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a b s t r a c t

On the Semantic Web, the types of resources and the semantic relationships between

resources are defined in an ontology. By using that information, the accuracy of informa-

tion retrieval can be improved.

In this paper, we present effective ranking and search techniques considering the seman-

tic relationships in an ontology. Our technique retrieves top-k resources which are the most

relevant to query keywords through the semantic relationships. To do this, we propose a

weighting measure for the semantic relationship. Based on this measure, we propose a

novel ranking method which considers the number of meaningful semantic relationships

between a resource and keywords as well as the coverage and discriminating power of key-

words. In order to improve the efficiency of the search, we prune the unnecessary search

space using the length and weight thresholds of the semantic relationship path. In addition,

we exploit Threshold Algorithm based on an extended inverted index to answer top-k

results efficiently. The experimental results using real data sets demonstrate that our

retrieval method using the semantic information generates accurate results efficiently

compared to the traditional methods.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With the massive growth of the Web, we have been confronted with a flood of information, and hence search engines

have become one of the most helpful tools for obtaining desired information from the Web. The keyword-based search

method has been the most popular search method in the search engines since it provides simple and user friendly interface.

The keyword-based search method requires users to input several keywords describing the search target and returns the

search results containing the keywords.

In general, the keyword-based search determines the relevance of resources for query keywords mainly based on the

occurrence of the keywords in their textual descriptions (e.g., title, body, anchor text, and so on). It cannot ensure that

the returned results preserve the semantic relationships among the keywords which users have intended when submitting

the keywords (Li et al., 2007). Because of this reason, current search engines sometimes miss highly relevant results and re-

turn some irrelevant results for user requests. For example, consider a query looking for laboratories in Europe researching

on Semantic Web. You may input the following keywords: ‘Laboratory’, ‘Semantic Web’, and ‘Europe’. For this query, one of

the most popular search engines returns about 2,360,000 pages. However, on the top 20 pages, only four pages are related to
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the desired laboratories and other irrelevant pages just contain some of the three keywords, such as ‘W3C Semantic Web

FAQ’ and ‘Semantic Web Europe’. In the irrelevant pages, the relationship ‘research on’ between ‘Laboratory’ and ‘Semantic

Web’ and the relationship ‘located on’ between ‘Laboratory’ and ‘Europe’ are not preserved. Furthermore, the diverse implicit

meanings in the relationships among keywords are ignored in the search. For example, ‘research on’ implies some indirect

relationships via ‘published papers’ about Semantic Web and ‘researchers’ studying on Semantic Web. As a result, many rel-

evant pages have been pushed down in the ranked list.

We propose a semantic search framework to overcome such limitations of the traditional keyword-based search by

enriching the search process with an ontology, which is one of the purposes of the Semantic Web. An ontology is a formal

knowledge description of concepts and their relationships. The semantic relationships between resources and keywords

could be extracted by traversing the ontology. The extracted semantic relationships can complement the keyword-based

search method. Our semantic search framework extends keyword-based search by using ontologies, with the aim of finding

resources relevant to query keywords through the semantic relationships. The semantic search makes hidden relationships

between the words of desired resources and keywords explicit by using diverse semantic relationships defined in the ontol-

ogy, thereby it can effectively access the relevant resources and rank them. Consequently, we expect that the precision and

recall of the search would be improved. Recently, Google has started to support a primitive semantic search based on the

knowledge graph which is similar to the ontology. Google enhances its search service by augmenting the search results with

sets of associated facts based on the knowledge graph. The usefulness and feasibility of our semantic search could be con-

firmed by this attempt.

This semantic search would be useful when a sufficient ontology associated with the search domain is prepared in ad-

vance. As more resources and their relationships in the domain become well defined, more comprehensive semantic search

would become feasible. In addition, in order to effectively limit the search scope, we assume that each query contains the

type (i.e., a class in an ontology) of the desired resource such as Publication or Professor.

Fig. 1 shows the overall search process in our framework. Before searching documents (e.g., biography or web page), the

ontology generator constructs an ontology describing the contents in the collected documents. For this work, we assume that

the ontology has already been constructed. Note that there has been active research on the ontology construction (Kiryakov

et al., 2003; Ceravolo and Damiani, 2007; Suchanek et al., 2007). Given a user query containing a type T and a set of keywords

{k1,k2, . . . ,kn}, the semantic search engine finds the relevant resources through the exploration of the ontology and returns a

ranked list of the URIs of the resources in the order of their relevance. Finally, the document retriever retrieves the docu-

ments corresponding to the returned URIs.

Since we consider the semantic relationships between the resources and the query keywords in the search process, the

ranking of the set of results should reflect how well each semantic relationship discriminates a result from the other results

in the set. Thus, we devise a novel weighting measure for the semantic relationships, such that it assigns a higher weight to

semantic relationships with less ambiguity in identifying the target resources. Further, we design a novel ranking model for

resources by considering the following three major relevance criteria: the number of important relationships between re-

sources and query keywords, the coverage of the keywords, and the discriminating power of the keywords. If there are many

kinds of semantic relationships from resources to query keywords in an ontology, it would take much time to examine the

entire set of relationships in the semantic search. In order to improve the efficiency of our semantic search, we prune the

search space using the length and importance of the semantic relationship. Our semantic search may generate many results

that are related to the query keywords. Therefore, we adapt the Threshold Algorithm (Fagin et al., 2003) to efficiently retrieve

the top-k results without examination of the entire result set.

The main contributions of our work are summarized below:

� A weighting method for semantic relationships:We propose a weighting measure for semantic relationships which assigns a

higher weight to significant relationships having a higher level of contribution to discriminate the answer. In our work,

the weight is automatically computed without the intervention of domain experts. Thus, the weighting method could be

applied to large and complex ontologies.
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Fig. 1. Document retrieval process based on ontologies.
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� A novel ranking method: We suggest a novel ranking method considering the number of meaningful semantic relation-

ships, the coverage of the keywords, and the discriminating power of the keywords. These are fundamental and important

criteria for users to judge the relevance of a search result. It is the first time to consider all three criteria for ranking results

in the semantic search. The accuracy of our ranking method is proven by the experiments comparing with the existing

ranking methods based on an ontology.

� Efficient search techniques: For efficiency of the semantic search engine, we prune meaningless relationships by using the

length and weight of the semantic relationship. Our pruning technique reduces the search space by average 40–45% in the

experiments. In addition, we construct an extended inverted index, ‘keyword index’, in advance, to avoid the expensive

traversal of a large ontology instance graph during the answering process. Furthermore, we enhance the efficiency of the

top-k answering by using Threshold Algorithm based on the keyword index.

The rest of the paper is organized as follows: Section 2 discusses the related work. Section 3 explains the data model for

an ontology and defines the semantic search. Section 4 describes the semantic search framework. Section 5 introduces a

weighting method for semantic relationships and a new ranking method for the semantic search. Section 6 presents a prun-

ing method to improve the accuracy and efficiency of the semantic search and a top-k query processing method. Section 7

shows the empirical evaluation of our search method. Finally, in Section 8, we conclude our work.

2. Related work

On the Semantic Web, the semantic relationships among resources can be various and complex. Anyanwu and Sheth

(2003) formalized the various complex relationships between resources. Anyanwu et al. (2005) proposed a ranking method,

called SemRank, to rank semantic relationships between two resources based on the predictability of the relationships. These

methods focus on the retrieval and ranking of relationships between a given single pair of resources.

Recently, some techniques considering the semantic relationships among resources expressed in an ontology in order to

improve the accuracy of the keyword-based search have been conducted. Li et al. (2007) addressed the problem of the cur-

rent keyword-based search (i.e., keywords-isolated pages which only include the query keywords but have no relationship

with the query in the context) due to the ignorance of relationships among keywords. They introduced a relation-based

search engine, OntoLook. OntoLook constructs a concept-relation graph consisting of concepts (i.e., classes) of keywords

and all semantic relationships among them. Then, OntoLook finds matches of the graph from the ontology database and re-

turns URIs and values corresponding to the nodes in the graph as an answer. OntoLook reduces many keywords-isolated

pages by considering relationships among keywords. However, OntoLook demands a tedious work to input a query since

users should input concepts for all keywords. In addition, in order to reduce search space, OntoLook cuts some arcs (i.e., rela-

tions) from the concept-relation graph, but the algorithm does not consider the semantics and importance of the arcs.

Besides, OntoLook does not provide any ranking method to rank retrieved results.

Castells et al. (2007) presented an information retrieval framework using an ontology in order to improve the accuracy.

Basically, documents are annotated and an ontology is constructed based on the annotations. Then, the annotations for each

document are weighted by an adaptation of the tf*idf measure. For a user query, the annotations matched to the query are

retrieved from the ontology, and then the documents containing the annotations are selected as the query results. The result

documents are ranked by an adapted vector-space model which assigns higher scores to the documents containing many

high weighted annotations. In this work, the relationship between the annotations was used to find the relevant document

through the ontology query processing, but the differences among the weights of the relationships were not considered.

In the field of the ontology query processing, Stojanovic et al. (2003) proposed a ranking method for the results of an

ontology query. Rocha et al. (2004) proposed a spread activation algorithm which finds additional relevant results by using

an ontology after a traditional keyword-based search. These methods determine the relevance based on a link analysis where

the amount and specificity of the relationships are considered, but they are insufficient for precise ranking. For example, ‘be

interested in’ and ‘write a publication about’, which are the semantic relationships between a researcher and a research topic,

have different weights to explain a person. ‘write a publication about’ is more specific and more informative descriptor to

explain a researcher than ‘interested in’. We define the semantic diversity of relationships as the semantically different

importance of the relationships from a resource to a keyword to determine the relevance of the resource against the

keyword. The different weights of relationships according to the semantic diversity should be reflected to determine the

relevance of a resource. However, the ranking method in Stojanovic et al. (2003) did not consider the diversity of semantic

relationships. The work in Rocha et al. (2004) assigned a weight to each relationship (i.e., property) according to its seman-

tics. However, the weight is determined by domain experts and it is impractical to manually assign the weights to all rela-

tionships in case that the ontology is large and complex. Besides, queries consisting of multiple keywords with different

importance to determine the relevance are not effectively handled.

The keyword-based search in various data models has also been extensively studied in the literature. Representatively,

Guo et al. (2003); Hristidis and Papakonstantinou (2002); Liu et al. (2006); Luo et al. (2007); Zhou et al. (2012); and Theobald

et al. (2005) proposed ranking methods considering the link structure covering query keywords. The link structure is com-

posed of primary-foreign key relationships in the relational model, edges in the graph model, and parent–child relationships

in the XML model. However, these methods also do not consider the various features of links such as the specificity and
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semantic diversity. Guo et al. (2003) and Theobald et al. (2005) considered the specificity of elements or search terms in their

relevance models instead of the links.

In order to determine the weight of a semantic relationship, the importance of the components composing the semantic

relationship must be determined. Alani et al. (2006) proposed weighting measures for a class in various aspects such as the

number of semantic neighborhoods and centrality of the class. However, this study did not deal with the weighting of a prop-

erty. Wu et al. (2008) presented a ranking method for classes and properties in an ontology. This study introduced the fea-

tures of important classes and properties and designs a ranking model based on the features. The ranking model has the

reverse mechanism of PageRank, and the weights of classes and properties reinforce each other in the ranking model in

an iterative manner. This study only focused on the effective identification of potentially important classes and properties

in an ontology in order to facilitate user’s interpretation of the ontology. Therefore, the ranking model is insufficient to be

directly applied to the weighting measure for semantic relationships.

3. Preliminaries

3.1. Data model

An ontology is composed of a schema and its instance to represent knowledge description of concepts and their relation-

ships. The schema defines classes (i.e., concepts) and properties which are the relationships between classes. In the instances

of the schema, class instances1 and property instances are declared according to the schema.

For example, Fig. 2 shows a part of the ontology describing resources and their relationships in a research domain. The

schema in Fig. 2(a) defines classes existed in the research domain such as Publication and Professor as well as properties such

aswrittenBy. In an instance of the schema in Fig. 2(b), the resource prof1 is an instance of the Professor class, the resource pub1
is an instance of the Publication class, and pub1 � writtenBy � prof1 is an instance of the writtenBy property. In addition, we

say that there is a semantic relationship between two resources if they are connected via properties.

In this study, we consider an ontology represented in a subset of OWL-Lite which includes RDF features, object/data-

type property, and inverseOf property. These features are sufficient to capture the semantic relationships among re-

sources needed in our method. Since we do not consider more powerful ontology languages like OWL-DL, our semantic

search method cannot extract and use hidden semantic relationships which would only be revealed by inferences. On

the other hand, since our semantic search method requires only the basic features of the ontology language, it has fewer

restrictions for generality and deployment. In addition, we assume that all classes, properties, data types, and instances

are explicitly identified in the ontology, and a property has one domain and one range. The formal definitions for the

ontology are as follows:

Professor
Student

Author

Person

Object

Publication

Topic
writtenBy

hasTitle

hasName

interestedIn

hasAdvisor

ResearchGroup

memberOf

cite subClassOf
property

general 
property

class

String

data type

Project

performedBy

prof1

st1

pub1

topic1
Professor

Author

Student

pub3

pub2

‘Web Search’

‘top-k …Web’

‘… Semantic Web’

‘top-k ...

RDB’

type

type

type

type

interestedIn

hasAdvisor

writtenBy

writtenBy

writtenByhasTitle

hasTitle

hasTitle

cite

hasName

lab1Laboratory
type

memberOf

‘KD Lab’
hasName

class

class
instance

property
instance

data
value

Fig. 2. An example of an ontology.

1 We use ‘class instance’ and ‘resource’ interchangeably since the search target is a resource which is denoted as a class instance in an ontology.
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Definition 1 (Schema). Schema S is defined as hC,D,Pi. C is the set of classes, D is the set of data types, and P is the set of

properties. All classes, properties, and data types are explicitly identified by URIs. For d 2 C, r 2 C [ D, there can be a property

p(d,r) 2 P. For each property p(d,r) 2 P, d is the domain and r is the range of p.

There are two types of properties: the object property which has a class as its range and the data property which has a data

type like a string or a numeric value as its range. In our work, we assume that the range of a data property is string for sim-

plicity. The hierarchies among classes and among properties are defined by the subClassOf property and the subPropertyOf prop-

erty, respectively. In addition, we assume that each property p(d,r) in the ontology has its own inverse property of p�1(r,d).

Definition 2 (Instance Graph). An instance graph confined to a schema S = hC,D,Pi is defined as a directed graph G = hV,Ei. V

is the set of instances. [c] indicates the set of instances of c 2 C [ D. A resource denotes a class instance in the instance graph.

For each v 2 V, v 2 [c] if v.type = c. E is the set of relationships among instances in V. [p(d,r)] denotes the set of property

instances of p(d,r) 2 P. For each e(vi,vj) 2 E, e(vi,vj) 2 [p(d,r)] if e = p, vi 2 [d] and vj 2 [r]. vi is the subject and vj is the object of

e. All resources are explicitly identified by URIs.

The set of instances of a class c includes the instances of its sub-classes in the class hierarchy, and the set of instances of a

property p includes the set of instances of its sub-properties in the property hierarchy.

Definition 3 (Semantic Path). A semantic path sp is a sequence of properties p1(d1,r1), . . . , pm(dm,rm) in a schema S = hC,D,Pi,

where pi(di,ri) 2 P and ri and di+1 are the same class or have a common super class (excluding the root) in the class hierarchy.

An instance graph G confined to schema S can include matches of a semantic path in S. A match of the semantic path is a

sequence of property instances, which is called semantic path instance.

Definition 4 (Semantic Path Instance). For a semantic path sp = p1(d1,r1), . . . , pm(dm,rm), ip = e1(s1,o1) e2(s2,o2), . . . , em(sm,om)

is a semantic path instance of sp if ei(si,oi) 2 [pi(di,ri)] and oi = si+1 for all ei. s1 is the source of ip and om is the destination of ip.

[sp] denotes the set of all semantic path instances of sp.

In Fig. 2, writtenBy�1(Author,Publication)hasTitle(Publication,String) s a semantic path, and writtenBy�1(prof1,pub1)hasTi-

tle(pub1, ‘top � k . . .Web’) is a semantic path instance2 of the semantic path.

In an instance graph, the existence of a semantic path instance from vi to vj implies that vi can be described by vj through

the semantic path instance.

3.2. Semantic search

In order to complement the traditional keyword-based search, the semantic search considers the type of the desired re-

source and the semantic relationships among resources.

In the semantic search, a user query Q consists of (1) a class T of resources in which a user is interested and (2) a set of

keywords K which describes the desired resources. Thus, the answer of Q is a set of resources whose class is T and which are

related to the set of keywords K through the semantic path instances.

In fact, data values are leaf nodes in an instance graph and may contain some query keywords. Since the answer of the

semantic search is the set of resources connected to data values containing query keywords, the data values are not the tar-

get of the semantic search.

Definition 5 (Semantic Search). Given a schema S = hC,D,Pi and an instance graph G confined to S, the semantic search is to

find the answer A for query Q = hT,Ki, where T 2 C. For each resource a 2 A, there should be at least one semantic path

instance from resource a to data value s in Gwhere a 2 [T] and value s contains k 2 K. IP(a,k) denotes the set of such semantic

path instances from a to s including any query keyword k.

If we do not care about the resource type in the semantic search, we use the root class (i.e., owl:Thing) of the class hier-

archy as the desired type T. It means that all resources in the instance graph belong to the search scope.

4. Semantic search framework

In this section, we briefly explain the semantic search framework. Fig. 3 shows the main components of the semantic

search engine and the corresponding components of the traditional IR. The explanations for the components are as follows:

� Input: It is a query (T,K), where T is the desired resource type and K is the set of keywords.

2 We ignore the semantic path instance containing a cycle like ‘hasAdvisor(prof1,st1)writtenBy�1(st1,pub2)writtenBy(pub2,prof1), . . .’ in our work since such

semantic path instances are redundant.
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� Semantic Relationship Extractor: This module finds the possible semantic relationships between the target resources and

the query keywords. It extracts the set of semantic paths SP from T to K from the ontology schema. It expands a basic

keyword query to a form of semantically enhanced query (i.e., a set of semantic relationships) based on the ontology

schema. Thus, this module corresponds to the query expansion component in the traditional IR system. The details of

the extraction process and a strategy to prune unnecessary semantic paths are presented in Section 6.1.

� Ontology Traversal Module: This module retrieves the resources that match the user query by traversing an ontology

instance graph along the extracted semantic relationships. It finds the set of resources R each of which reaches some key-

words in K through SP from an instance graph. This module corresponds to the query matching component in the tradi-

tional IR system.

� Semantic Search Ranker: This module is in charge of ranking resources in the order of their relevance. For each resource

ri 2 R, it computes Rank(ri,K) which is the relevance of resource ri for K. This module corresponds to the ranking compo-

nent using Term-weighting (i.e., tf*idf) or PageRank in the traditional IR system. The details of the ranking method as well

as the relevance criteria for the semantic search are presented in Section 5

� Output: It is a list of ranked resources in descending order of Rank(ri,K). The efficient method retrieving top-k results with

the highest relevance scores is explained in Section 6.2.

5. Semantic search ranking

The number of relevant results returned by the semantic search is usually very big. In general, however, users are inter-

ested in only the first k results listed. Therefore, the semantic search should provide the results in the order of relevance.

Which results are more relevant to the user query? Intuitively, the relevance of a candidate result can be judged based

on the semantic relationships between the result and the query keywords. To determine the relevance of a result, we con-

sider the following criteria:

� The number of meaningful semantic paths: A resource, which has many semantic paths directed to query keywords, is more

relevant. In addition, the importance of the semantic paths should also be considered.

� The coverage of keywords: Users describe what they want to find by using query keywords. Therefore, a resource which

reaches to as many query keywords as possible through semantic paths is more relevant.

� The discriminating power of keywords: A resource having semantic paths to query keywords, which distinguish relevant

resources from others, is more relevant.

By using these relevance criteria, we design a new ranking method for the semantic search. In the following sections, we

will present the measures for these criteria and explain how to reflect the criteria in our method.

5.1. Weighting method for semantic paths

The semantic path which can effectively distinguish the relevant resources from others is a meaningful semantic path for

the semantic search. According to this, we propose a weighting measure for semantic paths.

5.1.1. The weight of a property

A semantic path consists of one or more properties. Therefore, in order to measure the weight of a semantic path, we

should be able to determine the weight of each property in the semantic path. The weight of a property represents how well
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Fig. 3. The major components of the semantic search engine.
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the property describes its subject. The weight of a property is determined according to (1) the ability of the property to dis-

criminate the candidate set of its subject from others and (2) the identification power of the property about the subject when

we know the object, and vice versa. Since each factor is not sufficient alone to determine the weight of a property, we com-

bine these two factors to complement each other.

In the ontology of Fig. 2, if a property is hasName, we can expect that its subject is an Object. In case of hasTitle, we can

reduce the candidate set of the subject to Publication. Thus, hasTitle is more discriminating property. We consider this dis-

criminating power of a property to determine the weight of the property.

In information theory, the information content gained by the occurrence of an event x can be quantified as:

IðxÞ ¼ �log2prðxÞ

where pr(x) is the occurring probability of x (Resnik, 1999). This represents the uncertainty eliminated by the occurrence of

the event x. As x occurs rarely, x is more informative. In our domain, we adapt this measure to determine the discriminating

power of a property.

Based on information theory, the amount of information gained by the existence of a property is calculated as follows:

For an instance graph G = hV,Ei confined to the schema S = hC,D,Pi, the probability pr(p(d,r)) that a resource is a subject of

a property p(d,r) 2 P is computed as follows:

prðpðd; rÞÞ ¼
jsubðpðd; rÞÞj

jNj

where sub(p(d,r)) = {vi—e(vi,vj) 2 [p(d,r)]} and N is the set of resources excluding data values.

Thus, the amount of information contained in a property p(d,r) is

Iðpðd; rÞÞ ¼ �log2prðpðd; rÞÞ ð1Þ

For example, consider an ontology instance complying with the schema in Fig. 2(a). We assume that there are 1000 resources

including people, publications, and topics in the ontology, 600 people are interested in some topics, and 100 people (i.e., authors)

wrote some publications. The amount of information contained in interestedIn and writtenBy�1 is obtained as follows:

IðinterestedInðPerson; TopicÞÞ ¼ �log2prðinterestedInðPerson; TopicÞÞ ¼ �log2

600

1000
¼ �log20:6 � 0:73:

IðwrittenBy
�1
ðAuthor; PublicationÞÞ ¼ �log2prðwrittenBy

�1
ðAuthor; PublicationÞÞ ¼ �log2

100

1000
¼ �log20:1 � 3:32:

This amount of information contained in a property represents the discriminating power of the property.

The discriminating power of a property is not sufficient to determine the importance of the property. For example, it

tends to underestimate the actual importance of hasName compared with other properties of Person such as memberOf since

every person has its own name while only some people are members of a research group. However, hasName can identify a

person by a given name, but memberOf cannot identify a person by a given research group. We consider this identification

power of a property to determine the weight of the property.

In information theory, the amount of information that one random variable contains about another random variable is

measured by Mutual Information (Cover, 1991). To measure the identification power of a property about its object given

a subject, and vice versa, we adapt the mutual information measure.

The mutual information between the domain d and the range r for a property p(d,r) is

MIðpðd; rÞÞ ¼
X

o2r

X

s2d

prðs; oÞ � log2

prðs; oÞ

prðsÞprðoÞ

� �

where the sample space is [p(d,r)], pr(s) is the probability that e 2 [p(d,r)] has s as its subject and pr(o) is the probability that

e 2 [p(d,r)] has o as its object. In addition, pr(s,o) is the probability that e 2 [p(d,r)] has s and o as its subject and object

respectively at the same time. Thus, for p(d,r), prðsÞ ¼
jfeðv i;v jÞjv i ¼ s ^ eðv i;v jÞ 2 ½pðd; rÞ�gj

j½pðd; rÞ�j
. pr(o) and pr(s,o) are obtained

by the similar way.

For example, the mutual information between Author and Publication for the property writtenBy�1 and the mutual infor-

mation between the Person and String for the property hasName in Fig. 4 can be obtained as follows:

Fig. 4. An example of instances of properties writtenBy�1 and hasName.
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MIðwrittenBy
�1
ðAuthor; PublicationÞÞ ¼ prðst1; pub1Þ � log2

prðst1;pub1Þ

prðst1Þprðpub1Þ

� �

þ prðprof1;pub1Þ

� log2

prðprof1;pub1Þ

prðprof1Þprðpub1Þ

� �

þ prðprof1;pub2Þ � log2

prðprof1;pub2Þ

prðprof1Þprðpub2Þ

� �

þ prðst2;pub2Þ � log2

prðst2;pub2Þ

prðst2Þprðpub2Þ

� �

¼
1

4
� log2

1
4

1
4
� 1
2

 !

þ
1

4
� log2

1
4

1
2
� 1
2

 !

þ
1

4
� log2

1
4

1
2
� 1
2

 !

þ
1

4
� log2

1
4

1
4
� 1
2

 !

¼ 0:5:

MIðhasNameðPerson; StringÞÞ ¼ prðprof1; PoleÞ � log2

prðprof1; PoleÞ

prðprof1ÞprðPoleÞ

� �

þ prðst1; JaneÞ � log2

prðst1; JaneÞ

prðst1ÞprðJaneÞ

� �

þ prðst2;AndyÞ � log2

prðst2;AndyÞ

prðst2ÞprðAndyÞ

� �

þ prðst3; TomÞ � log2

prðst3; TomÞ

prðst3ÞprðTomÞ

� �

¼
1

4
� log2

1
4

1
4
� 1
4

 !

þ
1

4
� log2

1
4

1
4
� 1
4

 !

þ
1

4
� log2

1
4

1
4
� 1
4

 !

þ
1

4
� log2

1
4

1
4
� 1
4

 !

¼ 2:

In case that there are many property instances, no doubt that the cost of computing the mutual information exactly will

be prohibitively expensive. Therefore, we compute the mutual information approximately.

The probability of picking an instance of property p(d,r) from [p(d,r)] is
1

j½pðd; rÞ�j
. pr(s) is approximately

1

jsubðpðd; rÞÞj

where sub(p(d,r)) is the set of distinct subjects in [p(d,r)] with the assumption that every subject has the same number of

objects. pr(o) is also obtained in a similar manner. Thus, the mutual information can be estimated as:

MIðpðd; rÞÞ � log2

1
j½pðd;rÞ�j

1
jsubðpðd;rÞÞj

� 1
jobjðpðd;rÞÞj

ð2Þ

where sub(p(d,r)) = {vi—e(vi,vj) 2 [p(d,r)]} and obj(p(d,r)) = {vj—e(vi,vj) 2 [p(d,r)]}.

For example, the approximated MI(writtenBy�1) is log2

1
4
1
3
�1
2

¼ 0:58.

The mutual information tends to be favorable to the property which has a large number of distinct subjects or objects. The

combination with the discriminating power of a property compensates this bias.

As mentioned before, each of them alone is not sufficient to determine the weight of a property, and they are complemen-

tary each other. In order to combine I andMI, we can consider various aggregation methods such as average, summation, and

multiplication. We choose a weighted summation as a combining method for adjusting the influence of each factor on the

overall weight.

By using Eq. (1) and (2), we can compute the weight of a property p(d,r) as follows:

wðpðd; rÞÞ ¼ a � Iðpðd; rÞÞ þ b �MIðpðd; rÞÞ ð3Þ

where 0 6 a, b 6 1 and we normalize I and MI to be in the range [0,1] by
IðpÞ �minp2PIðpÞ

maxp2PIðpÞ �minp2PIðpÞ
and

MIðpÞ �minp2PMIðpÞ

maxp2PMIðpÞ �minp2PMIðpÞ
, respectively, where P is a set of properties.

5.1.2. The weight of the semantic path

A semantic path is composed of one or more properties. We obtain the weight of the semantic path by combining the

weights of constituent properties. For simplicity, we assume that each property is independent of others. As the length of

a semantic path gets longer, the relevance between the source and the destination decreases. Therefore, the addition and

average functions are not suitable to combine the weights of properties. In order to reflect the path length to the weight,

we normalize the property weight to be in
minp2PwðpÞ

maxp2PwðpÞ
;1

� �

where P is a set of properties. Then, we multiply the normalized

weights. From here on, w(p(d,r)) is the normalized weight. This combining function (i.e., normalization and multiplication)

makes the weight of a semantic path to be in the range (0,1]. In addition, we add an attenuation parameter to control the

effect of the path length. The weight of semantic path sp is computed as follows:

WðspÞ ¼
Y

pðd;rÞ2sp

wðpðd; rÞÞ

0

@

1

A � dlengthðspÞ�1 ð4Þ

where length(sp) indicates the number of properties in sp, and d is an attenuation parameter which is tunable from 0 to 1.

A semantic path instance has the weight of its corresponding semantic path.

WðipÞ ¼ WðspÞ if ip 2 ½sp�
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Consequently, in contrast to previous methods, the weight of a semantic relationship can be computed without the inter-

vention of a domain expert in our work.

5.2. Ranking formula for semantic search

As mentioned in Section 3.2, the relevance of a semantic search result is determined by three important criteria: the num-

ber of meaningful semantic path instances, the coverage of query keywords, and the discriminating power of query key-

words. In this section, we propose a novel ranking method considering these three criteria.

5.2.1. The number of meaningful semantic path instances

We regard the resources related to query keywords through more meaningful semantic path instances as more relevant

results for a query. The meaningfulness of a semantic path instance is represented by the weight of the semantic path ob-

tained by Eq. (4).

The relevance of a resource a for each keyword in K according to the number of meaningful semantic path instances can

be computed as follows:

Rða; kiÞ ¼
X

ip2IPða;kiÞ

WðipÞ; for ki 2 K ð5Þ

Recall that IP(a,ki) in Definition 5 is the set of all semantic path instances from a to value s including keyword ki.

However, the relevance measure presented in Eq. (5) has a problem. According to Section 5.1, as the number of property

instances increases, the weight of the property is likely to be reduced. Therefore, a semantic path with a small weight tends

to have a large number of path instances. This feature can cause a problem such that the relevance score of an irrelevant

resource can be greater than that of a relevant one.

Consider, the following two semantic paths and the corresponding weights:

sp1 : hasTitle (Publication, String)

sp2 : writtenBy (Publication, Author) writtenBy�1(Author, Publication) hasTitle (Publication, String)

Wðsp1Þ ¼ 1 and Wðsp2Þ ¼ 0:15

In many cases, the number of semantic path instances of sp1 is one because each publication usually has a single title. In

contrast, the number of instances of sp2 increases as the number of authors and the number of publications written by the

authors increase. For example, the publication pub1 has the title including the keyword ‘xml’. On the other hand, the publi-

cation pub2 is written by two authors, each author has written 15 publications, and among the publications, 20 publications

contain ‘xml’ in their titles. However, the title of pub2 does not contain ‘xml’ (i.e., the topic of pub2 is not ‘xml’). Thus, pub1 is

more relevant to the keyword ‘xml’ than pub2. However, R(pub1, ‘xml’) is 1 and R(pub2, ‘xml’) is 3 (=0.15�20) since the number

of semantic path instances of sp1 for pub1 is 1 and that of sp2 for pub2 is 20.

In order to attenuate this side effect, we reflect the specificity of a semantic path instance. The specificity of a semantic

path instance is defined as follows:

Definition 6 (Specificity of a semantic path instance). Given a semantic path instance ip = e1(s1,o1), . . . , em(sm,om) 2 [p1(d1,r1),

. . . , pm(dm,rm)], the specificity of ip, specðipÞ ¼
Q

1
degreeðsi ;piÞ

, where degree(si,pi) represents the number of instances of a

property pi whose subject is si.

In the above example, the specificity of a semantic path instance of sp2 starting from pub2 is
1
30

¼ 1
2
� 1
15
� 1

� �

. However, the

specificity of a semantic path instance of sp1 starting from pub1 is 1 since degree(pub1,hasTitle) = 1.

Considering the specificity of a semantic path instance, we modify the relevance measure in Eq. (5) as follows:

Rða; kiÞ ¼
X

ip2IPða;kiÞ

ðWðipÞ � specðipÞÞ; for ki 2 K ð6Þ

As applying the specificity of a path instance, the maximum relevance score through a particular semantic path is the

weight of the semantic path. For the previous example, R(pub2, ‘xml’) is 0:1 ¼ 20 � 0:15 � 1
30

� �� �

and R(pub1, ‘xml’) is 1 (=1�1).

Therefore, even if a less relevant resource has many semantic path instances, it obtains a small relevance score by using

Eq. (6). Rocha et al. (2004) and Stojanovic et al. (2003) also reflect the specificity of a given path to determine the relevance

of the path, but the measures are different from ours. Rocha et al. (2004)’s specificity is inversely proportional to the in-

degree of the object for a given property while ours is inversely proportional to the out-degree of the subject. Stojanovic

et al. (2003)’s one is inversely proportional to the multiplication of the out-degree of the subject and the in-degree of the

object for a given property.

Basically, our relevance model is based on the weight of the semantic path determined by the information theoretic

framework, and in order to solve the occasional side effect caused by the presence of many meaningless semantic path in-

stances, the heuristic using the specificity of semantic path instances is applied.
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5.2.2. The coverage of keywords

Generally, a user prefers results covering all query keywords. To reflect this preference, we design a method to measure

the coverage of query keywords which is derived from the extended boolean model (Salton et al., 1983).

For a resource a in the set of results A and the set of query keywords K, we map a to a point in a jKj-dimensional space

[0,1]jKj. Each coordinate of a represents the relevance of a to the corresponding keyword. The relevance for each keyword is

measured by Eq. (6). The relevance of a for K is in inverse proportion to the distance from the ideal position [1, . . . ,1] to the

point of a. The relevance considering the keyword coverage Cov(a,K) is computed by

Covða;KÞ ¼ 1�

P

16i6jKjð1� NRða; kiÞÞ
p

jKj

" #1
p

ð7Þ

where NRða; kiÞ ¼
Rða; kiÞ

maxam2ARðam; kiÞ
for ki 2 K

We use the Lp distance and normalize the value into [0,1]. NR(a,ki) represents the normalized relevance of a about ki. p

(P1) is a tunable parameter which controls the strength of AND-semantics. As p increases, Eq. (7) enforces the AND-seman-

tics among keywords. On the other hand, when p = 1, Eq. (7) represents OR-semantics (Salton et al., 1983).

In the IR literature, the cosine similarity is a popular method to measure the similarity between two vectors of n dimen-

sions. In our problem, the query vector consists of the weights of query keywords, and an element of the resource vector is

the relevance of the resource for the corresponding query keyword. The overall relevance of the resource for all query key-

words can be computed by the cosine similarity between the two vectors. The cosine similarity is determined by the cosine

of the angle between the two vectors. Therefore, the sizes of the vectors are not reflected in the similarity. However, in our

problem, the difference of the vector magnitudes should be considered. Thus, the cosine similarity is not a suitable alterna-

tive for combining multi-keyword relevances.

5.2.3. The discriminating power of keyword

A resource having semantic paths to discriminating keywords is more relevant than a resource having semantic paths to

undiscriminating keywords.

The discriminating power of a keyword is measured by the keyword’s inverse resource frequency (irf) which is similar to

idf (Salton and McGil, 1986). The inverse resource frequency of a keyword ki is computed as below:

irf ðkiÞ ¼ log
jDV j

jDVki j

where jDVj denotes the total number of data values and jDVki j is the number of data values containing keyword ki.

We define the discriminating power of a keyword ki, D(ki), as the normalized value of irf(ki).

DðkiÞ ¼
irf ðkiÞ

maxkm2K irf ðkmÞ
ð8Þ

The discriminating power of a keyword in Eq. (8) represents the weight of a keyword reflecting the importance of the

keyword to determine the relevance. Thus, to make the final rank formula, we combine D(ki) in Eq. (8) to Cov(r,K) in Eq.

(7) as follows:

Rankða;KÞ ¼ 1�

P

16i6jKjðDðkiÞ � ð1� NRða; kiÞÞÞ
p

P

16i6jKjDðkiÞ
p

" #1
p

ð9Þ

Recall that the number of meaningful semantic path instances is reflected to Eq. (7). Consequently, the three factors men-

tioned in Section 3.2 are fully reflected in Eq. (9).

5.2.4. An example of ranking query results

The semantic path instances shown in Fig. 2(b) are summarized in Table 1. We assume that the properties in Table 1 have

the weights as presented in Table 2. The weights of the semantic paths in Table 3 are obtained based on the weights of the

properties in Table 2.

Table 1

Semantic path instances from prof1 to data values.

ID Semantic path instances

ip1 interestedIn (prof1, topic1) hasName (topic1, ‘Web Search’)

ip2 writtenBy�1(prof1, pub1) hasTitle (pub1, ‘top-k. . . Web’)

ip3 writtenBy�1(prof1, pub1) cite (pub1, pub3)

ip4 writtenBy�1(prof1, pub2) hasTitle (pub2, ‘. . . Semantic Web’)

ip5 hasAdvisor�1(prof1, st1) writtenBy�1(st1, pub2)hasTitle (pub2, ‘. . . Semantic Web’)
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Let’s obtain the relevance score of prof1 for semantic query hProfessor, {‘top-k’, ‘Web’}i. prof1 has five semantic path in-

stances from ip1 to ip5 as shown in Table 1. The relevance score of prof1 is obtained by the following process:

(1) The relevance score for each keyword is calculated by Eq. (6).

Rðprof1; ‘top-k’Þ ¼ Wðip2Þ � specðip2Þ þWðip3Þ � specðip3Þ ¼ 0:42 �
1

2
� 1

� �

þ 0:1008 �
1

2
� 1 � 1

� �

¼ 0:2604

Rðprof1; ‘Web’Þ ¼ Wðip1Þ � specðip1Þ þWðip2Þ � specðip2Þ þWðip4Þ � specðip4Þ þWðip5Þ � specðip5Þ

¼ 0:27 � ð1 � 1Þ þ 2 � 0:42 �
1

2
� 1

� �

þ 0:126 � ð1 � 1 � 1Þ ¼ 0:816:

Assume that the maximum R(rm, ‘top-k’) is 0.6 and the maximum R(rm, ‘Web’) is 0.9. Then, NRðprof1; ‘top-k’Þ � 0:43 ¼ 0:2604
0:6

� �

and NRðprof1; ‘Web’Þ � 0:9 ¼ 0:816
0:9

� �

.

(2) When the inverse resource frequency of each keyword is irf(‘top-k’) = 11.5 and irf(‘Web’) = 5.7, the discriminating

power of each keyword is D(‘top-k’) = 1 and D(‘Web’) � 0.5.

(3) Based on the relevance for each keyword and the discriminating power of the keywords, the final relevance score of

prof1 is calculated by Eq. (9) with p = 3:

Rankðprof1;KÞ ¼ 1�
ðDð‘top-k’Þ � ð1� NRðprof1; ‘top-k’ÞÞÞ3 þ ðDð‘Web’Þ � ð1� NRðprof1; ‘Web’ÞÞÞ3

Dð‘top-k’Þ3 þ Dð‘Web0Þ3

" #1
3

� 0:45:

6. Enhancement in efficiency of semantic search

In this section, we explain how to improve the efficiency in the semantic relationship extraction and the top-k result

retrieval.

6.1. Semantic relationship extraction

As mentioned in Section 4, the semantic relationship extraction module decides the semantic paths to be examined in the

search process. At first, we should know the data properties whose values contain some keywords in K. To do this, we con-

struct the table IT (term, property, class), where term is a keyword, property is a property whose object contains term, and class

is the class of propety’s subject. We can get the semantic paths from T to a given keyword by the breadth-first search of the

schema staring from T to the extracted set of (class, property) pairs for the keyword. Table 4 shows the traversal of the schema

in Fig. 2(a) for the query hProfessor, {‘Web’}i. In addition, since a class inherits the properties of its super classes, the super

classes of T (i.e., Person) are considered in the schema traversal. If an instance is defined as multiple classes, the instance

can have all properties of those classes. Thus, if a class contains common instances with T, the semantic paths from the class

should be considered. We assume that some instances are defined as both Author and Professor. Finally, the extracted seman-

tic paths are sp2.1, sp2.2, sp3.1, and sp3.2.

A lot of semantic paths can be extracted in this step. Besides, if there is a semantic path in which the source class is the

same as the destination class (i.e., a cycle), the extraction is not finished. Therefore, some constraints are required.

Length Threshold: As mentioned earlier, long semantic paths are relatively less important to determine the relevance of a

result than short paths. Hence, we restrict the length of semantic paths by using a threshold THl. The value of the threshold

THl is dependent on the domain.

Table 2

The weights of properties.

Property Weight

interestedIn (Person, Topic) 0.5

writtenBy�1(Author, Publication) 0.7

hasName (Topic, String) 0.9

hasTitle (Publication, String) 1

cite (Publication, Publication) 0.4

hasAdvisor (Professor, Student) 0.5

Table 3

The weights of semantic paths (d = 0.6).

ID Semantic path Weight

sp1 interestedIn (Person,Topic) hasName (Topic, String) 0.27

sp2 writtenBy�1 (Author, Publication) hasTitle (Publication, String) 0.42

sp3 writtenBy�1 (Author, Publication) cite (Publication, Publication) hasTitle (Publication, String) 0.1008

sp4 hasAdvisor (Professor, Student) writtenBy�1(Author, Publication) hasTitle (Publication, String) 0.126
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Weight Threshold: Even after pruning with the length of the semantic path, many meaningless semantic paths may re-

main. The weight of a semantic path presents the contribution of the semantic path to determine the relevance. Therefore,

we can prune the semantic paths with a weight smaller than a threshold THw.

The weight threshold should be determined according to the data set. Thus, we reflect the weights of properties in each

semantic path to THw. Since the weight of a semantic path is computed by Eq. (4), we make the weight threshold THw based

on Eq. (4).

THw is computed by aggregating the weights of properties in each position of semantic paths. Many semantic paths tend

to have a common suffix since the types of properties having a particular keyword are limited. Therefore, to compute THw, we

align the properties in semantic paths in inverse order.

For a semantic path spj with length(spj) 6THl, let �pji denote the (length(spj) � i + 1)th property in spj. For example, for a

semantic path sp4 in Table 3, �p41 is hasTitle, �p42 is writtenBy�1, and �p43 is hasAdvisor�1.

To obtain THw, the representative weight twi for the (length(spj) � i + 1)th properties in all semantic paths spj such that

length(spj) 6 THl is required. The maximum, average, minimum functions can be used to compute twi. In this work, we

use the maximum function which shows a better performance than others. Thus, twi is computed as follows:

twi ¼ maxspj2SPwð�pjiÞ

where �pji is the (length(spj) � i + 1)th property in spj.

Consequently, the weight threshold THw is computed as follows:

THw ¼
Y

16i6THl

twi

 !

� dTHl�1 ð10Þ

In case that max(length(spj)) hTHl, twi = 1 for ii max (length(spj)).

We do not apply the weight threshold THw blindly since a unique semantic path to a particular resource type directly re-

lated to keywords can be pruned. The removal of this kind of semantic paths can lead to the missing of the relevant result.

For example, consider the following three semantic paths:

sp1 :writtenBy�1 (Author, Publication) hasTitle(Publication, String)

sp2 :writtenBy�1(Author, Publication) cite�1(Publication, Publication) hasTitle(Publication, String)

sp3 :memberOf (Person, ResearchGroup) performedBy�1(ResearchGroup, Project) hasName(Project, String)

The semantic path sp1 and sp2 represent the relationships between Author and Publication (’s title) and sp3 represents that

between Person and Project (’s name). If W(sp1) > THw >W(sp3) >W(sp2), sp2 and sp3 are pruned. In order to find students rel-

evant to a keyword, most publications which should be examined are covered by sp1. Therefore, the publications reached by

sp2 is ignorable. However, if projects related to the keyword can be covered by only sp3, many relevant students can be

missed by pruning of sp3. Thus, in order to preserve the important semantic path like sp3, our approach prunes the semantic

paths according the following pruning rule.

Pruning Rule: A semantic path spi(=pi1(di1,ri1) � � � pin(din,rin)) with a weight less than THw is pruned, if there is another

semantic path spj(=pj1(dj1,rj1) � � � pjm(djm,rjm)) which satisfies all of the following conditions: (1) W(spi) <W(spj), (2) pin = pjm,

and (3)rjm�1 is equal to rin�1 or a super class of rin�1.

Some resources related to the query can be excluded from the answer through the pruning. However, if a resource is fairly

relevant to the query, it is likely to be related to the query keywords through a more important semantic path than the

pruned paths. Furthermore, since the weights of the pruned semantic paths are small, the influence of the removal of them

is ignorable. Therefore, in general, the accuracy of search is not degraded by the pruning of sematic paths. Moreover, as men-

tioned in Section 5.1, a semantic path with a small weight tends to contain relatively much more instances than others. Thus,

the pruning of such semantic paths effectively reduce the search space.

Table 4

An example of the semantic path enumeration.

Iter ID Semantic path From

1st sp1.1 interestedIn (Person, Topic)

sp1.2 writtenBy�1(Author, Publication)

sp1.3 hasAdvisor�1(Professor, Student)

2nd sp2.1 interestedIn (Person, Topic) hasName (Topic, String) sp1.1
sp2.2 writtenBy�1(Author, Publication) hasTitle (Publication, String) sp1.2
sp2.3 writtenBy�1(Author, Publication) cite (Publication, Publication) sp1.2
sp2.4 hasAdvisor�1(Professor, Student) writtenBy�1(Author,Publication) sp1.3

3rd sp3.1 writtenBy�1(Author, Publication) cite (Publication, Publication)hasTitle (Publication, String) sp2.3
sp3.2 hasAdvisor�1(Professor, Student) writtenBy�1(Author, Publication)hasTitle (Publication, String) sp2.4
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6.2. top-k Result retrieval

Although our pruning technique effectively reduces the search space, it is impractical to traverse a huge instance graph to

find top-k results for every query. In order to efficiently access the top-k results, we construct and materialize ‘keyword in-

dex’, which is an extended inverted index, through an off-line preprocessing. The keyword index is composed of a set of in-

dex lists for keywords, and we can efficiently access the list of resources related to a keyword through the keyword index. An

entry of the index list for a keyword is a triple consisting of the type, identifier, and relevance score of a resource related to

the keyword through semantic paths. Each index list is sorted in descending order of the relevance score. For the construc-

tion of the index list for a keyword, we find the semantic paths from each class to the keyword in the schema of the ontology.

Then, we prune meaningless semantic paths among them by using the pruning technique mentioned in the previous section.

The construction of the keyword index is a time-consuming task. However, once the keyword index has been constructed,

we can directly access the resources related to a particular keyword through the index without the expensive traversal of the

instance graph for every query request.

To answer a query hT, {k1, . . . ,km}i, we first access the index list for every keyword from the keyword index. Then, we find

the top-k results having the highest overall relevance scores. The overall score is computed by Eq. (9). The naive algorithm

performs full scans of m index lists and computes the overall scores of all accessed resources. Then, it extracts k resources

with the highest overall scores. It is inefficient for large sized index lists because the cost is proportional to the size of the

index lists. Therefore, we adapt Threshold Algorithm (TA) (Fagin et al., 2003) which is a representative algorithm to effi-

ciently retrieve top-k results from multiple sorted index lists. Basically, this algorithm sequentially accesses resources and

their relevance scores for each keyword in the index lists. In other words, the resources are accessed in descending order

of the relevance score, thereby the resources with sufficient possibility to have a higher overall score are retrieved earlier

than others on the assumption that the overall scoring function is monotonic. At the same time, in order to immediately

compute the overall relevance score for each accessed resource, it can perform random accesses to obtain unseen local scores

for the resource. The process is terminated when no resource having a higher score than the minimum score of the top-k

resources retrieved so far can be accessed by further scan. In addition, if T is not the root class of the class hierarchy, re-

sources which do not belong to T are filtered out. Thus, scanning the entire index lists can be avoided.

7. Experiments

In the experiments, we evaluate the accuracy of our search method in comparison with existing methods by using real

data sets. In addition, we observe the sensitivity of our rankingmethod for tunable parameters, and validate the effectiveness

of our pruning method. Finally, we evaluate the efficiency of the top-k retrieval using the keyword index.

7.1. Data sets and queries

We construct two kinds of ontologies from two real datasets: DBLP data3 and IMDB data.4 Fig. 5 shows the schemas of the

DBLP and IMDB ontoloiges. The DBLP ontology includes 798,468 class instances and 3,141,309 property instances, and the IMDB

ontology contains 2,617,977 class instances and 12,222,558 property instances.

For an effective evaluation of our ranking method, we need ontologies having various classes and properties as well as

many instances since some of our measures are based on self-information and mutual information which are defined as

functions of probability distribution. In addition, the content of the ontologies should be so familiar with users as to easily

judge the relevance of search results. The DBLP and IMDB ontologies satisfy these requirements. Moreover, they have differ-

ences in the following aspects which determine the performance of the semantic search: First, IMDB has more various prop-

erties than DBLP. Second, the terms in IMDB are more general and implicit than those in DBLP. Due to these differences, the
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Fig. 5. Schemas of data sets.

3 http://dblp.uni-trier.de/xml/. The DBLP data used in our experiments contains the information of publications published before 2005.
4 http://www.imdb.com/interface.
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size of the semantic search scope and the accuracy of the semantic search for those ontologies are quite different. Therefore,

we use the DBLP and IMDB ontologies as data sets in our experiments.

We select 20 queries for DBLP and 15 queries for IMDB with diverse characteristics related to search scope and ranking in

order to evaluate our ranking method and show the difference between our approach and other methods. The criteria for

selecting queries are the desired resource type, the number of relevant results, the importance of keywords, and the number

of keywords ranging from 2 to 5.

Tables 5 and 6 show the queries and the size of their relevant answer (i.e., #RA). It is impossible to scan the entire data-

base to identify all relevant results. Thus, we use the depth-k-pooling method in order to determine the set of relevant re-

sults, where k is 20 in our experimental study. For each query, we first consolidate all top-20 results of every search/ranking

method. Then, the relevant results (i.e., RA) are manually labeled by examining the consolidated results based on the facts

and the discussion among researchers of our database group. The basis for judgment to decide the relevance of search results

is the user intention for each query, which is indicated by ‘U’, presented in Tables 5 and 6. In the query ID, the prefix ‘D’ de-

notes queries for DBLP and ‘I’ for IMDB. ‘U’ indicates the user intention about the query, and it is used to judge the relevance

of search results.

7.2. Ranking methods

We compare our rankingmethodwith other existingmethodswhich also consider an ontology in a search. One is proposed

byStojanovic et al. (2003),which is indicatedbyRQR in this paper. Theother is proposedbyRochaet al., 2004,which is indicated

byHAS. Additionally,we comparewith thebasic keyword-based search enginesprovided in theDBLP and IMDBsites in order to

show the effectiveness of our semantic search using an ontology. For a fair comparison,we narrow the search scope in theDBLP

Table 5

DBLP query sets.

ID DBLP query jRAj

DQ1 harticle, {‘software’,‘testing’}i 25

U: Article about software testing

DQ2 hperson, {‘multimedia’,‘index’,‘database’}i 31

U: Author who writes publications about indexing on multimedia database

DQ3 hinproceeding, {‘xml’,‘index’,‘database’}i 30

U: Inproceeding about indexing on xml database

DQ4 hinproceeding, {‘distributed’,‘query’,‘cost’,‘model’}i 22

U: Inproceeding about cost model on distributed query processing

DQ5 hpublication, {‘top-k’,‘relational’,‘database’,‘2002’,‘2003’}i 6

U: Publication which is about top-k answering on relational database and

was published in 2002 or 2003

DQ6 harticle, {‘semantic’,‘web’,‘service’}i 20

U: Article about semantic web service

DQ7 hinproceeding, {‘stream’,‘data’}i 77

U: Inproceeding about stream data processing

DQ8 harticle, {‘spatial’,‘temporal’,‘database’}i 17

U: Article about spatial–temporal database

DQ9 hinproceeding, {‘face’,‘recognition’,‘artificial’,‘intelligence’}i 12

U: Inproceeding about face recognition in artificial intelligence field

DQ10 hinproceedings, {‘content’,‘based’,‘information’,‘retrieval’,‘multimedia’}i 35

U: Inproceeding about CBIR in multimedia database

DQ11 hinproceedings, {‘keyword’,‘search’}i 23

U: Inproceeding about keyword search

DQ12 harticle, {‘workflow’,‘management’}i 34

U: Article about workflow management

DQ13 hperson, {‘data’,‘mining’,‘outlier’,‘detection’}i 15

U: Author who writes publications about outlier detection in data mining

DQ14 hinproceeding, {‘web’,‘service’}i 48

U: Inproceeding about web service

DQ15 hinproceedings, {‘data’,‘integration’}i 50

U: Inproceeding about data integration

DQ16 hinproceedings, {‘transaction’,‘recovery’,‘database’}i 44

U: Inproceeding about data transaction recovery on database

DQ17 hinproceedings, {‘workflow’,‘management’,‘web’}i 19

U: Inproceeding about workflow management in web

DQ18 hinproceedings, {‘relevance’,‘feedback’,‘multimedia’,‘database’}i 23

U: Inproceeding about relevance feedback in multimedia database field

DQ19 hinproceedings, {‘personalized’,‘web’,‘search’}i 13

U: Inproceeding about personalized web search

DQ20 hinproceedings, {‘xml’,‘update’}i 24

U: Inproceeding about update in xml database
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and IMDBsearchwheneverpossible inplace of the type constraint of a query in our semantic search.Weuse the ‘refinedby type

option in the DBLP search engine, and we use a list box to select the search scope in the IMDB search engine.

The DBLP data used in our experiments is not up-to-date. Therefore, for the queries on the DBLP data, in order to conduct

a fair comparison, we consider publications published before 2005 among the results returned from the DBLP search engine.

HAS has a weight factor which reflects the semantics of a relationship, and the weights of all properties are determined by

domain experts. Since we have no basis for judgment to decide the weights, we determine the semantic weights of proper-

ties in HAS by using our weighting measure for properties (i.e., Eq. (3)).

Our ranking method is represented by SSR. In addition, we evaluate the effectiveness of the pruning by the weight thresh-

old (THw) according to the pruning rule in Section 6. SSR-T denotes SSR applying the pruning.

We perform the experiments on AND-semantics. Other experimental environments such as the storage of the ontology

and the semantic search process are common. In order to restrict the search space, we use THl = 3.

7.3. Metrics

In order to measure the accuracy of ranking methods, we observe the top-10 and top-20 results for each query. We use the

following well-known metrics in the information retrieval field (Manning et al., 2008):

� Precision: P ¼ jA\RAj
jAj

, where A is the set of retrieved results and RA is the set of relevant answers.

� Recall: For top-k answering, the size of the entire set of relevant results is not important when it contains more than k

results. Also, it is difficult to find out the total size of the answer set for a query in a large database. Thus, when the size

of the relevant results discovered in our experiments is larger than k, we regard k as the size of the relevant results and

compute recall as follows: If —RA— < k, the recall R ¼ jA\RAj
jRAj

. Otherwise, R ¼ jA\RAj
k

.

� F-measure: We use the harmonic mean of precision and recall, F-Score ¼ 2PR
PþR

.

� Mean Average Precision: MAP ¼

PjQ j

q¼1
AvePðqÞ

jQ j
, where AveP ¼

P20

k¼1
ðPðkÞ�relðkÞÞ

jRAj
; jQ j is the number of queries, P(k) is the precision

at cut-off k, and rel(k) is 1 if the kth result is a relevant one, zero otherwise.

Additionally, in order to measure the effectiveness of pruning the search space, we count the number of semantic paths

and the number of resources traversed by SSR and those by SSR-T.

Finally, in order to measure the efficiency of the top-k answering using the keyword index, we observe the query response

time for the top-k answering for each query.

Table 6

IMDB query sets.

ID IMDB query jRAj

IQ1 hdirector, {‘shakespeare’,‘hamlet’}i 34

U: Director who made films about shakespeare’s hamlet

IQ2 hcompany, {‘japan’,‘animation’}i 29

U: Japanese company which produces animations

IQ3 hactor, {‘romance’,‘comedy’}i 44

U: Actor who acts in romance-comedy films

IQ4 hfilm, {‘steven’,‘spielberg’,‘adventure’}i 14

U: Adventure film directed by steven spielberg

IQ5 hfilm, {‘jane’,‘austen’,‘pride’,‘prejudice’}i 19

U: Film originated from ‘pride prejudice’ of jane austen

IQ6 hfilm, {‘romeo’,‘juliet’}i 47

U: Film about romeo and juliet

IQ7 hactor, {‘action’,‘comedy’}i 19

U: Actor who acts in action-comedy films

IQ8 hactor, {‘usa’,‘musical’}i 37

U: Actor who acts in musical films made in USA

IQ9 harticle, {‘artificial’,‘intelligence’}i 11

U: Article about Artificial Intelligence (AI)

IQ10 harticle, {‘star’,‘wars’,‘attack’,‘clone’}i 14

U: Article about Star Wars: Attack of the clone

IQ11 hfilm, {‘lucas’,‘star’,‘wars’}i 4

U: Star Wars directed by Lucas

IQ12 hmusic, {‘jesus’,‘christ’,‘superstar’,‘1973’}i 27

U: Soundtrack of ‘jesus christ superstar’ produced in 1973

IQ13 hfilm, {‘tim’,‘burton’,‘thriller’}i 5

U: Thriller directed by Tim Burton

IQ14 hfilm, {‘tim’,‘burton’,‘animation’}i 8

U: Animation directed by Tim Burton

IQ15 hfilm, {‘johnny’,‘depp’,‘fantasy’}i 4

U: Fantasy film in which Johnny Depp acts
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7.4. Experiment results

7.4.1. Accuracy of ranking method

Tables 7–10 present the accuracy (i.e., Precision, Recall, F-Score, and MAP) of four ranking methods and the baseline

search engines. The tables include the five representative queries and the full results are shown in Appendix A. We also in-

clude the average of the accuracy for 20 queries over DBLP (i.e., AVG20) and 15 queries over IMDB (i.e., AVG15) in the tables.

As the values of the tunable parameters in SSR (-T), we use 0.2 for a, 0.8 for b in Eq. (3), 0.6 for d in Eq. (4), and 3 for p in Eq.

(9).

We can see the effectiveness of the semantic search using an ontology by comparing the results with those of the DBLP

and IMDB search engines. The improvement of the accuracy is mainly due to the consideration of the semantic relationships

between the target resources and the query keywords in searching and ranking. The semantic search method can retrieve

resources that contain the query keywords in their textual descriptions as well as resources that are indirectly associated

with the query keywords through semantic paths. In contrast, the baseline search engines do not consider the indirect asso-

ciations between the query keywords and the resources. In case of the DBLP database, most of the key information of a pub-

lication (i.e., the title of the publication, the authors, the name of the conference/journal, and the publication date) is

represented in a single text of the publication. Thus, the basic keyword-based search is sufficient to retrieve the relevant re-

sults for many queries, thereby the performance of the DBLP search engine is not worse compared to that of semantic search

methods. On the other hand, in the IMDB database, the indirect semantic relationships among resources play an important

role in finding relevant results. As a result, the performance of the IMDB search engine is much worse than that of the seman-

tic search methods, except queries finding films using the keywords in their titles (i.e., IQ5 and IQ6). For example, for IQ3, the

semantic search methods access the answer (i.e., an actor who takes part in romantic-comedy films) through the semantic

path ‘actIn (Actor, Film) hasGenre (Film, Genre)’while the IMDB search engine misses many relevant actors whose biographies

do not contain the query keywords in the IMDB database. In our experiments, SSR (-T) achieves 6.9–16.7% improvement in

the accuracy (i.e., F-Score) for DBLP and 49.5–58.2% improvement for IMDB.

The proposed weighting measure for semantic paths is designed to reflect the different importance of the paths to dis-

criminate the relevant resources from others. SSR (-T) and HAS using our weighting measure take the importance of each

semantic path into account in ranking resources. Consequently, SSR (-T) and HAS outperform RQR in general. In addition,

since SSR (-T) considers more relevance criteria and combines them effectively than RQR and HAS, SSR (-T) usually outper-

forms them. In summary, SSR (-T) provides 11.6–22.1% improvement for DBLP and 14.6–24.5% for IMDB compared with

RQR and 8.5–21.8% improvement for DBLP and 4.8–15.8% for IMDB compared with HAS. Furthermore, we consider the order

in which the returned results are presented. Table 11 shows the mean of the average precision scores for each query (MAP).

We can see that SSR (-T) tends to present the relevant results in higher positions than other semantic search methods.

In the aspects of the keyword coverage and the discriminating power of keywords, HAS complies with the strict AND-

semantics so that it returns only results covering all query keywords. RQR simply multiplies the relevance score of a resource

by the number of keywords related to the resource. Also, they do not reflect the importance of each keyword. In contrast, SSR

(-T) uses an adapted extended boolean model weighted by the discriminating power of keywords. Thus, SSR (-T) is more

effective compared with other ranking methods for queries, where the number of keywords is large and the keywords with

high discriminating power play an important role to determine the relevance. For example, in case of DQ5 including an OR-

semantics (i.e., 2002 or 2003), HAS cannot return any results. In addition, the irfs of ‘top-k’ and ‘relational’ are 11.6 and 6.1

while the irfs of other keywords are around 3. In fact, ‘top-k’ and ‘relational’ are more important than other keywords to

Table 7

The accuracy of top-10 DBLP query results.

Metric Query RQR HAS SSR SSR-T DBLP-Engine

Precision DQ1 1 1 1 1 1

DQ2 0.1 0.2 0.5 1 1

DQ5 0.3 0 0.6 0.6 0.2

DQ9 0.5 0.5 0.5 0.8 0.2

DQ18 0.7 0.8 0.9 0.9 0.2

AVG20 0.675 0.68 0.805 0.895 0.73

Recall DQ1 1 1 1 1 1

DQ2 0.1 0.2 0.5 1 1

DQ5 0.375 0 0.75 0.75 0.25

DQ9 0.5 0.5 0.5 0.8 0.2

DQ18 0.7 0.8 0.9 0.9 0.2

AVG20 0.678 0.68 0.812 0.902 0.732

F-Score DQ1 1 1 1 1 1

DQ2 0.1 0.2 0.5 1 1

DQ5 0.33 0 0.66 0.66 0.22

DQ9 0.5 0.5 0.5 0.8 0.2

DQ18 0.7 0.8 0.9 0.9 0.2

AVG20 0.676 0.68 0.808 0.898 0.731
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determine the relevance. However, Both HAS and RQR do not reflect this difference. For such queries, SSR (-T) outperforms

RQR as well as HAS.

In addition, after pruning, the accuracy of a semantic search is improved as shown in the results of SSR and SSR-T in Tables

7–10. Even if the influence of a less important semantic path is attenuated by reflecting its small weight to the relevance

score, we should not underestimate the effect of multiple such semantic paths. For instance, for IQ3, more relevant films

are superseded by irrelevant films. The irrelevant films are indirectly related to many films with titles including the key-

words of IQ3 through several less meaningful semantic paths such as ‘hasGenre (Film, Genre) hasGenre�1(Genre, Film) hasTitle

(Film, String)’. SSR-T effectively prunes such semantic paths and provides the best accuracy among all ranking methods for

most of queries.

We perform t-test (Hull, 1993) to decide the statistical significance of the improvement by our method SSR-T over other

semantic search methods RQR and HAS. If p-value is less than 0.05, one can conclude that the improvement is statistically

significant. The t-test calculates p-values based on the accuracy (i.e., F-Score) of SSR-T and other methods. For DBLP queries,

the p-values on the improvement of SSR-T over other methods are less than 0.005. For IMDB queries, the p-values of SSR-T

over other methods are less than 0.05. We can conclude that the improvement of the accuracy by SSR-T in general is statis-

tically significant over all baseline approachs.

The majority of data values in the DBLP ontology are the titles of publications. In general, a publication title are important

terms which can most clearly describe the publication. Thus, we use words which can be found in the titles as query

keywords. As a result, in most cases, the search scope (i.e., semantic paths) to find the answer for a query is obvious. On

the other hand, the terms in the IMDB ontology are general words, often used in our ordinary life, and even implicit.

Table 8

The accuracy of top-20 DBLP query results.

Metric Query RQR HAS SSR SSR-T DBLP-Engine

Precision DQ1 1 0.95 1 1 1

DQ2 0.05 0.35 0.55 1 1

DQ5 0.15 0 0.3 0.3 0.1

DQ9 0.55 0.5 0.5 0.55 0.1

DQ18 0.7 0.6 0.75 0.75 0.1

AVG20 0.59 0.625 0.702 0.745 0.645

Recall DQ1 1 0.95 1 1 1

DQ2 0.05 0.35 0.55 1 1

DQ5 0.375 0 0.75 0.75 0.25

DQ9 0.916 0.833 0.833 0.916 0.166

DQ18 0.7 0.6 0.75 0.75 0.1

AVG20 0.633 0.654 0.758 0.803 0.667

F-Score DQ1 1 0.95 1 1 1

DQ2 0.05 0.35 0.55 1 1

DQ5 0.214 0 0.428 0.428 0.142

DQ9 0.687 0.625 0.625 0.687 0.125

DQ18 0.7 0.6 0.75 0.75 0.1

AVG20 0.606 0.637 0.722 0.766 0.653

Table 9

The accuracy of top-10 IMDB query results.

Metric Query RQR HAS SSR SSR-T IMDB-Engine

Precision IQ2 0.7 0.9 0.9 0.9 0.6

IQ3 1 0.8 1 1 0.4

IQ4 0.1 0.1 0.3 0.9 0

IQ5 0.8 0.5 0.8 0.9 0.8

IQ12 0 0.9 0.9 1 0

AVG15 0.548 0.631 0.696 0.778 0.227

Recall IQ2 0.7 0.9 0.9 0.9 0.6

IQ3 1 0.8 1 1 0.4

IQ4 0.1 0.1 0.3 0.9 0

IQ5 0.8 0.5 0.8 0.9 0.8

IQ12 0 0.9 0.9 1 0

AVG15 0.663 0.741 0.835 0.908 0.228

F-Score IQ2 0.7 0.9 0.9 0.9 0.6

IQ3 1 0.8 1 1 0.4

IQ4 0.1 0.1 0.3 0.9 0

IQ5 0.8 0.5 0.8 0.9 0.8

IQ12 0 0.9 0.9 1 0

AVG15 0.564 0.651 0.723 0.809 0.227
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Table 10

The accuracy of top-20 IMDB query results.

Metric Query RQR HAS SSR SSR-T IMDB-Engine

Precision IQ2 0.8 0.95 0.95 0.9 0.3

IQ3 0.75 0.75 1 1 0.2

IQ4 0.1 0.15 0.15 0.7 0

IQ5 0.4 0.3 0.4 0.9 0.5

IQ12 0.15 0.95 0.95 1 0

AVG15 0.46 0.55 0.59 0.663 0.153

Recall IQ2 0.8 0.95 0.95 0.9 0.3

IQ3 0.75 0.75 1 1 0.2

IQ4 0.142 0.214 0.214 1 0

IQ5 0.421 0.315 0.421 0.947 0.526

IQ12 0.15 0.95 0.95 1 0

AVG15 0.641 0.762 0.842 0.933 0.16

F-Score IQ2 0.8 0.95 0.95 0.9 0.3

IQ3 0.75 0.75 1 1 0.2

IQ4 0.117 0.176 0.176 0.823 0

IQ5 0.41 0.3 0.41 0.92 0.51

IQ12 0.15 0.95 0.95 1 0

AVG15 0.503 0.602 0.65 0.731 0.155

Table 11

MAP for top-k query results.

Data set top-k RQR HAS SSR SSR-T

DBLP top-10 0.25 0.27 0.32 0.38

top-20 0.39 0.43 0.50 0.59

IMDB top-10 0.31 0.36 0.41 0.45

top-20 0.40 0.52 0.56 0.65
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The keywords in queries for IMDB are found in very diverse locations like movie titles, literature titles, music titles, actor

names, genre names, and company names. As a result, it is hard to distinguish the important part which should be searched

to find the answer. Consequently, the overall performance for DBLP is better than IMDB.

7.4.2. Sensitivity study

SSR (-T) uses several tunable parameters. Therefore, we observe the accuracy according to the values of the parameters.

Figs. 6(a) and (b) shows the accuracy of SSR-T for top-10 queries with varying a and b in Eq. (3). As the value of a decreases

and the value of b increases, the performance tends to be improved. It means that the mutual information factor (MI) is more

important to determine the weight of a property than the discriminating power factor (I).

There can be the following side effects for very small or very large d in Eq. (4). First, if d is very small, the weight of a long

but important semantic path becomes too small to have an effect on the relevance score. Second, if d is very large, the weight

of a long and less important semantic path can get similar or even larger weight than short but important one. Besides, this

situation sometimes incurs that the important short path can be pruned by the longer one. These two problems result in the

decrease of the accuracy. In case of queries over DBLP, a few short semantic paths are very important to determine the rel-

evance, and most long paths are ignorable. Thus, a very large value of d has influence on the degradation of the accuracy as in

DBLP of Fig. 6(c). In contrast, in case of queries over IMDB, most semantic paths are important to determine the relevance.

Thus, the accuracy of some queries decreases due to a small value of d as in IMDB of Fig. 6(c).

Fig. 6(d) shows the accuracy according to the value of p in Eq. (9). The value of p controls the strength of AND-semantics,

and we observe that the p value from 2 to 4 is sufficient to enforce the AND-semantics for most of queries in our

experiments.

Table 12

The reduction of search space.

Query # SP # N # PSP # PN R (%)

DQ1 25 164,958 4 42,693 74.11

DQ2 11 104,970 2 64,390 38.65

DQ5 97 676,549 5 114,422 83.08

DQ9 30 246,320 7 160,788 34.72

DQ18 30 239,614 7 153,490 35.94

AVG20 – – – – 42.80

IQ2 12 38,779 11 37,698 2.78

IQ3 11 422,907 10 422,592 0.07

IQ4 20 663,236 11 61,724 90.69

IQ5 19 583,297 10 12,047 97.934

IQ12 11 160,679 10 147,016 8.50

AVG15 – – – – 44.03

Fig. 7. Execution time for top-10 answering.
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7.4.3. The reduction of search space

Table 12 shows the effectiveness of the pruning in terms of the reduction of the search space. # SP and # PSP denote the

number of semantic paths to be examined by SSR and that by SSR-T, respectively. # N and # PN indicate the number of re-

sources to be traversed by SSR and that by SSR-T, respectively. R is the reduced portion of the total search space.

In case of the DBLP ontology, the location of keywords are very restricted and almost all properties are relationships be-

tween publications or between a publication and an author. This feature makes a large number of semantic paths including

a cycle from Publication to Publication in the schema level, and the common suffixes are replicated in those semantic paths.

Therefore, a large part of semantic paths is pruned and it can be avoided to traverse a huge number of semantic path instances.

In case of IMDB ontology, most semantic paths are unique paths to a particular resource type directly related to keywords.

Thus, the ratios of pruned semantic paths and the resources are smaller than those of DBLP. However, for some queries, the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

RQR HAS SSR SSR-T DBLP-Engine

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

a
ll

RQR HAS SSR SSR-T DBLP-Engine

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
-S

co
re

RQR HAS SSR SSR-T DBLP-Engine

Fig. 8. The accuracy for top-10 DBLP query results.

J. Lee et al. / Information Processing and Management 50 (2014) 132–155 151



pruning is still effective. For example, in case of IQ3 and IQ4, most of search space (over 90%) can be removed since the

pruned semantic paths such as ‘hasGenre (Film, Genre) hasGenre�1(Genre, Film) hasTitle (Film, String)’ include a lot of path

instances.

In conclusion, the pruning technique reduces the search space very effectively. However, the pruned semantic paths do

not have significant influence on the relevance. Thus, as you can see in Tables 7–10, the accuracy is not degraded but even

improved.

7.4.4. top-k Retrieval cost

In order to examine the efficiency of the top-k retrieval using Threshold Algorithm, we observe the total elapsed time for

top-k answering for each query. Experiments are conducted on an Intel (R) Pentium (R) 2.60 GHz CPU and 2 GB RAM running
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Fig. 9. The accuracy for top-20 DBLP query results.
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Window XP, and all algorithms are implemented in Java using JBuilder. We set the size of the virtual memory for the exe-

cution to 512 MB. We summarize the execution time of top-10 answering for all DBLP and IMDB queries as a box plot, which

consists of the minimum value, lower quartile, median, upper quartile, and the maximum value, in Fig. 7. For the most of

queries, the top-10 results are retrieved within a reasonable time less than 0.5 s. Because our top-k retrieval using Threshold

Algorithm directly accesses the candidate results related to query keywords via the keyword index, the execution time de-

pends on the number of candidate results. Therefore, even though the DBLP dataset is smaller than the IMDB dataset, the

execution times for DBLP queries having larger candidate lists (i.e., index list for each keyword) are somewhat greater than

those for IMDB queries. In addition, if there are many resources having similar relevance scores, the Threshold Algorithm

should examine a lot of resources in the index lists. It is hard to reach the termination condition preserving that no more

following resource will have larger relevance score. For example, query DQ2 takes much time (i.e., about 4 s) since it needs

to access resources about nine times greater than the average number of accessed resources for all DBLP queries.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

RQR HAS SSR SSR-T IMDB-Engine

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

a
ll

RQR HAS SSR SSR-T IMDB-Engine

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
-S

co
re

RQR HAS SSR SSR-T IMDB-Engine
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8. Conclusions

In this paper, we studied effective ranking and semantic search techniques to provide accurate results by using an ontol-

ogy. The goal of our semantic search is to retrieve top-k results which are fairly relevant to many query keywords which sig-

nificantly contribute to the relevance. To do this, we first devised a weighting measure to determine the relative importance

of a semantic path to determine the relevance of resources. Then, based on this measure, we proposed a new ranking method

which reflects the weights of semantic paths, the coverage of keywords, and the discriminating power of keywords. In addi-

tion, we pruned superfluous semantic paths based on the length and weight of the semantic paths since the pruned semantic

paths incur massive traversals in the ontology and even deteriorate the accuracy of the search. Moreover, we avoided the

traversal of a large sized instance graph during a query time through the top-k answering utilizing Threshold Algorithm
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based on the keyword index. Through the experiments using real data sets, we observed that our ranking method provided

more accurate search results compared to existing ranking methods. In addition, our pruning algorithm effectively reduced

the search space and even improved the accuracy. Finally, we observed the efficiency of our top-k semantic search

processing.
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Appendix A

See Figs. 8–11.
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