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Abstract 

The performance of face recognition methods using subspace projection is directly related 

to the characteristics of their basis images, especially in the cases of local distortion or 

partial occlusion. In order for a subspace projection method to be robust to local distortion 

and partial occlusion, the basis images generated by the method should exhibit a part-based 

local representation. We propose an effective part-based local representation method named 

locally salient ICA (LS-ICA) method for face recognition that is robust to local distortion 

and partial occlusion. The LS-ICA method only employs locally salient information from 

important facial parts in order to maximize the benefit of applying the idea of “recognition 

by parts.” It creates part-based local basis images by imposing additional localization 

constraint in the process of computing ICA architecture I basis images. We have contrasted 

the LS-ICA method with other part-based representations such as LNMF (Localized 

Non-negative Matrix Factorization) and LFA (Local Feature Analysis). Experimental 

results show that the LS-ICA method performs better than PCA, ICA architectureⅠ, ICA 

architectureⅡ, LFA, and LNMF methods, especially in the cases of partial occlusions and 

local distortions. 

 

Keywords: face recognition, part based local representation, ICA, LS-ICA. 
 

1. Introduction 

Over the past ten years, canonical subspace projection techniques such as PCA, ICA and 

FLD have been widely used in the face recognition research [1-5]. These techniques 

represent a face as a linear combination of low rank basis images. They employ feature 
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vectors consisting of coefficients that are obtained by simply projecting facial images onto 

their basis images. In order for a subspace projection based method to be robust to partial 

occlusions and local distortions, its basis images should effectively realize a part-based 

local representation. Local representation provides robustness to partial occlusions and 

local distortions because successful face recognition can be achieved by representing some 

important facial parts that correspond to feature regions such as eyes, eye brows, nose and 

lips. This “recognition by parts” paradigm [11] has been popular in the object recognition 

research because the approach can be successfully applied to the problem of object 

recognition with occlusion. 

Facial image representations based on different basis images are illustrated in Figure 1. 

ICA can be applied to face recognition in two different representations: ICA architecture I 

and II [2]. Please refer to section 2.1 for more description about these two representations. 

PCA and ICA architecture II basis images, as shown in Figure 1 (a) and (b), respectively, 

display global properties in the sense that they assign significant weights to potentially all 

the pixels. This accords with the fact that PCA basis images are just scaled versions of 

global Fourier filters [13]. In contrast, ICA architecture I basis images are spatially more 

localized. This local property of ICA architecture I basis images makes the performance of 

ICA architecture I based recognition methods robust to partial occlusions and local 

distortions, such as local changes in facial expression, because spatially local features only 

influence small parts of facial images. However, ICA architecture I basis images do not 

display perfectly local characteristics, in the sense that pixels that do not belong to locally 

salient feature regions still have some nonzero weight values. These pixel values in 
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1 2 3 4 n=  e *             +  e *             +  e *             +  e *             + +  e *⋅ ⋅ ⋅

1 2 3 4 n=  w *             +  w *            +  w *            +  w *            + +  w *⋅ ⋅ ⋅′′ ′′ ′′ ′′ ′′

( )1 2 3 4 n(a) PC A representation= e , e , e , e , ..., e

( )1 2 3 4 n(b) IC A Arch. representation= w ,w ,w ,w ,...,wⅠ

( )1 2 3 4 n(d) LS-IC A representation= w ,w ,w ,w ,...,w′′ ′′ ′′ ′′ ′′

1 2 3 4 n= w *             +  w *            +  w *            +  w *             + +  w *⋅ ⋅⋅

1 2 3 4 n= w *             +  w *            +  w *            +  w *             +  +  w *⋅ ⋅ ⋅′ ′ ′ ′ ′

( )1 2 3 4 n(c) IC A Arch.  representation= w ,w ,w ,w ,...,w′ ′ ′ ′ ′Ⅱ

1 2 3 4 n=  c *             +  c *             +  c *             +  c *             + +  c *⋅ ⋅ ⋅

( )1 2 3 4 n(f) LFA representation= c , c , c , c , ..., c

1 2 3 4 n=  b *             +  b *             +  b *             +  b *             + +  b *⋅ ⋅ ⋅′ ′ ′ ′ ′

( )1 2 3 4 n(e) LN M F representation= b , b , b , b , ..., b′ ′ ′ ′ ′

 

Figure 1. Facial image representations using (a) PCA, (b) ICA architecture I, (c) ICA architecture II, 

(d) proposed LS-ICA, (e) LNMF and (f) LFA basis images: A face is represented as a linear 

combination of basis images. The basis images were computed from a set of images randomly 

selected from the AR database. Using LS-ICA basis images, the concept of “recognition by parts” 

can be effectively implemented for face recognition. 

non-salient regions would appear as noise and contribute to the degradation of the 

recognition. 

Among representative part-based local representations are Local Feature Analysis (LFA) 

[6] and Local Non-negative Matrix Factorization (LNMF) [14] methods. The LFA method 

extracts local features based on second-order statistics. However, basis image from the LFA 

representation are not perfectly localized as shown in Figure 1 (f). Thus, pixels in 
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non-salient regions degrade the recognition performance in the case of partial occlusions 

and local distortions. Recently, the LNMF method was reported in the literature, which led 

to an improved version of Non-negative Matrix Factorization (NMF) [12]. In the LNMF 

method, locality constraints are imposed on the factorized matrices from NMF in terms of 

sparsity in matrix components. They successfully localized the components in basis images. 

However, the locality constraints do not guarantee that meaningful facial features should be 

localized in their basis images. As an example of the LNMF representation in Figure 1 (e) 

illustrates, some LNMF basis images represent regions such as cheek, forehead and jaw 

that are not discriminant features for face recognition. 

We propose new basis images based on ICA architectureⅠ, called LS-ICA (locally 

salient ICA) basis images, where only locally salient feature regions are retained. The idea 

of “recognition by parts” can be effectively realized for face recognition using LS-ICA 

basis images since each LS-ICA basis image represent only locally salient regions. These 

regions correspond to important facial feature regions such as eyes, eye brow, nose and lips. 

Note that ICA architectureⅠproduces basis images that are localized edge filters [13], and 

they correspond to meaningful facial feature regions. 

Our method for face recognition is characterized by two ideas: The first is the creation of 

the LS-ICA basis images using a modified version of Kurtosis maximization to remove 

residual nonlocal modulation in ICA architecture I basis images; these are used to represent 

faces. The second idea is to use LS-ICA basis images in the decreasing order of class 

separability so as to maximize the recognition performance. Experimental results show that 

LS-ICA performs better than PCA, ICA architectureⅠ, ICA architectureⅡ, LFA, and 
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LNMF, especially in the cases of partial occlusions and local distortions such as local 

changes in facial expression.  

The rest of this paper is organized as follows. Section 2 briefly describes the ICA, LFA 

and LNMF methods that are most relevant to our research. We present the proposed 

LS-ICA method in section 3. Section 4 gives experimental results. 

2. Related work 

2.1 ICA (Independent Component Analysis) 

ICA is a widely used subspace projection technique that projects data from a 

high-dimensional space to a lower-dimensional space [2-4]. This technique is a 

generalization of PCA that decorrelates the high-order statistics in addition to the 

second-order moments. In this research, we compute ICA basis images using the FastICA 

algorithm [3] while other methods such as InfoMax [2] or Maximum likelihood [4] can also 

be employed. 

The FastICA method computes independent components by maximizing 

non-Gaussianity of whitened data distribution using a kurtosis maximization process. The 

kurtosis measures the non-Gaussianity and the sparseness of the face representations [13]. 

The FastICA algorithm is briefly described as follows. Let S  be the vectors of unknown 

source signals and X  be vectors of observed mixtures. If A  is an unknown mixing 

matrix, then the mixing model can be written as .=X AS  The task is to estimate the 

independent source signals U  by computing the separating matrix W  that corresponds 

to the mixing matrix A  using the following relation 
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= =U WX WAS .                          (1) 

First, the observed samples are whitened. Let us denote the whitened samples by Ζ . Then, 

we search for the matrix such that the linear projection of the whitened samples by the 

matrix W  has maximum non-Gaussianity of data distribution. The kurtosis of 
T

i i=U W Z  

is computed as in equation (2) and the separating vector iW  is obtained by maximizing 

the kurtosis [3].  

( ) ( ){ } ( ){ }( )2
4 2

3i i ikurt E E= −U U U .               (2) 

ICA can be applied to face recognition in two different architectures [2]. The ICA 

architecture I considers the input face images, X , as a linear combination of statistically 

independent basis images, S , combined by an unknown matrix, A . The coefficients 

obtained by projecting input images onto the statistically independent basis images are not 

statistically independent. On the other hand, the ICA architecture II finds statistically 

independent coefficients that represent input images. The ICA architecture II basis images 

display global properties as shown in Figure 1 (c). Since the kurtosis maximization yields 

sparseness of basis images, the ICA architecture I basis images are spatially localized edge 

filters [13]. However, they do not display perfectly local characteristics in the sense that 

pixels that do not belong to locally salient feature regions still have some nonzero weight 

values. These pixel values would contribute to the degradation of the recognition 

performance in the case of local distortion and partial occlusion.  

2.2 LFA (Local Feature Analysis) 

LFA defines a set of local topographic kernels that are derived from the principal 

component eigenvectors E  and coefficients D  according to covariance matrix S  using 

the following equation. 
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1

2 T
−

=K ED E  where 
1

2
1

 1,...,
i

diag i p
λ

− ⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
D                (3) 

iλ ’s are eigenvalues of the covariance matrix, S . The rows of K  contain the kernels. The 

kernels are topographic in that they are indexed spatially. The number of kernels 

corresponds to the number of pixels in an image. The LFA uses a sparsification algorithm in 

order to reduce the dimensionality of the representation. The algorithm iteratively selects 

kernels that have the largest mean reconstruction error. We are concerned with basis images 

from the LFA method. They not perfectly localized and pixels in non-salient regions 

contribute to the degradation of the recognition performance. 

2.3 LNMF (Local Non-negative Matrix Factorization) 

The LNMF method [14] is a technique that improves the standard NMF method [12]. It is 

aimed at learning spatially localized, parts-based subspace representation of basis images 

by imposing additional constraints on the NMF basis. The following objective function is 

used to compute LNMF basis image: 

( ) [ ] [ ]
1 1

|| log
m n

ij

ij ij ij iiij
i j iij

X
D X BH X X BH U V

BH
α β

= =

⎛ ⎞
⎜ ⎟= − + + −
⎜ ⎟
⎝ ⎠

∑∑ ∑           (4) 

where , 0α β >  are some constants, TU B B= , TV HH=  and , 0B H ≥  means that all entries 

of basis images B  and coefficients H  are non-negative. The minimization of TU B B=  

imposes both maximum sparsity in H and minimum redundancy between different bases. 

On the other hand, by maximizing 
ii

i

V∑ , basis components that carry much information 

about the training images are retained. Refer to [14] for further justification of the objective 

function. The LNMF update rule for H  uses square root as in equation (5) to satisfy the 

additional constraints. The update for B  is identical to that of NMF [15]. 
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( )( 1) ( )

( ) ( )( )

t ijt t T

aj aj ai t t
i ij

X
H H B

B H

+ = ∑                          (5) 

Figure 1 (e) shows an example of the LNMF representation. As described earlier, the 

additional constraints only focus on locality and it is not necessarily guaranteed that 

meaningful facial features are localized in their basis images. 

3. The LS-ICA (Locally Salient ICA) Method 

The computation of LS-ICA basis images consists of two steps: The first step is concerned 

with the creation of part-based local basis images based on ICA architecture I. The second 

is to order the basis images obtained in the order of class separability for good recognition 

performance. 

The LS-ICA method creates part-based local basis images by imposing additional 

localization constraint in the process of the kurtosis maximization. The solution at each 

iteration step is weighted so that it becomes sparser by only emphasizing large pixel values. 

Localization emerges from this sparsification. Let u  be a solution vector at an iteration 

step, we can define a weighted solution as b  where b u ui i i

α=  and =b b b . 1α >  

is a small constant. The kurtosis is maximized in terms of b  instead of u  as in equation 

(6). 

( ) ( ){ } ( ){ }( )2
4 2

3kurt E E= −b b b .               (6) 

A solution to the above function can be found by using the following update rules: 

( ) ( )( )3
1

u u
tt T

i iE
α α+ ⎧ ⎫= ⎨ ⎬

⎩ ⎭
w Z w Z                  (7) 

where w  is a separating vector and Z  contains whitened image samples. The resulting 

basis image is ( )b u T

i i i

α= w Z . As an alternative method, we would like to point out that 
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other simple operations such as morphological operations can be employed to detect salient 

regions from ICA architecture I basis images. 

We then compute a measure of class separability, r , for each LS-ICA basis vector and 

sort the LS-ICA basis vectors in the decreasing order of class separability [2]. To compute 

r  for each LS-ICA basis vector, the between-class variability betweenσ  and within-class 

variability withinσ  of its corresponding projection coefficients of training images are 

obtained as follows. 

( )2

between i iM Mσ = Σ −                         (8) 

( )2

within i j ij ih Mσ = Σ Σ −                        (9) 

 

M  and iM  are the total mean and the mean of each class, and ijh  is the coefficient of 

the thj  training image in class i . The class separability, r , is then defined as the ratio 

between

within

r
σ
σ

= .                             (10) 

 

We then create new LS-ICA basis images from the LS-ICA basis images selected in the 

decreasing order of the class separability. This way, we can achieve both dimensionality 

reduction and good recognition performance. The LS-ICA representation is based on the 

idea of localized edge filters that come from ICA basis images. The resulting basis images 

contain localized facial features that are discriminant for face recognition.  

We have calculated pairwise mutual information for the basis images from equation (2) 

vs. equation (6) using the following joint entropy used in [16]. 

( ) ( ) ( ) ( ), ,I X Y H X H Y H X Y= + −                (11) 

where ( ),H X Y  is the joint entropy of X  and Y . The mean values of the pairwise 

mutual information for equation (2) vs. equation (6) are 0.0227 and 0.0013, respectively. 

This experimentally shows that the sparsification also enhances the independence solution. 
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4. Experimental Results 

We have used several facial image databases such as the FERET [8], AR [9] AT&T [10] 

databases in order to compare the recognition performance of LS-ICA with that of PCA, 

ICA architectureⅠ, ICA architectureⅡ, LFA and LNMF methods. Figure 2 shows example 

images from these databases. For fair comparisons with the above methods, their basis 

images were also used in the decreasing order of class separability, r . We have computed 

recognition performances for three different distance measures (L1, L2, cosine) to see if 

there is any performance variation depending on the distance measure used [7]. 

We have used subsets of the FERET images under significantly different lighting and 

facial expression. The whole set of images, U, used in the experiment, consists of four 

subsets called ‘fa’, ‘ba’, ‘bj’ and ‘bk’, as summarized in Table 1. For the experiment, we 

have divided the whole set U into training set (T), gallery set (G) and probe set (P). No one 

within the training set (T) is included in the gallery or the probe sets. The AR database 

contains 800 frontal facial images from 100 subjects. The number of images used for 

training and testing are 200 and 600 images, respectively. Test images contain local 

distortions and occlusions such as changes in facial expression and sunglasses worn.  

In order to show the performance comparisons under occlusion, we have used the AT&T 

database. It consists of 400 images of 40 persons, 10 images per person. The images are 

taken against a dark homogeneous background and the subjects are in an up-right, frontal 

position with tolerance for some side movement. A set of 10 images for each person is 

randomly partitioned into five training images and five testing images. The occlusion is 

simulated in an image by using a white patch of size s s×  with { }10, 20,30s∈  at a 

random location as shown in Figure 3. 
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Figures 4 and 5 show the recognition performances of PCA, ICA architectureⅠ, ICA 

architectureⅡ, LNMF, LFA and LS-ICA methods for the three facial databases. The 

recognition rate of the LS-ICA method was consistently better than that of PCA, ICA 

architectureⅠ, ICA architectureⅡ, LNMF and LFA methods regardless of the distance 

measures used. In Figure 4, ICA architectureⅠalso consistently outperformed PCA except 

the case where the L1 measure was used for the FERET database. This also accords with 

the experimental results of Draper et al. [7]. Figure 5 compares the six representations 

under varying degrees of occlusion, in terms of the recognition accuracies versus the size 

s s×  of occluding patch for { }10, 20,30s∈ . The LS-ICA and LNMF methods performed 

better than the other methods under partial occlusion, especially as the patch size increases. 

The LFA and ICA architecture I methods appear influenced by pixels not belonging to 

salient regions. The ICA architectureⅠmethod showed better performance than the LFA 

method. Bartlett et al. [16] have also reported that the ICA representation performs better 

than the LFA representation in cases of facial expression analysis and face recognition. This 

experimentally shows that the ICA architecture I better represents some important facial 

parts than the LFA method. The LS-ICA method that only makes use of locally salient 

information from important facial parts achieved higher recognition rates than the LNMF 

method. We can see that the LS-ICA representation is an effective part-based local 

representation for face recognition robust to local distortion and partial occlusion. 

 
 

 
Figure 2. Example images from AT&T (left), AR (middle), and FERET (right) facial databases 
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Figure 3. Example AT&T images having random occluding patches of sizes (from left to right) 

10x10, 20x20, and 30x30. 
 

Table 1. FERET database used in the experiment 

Two letter 

code 
Description 

The number 

of images

The number 

of subjects

Experiment using 

‘ba’-‘bj’ sets 

Experiment using

‘ba’-‘bk’ sets 

fa 
frontal images with neutral 

facial expression 
1758 1009 Training images (1758) 

ba 
frontal images which is entirely 

analogous to ‘fa’ 
200 200 Gallery (100) Gallery (100) 

bj 
frontal images with expressions 

different from ‘ba’ 
200 200 Probe (100)  

bk illumination different from ‘ba’ 194 194  Probe (100) 

 

Gallery: ba Probe: bj

L1

L2

c

o

s

i

n

e

Gallery: ba Probe: bk
A R

F E R E T

 

Figure 4. The recognition performance of PCA, ICA1, ICA2, LNMF, LFA and LS-ICA methods for 

the AR and FERET (‘ba’-‘bj’ set and ‘ba’-‘bk’ set) facial databases.  
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Figure 5. Recognition performance versus the size (in 10x10, 20x20, 30x30) of occluding patches 

for PCA, ICA1, ICA2, LNMF, LFA, and the proposed LS-ICA method for the AT&T database. 
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5. Conclusion  

We have proposed the LS-ICA method that only employs locally salient information from 

important facial parts in order to maximize the benefit of applying the idea of “recognition 

by parts” to the problem of face recognition under partial occlusion and local distortion. 

The performance of the LS-ICA method was consistently better than other representative 

local representation based methods regardless of the distance measures used. As expected, 

the effect was the greatest in the cases of facial images that have partial occlusions and 

local distortions such as changes in facial expression.  
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