
Multimedia Tools and Applications manuscript No.
(will be inserted by the editor)

Effective Recognition of Facial Micro-Expressions
with Video Motion Magnification

Yandan Wang · John See · Yee-Hui Oh ·
Raphael C.-W. Phan · Yogachandran
Rahulamathavan · Huo-Chong Ling ·
Su-Wei Tan · Xujie Li

Received: date / Accepted: date

Abstract Facial expression recognition has been intensively studied for decades,
notably by the psychology community and more recently the pattern recogni-
tion community. What is more challenging, and the subject of more recent re-
search, is the problem of recognizing subtle emotions exhibited by so-called micro-
expressions. Recognizing a micro-expression is substantially more challenging than
conventional expression recognition because these micro-expressions are only tem-
porally exhibited in a fraction of a second and involve minute spatial changes.
Until now, work in this field is at a nascent stage, with only a few existing
micro-expression databases and methods. In this article, we propose a new micro-
expression recognition approach based on the Eulerian motion magnification tech-
nique, which could reveal the hidden information and accentuate the subtle changes
in micro-expression motion. Validation of our proposal was done on the recently
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proposed CASME II dataset in comparison with baseline and state-of-the-art
methods. We achieve a good recognition accuracy of up to 75.30% by using leave-
one-out cross validation evaluation protocol. Extensive experiments on various
factors at play further demonstrate the effectiveness of our proposed approach.

Keywords Micro-expressions · motion magnification · EVM · CASME II · local
binary patterns

1 Introduction

Facial micro-expression is a subtle, short, quick (1/3 to 1/25 second [8, 33]) and
involuntary expression, which appears when people try to conceal their genuine
emotions, especially in high-stake situations [8]. While macro-expressions are nor-
mal facial expressions that are visibly noticeable and are normally intended, micro-
expressions are much more rapid and involuntary, or at times, an attempt to hide
the true emotion felt. For example, in some situations, people might be very sad,
but she showed happiness to disguise her sadness for not worrying people who cares
her much. However, involuntarily and unconsciously, there is still a fast expression
of sadness revealed in her face which is too fast to be captured by our naked eyes.
Only when we examined the recorded video frame by frame, we will find the subtle
changes in her face, the so-called micro-expression. Due to the short duration of
micro-expressions compared to that of macro-expressions, micro-expressions are
difficult to be detected in real-time conversations [8]. Even the experts with pro-
fessional training can only achieve 47% recognition accuracy [10] by using their
naked eyes to perform the tedious task of frame-by-frame observation. Therefore,
an automatic and accurate micro-expression recognition system will be helpful and
useful to tackle these issues.

The ability to recognize subtle emotions in humans has vast applications in dif-
ferent domains, ranging from lie detection in the case of crime and public safety to
better understand patients with special needs such as autism [39] and schizophre-
nia [36]. In clinical work, to detect and recognition micro-expression is important
to assist psychologists in the diagnosis and remediation of patients with men-
tal diseases. Sometimes patients might not be cooperative towards psychologists,
thus the detection of micro-expressions can help psychologists judge whether the
patients are telling the truth. Similarly in criminal investigation, the ability to
identify micro-expressions also helps the police interrogate suspects by analyzing
the truthfulness of their responses as portrayed by their hidden expression [8]. As
such, machine automated recognition of facial micro-expressions would be enor-
mously valuable.

While research in the direction of micro-expressions has seen considerable effort
in the past decades in the discipline of psychology, research into micro-expressions
is only starting to thrive in the discipline of pattern recognition and machine vision.
There are currently two promising spontaneous datasets for micro-expressions,
notably the Spontaneous Micro-expression (SMIC) [16] and Chinese Academy of
Sciences Micro-expression (CASME) II [49] databases. SMIC is of a small sample
size taken from a small number of subjects, thereby leaving CASME II to be
the most comprehensive dataset for micro-expressions to date. The creators of
the CASME II dataset reported accuracy rates of up to 63.41% using standard
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techniques of Local Binary Patterns-Three Orthogonal Planes (LBP-TOP) [53] for
feature extraction and Support Vector Machine (SVM) for classification [7].

The CASME II database is video based, consisting of an ordered sequence
of images; hence, dynamic textures are favored to describe the spatio-temporal
information present in videos. Local Binary Pattern - Three Orthogonal Planes
(LBP-TOP) [53] is a dynamic texture descriptor that is simple for computing
and robust for recognition. The descriptor considers the concatenation of LBP
histograms on three orthogonal planes – XY, XT and YT respectively. The XT
and YT planes preserve the temporal transition information that explains the facial
movement displacement e.g. how eyes, lips, muscle or eyebrows move. In contrast,
the XY plane computes only spatial information that explains both expression and
identity information of a face appearance.

However, to solve the micro-expression recognition task using only the LBP-
TOP technique is not sufficient to fully describe the hidden information and pat-
terns in micro-expression faces because the spatio-temporal changes induced by
micro-expressions are not obvious. In this paper, we propose a new technique for
micro-expression recognition that adopts Eulerian Video Magnification (EVM)
[48] to amplify subtle facial expression motions. The motion magnification process
first applies spatial decomposition pyramid and temporal filtering to the video
frames before amplifying the resulting signals to reveal hidden motion informa-
tion. Following that, spatio-temporal feature patterns are then extracted from the
motion-amplified face video sequence. Through this process, our best accuracy of
75.30% is achieved by using LBP-TOP for feature extraction and SVM with Radial
Basis Function (RBF) kernel for classification using leave-one-out cross-validation
(LOOCV), the same evaluation strategy as the baseline approach. Our novelty
and contributions are listed as follows:

– To our best knowledge, this is the first extensive application of EVM for the
amplification of micro-expression motions for micro-expression recognition.

– Video motion magnification by EVM is able to extract more discriminative
spatio-temporal features, dramatically improving the recognition of facial micro-
expressions over state-of-the-art methods.

– We demonstrated the effectiveness of applying EVM on a variety of scenarios
– different frame block partitions, plane combinations, local feature neighbor-
hoods and various classifiers.

The rest of the paper is organized as follows: We review the related work in
Section 2. Our approach and methods are described in Section 3 while experimental
results and in-depth analysis are shown in Section 4. Finally, conclusion and future
work are provided in Section 5.

2 Related Work

2.1 LBP and its variants

Local Binary Patterns (LBP) which are introduced by Ojala et al., is a class
of features originally proposed for texture classification [25]. In recent years, LBP
based features have found applications in facial image recognition [13]. The original
version of the LBP operator [24] works in a 3 × 3 pixel block of a gray scale
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Fig. 1 Circularly symmetric neighbor sets for different (P;R).

image. The non-center pixels in this block are thresholded by its center pixel
value, multiplied by powers of two and then summed to obtain a label for the
center pixel. The basic LBP operator was revised by Ojala et al. and a more
generic form of LBP operator [25] was presented several years after the original
publication. This generic revised form of LBP operator does not restrict on the
size of the neighborhood or the number of sampling points. As shown in Fig. 1,
the size of the neighborhood is controlled by the R index; the number of sampling
points is set by the P index.

More precisely, given a pixel c located at (xc, yc), then the LBP code is com-
puted as follows:

LBPP,R(xc, yc) =

P−1∑
P=0

s(ip − ic) × 2P (1)

where

s(x) =

{
1 if x ≥ 0,
0 if x < 0,

(2)

ic denotes the intensity of that pixel c, ip indexed by P denotes the intensity of
the circular neighbors of c of radius R, and s(x) is a function that outputs 1 if x
is non-negative and 0 otherwise, and then proceeds to compute the histogram of
all LBP codes for all pixels in an image or region, and this histogram represents
the texture feature descriptor of that image or region.

Different variants of LBP have been subsequently proposed in the literature.
The most basic extension of LBP descriptors would be rotation invariant uniform
pattern LBP [25]. To be insensitive to rotation, P − 1 bitwise circular shifts are
performed on the binary pattern and the smallest value is chosen to be the texture
feature for that block. A binary pattern is defined as a uniform pattern if the
total number of bitwise (0-1 or 1-0) transitions is at most 2 on the binary string
traversed in circular form. To consider both the spatial and temporal information
of a dynamic texture, [53] proposed a 3D variant of the LBP. So-called LBP-TOP,
this considers the co-occurrences on three types of orthogonal planes: the XY
plane, the XT plane and the YT plane.

Another 3D LBP variant was proposed by [9], extending the original LBP from
2D images to 3D volumetric data while maintaining full rotational invariance.
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To further reduce the vector dimension, [11] proposed a variant of LBP, called
Center-Symmetric LBP (CS-LBP), where only center-symmetric pairs of pixels
are compared instead of comparing each pixel with the center pixel. To overcome
the problem of sensitivity to noise in uniform image regions, another variant called
Local Ternary Patterns (LTP) was proposed by [43]. This method suggested a 3-
valued coding scheme that is quantized to 0, +1 and −1 based on whether the
neighborhood pixel intensity is equal, higher or less than that of the center pixel
intensity, ic.

In another direction, instead of the original circular neighborhood definition,
an elliptical neighborhood definition was proposed for LBP, namely the Elliptical
Local Binary Pattern (ELBP) [23], which was applied in face recognition to ex-
ploit the anisotropic structural information. The concept of applying of elliptical
patterns was originally proposed by [17].

Besides the extensions or variants of LBP, researchers have tried to combine
LBP with other feature extraction methods for better performance. [45] proposed
a new method combining Histogram of Oriented Gradients (HOG) and LBP, called
HOG-LBP. This method is notably robust to partial occlusion as the HOG-LBP
features contain both shape/edge information and texture information. [1] pro-
posed a rotation invariant image descriptor - LBP Histogram Fourier features
(LBP-HF). It is a descriptor computed from discrete Fourier transforms of LBP
histogram. The LBP-HF features are rotation invariant (globally for the whole
image to be described) and have high discriminative power. [2] proposed a method
called Local Gabor Binary Pattern (LGBP), which is the combination of Gabor
and LBP. LGBP is robust to the appearance variations due to misalignment and
lighting.

2.2 Emotion and micro-expression recognition

In this section, we will review some popular techniques which have been applied
in facial macro-expression recognition (emotion recognition) and micro-expression
recognition. To some extent, macro-expressions and micro-expressions are in com-
mon, thus techniques applied for macro-expressions could potentially work for
micro-expression recognition as well. However, micro-expressions are more diffi-
cult to analyze than macro-expressions, since micro-expressions last only 1/3 to
1/25 seconds and involve minute spatial variations that can hardly be detected by
naked eyes.

2.2.1 Emotion recognition

Emotion recognition has been researched for decades primarily by the psychology
community [8]. In the pattern recognition and machine vision community, research
started on posed datasets [14, 20, 21, 28] i.e. where subjects were asked to show
how they are feeling; it was subsequently felt that spontaneous datasets [3, 22]
capture more realistically the actual emotional situations experienced by subjects
i.e. subjects were induced to naturally express their feelings rather than being
asked to show a specific feeling. Stimuli included carefully designed video clips to
trigger different emotions.
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A facial expression recognition method involves two different phases: facial 
feature extraction and classification. Facial feature extraction involves extracting 
features of facial images; the resulting feature vectors can then be used to project 
the facial image from the higher dimensional image space into a lower dimensional 
feature space while preserving the discriminative features. Discriminative features 
separate the facial images of one class from facial images of other classes in the lower 
dimensional feature space [35, 54-56]. Better separation among classes in the lower 
dimensional space leads to higher classification rate.

Generally, the features that are commonly adopted can be categorized into two 
major types: geometric features and appearance features. Geometric features mea-
sure the displacement of face components such as eyes while appearance features 
capture the texture changes on a face when an action is performed such as smiling. 
Geometry based techniques include Haar-like feature extraction, LBP, and Gabor 
wavelets. [4] proposed recognition of facial expressions using Gabor wavelets and 
Learning Vector Quantization (LVQ). This method was used to recognize seven 
different facial expressions from still pictures of the human face. [40] formulated 
Boosted-LBP to extract the most discriminant LBP features. These selected fea-
tures were then classified by SVM. A better performance is obtained by using the 
Boosted-LBP features instead of LBP features. Satiyan et al. [38] attempted to 
recognize facial expressions by using Haar-like features. Namely, six statistical fea-
tures mean, variance, standard deviation, power, energy and entropy which were 
derived from the approximation coefficients of Haar-like decomposition, and then 
use the neural network for classification.

Appearance based techniques consist of two fundamental methods i.e., Princi-
ple Component Analysis and Independent Component Analysis (ICA). Oliveira et 
al. [26] suggested 2D PCA (2DPCA) for facial expression recognition. A multiob-
jetective genetic algorithm called the Nondominated Sorting Genetic Algorithm 
(NSGA) [27] was applied on the 2DPCA features to perform further feature se-
lection. The proposed approach was evaluated on the Japanese Female Facial Ex-
pression (JAFFE) database. Both classifiers, kNN and SVM were used to classify 
the 2DPCA features. Uddin et al. [44] suggested to utilize Enhanced Indepen-
dent Component Analysis (EICA) to extract independent features which will then 
be classified by Fisher Linear Discriminant Analysis (FLDA) [5]. Using these ex-
tracted features, Hidden Markov Models (HMMs) is then utilized to model various 
expressions like joy, sad, anger, surprise, fear, and disgusting. The proposed ap-
proach was evaluated on Cohn-Kanade database.

Besides these two types of techniques for feature extraction, there is another 
type of technique called model based techniques. In the model-based methods, the 
statistical model is used to recognize facial expressions and this statistical model 
is actually constructed from training images. Lucey et al. [20] suggested to adopt 
holistic model based approach called the Active Appearance Model (AMM) and a 
linear SVM classifier for detecting both Action Units (AUs) and emotions on the 
Extended Cohn-Kanade (CK+) database. Samarawickrame et al. [37] presented 
the promising accuracy and effectiveness of applying Active Shape Models (ASM) 
and SVM. The facial coordinates which are located by ASM, were fed into SVM for 
classification. The proposed method was evaluated on JAFFE Database. Once the 
feature extraction is performed then classification can be done by kNN classifier 
or SVM classifier.
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2.2.2 Micro-expression recognition

More recently, the research community has realized that while emotion recognition
has seen considerable research by both the psychology and vision community,
challenges remain in terms of being able to recognize more subtle emotions.

In the literature, there are not many papers working on facial micro-expression
recognition due to the lack of the existing micro-expression based high-speed video
databases. Shreve et al. [41, 42] computed the strain magnitude of optical flow to
discriminate micro-expressions from macro-expressions by observing the interval
flow in a given threshold. They evaluated their methods on BU [52], USF and
USF-HD databases. however, the work is contributed to the spotting the micro
and macro expression in video only rather than the recognition. Polikovsky et al.
[33] extracted 3D-Gradient descriptors from the widely used face region (FACS),
and the approach was evaluated on their own 200 fps high-speed camera recorded
dataset. However, automatic FACS region detection still remains a challenge. To
mark face region manually would be tedious and professional training is required.
Park and Kim [29] used motion magnification to detect subtle facial expression.
They first marked facial shape points by using AAM model, and then aligned
the face followed by motion vector of 27 feature points magnified. The framework
was evaluated on the SFED2007 [30] dataset. However, the SFED2007 dataset is
actually based on static images rather than video and it is not popularly used.

In the first attempt at recognizing spontaneous micro-expressions, Pfister et
al. [32] used temporal interpolation was used to count the length of short videos
and the spatio-temporal local texture descriptors to handle dynamic features with
SVM, MKL and RF for classifier training. Their approach was evaluated on the
Spontaneous MICro-expression (SMIC) database [16] which was recorded using a
100 fps high-speed camera. They reported that temporal interpolation could help
achieve equivalent micro-expression detection performance to a standard 25 fps
camera. Later on, Yan et al. [49] proposed CASME II, the most comprehensive
micro-expression dataset up to date, which comprises a total of 247 videos from
26 subjects, captured at 200fps and coded into 5 class labels. More recently, more
approaches have been proposed for micro-expression recognition on this dataset;
Liong et al. [18, 19] introduced features derived from optical strain information,
Wang et al. [46, 47] reinvented the popular LBP-TOP into efficient variants that
retain essential information, while Park et al. [31] attempted to improve recognition
by leveraging on an adaptive motion magnification approach.

With the exception of [31], most works in literature focused on the extraction
of features from micro-expression samples, and does not attempt to magnify these
subtle facial motions before feature extraction. We hypothesize that the subtlety
of these motions is a bottleneck to better performance as the minute change of
intensities at these areas cannot contribute better representation. Our work differs
from the work of Park et al. [31] in that we do not subscribe to the idea of adap-
tively selecting the most discriminative frequency band when it is not constrained
to AU-specific locations, i.e. a chosen frequency band may not be suitable for dif-
ferent parts of the face. Moreover, their work considers only the highest frequency
cutoff of 10 Hz while micro-expressions of shorter durations can potentially reach
the upper limit of 15-25 Hz [8] (though Yan et al. [50] found that these are usually
rare). Our work also emphasizes on the choice of magnification factor, which is a
crucial factor in achieving good performance.
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Fig. 2 The flow diagram of the proposed approach, with three main steps: 1) micro-expression
signals are amplified using EVM; 2) LBP-TOP features are extracted from motion-magnified
XY, XT and YT planes; 3) SVM is used to predict classes.

3 Proposed Approach

The workflow (Fig. 2) of our proposed approach is succinctly summarized with
the following three main steps: 1) Video motions are pre-processed and amplified
with Eulerian Video Magnification (EVM); 2) Spatio-temporal feature patterns
are extracted from the motion-amplified data by LBP-TOP; 3) SVM classification
is performed on the features to recognize the facial micro-expression present in the
video. The following sub-sections will elaborate these steps in detail.

3.1 Eulerian Video Magnification

EVM was proposed by [48] to reveal subtle motion changes in videos, which can be
almost impossible to see with the naked eye. In general, there are 4 steps to amplify
the subtle motion: 1) compute the full Laplacian pyramid [6], which decomposes
the frame sequences of the video into different spatial frequency bands. 2) A band-
pass filter, e.g. Ideal, Butterworth, Second-order IIR, is applied to extract the
frequency bands of interest. 3) Amplify the motion by multiplying the extracted
bandpassed signal at different spatial level by a magnification factor α. 4) The
amplified signal is added back to the original to obtain the final motion magnified
video.

3.1.1 Motion Magnification using First-order Taylor Series Expansions

In [48], the mathematical inference of EVM is presented as the first-order expan-
sion of the Taylor series. The magnification is produced by analyzing the temporal
motion based on the first-order Taylor series expansions rather than directly track-
ing the motion. We will briefly mathematically describe the relationship between
temporal processing and motion magnification in depth next. For further reference,
the details of EVM can be found in [48].

Let I(x, t) be the image intensity at position x and time t, and δ(t) denote
the motion displacement function with respect to the observed pixel intensity at
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position x, such that I(x, t) = f(x+ δ(t)) and I(x, 0) = f(x). By equation, we will
have the synthesized signal that is magnified by the factor α

Î(x, t) = f(x+ (1 + α)δ(t)) (3)

The first-order Taylor series expansion is used to approximately expand the image
displaced intensity f(x+ δ(t)) about x at time t, as

I(x, t) ≈ f(x) + δ(t)
∂f(x)

∂x
(4)

Formula (4) is applicable only if the image is approximately expandable by the
first-order Taylor series.

Moving on to the band-pass filtered signal. Let B(x, t) be the result of applying
a broadband temporal band-pass filter to I(x, t) as shown in equation (5), which
later will be amplified with the factor α and added back to the original signal
I(x, t).

B(x, t) = δ(t)
∂f(x)

∂x
(5)

To amplify the band-pass filtering processed signal by the factor α, and synthesize
the signal, the result of adding original and band-pass filtering processed signal,
will be

Î(x, t) = I(x, t) + αB(x, t) (6)

Replacing I(x, t) and B(x, t) with Eqs. (4) and (5), we have

Î(x, t) ≈ f(x) + δ(t)
∂f(x)

∂x
+ αδ(t)

∂f(x)

∂x

≈ f(x) + (1 + α)δ(t)
∂f(x)

∂x

≈ f(x+ (1 + α)δ(t))

(7)

Through the final inference equation, we can see that the displacement δ(t) is
amplified by the magnitude of (1 + α) via the first-order Taylor series expansion.
However, in practice, the assumptions presented above have some limitations that
hold for smooth images with small motions only.

(1 + α)δ(t) <
λ

8
(8)

where the spatial wavelength, λ = 2π/ω of the moving signal of frequency ω. The
bounds shown in Eq. 8 provides a guideline that gives the largest motion amplifi-
cation factor, α, compatible with accurate motion magnification of a given video
motion, δ(t) and image structure spatial wavelength, λ. However, in certain video
scenarios detailed in [48], violating the approximation limit can be perceptually
preferred.
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Fig. 3 The process of LBP extraction from XY, XT, and YT planes to form the LBP-TOP
feature histogram

3.2 LBP-TOP based Spatio-Temporal Feature Extraction

LBP-TOP is a robust dynamic texture descriptor proposed in [53], which has been
popularly applied to facial expressions. To consider both spatial and temporal
information of the video, LBP-TOP extends the LBP in that three types of planes
(XY, XT, YT) are considered instead of one plane (spatial XY) only. Given a
video sequence, it can be viewed as a stack of XY, XT, YT planes along time T
axis, spatial Y axis and spatial X axis respectively. The XY plane mainly reveals
the spatial information, while XT and YT planes contain rich information of how
pixel grayscale values transit temporally.

The computation of LBP-TOP is the same as LBP (in Eq. 1) for each inde-
pendent plane, i.e. in the case of LBP, one plane XY is considered only for LBP
computation. Each pixel of the plane will be indexed by the local binary pattern,
which computes the spatial relationship between the observed pixel and neighbor
pixels. The length of the binary code is the same as the number of the neigh-
bor pixels. Then one histogram is used to statistically compute how those binary
codes are distributed. The size of the histogram is determined by the number of
neighbor pixels used. For n number of neighbor pixels, the length of the histogram
is 2n. However, to reduce the number of histogram bins, uniform patterns were
introduced for the LBP [25]. For example, for 8 neighbor pixels, the number of
histogram bins are reduced from 256 to 59. Essentially, much of the computation
of LBP-TOP is directly inherited from LBP. The difference is that the XT and
YT planes have to be computed the same way as the XY plane such that three
histograms are derived from the three types of planes respectively and concate-
nated to form one single histogram as the dynamic video texture descriptor, as
shown in Fig.3.

3.3 Classification

For classification we consider the SVM technique due to its strong mathematical
foundations and high reliability in many practical applications. Depending on the
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number of classes that the data samples are to be from, the SVM can be divided
into two problems: two-class problem and multi-class problem [34]. However, in this
paper we consider the multi-class problem since the number of emotions considered
is more than two, which are ’Happiness (HAP)’, ’Surprise (SUR)’, ’Disgust (DIS)’,
’Repression (REP)’, and ’Others (OTH). There are two classical approaches to
solve the multi-class problem: one-against-all and one-against-one. [12] reported
that the latter approach is quicker and more practical than a one-against-all ap-
proach. In the one-against-one approach k(k− 1)/2 classifiers are constructed for
k classes, with each classifier training data from two different classes in a pairwise
fashion. However, the matching class can be found by majority voting technique
[12]: each binary classification performed on an input pattern contributes a vote to
either class of the classifier. At the end, we predict the input pattern as belonging
to the class with the largest vote.

4 Experiments

4.1 Dataset

There are only a few micro-expression databases available due to the difficulty in
eliciting these micro-expressions and annotating them into relevant ground truth
categories. In the aspect of acquisition, high speed recording devices are required
to capture the subtle expressions since micro-expressions by definition only exist
in fractions of a second. Furthermore, to be realistically useful, naturally induced
expressions are favored rather than posed ones. However, how these spontaneously
expressed micro-expressions are collected is tricky, as the emotional stimuli used
to naturally induce a micro-expression has to be carefully designed. When all
the videos are collected, to label the ground truth requires professional expertise,
which can only be done by trained professionals through careful observation of
the video, frame by frame. Thus, to create a spontaneous micro-expression video
database is a costly effort. SMIC [16], CASME [51] and CASME II [49] are the
most current micro-expression databases to the best of our knowledge. However,
the SMIC dataset is much smaller in size (with only 164 samples from 16 subjects)
with only 3 valid labels for recognition (positive, negative, and surprised) while
the CASME is simply a preliminary subset of the newer CASME II.

Hence, we consider the most comprehensive dataset up to date – CASME II
[49], which was created by the Chinese Academy of Sciences and publicly available
for research use, to validate the performance of our proposed technique. There are
a total of 247 videos from 26 Asian subjects with average age of 22.03 years
old. All videos are labeled by two professional coders (to an acceptable reliability
of 0.846) into 5 micro-expression class labels, i.e. ’Happiness (HAP)’, ’Surprise
(SUR)’, ’Disgust (DIS)’, ’Repression (REP)’, and ’Others (OTH)’ which include
other emotions such as anger, sadness and tense). To avoid flickering light from
the high-speed recording, they strictly selected and placed four LED lamps under
umbrella reflectors to make sure the illumination is steady and of high-intensity.
The participants’ faces were captured by using a Grey GRAS-03K2C camera with
resolution 640 × 480 at 200fps through ”Raw 8” mode. The recordings were then
saved in MJPEG format without any interframe compression. For further details,
refer to [49]. Fig. 4 shows a sample video of ’subject6’, which is labeled as the
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Fig. 4 A sample video of ’Surprise’ class (”EP15 02”) from the CASME II dataset with
subtle changes in the eye and eyebrow regions. The micro-expression exhibited by the subject
is almost unnoticeable to the naked eye. Refer to animation in Online Resource 1.

’Surprise’ micro-expression. Visually by the naked eye, it is very difficult to spot
the subtle or ”hidden” changes present in the video. Hence, to tackle this issue,
the amplification of these subtle changes is desirable.

4.2 Experimental Results and Discussions

In this section, we first discuss the parameter settings in Section 4.2.1, partic-
ularly the choice of band-pass filter and amplification factor. In Section 4.2.2,
the performance of our proposed approach is reported, including a benchmark
comparison against current state-of-the-art approaches. Besides, we also analyze
how EVM improves the recognition capability for each micro-expression class as
shown by confusion tables. The following sections further verify the effectiveness
of our approach by an array of extensive tests that investigates the impact on
performance under various conditions: different combination of LBP-TOP planes
(Section 4.2.3), LBP-TOP spatial block partitions (Section 4.2.4), LBP-TOP fea-
ture neighborrhood size and classifiers (Section 4.2.5). In all these experiments,
we compared the EVM based and non-EVM based approach fairly with all other
parameters and conditions held unchanged.

4.2.1 Motion magnification: Filter and parameter selection

The selection of parameters for motion magnification is a difficult and manual
task, but the original EVM paper [48] offers a heuristical guide that is largely
empirical in nature, in order to arrive at some sufficiently good values. The authors
note that ”the choice of filter is generally application dependent”. For motion
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magnification, filters with a broad passband such as low-order infinite impulse
response (IIR) filters are the preferred choice. In experiments from the original
paper, second-order IIR filters are found to be capable of revealing small head
movements and subtle body motions of a sleeping baby. The slow roll-off of the
IIR filter introduces a broad-band that tapers off indefinitely towards zero, making
it suitable for motion sweeps instead of short pulses (where ideal filters with sharp
roll-offs are more suitable).

Therefore, in our work, we opt for a second-order IIR filter to best magnify the
subtle motions present in facial micro-expressions. The parameters used for the
’baby’ video in the original paper [48] are taken as our initial choice of parameters.
This is intuitively chosen as the breathing motion of the baby is somewhat similar
to that exhibited by subtle facial motions.

By visual inspection, the resulting output video is generally more appealing, as
the effect of motion magnification is clearly visible (Fig. 5) on selected frames of the
sample video (Fig. 4). At a closer look, the motion between frames, particularly
in the eye region, appears more pronounced in Fig. 5 than Fig. 4. For better
comparison of the same sample sequence before and after motion magnification,
refer to the animations given in Online Resource 1.

In Fig. 6, we further analyze the amplified motion effect on the XT and YT
planes of the same sample sequence. Although the changes on the XT plane (Fig.
6 (a)) are not obvious, the visual difference in the texture of the motion-amplified
image (on the right image) is noticeable compared to that of the original sequence
(on the left image). This verifies the augmentation of noise after magnification.
The changes in the YT plane are much more obvious. From Fig. 6 (b), there are
three dark horizontal strips. In the first and second dark strips of the motion-
amplified image (on the right), we can clearly see that the vertical displacement
along these strips swell more than that of the original sequence (on the left); the
first two black areas correspond to the regions of eyebrows and eyes respectively.

The subsequent steps after motion magnification are as follows. We apply LBP-
TOP [53] to extract spatio-temporal features from each video sequence, with 4
neighbor pixels for all three planes, using 5x5 block partitions. Videos are not
normalized into equal-sized volumes (width (X), height (Y) and length (T)), since
LBP-TOP does not require this for different videos. Instead, the resultant his-
togram is normalized, providing a statistical representation of the distribution of
textures within the video. We set the radii of X, Y and T to 1, 1 and 2 respectively,
which is our default setting that achieves the best result. We perform classification
of videos from the CASME II dataset on 5 micro-expression classes (i.e. happiness,
disgust, tense, surprise, repression), using SVM classifier with a leave-one-out cross
validation strategy. This is conducted in the same manner as that performed by
the original authors [49].

The choice of amplification factor α is crucial, but yet sensitive. This is because
as the value of α increases, the noise present in the image is also amplified. Also, a
large value of α violates the bounds in Eq. 8 that sufficiently amplifies the motion
to a translation of δ(1) = π/8. With the knowledge of these parameter constraints
and the author’s suggestions, we experimented with various filter types and refine
its related parameters to obtain the best results.

Figure 7b shows the recognition performance using the ideal, Butterworth and
second-order IIR filters with magnification factor, α = 10 and spatial frequency
cutoff (wavelength) λc = 16 (following settings used by the ’baby’ video from
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Fig. 5 The sample video (from Fig. 4) after motion magnification. The motion at the eye and
eyebrow regions is much more obvious now. Refer to animation in Online Resource 1.

Fig. 6 (a) Visualizing the effect on the XT plane without (left) and with (right) motion
magnification, and (b) visualizing the effect on the YT plane without (left) and with (right)
motion magnification.

[48]). We note that the second-order IIR filter (7a) clearly outperforms the other
two filters, thus verifying the strengths of the IIR filter mentioned earlier. As
expected, the ideal filter performed the worst based on suggestions in [48] since
the narrow passband is more suited for color or intensity amplification. Based on
this observation, we proceed to test the recognition performance using a second-
order IIR filter with various α and λc settings, as shown in Table 1. By first
constraining λc while increasing α, it can be observed that the accuracy rates
start to drop when α increases beyond 20. Meanwhile, the value of λc does not
appear to influence the magnification output.
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(a) (b)

Fig. 7 (a): Second-order IIR filter (wl = 0.4, wh = 3); (b) Comparison of micro-expression
recognition with EVM using different filter types (Ideal, Butterworth, IIR) with α = 10 and
λc = 16. The red horizontal line indicates the performance of the baseline method [49] without
motion magnification.

Table 1 Comparison of micro-expression recognition with EVM using second-order IIR filters
of different α and λc values

α λc IIR filter (%)

10 16 72.47
20 16 75.30
30 16 74.49
20 26 74.49

4.2.2 Performance of proposed technique

With a sufficiently good parameters (α = 20 and λc = 16), we achieve the best
recognition accuracy of 75.30%. Despite the empirical nature of determining these
parameters, it is important to highlight that all recognition results in Table 1 are
significantly better than the baseline result of 60.32% without motion magnifica-
tion1. This singles out the importance of amplifying subtle motions found in facial
micro-expressions for the purpose of recognition.

For a closer look at the performance of individual expression classes, we com-
pare the confusion tables of the proposed method (with EVM) to that of the
baseline (without EVM) with respect to two different kernel functions (linear,
RBF) of the SVM classifier. Table 2 and Table 3 compares the confusion tables
with and without EVM based on the linear and RBF kernel respectively by us-
ing leave-one-subject-out2 cross validation protocol. This is arguably less bias for
datasets with an imbalanced distribution of samples across subjects [15], provid-
ing a fairer measure of class-specific performance. Overall, the proposed technique
greatly improves the recognition accuracy for each micro-expression class. Using
SVM linear kernel (Table 2), there are marked improvements of up to 50% for the
’OTH’, ’DIS’, ’HAP’ and ’SUR’ classes, while the ’REP’ class is five-fold better

1 Original paper [49] reported the best possible result of 63.41% using different set of settings.
2 Leave-one-subject-out cross validation (LOSOCV) is a subject-independent evaluation

where the videos of one object are held out as testing set while the remaining videos form
the training set. This is then repeated for all subjects in dataset, and the average accuracy
rate across all folds is taken.
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Table 2 Confusion tables of the proposed and baseline methods using SVM classifier with
linear kernel (LOSOCV protocol)

Proposed method (with EVM)

Expression OTH DIS HAP SUR REP

OTH 0.735 0.147 0.059 0.020 0.039
DIS 0.433 0.433 0.133 0.000 0.000
HAP 0.182 0.091 0.606 0.000 0.121
SUR 0.320 0.200 0.040 0.400 0.040
REP 0.370 0.074 0.333 0.000 0.222

Baseline (without EVM)

Expression OTH DIS HAP SUR REP

OTH 0.559 0.245 0.137 0.020 0.039
DIS 0.467 0.283 0.167 0.050 0.033
HAP 0.303 0.030 0.394 0.061 0.212
SUR 0.240 0.080 0.240 0.320 0.120
REP 0.407 0.037 0.444 0.074 0.037

Table 3 Confusion tables of the proposed and baseline methods using SVM classifier with
RBF kernel (LOSOCV protocol)

Proposed method (with EVM)

Expression OTH DIS HAP SUR REP

OTH 0.735 0.167 0.049 0.010 0.039
DIS 0.550 0.367 0.083 0.000 0.000
HAP 0.212 0.091 0.576 0.000 0.121
SUR 0.400 0.200 0.040 0.320 0.040
REP 0.407 0.037 0.370 0.000 0.185

Baseline (without EVM)

Expression OTH DIS HAP SUR REP

OTH 0.784 0.176 0.000 0.020 0.020
DIS 0.850 0.083 0.067 0.000 0.000
HAP 0.727 0.121 0.091 0.000 0.061
SUR 0.560 0.360 0.080 0.000 0.000
REP 0.704 0.037 0.222 0.037 0.000

than the baseline performance. A similar trend is observed when the RBF kernel
is used instead. In Table 3, we see that the performance of four of five classes
(’DIS’, ’HAP’, ’SUR’, ’REP’) vastly improved using the proposed technique, with
the exception of the ’OTH’ class which dropped slightly. At this juncture, it is
important to first point out that the RBF kernel seems to be inappropriate for
the baseline method as it tends to over-fit the ’OTH’ class. This is obvious from
the high number of false positives matching to this class. We postulate that with
motion magnification, the samples become more distinguishable, providing larger
between-class margins within the underlying distribution, hence reducing the ef-
fect of over-fitting. This observation of the effect of applying motion magnification
was also noted by Park et al. [31].

Our best result reported in this paper (75.30%) uses the RBF kernel for SVM
classification. Table 4 summarizes how our proposed method fare against current
state-of-the-art works on the benchmark CASME II dataset. The recent work
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Table 4 Benchmarking against current state-of-the-art approaches for micro-expression recog-
nition on the CASME II dataset

Methods Recognition rate (%)
Baseline [49] 63.41
OSW [19] 66.40
LBP-MOP [47] 66.80
LBP-SIP [46] 67.21
Adaptive MM [31] 69.63
Proposed method 75.30

of Park et al. [31] is much similar in nature to our approach. Although they
have proposed an adaptive method for motion magnification which predicts the
frequency band using intensity variation features, our approach is still superior in
terms of recognition capability. Our conjecture is that our method simply uses a
fixed bandwidth across all samples instead of relying entirely on the predictor to
return a frequency band range (which was ad-hocly fixed as well), for each different
test sample.

With EVM, the subtle expressions that are hardly detected by naked eyes
now are more visually notable as shown in Fig. 5. Besides, more discriminative
features are extracted with useful motion signals amplified. However, the limitation
of this technique exists as well. With amplifying the expected signal, the noise
signal might be also magnified which will interfere the extracted feature with less
discriminative. To decrease this limitation, we can either improve the filter for
filtering out noise signals or increase the resolution of our recorded videos.

4.2.3 Analysis on LBP-TOP plane selection

To further show the effectiveness of our proposed method for micro-expression
recognition, we tested it on individual LBP-TOP planes and their possible com-
binations. The results showed the effectiveness of EVM on all possible planes
combinations.

Table 5 and Table 6 reports the recognition accuracy on different feature planes
(XY, XT, YT) of LBP-TOP and their combinations, using SVM with linear and
RBF kernel respectively. This analysis assumes a 5x5 block partitioning for LBP-
TOP.

Firstly, we observe that even with motion magnification, the classification ac-
curacy when only two planes are used (XY-XT, XY-YT, XT-YT), does not differ
much compared to when all three planes (XY-XT-YT) are used. This strengthens
the results in [53] that using two planes is comparable to using all three planes, al-
beit with some insignificant decrease of accuracy in most cases. More importantly,
Table 5 shows that the recognition accuracy of our approach is significantly higher
than that of the baseline method. In fact, the increase in accuracy is consistently
above 10% regardless of the type or combination of planes used. Likewise, the same
experiment conducted using SVM classifier with RBF kernel (shown in Table 6)
also yielded similar conclusions with regards to the use of motion magnification.
The improvement observed with the RBF kernel is slightly more pronounced, av-
eraging (across all plane combinations) an increase of 12.45% compared to 12.15%
for the linear kernel.
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Table 5 Comparison of micro-expression recognition accuracy with different combination of
LBP-TOP planes (5x5 block partitioning), classified using SVM with linear kernel

Baseline (%) Proposed method (%)
XY 55.47 68.83
XT 51.42 63.97
YT 55.47 72.87
XY-XT 58.70 75.71
XY-YT 59.51 74.09
XT-YT 59.92 73.68
XY-XT-YT 60.32 74.90

Table 6 Comparison of micro-expression recognition accuracy with different combination of
LBP-TOP planes (5x5 block partitioning), classified using SVM with RBF kernel.

Baseline(%) Proposed method(%)
XY 55.06 69.64
XT 53.04 65.99
YT 60.32 72.47
XY-XT 59.41 75.30
XY-YT 59.92 74.09
XT-YT 59.51 75.30
XY-XT-YT 59.11 75.30

In short, the recognition performance of our proposed technique is consistently
better than that of the baseline technique on different types (and combinations)
of LBP-TOP planes (XY, XT, YT).

4.2.4 Analysis on feature block partitions

Similarly, we also examine the performance of micro-expression recognition with
respect to different block partition sizes to further evaluate the robustness of our
proposed method. Block partitioning is a method of representation in which the im-
age is divided into several non-overlapping or overlapping blocks to obtain region-
concatenated descriptors. This was primarily employed in [53] for the LBP-TOP
feature descriptor. For clarity, we consider the division of an image on a certain
plane into n×m blocks; n rows and m columns. With the exception of this anal-
ysis, we fixed the block partitioning for all of our experiments to 5 × 5 blocks, in
accordance with that chosen in the original baseline work [49].

Table 7 shows the recognition performance (SVM linear kernel) of a variety
of symmetrical block partitions of the n × 2 form. The reason why the number
of columns is fixed to 2 is that the face is to some extent, symmetric in nature.
Using such a partition, the facial components e.g. eyes, eyebrows, etc. could be
preserved as a whole in one single block compared to that of n × n partitions
(see the illustration of partitions in Fig. 8), which could divide the image into
two or more blocks, both row-wise and column-wise. Interestingly, from the ex-
perimental results (in Table 7), we see that the 6× 2 partition (baseline) achieved
an accuracy of 58.7% compared to the 5 × 5 partition (baseline) that managed a
60.32% accuracy. Although the partition of 6×2 performs slightly worser than the
5× 5 partition, the feature dimension drops dramatically by more than half, from
(16 × 3 × 25) = 1200 for 5 × 5 blocks to (16 × 3 × 12) = 576 for 6 × 2 blocks. This
reduction of feature dimensionality comes at the expense of recognition accuracy.
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Table 7 Comparison of micro-expression recognition using different n× 2 symmetrical block
partitioning. All three LBP-TOP planes are used while linear kernel is used for SVM.

Baseline(%) Proposed method(%)
5x2 55.87 64.78
6x2 58.70 65.18
7x2 57.89 66.40
8x2 53.44 62.35

Table 8 Comparison of micro-expression recognition using different n× 2 symmetrical block
partitioning. All three LBP-TOP planes are used while RBF kernel is used for SVM.

Baseline (%) Proposed method (%)
5x2 57.09 68.02
6x2 59.92 65.59
7x2 59.11 66.80
8x2 57.09 64.78

Fig. 8 Illustration of the 5 × 5 (left) and 6 × 2 (right) block partitions

Furthermore, we also investigated the impact of block partitioning on the recog-
nition accuracy with RBF kernel for SVM classification (shown in Table 8). We
observe that the best performance of the baseline method is 59.92% with 6 × 2
partition compared to 59.11% with 5×5 partitions (reported in Table 6). Contrary
to that of the linear kernel, the 6×2 partition performs marginally better than the
5×5 partition on the RBF kernel, it does not appear to be statistically significant.

Nevertheless, it turns out that regardless of the choice of block partitioning
and SVM kernel used, the role of EVM is crucial for better recognition of facial
micro-expressions.

4.2.5 Analysis on classifiers and feature neighborhood

In our final analysis, we further compare the recognition performance of the pro-
posed method against the baseline in Table 9, classified by the k-nearest neighbor
(kNN)3 and SVM with different kernels. We see that across all classifiers, the
recognition performance of our proposed technique is superior to that of the base-
line method [49]. Our best result, the SVM classifier with RBF kernel posed an
improvement of more than 14% over the baseline. As expected, the SVM is a more
effective classifier than the kNN owing to its maximum margin properties that is
able to separate high-dimensional data.

3 We empirically found that k = 5 yielded the best possible result for kNN.
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Table 9 Micro-expression recognition performance using kNN and SVM classifiers with dif-
ferent kernels, with and without EVM, based on 5x5 blocks partition

Classifier Baseline (%) Proposed method (%)
KNN (k=5) 52.03 61.79
SVM (linear kernel) 60.32 74.90
SVM (polynomial kernel, 5th order) 60.73 72.87
SVM (RBF kernel)) 59.11 75.30

We also changed the number of neighbor pixels that construct the LBP-TOP
feature pattern to 8 for all three planes. This resulted in a baseline recognition
accuracy of 62.35% and 69.23% for the proposed method. Hence, the positive effect
of motion magnification on facial micro-expressions remains telling.

4.2.6 Summary

Overall, the in-depth experimentation presented in this section demonstrated the
reliability and robustness of our proposed micro-expression recognition approach
by amplifying subtle facial motions for better feature representation. We uncovered
the following points:

– The second order IIR band-pass filter performed best for magnifying facial
micro-expressions, with the most visually obvious results.

– The extracted LBP-TOP features were more discriminative on EVM-magnified
frames.

– EVM is found to be effective on all possible combination of LBP-TOP feature
planes (XY, XT, YT).

– EVM is also found to be effective on various LBP-TOP spatial block partitions
and neighborhood sizes.

5 Conclusion and Future Work

In this paper, we introduced a new approach that incorporates video motion mag-
nification to accentuate subtle motions in facial micro-expressions, resulting in
a greatly improved recognition performance. In our extensive experiments, we
demonstrate that the proposed approach which adopts Eulerian Video Magnifica-
tion (EVM) consistently performs better than baseline and current state-of-the-
art methods. This was also noticeable across various conditions; notably, differ-
ent EVM parameters, LBP-TOP with different combination of planes, different
frame partitions, different SVM kernels as well as different neighboring pixels for
LBP-TOP feature. Hence, we elucidate in this paper, the vital role of motion
magnification in amplifying subtle micro-expression changes in video. This un-
covers a promising new direction towards effective machine recognition of facial
micro-expressions.

With this framework in place, there are many future directions for further im-
provements. One possible work is to make use of facial landmarks of Action Units
(AU) to improve overall recognition accuracy; or in that very sense, attempt to
magnify only selective regions that correspond to these landmarks instead of the
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entire face area. Also, LBP-based feature descriptors have their intrinsic limita-
tions. Thus, the introduction of more robust spatio-temporal texture descriptors
may potentially unlock further discrimination between the micro-expressions.

Acknowledgement

This work was supported by the TM Grants under projects UbeAware and 2beAware,
Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ14F020006).
The authors would like to thank the Chinese Academy of Sciences for the CASME
II micro-expression database and Su-Jing Wang for providing more details of their
CASME II work in [49].

References

1. Ahonen, T., Matas, J., He, C., Pietikainen, M.: Rotation invariant image de-
scription with local binary pattern histogram fourier. In: Image Analysis, pp.
61–70 (2009)

2. Azmi, R., Yegane, S.: Facial expression recognition in the presence of occussion
using local gabor binary patterns. Iranian Conf. on Elect. Eng. (ICEE) pp.
742–747 (2012)

3. Bartlett, M.S., Littlewort, G.C., Frank, M.G., Lainscsek, C., Fasel, I.R., Movel-
lan, J.R.: Automatic recognition of facial actions in spontaneous expressions.
Journal of Multimedia 1(6), 22–35 (2006)

4. Bashyal, S., Venayagamoorthy, G.K.: Recognition of facial expressions using
gabor wavelets and learning vector quantization. Engineering Applications of
Artificial Intelligence 21(7), 1056–1064 (2008)

5. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: recog-
nition using class specific linear projection. Pattern Analysis and Machine
Intelligence, IEEE Trans. on 19(7), 711–720 (1997)

6. Burt, P., Adelson, E.: The laplacian pyramid as a compact image code. Com-
munications, IEEE Transactions on 31(4), 532–540 (1983)

7. Chang, C.C., Lin, C.J.: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology pp. 1–39 (2011)

8. Ekman, P.: Lie catching and microexpressions. The Philosophy of Deception
pp. 118–133 (2009)

9. Fehr, J., Burkhardt, H.: 3D rotation invariant local binary patterns. ICPR
2008 pp. 1–4 (2008)

10. Frank, M., Herbasz, M., Sinuk, K., Keller, A., Nolan, C.: I see how you feel:
Training laypeople and professionals to recognize fleeting emotions, presented
at the Annual Meeting of the International Communication Association, New
York. Unpublished manuscript. (2009)

11. Heikkila, M., Pietikainen, M., Schmid, C.: Description of interest regions with
center-symmetric local binary patterns. Pattern Recognition 42(3), 425–436
(2009)

12. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector
machines. Neural Networks, IEEE Trans. on 13(2), 415–425 (2002)



22 Y.Wang, J.See et.al

13. Huang, D., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local Binary Pattern
and its Application to Facial Image Analysis: a Survey. IEEE Transactions
on Systems, Man and Cybernetics-Part C: Applications and Reviews 41(6),
765–781 (2011)

14. Kanade, T., Cohn, J.F., Tian, Y.: Comprehensive database for facial expres-
sion analysis. In: Automatic Face and Gesture Recognition, 2000. Proceedings.
Fourth IEEE International Conference on, pp. 46–53. IEEE (2000)

15. Le Ngo, A.C., Phan, R.C.W., See, J.: Spontaneous subtle expression recogni-
tion: Imbalanced databases and solutions. In: Asian Conference on Computer
Vision, pp. 33–48 (2014)

16. Li, X., Pfister T. Huang, X., Zhao, G., Pietikainen, M.: A spontaneous micro-
expression database: Inducement, collection and baseline. Automatic Face and
Gesture Recognition (FG), 10th IEEE Int. Conf. and Workshops on pp. 1–6
(2013)

17. Liao, S., Chung, A.C.: Face recognition by using elongated local binary pat-
terns with average maximum distance gradient magnitude. In: Asian Conf. on
Computer Vision (ACCV), pp. 672–679 (2007)

18. Liong, S.T., Phan, R.C.W., See, J., Oh, Y.H., Wong, K.: Optical strain based
recognition of subtle emotions. In: Intelligent Signal Processing and Commu-
nication Systems (ISPACS), 2014 International Symposium on, pp. 180–184.
IEEE (2014)

19. Liong, S.T., See, J., Phan, R.C.W., Le Ngo, A., Oh, Y.H., Wong, K.: Subtle
expression recognition using optical strain weighted features. In: 1st Workshop
on Computer Vision for Affective Computing, Asian Conf. on Computer Vision
(ACCV), pp. 644–657 (2014)

20. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The
Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit
and emotion-specified expression. In: Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), IEEE Conf. on, pp. 94–101 (2010)

21. Lyons, M., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding facial expressions
with gabor wavelets. In: Automatic Face and Gesture Recognition, 1998.
Proceedings. Third IEEE International Conference on, pp. 200–205. IEEE
(1998)

22. McDuff, D., El Kaliouby, R., Senechal, T., Amr, M., Cohn, J.F., Picard, R.:
Affectiva-MIT Facial Expression Dataset (AM-FED): naturalistic and spon-
taneous facial expressions collected” in-the-wild”. In: Computer Vision and
Pattern Recognition Workshops (CVPRW), 2013 IEEE Conf. on, pp. 881–888
(2013)

23. Nguyen, H.T., Caplier, A.: Elliptical local binary patterns for face recognition.
In: Computer Vision-ACCV 2012 Workshops, pp. 85–96 (2013)

24. Ojala, T., Pieikainen, M., Harwood, D.: A comparative study of texture mea-
sures with classification on featured distribution. Pattern Recognition 29,
51–59 (1996)

25. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rota-
tion invariant texture classification with local binary patterns. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

26. Oliveira, L., Mansano, M., Koerich, A., de Souza Britto Jr, A.: 2d principal
component analysis for face and facial-expression recognition. Computing in
Science & Engineering 13(3), 9–13 (2011)



Effective micro-expr. recog through EVM 23

27. Oliveira, L.S., Sabourin, R., Bortolozzi, F., Suen, C.Y.: A methodology for
feature selection using multiobjective genetic algorithms for handwritten digit
string recognition. Int. Journal of Patt. Recog. and Artificial Intelligence
17(06), 903–929 (2003)

28. Pantic, M., Valstar, M., Rademaker, R., Maat, L.: Web-based database for
facial expression analysis. In: Multimedia and Expo, 2005. ICME 2005. IEEE
International Conference on, pp. 5–pp. IEEE (2005)

29. Park, S., Kim, D.: Subtle facial expression recognition using motion magnifi-
cation. Pattern Recognition Letters 30(7), 708–716 (2009)

30. Park, S., Lee, H., Shin, J., Kim, D.: The POSTECH subtle facial expression
database 2007 (SFED07). In: Proc, of the 8th POSTECH-KYUTECH Joint
Workshop On Neuroinformatics, pp. 653–654 (2008)

31. Park, S.Y., Lee, S.H., Ro, Y.M.: Subtle facial expression recognition using
adaptive magnification of discriminative facial motion. In: Proc. of the 23rd
Annual ACM Conference on Multimedia, pp. 911–914 (2015)

32. Pfister, T., Li, X., Zhao, G., Pietikainen, M.: Recognising spontaneous facial
micro-expressions. In: Computer Vision (ICCV), 2011 IEEE International
Conference on, pp. 1449–1456. IEEE (2011)

33. Polikovsky, S., Kameda, Y., Ohta, Y.: Facial micro-expressions recognition
using high speed camera and 3d-gradient descriptor. In: Crime Detection and
Prevention (ICDP 2009), 3rd International Conference on, pp. 1–6. IET (2009)

34. Rahulamathavan, Y., Phan, R., Veluru, S., Cumanan, K., Rajarajan, M.:
Privacy-preserving multi-class support vector machine for outsourcing the data
classification in cloud. Dependable and Secure Computing, IEEE Trans. on
(99), 467–479 (2013)

35. Rahulamathavan, Y., Phan, R.W., Chambers, J., Parish, D.: Facial expres-
sion recognition in the encrypted domain based on local fisher discriminant
analysis. Affective Computing, IEEE Trans. on 4(1), 83–92 (2013)

36. Russell, T.A., Chu, E., Phillips, M.L.: A pilot study to investigate the effec-
tiveness of emotion recognition remediation in schizophrenia using the micro-
expression training tool. British Journal of Clinical Psychology 45(4), 579–583
(2006)

37. Sarnarawickrame, K., Mindya, S.: Facial expression recognition using active
shape models and support vector machines. In: Advances in ICT for Emerging
Regions (ICTer), 2013 Int. Conf. on, pp. 51–55 (2013)

38. Satiyan, M., Nagarajan, R.: Recognition of facial expression using haar-like
feature extraction method. In: Intelligent and Advanced Systems (ICIAS),
2010 Int. Conf. on, pp. 1–4. IEEE (2010)

39. Schopler, E., Mesibov, G.B., Kunce, L.J.: Asperger syndrome or high-
functioning autism? (1998)

40. Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on
local binary patterns: A comprehensive study. Image and Vision Computing
27(6), 803–816 (2009)

41. Shreve, M., Godavarthy, S., Goldgof, D., Sarkar, S.: Macro- and micro-
expression spotting in long videos using spatio-temporal strain. In: Automatic
Face & Gesture Recognition and Workshops (FG 2011), IEEE Int. Conf. on,
pp. 51–56 (2011)

42. Shreve, M., Godavarthy, S., Manohar, V., Goldgof, D., Sarkar, S.: Towards
macro- and micro-expression spotting in video using strain patterns. In: Work-



24 Y.Wang, J.See et.al

shop on Applications of Computer Vision (WACV), pp. 1–6 (2009)
43. Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition 

under difficult lighting conditions. Image Processing, IEEE Trans. on 19, 1635–
1650 (2010)

44. Uddin, M.Z., Lee, J., Kim, T.S.: An enhanced independent component-based 
human facial expression recognition from video. Consumer Electronics, IEEE 
Trans. on 55(4), 2216–2224 (2009)

45. Wang, X., Han, T.X., Yan, S.: An hog-lbp human detector with partial occlu-
sion handling. Computer Vision, 2009 IEEE 12th International Conference on 
pp. 32–39 (2009)

46. Wang, Y., See, J., Phan, R.C.W., Oh, Y.H.: Lbp with six intersection points: 
Reducing redundant information in lbp-top for micro-expression recognition. 
In: Asian Conf. on Computer Vision (ACCV), pp. 525–537 (2014)

47. Wang, Y., See, J., Phan, R.C.W., Oh, Y.H.: Efficient spatio-temporal local 
binary patterns for spontaneous facial micro-expression recognition. PLoS One 
10, e0124,674 (2015)

48. Wu, H.Y., Rubinstein, M., Shih, E., Guttag, J., Durand, F., Freeman, W.: 
Eulerian video magnification for revealing subtle changes in the world. ACM 
Transactions on Graphics (TOG) 31(4), 65:1–65:8 (2012)

49. Yan, W.J., Wang, S.J., Zhao, G., Li, X., Liu, Y.J., Chen, Y.H., Fu, X.: Casme 
ii: An improved spontaneous micro-expression database and the baseline eval-
uation. PLoS ONE 9, e86,041 (2014)

50. Yan, W.J., Wu, Q., Liang, J., Chen, Y.H., Fu, X.: How fast are the leaked 
facial expressions: The duration of micro-expressions. Journal of Nonverbal 
Behavior 37(4), 217–230 (2013)

51. Yan, W.J., Wu, Q., Liu, Y.J., Wang, S.J.: Casme database: A dataset of spon-
taneous micro-expressions collected from neutralized faces. Automatic Face 
and Gesture Recognition (FG), 2013 10th IEEE International Conference and 
Workshops on pp. 1–7 (2013)

52. Yin, L., Wei, X., Sun, Y., Wang, J., Rosato, M.J.: A 3d facial expression 
database for facial behavior research. In: Automatic Face and Gesture Recog-
nition, 7th Int. Conf. on, pp. 211–216 (2006)

53. Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary 
patterns with an application to facial expressions. IEEE Transactions on 
Pattern Analysis and Machine Intelligence 29(6), 915–928 (2007)

54. Rahulamathavan, Y., Rajarajan, M.: Efficient Privacy-Preserving Facial Expression 
Classification. Dependable and Secure Computing, IEEE Trans. (to appear, 2016)

55. Rahulamathavan, Y., Rajarajan, M.: Hide-and-Seek: Face Recognition in Private. IEEE 
International Conference on Communications (ICC), June, 2015, London, UK

56. Rahulamathavan, Y., Phan, C.-W. R., Veluru, S., Cumanan, K., and Rajarajan, M.: 
Privacy-Preserving Multi-Class Support Vector Machine for Outsourcing the Data 
Classification in Cloud,  Dependable Secure Computing, IEEE Trans. 11(5), 467 - 479 
(2014)  


