Databases (PKD®Jume LNAI 2168, pages 79-90, 2001.

R. Fagin, R. Kumar, and D. Sivakumar. Comparing top tsliSIAM J. Discrete Mathematicd7(1):134-160, 2003.

26

[25]

[26]

[27]
(28]

[29]

[30]

[31]
[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

K. Figueroa, E. Chavez, G. Navarro, and R. Paredes.h@rieast cost for proximity searching in metric spacesPioc.
5th Workshop on Efficient and Experimental Algorithms (WEAICS 4007, pages 279-290, 2006.

D. Harman. Overview of the Third Text REtrieval Confece. InProc. Third Text REtrieval Conf. (TREC;3)ages 1-19,
1995. NIST Special Publication 500-207.

G. Hjaltason and H. Samet. Index-driven similarity redain metric spacesACM TODS 28(4):517-580, 2003.

P. Howarth and S. Riger. Fractional distance meadioresontent-based image retrieval. Rvoc. 27th European Conf.
on IR Research (ECIRLNCS 3408, pages 447-456, 2005.

Oxford J. Kittler, NATO ASI, editor. Computational geometric problems in pattern recognitioRattern Recognition
Theory and Applications, 1981.

|. Kalantari and G. McDonald. A data structure and aroethm for the nearest point probleriransactions on Software
Engineering 9(5), 1983.

A. Marzal and E. Vidal. Computation of normalized edistdnce and applicationdEEE TPAM| 15(9):926-932, 1993.

L. Mico, J. Oncina, and E. Vidal. A new version of the nest-neighbor approximating and eliminating search (AESA
with linear preprocessing-time and memory requiremeRgdtern Recognition Letterd5:9-17, 1994.

G. Navarro. Searching in metric spaces by spatial appration. Very Large Databases Journal1(1):28-46, 2002.

R. Paredes and E. Chavez. Using fheearest neighbor graph for proximity searching in metgaces. InProc. 12th
String Processing and Information Retrieval (SPIRENCS 3772, pages 127-138, 2005.

R. Paredes, E. Chavez, K. Figueroa, and G. Navarrcctibah construction ofk-nearest neighbor graphs in metric spaces.
In Proc. 5th Workshop on Efficient and Experimental Algorit{ifEA) LNCS 4007, pages 85-97, 2006.

R. Paredes and G. Navarro. Optimal incremental sartim@roc. 8th Workshop on Algorithm Engineering and Experiraent
(ALENEX) pages 171-182. SIAM Press, 2006.

P. Phillips, H. Wechsler, J. Huang, and P. Rauss. TheHEERatabase and evaluation procedure for face recognition
algorithms. Image and Vision Computing Journd6(5):295-306, 1998.

H. Samet. Foundations of Multidimensional and Metric Data Structurélhe Morgan Kaufmann Series in Computer
Graphics and Geometric ModelingMorgan Kaufmann Publishers Inc., San Francisco, CA, US®52

Tomas Skopal. On fast non-metric similarity searchnbgtric access methods. Rroc. EDBT pages 718-736, 2006.

E. Vidal. An algorithm for finding nearest neighbors approximately) constant average tiniRattern Recognition Letters
4:145-157, 1986.

D. White and R. Jain. Algorithms and strategies for iy retrieval. Technical Report VCL-96-101, Visual Cputing
Laboratory, University of California, La Jolla, CalifomiJuly 1996.

P. Yianilos. Excluded middle vantage point forests fi@arest neighbor search. DIMACS Implementation Challenge,
ALENEX'99 Baltimore, MD, 1999.

P. N. Yianilos. Locally lifting the curse of dimensiditg for nearest neighbor search. Technical report, NECelResh
Institute, Princeton, NJ, June 1999.

P. Zezula, G. Amato, V. Dohnal, and M. Batk8imilarity Search: The Metric Space Approasiblume 32 ofAdvances
in Database Systemspringer, 2006.

27

