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Effective resistance is more than distance:

Laplacians, Simplices and the Schur complement
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Abstract

This article reviews and discusses a geometric perspective on the well-known
fact in graph theory that the effective resistance is a metric on the nodes of
a graph. The classical proofs of this fact make use of ideas from electrical
circuits or random walks; here we describe an alternative approach which
combines geometric (using simplices) and algebraic (using the Schur comple-
ment) ideas. These perspectives are unified in a matrix identity of Miroslav
Fiedler, which beautifully summarizes a number of related ideas at the inter-
section of graphs, Laplacian matrices and simplices, with the metric property
of the effective resistance as a prominent consequence.
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complement
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1. Introduction

The Laplacian matrix was first formulated (implicitly) by Gustav Kirch-
hoff in the context of electrical circuits in [1, 2], where it captures the linear
relation between voltages and currents in a circuit of resistors. Results such
as Kirchhoff’s Matrix Tree Theorem however, which states that the number
of spanning trees of a given connected graph can be found as the prod-
uct of the non-zero Laplacian eigenvalues divided by the number of nodes,
highlight that the Laplacian is a fundamental object in the study of graphs

⋆The author was supported by The Alan Turing Institute under the EPSRC grant
EP/N510129/1.
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independent of the context of electrical circuits. The same story holds for the
effective resistance, which made its way from a concept in electrical circuit
theory to an important graph property after discoveries such as its relation to
random walks [3, 4, 5], its role in the famous problem of “dissecting the rect-
angle into squares” [6], its function as a graph metric [7, 8] and a robustness
measure [9, 10, 11], and more recently its role in “spectral sparsification” of
graphs [12]. The effective resistance also plays an important role in chemical
graph theory, where it is used in formulating the so-called Kirchhoff index
[7, 13, 14, 15]. These parallel histories are no coincidence, but reflect the
intimate connection between Laplacians and effective resistances – a connec-
tion perhaps best captured by a beautiful result due to Miroslav Fiedler that
represents their relation in a single matrix identity [16, Thm. 1.4.1] (see also
Section 2.4).
As mentioned, one of the important properties of the effective resistance is
that it determines a metric between the nodes of a graph. Together with the
geodesic distance, this resistance metric is probably one of the most natural
notions for distances on a graph with the additional advantage of an exact al-
gebraic expression based on the graph structure, and which can be calculated
ǫ-close in O(m/ǫ2) time for m-link graphs [12]. The metric property of the
effective resistance was discovered independently by Gvishiani and Gurvich
in [17] and Klein and Randić in [7] using simple arguments from electrical
circuit theory, and alternative proofs follow from the equivalence between
effective resistances and commute times of random walks [18, 19, 3]. While
very concise, these proof strategies leave several key features of the effective
resistance obscured.
Firstly, the usual discussions about the effective resistance do not make use
of the fact that the square root of the effective resistance is a Euclidean
metric which associates to each weighted graph a simplex, and conversely.
This fact, discovered independently by Fiedler in the context of simplex ge-
ometry [20] and by Sharpe and Moore in the context of electrical circuit
theory [21], provides a distinct geometric perspective for the study of effec-
tive resistances and, by extension, graphs. A second important result about
effective resistances is the fact that the Schur complement (a certain oper-
ation that reduces a matrix to a smaller matrix on a subset of its columns
and rows) maps Laplacian matrices to Laplacian matrices and corresponds
to a map from simplices to simplices. This result gives a complementary
algebraic perspective on the effective resistance. Finally, Fiedler’s identity
between Laplacian and effective resistance matrices unifies the algebraic and
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geometric viewpoints into a single concise matrix identity. While this result
reflects several key properties of the effective resistance, it does not seem to
be widely known and is rarely mentioned in the context of effective resis-
tances or Laplacian matrices.
In this article, we present a self-contained derivation of the geometric (related
to simplices) and algebraic (related to the Schur complement) characteris-
tics of the effective resistance. As a particular application, we show how this
setup admits an elegant proof for the triangle inequality of the effective resis-
tance; however, as the title suggests, by the time we arrive at this metricity
result it will be clear that this is indeed just one of the many qualities of the
effective resistance. While most of the presented results have been described
before by Fiedler [16] or in the context of distance geometry, we believe that
a unified and concentrated exposition of these ideas might be necessary for
a wider understanding of the results and to promote their adoption by other
researchers. In our conclusion, we furthermore suggest one possible path for
future research that would consist of ‘categorifying’ the ideas presented in
this article and continuing further investigations in the more abstract realm
of category theory.
Our approach necessarily leaves many details unexplored and for additional
results we refer the readers to [16, 22] for the graph-simplex correspondence,
[23, 24] for the Schur complement and [4, 7, 10, 14, 15, 17, 25, 26, 27, 28, 29]
for electrical circuit theory and the effective resistance.

The remainder of this article is organized as follows: in Section 2 we in-
troduce Laplacian matrices, simplices and effective resistances and discuss
how these different objects are related; the main relations are summarized
in Theorem 1 and Theorem 2. Section 3 then discusses how different objects
of the same type are related, i.e. how faces of simplices are again simplices
and how, correspondingly, the Schur complement maps Laplacian matrices to
Laplacian matrices. In Section 4 finally, we present a simple geometric proof
of the distance property of the effective resistance, Theorem 3, highlighting
the utility and value of the earlier developed results. As an outlook on fu-
ture work, we conclude the article with a brief description of a categorical
perspective on the results we have introduced.
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2. Graphs, Laplacians and Simplices

2.1. Laplacian matrices

We start by defining the basic objects of in-
terest. A weighted graph G = (N ,L, w) con-
sists of a set of n nodes N and a set of links
L which connect (unordered, distinct) pairs
of nodes1, and positive weights w defined on
the links; we write (i, j) ∈ L for a link2 be-
tween i and j, and wij for its weight. We
assume the graph to be finite3 (n < ∞) and connected, i.e. with a path
between any pair of nodes. It is often more practical to represent the graph
structure as a matrix; here, we work with the Laplacian matrix of a graph
G which is the n× n matrix Q with entries [30, 31]

(Q)ij =











di if j = i

−wij if (i, j) ∈ L
0 otherwise,

(1)

where di is the degree of a node i, equal to the total weight of all links
containing i as di =

∑

(i,j)∈Lwij. The properties of a (finite, connected and

positively) weighted graph G translate to properties of the Laplacian Q as
follows; the Laplacian matrix is/has:

(i) symmetric

(ii) finite non-positive off-diagonal entries

(iii) zero row and column sums

(iv) irreducible

where irreducibility means that the matrix can not be block diagonalized by
any permutation of the rows and columns. If we take properties (i)-(iv) as the
definition of a Laplacian matrix, then expression (1) determines a bijection

1Nodes and links are often called vertices and edges in the graph theory literature.
Here, these terms are reserved for the vertices and edges of a simplex.

2An undirected link is sometimes denoted as {i, j} instead of a tuple, to distinguish it
from a directed link.

3We also assume n ≥ 2 to avoid the exceptional case of the trivial graph.
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between Laplacian matrices and weighted graphs. We will continue with the
Laplacian description, keeping in mind that any Laplacian corresponds to a
weighted graph where the set of row/column indices N corresponds to the
nodes of the graph and the set of non-zero off-diagonal entries L to links of
the graph.
From the Laplacian properties above, a number of spectral properties of the
Laplacian follow quite straightforwardly (see Proof of Proposition 1 below);
the Laplacian matrix is:

(i)σ positive semidefinite

(ii)σ has a single zero eigenvalue,

(iii)σ with corresponding constant eigenvector

We will write the constant all-one vector as u = (1, . . . , 1)T . These spectral (σ
for spectral) properties4 suggest an interesting alternative definition of the
Laplacian, with complementary information on the structure of Laplacian
matrices:

Proposition 1. The following characterizations for a matrix Q are equiva-
lent:

1. Q is a Laplacian matrix

2. Q satisfies properties (i)-(iv)

3. Q satisfies properties (i)σ-(iii)σ and (ii)

Proof: 1. ⇔ 2. follows from definition (1) of the Laplacian matrix and the
fact that a connected graph corresponds to an irreducible Laplacian matrix.
1. ⇒ 3. From its definition, we have that a quadratic product with the
Laplacian can be written as xTQx =

∑

(i,j)∈Lwij(xi−xj)
2 ≥ 0 for any vector

x ∈ R
n, and thus all eigenvalues must be non-negative. Moreover, equality

(i.e. zero eigenvalue) only holds when xi = xj for all linked nodes (i, j) ∈ L
and thus, by connectedness of the corresponding graph, for all nodes i, j ∈ N
(i.e. constant eigenvector corresponding to the zero eigenvalue). 3. ⇒ 2. As
Q is positive semidefinite, it must be symmetric so that (i) is satisfied. Since
the constant eigenvector has corresponding eigenvalue zero, we have that

4We remark that the positive semidefinite condition (i)σ implies both non-negative
eigenvalues as well as symmetry of the matrix, even though the latter is not a spectral
property.

5



∑

j(Q)ij = 0 for all i so that (iii) is satisfied. Furthermore, if we assume

Q were reducible and could thus be written in the form Q =
(

Q1 0
0 Q2

)

then
a vector u′ = (0, u) would have Qu′ = 0. However, since Q is positive
semidefinite with a single constant zero eigenvector u 6= u′ this is not possible,
hence Q is irreducible and (iv) holds. �

From Proposition 1 it follows that the Laplacian has a spectral decomposition
of the form

Q =

n−1
∑

k=1

µkzkz
T
k (2)

with real eigenvalues µk > 0 and normalized eigenvectors zk that satisfy
the eigenequation Qzk = µkzk, and where the zero eigenvalue µn = 0 and
corresponding constant eigenvector zn = u/

√
n are omitted. The eigenvec-

tors {zk}nk=1 form an orthonormal basis for R
n. However, as illustrated by

the third characterization in Proposition 1, this eigendecomposition is not
sufficient for Q to be a Laplacian matrix as it does not constrain the off-
diagonal entries to be non-positive; there is no simple ‘spectral fingerprint’
that guarantees this sign property. This particular nature of the off-diagonal
sign constraints will be discussed more later.
Another consequence of Proposition 1 and decomposition (2) is that we can
define the Moore-Penrose pseudoinverse Laplacian Q† as the inverse of Q
in the space orthogonal to the constant vector u, see for instance [32]. In
other words, such that Q†Q = QQ† = I − uuT/n which is a projector on the
subspace orthogonal to u. More precisely, we can define the pseudoinverse
Laplacian5 via its spectral decomposition as

Q† =

n−1
∑

k=1

µ−1
k zkz

T
k

which shows that Q† is also positive semidefinite (i)σ with a single zero
eigenvalue (ii)σ and constant eigenvector (iii)σ. This spectral decomposi-
tion shows that properties (i)σ-(iii)σ are always conserved under taking the
Moore-Penrose pseudoinverse of the Laplacian matrix.
Remark: When a graph is not connected but consists of β0 components, the
corresponding Laplacian matrix will have a β0-dimensional zero eigenspace

5Other notions of matrix pseudoinversion exist, but here we use ‘pseudoinverse’ and
the †-superscript to refer to the Moore-Penrose pseudoinverse.
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spanned by eigenvectors which are piecewise constant on the components.
In the language of algebraic topology, this corresponds to the fact that the
zeroth Betti number (i.e. number of components) equals the dimension of
the zeroth homology group, which in turn equals the dimension of the ker-
nel of the Hodge Laplacian (i.e. our Laplacian), if our (weighted) graph is
interpreted as a simplicial 1-complex [33, 26, 34].

2.2. Simplices

A simplex is a geometric object6 that generalizes points (d = 0), line
segments (d = 1) and triangles (d = 2) to any dimension d, see Figure 1. The
classic characterization “three non-collinear points in the plane determine
a triangle” translates to “n affinely independent points in R

n−1 determine
a simplex” in this generalized setting. More precisely, a set of n points7

si ∈ R
n−1 such that for any j the vectors {si−sj}i 6=j are linearly independent,

determines a simplex S as their convex hull. Such points si are indexed
by i ∈ N and are called the vertices of S. We will also use the notation
S = [s1 . . . sn] to denote the (n− 1)× n vertex matrix with columns equal
to the vertex vectors.

Figure 1: Four low-dimensional simplices.

We will mainly be interested in equivalence classes of simplices, where two
simplices are equivalent (congruent) if their vertex matrices satisfy

S ∼ S ′ ⇔ ∃O, x : S ′ = OS + xuT (3)

6It is important to note that our geometric notion of simplices is different from the
topological notion of a simplex, which is only concerned with the structure of a simplex up
to homeomorphisms or the abstract/combinatorial notion of simplices, for which simplices
are simply a collection of subsets of elements with the collection being closed under the
subset relation.

7These points may also lie in an (n− 1)-dimensional subspace of a larger-dimensional
latent space.
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for some orthogonal matrix O, i.e. with OTO = I, and vector x ∈ R
n−1. In

other words, this describes equivalence with respect to rotations, reflections
and translations of the simplex which are all angle and distance-preserving8 .
We will denote an equivalence class of simplices by S = {S ′ : S ′ ∼ S} with S
a specific representative of the equivalence class, and refer to the equivalence
class S as a Simplex (upper-case) and to a particular representative S ∈ S
as a simplex (lower-case).
In practice, we can represent a simplex S by its so-called Gram matrix STS,
i.e. with entries equal to the inner-product between vertex vectors. This
Gram matrix is independent of rotations and reflections of the underlying
simplex, but it does depend on translations. Thus, in order to define a
unique Gram matrix for a Simplex S we fix a translation S → S(I−uuT/n).
Since the vector Su/n = c is the centroid of simplex S, the translated simplex
equals S−cuT and its centroid coincides with the origin of Rn−1. We will refer
to this simplex as the centered simplex. Having fixed a canonical translation,
we can now define the canonical Gram matrix of a Simplex as

M , (I − uuT/n)TSTS(I − uuT/n) for any S ∈ S,

which is a unique Gram matrix given the Simplex S; if we want to refer to
a specific Simplex, we will also write M(S) for the canonical Gram matrix.
Similarly, we define the canonical pseudoinverse Gram matrix of a Simplex as
the (Moore-Penrose) pseudoinverse of its canonical Gram matrix, and write
M †. These matrix representations of Simplices have the following property:

Proposition 2. The canonical (pseudoinverse) Gram matrix of a Simplex
satisfies properties (i)σ-(iii)σ. Conversely, any such matrix is the canonical
(pseudoinverse) Gram matrix of some Simplex.

Proof: Let S ′ be a representative simplex of a Simplex S and center this
simplex as S = S ′(I − uuT/n). By construction, the canonical Gram ma-
trix M = STS is now a symmetric, positive semidefinite matrix. Further-
more, the vertices of a simplex are affinely independent, which means that
for any j the set {si − sj}i 6=j is linearly independent and thus that the ma-
trix S(I − eju

T ) and also (I − eju
T )TM(I − eju

T ) must have rank (n − 1).
The Gram matrix will thus have rank(M) ≥ (n − 1). Finally, the product

8Rotations, reflections and translations are rigid transformations, which are isometries
of Euclidean space.
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Mu = (I − uuT/n)S
′TS ′(I − uuT/n)u = 0 shows that M has one zero eigen-

value with corresponding constant eigenvector. As a result, its pseudoinverse
M † satisfies the same properties.
For the converse, let M be any positive semidefinite matrix with a single
zero eigenvalue and corresponding constant eigenvector, which can be de-
composed as M =

∑n−1
k=1 µkzkz

T
k . From this decomposition, we find the

Gram form M = STS where (Si)k = (zk)i
√
µk. The rows of S are thus the

(scaled) non-constant eigenvectors of M such that Sx = 0 if and only if x
is a constant (possibly zero) vector. Let s1, s2, . . . , sn be the columns of the
matrix S; we show that for any j ∈ N the set of vectors {si − sj}i 6=j is
linearly independent. Assume that

∑

i 6=j xi(si − sj) = 0. Then by letting
xj = −∑

i 6=j xi, we have
∑n

i=1 xisi = 0 or equivalently Sx = 0. Then x must
be a multiple of u. However, by construction x is also orthogonal to u and
thus x = 0 must hold, which proves the linear independence of {si − sj}i 6=j .
The points {si}i∈N are thus vertices of a simplex. Moreover, since Su = 0
this simplex is centered and M is thus the canonical Gram matrix of the
Simplex S with representative S.
Finally, if a matrix M satisfies properties (i)σ-(iii)σ then so will its pseudoin-
verse M †. By the previous derivation, we then know that M † is the canonical
Gram matrix of a Simplex S and thus that M = (M †)† is the canonical pseu-
doinverse Gram matrix of S. �

From Propositions 1 and 2 it follows that every (pseudoinverse) Laplacian
can be seen as the canonical Gram matrix of a Simplex. Conversely however,
the canonical Gram matrix of a Simplex is only ‘somewhat like’ a Lapla-
cian matrix; more precisely it looks like a Laplacian with respect to the
spectral properties (i)σ-(iii)σ but can miss the sign property (ii) in general.
The canonical pseudoinverse Gram matrix of a Simplex is another candidate
Laplacian since it satisfies the spectral properties as well. In fact, we will
show that the sign property of this pseudoinverse Gram matrix is related to
angles in the Simplex.
A face of a simplex S is defined as the (sub)simplex determined by a subset
V ⊆ N of v = |V| vertices, and is denoted by SV . In Section 3.1 we show that
a face of a simplex is indeed again a simplex. Faces with v = (n−1) vertices
are called facets and since these facets lie in a (n−2)-dimensional hyperplane
of Rn−1, they determine pairwise angles. In particular, we define the dihedral
angle φij between facets S{i}c and S{j}c as the interior angle (with respect
to the simplex) between these facets. Since all representative simplices of
a Simplex are congruent, they have the same set of dihedral angles and we
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can define the dihedral angles of a Simplex as those of any representative
simplex. We find the following relation between the canonical pseudoinverse
matrix and dihedral angles:

Property 1. The canonical pseudoinverse Gram matrix relates to the dihe-
dral angles of a Simplex as

(M †)ij > 0 ⇔ φij > π/2 is obtuse.

(M †)ij = 0 ⇔ φij = π/2 is right.

(M †)ij < 0 ⇔ φij < π/2 is acute.

Proof: Let S be a centered representative simplex of Simplex S, and S† the
Moore-Penrose pseudoinverse of its vertex matrix. Thus S is an (n− 1)× n
vertex matrix with columns S = [s1 . . . sn] and S† an n × (n − 1) matrix
and we write S† = [s̃1 . . . s̃n]

T , i.e. S† has rows s̃Ti . By their pseudoinverse
relation, these matrices satisfy S†S = I−uuT/n. A facet S{i}c of S determines
a hyperplane

Hi =
{

Sx : ∀x ∈ R
n s.t. xi = 0 and uTx = 0

}

of vectors parallel with S{i}c . Indeed, any vector x with xi = 0 and xTu = 0
can be decomposed as x = α(y − y′) for some scalar α ∈ R and with vectors
y, y′ with yi = y′i = 0 and uTy = uTy′ = 1 such that Sy, Sy′ are points in
the facet S{i}c . The vector Sx = α(Sy − Sy′) is parallel to the line through
these points and thus parallel to the facet.
The rows of the pseudoinverse vertex matrix S† satisfy

s̃Ti (Sx) = eTi (S
†S)x = eTi x− eTi uu

Tx/n = 0

when xi = 0 and uTx = 0, in other words s̃i ⊥ Hi. Since s̃Ti si = 1− 1/n > 0
and the simplex S is centered, this shows that s̃i is the inner-normal vector
of the facet S{i}c . As illustrated in the figure below, the dihedral (inner)
angle φij between a pair of facets can be calculated from the angle between
these corresponding inner normal vectors as

cos(π − φij) =
s̃Ti s̃j

‖s̃i‖‖s̃j‖
=

(M †)ij
√

(M †)ii(M †)jj
,

where the matrix product pseudoinverse satisfies (S†S†T ) = (STS)† because
it is a product between transposed matrices S and ST , see [35]. This shows
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that the sign of (M †)ij determines the acute/right/obtuseness of dihedral
angle φij . �

We stress that for Property 1 to hold it is crucial that the canonical Gram
matrix is based on a centered representative simplex, and thus that the canon-
ical (pseudoinverse) Gram matrix has a zero eigenvalue corresponding to the
constant eigenvector. In other words, the convenience of Property 1 supports
this specific choice of canonical Gram matrix.

2.3. Simplices and Laplacians

Following Property 1, we know that if a Simplex is hyperacute, i.e. when
all of its dihedral angles are non-obtuse, then its canonical pseudoinverse
Gram matrix will have non-positive off-diagonals. In other words, as the
spectral properties (i)σ-(iii)σ are automatically satisfied for a canonical pseu-
doinverse Gram matrix of a Simplex and thus a hyperacute Simplex in par-
ticular, we find that all properties of a Laplacian matrix are satisfied. We
thus have:

Lemma 1. The canonical pseudoinverse Gram matrix of every hyperacute
Simplex is a Laplacian matrix. Conversely, any Laplacian matrix is the
canonical pseudoinverse Gram matrix of a hyperacute Simplex.

Proof: By Proposition 2, any canonical pseudoinverse Gram matrix satis-
fies properties (i)σ-(iii)σ. Moreover, for a hyperacute Simplex, the canonical
pseudoinverse Gram matrix satisfies the sign property (ii) as well, such that
this matrix is a Laplacian by Proposition 1.
Conversely, since the Laplacian matrix satisfies properties (i)σ-(iii)σ it is a
canonical pseudoinverse Gram matrix of a Simplex by Proposition 2. Fur-
thermore, the non-positive off-diagonal entries of the Laplacian imply by
Property 1 that this Simplex is hyperacute. �

Phrased differently, Lemma 1 describes a correspondence between Laplacian
matrices and hyperacute Simplices, which is best summarized as follows:
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Theorem 1 (Fiedler [36]). There is a bijection between

1. Laplacian matrices of n dimensions

2. hyperacute Simplices on n vertices

Proof: This follows from Lemma 1. �

The bijection described by Theorem 1 is constructive in a straightforward
way: for a given Simplex S, we can always construct the corresponding Lapla-
cian as the canonical pseudoinverse Gram matrix Q =

(

(I−uuT/n)STS(I−
uuT/n)

)†
for any representative simplex S. For a given Laplacian Q we can

construct the corresponding Simplex as the equivalence class of the simplex
with vertices (si)k = (zk)i

√

1/µk. Theorem 1 allows us to speak, unambigu-
ously, about the Laplacian of a Simplex and the Simplex of a Laplacian.
Theorem 1 was discovered by Miroslav Fiedler in [20] (see also [36], [16, Sec.
3.3]) and sets up a rich connection between graph theory, linear algebra and
(simplex) geometry, with many interesting implications described in [16, 22].
In the next section we introduce the effective resistance, which is a key con-
cept with valuable interpretations in graphs, Laplacians and simplices, as
well as providing another perspective from which to understand Theorem 1.

2.4. Effective resistances and Fiedler’s identity

The effective resistance was originally defined for resistive electrical cir-
cuits as the voltage measured between a pair of terminals i and j in the
circuit, when a unit current is forced between these terminals. In other
words, it captures the resistive effect of the whole network with respect to
these terminals into a single ‘effective’ resistance value (resistance = volt-
age/current) [26]. For planar graphs, the effective resistance can also be
obtained by applying a sequence of basic graph modifications which leave
the effective resistance unchanged, until a single link remains between the
terminals of choice (with resistance between these terminals equal to the ef-
fective resistance) [37, 38, 39]. From the perspective of random walks on the
graph, the effective resistance can be calculated (up to a constant factor) as
the average time it takes a random walker to go from one node to another,
and back, the so-called commute time between these nodes [19].
Due to Kirchhoff’s translation of the circuit equations in terms of the graph
Laplacian, the effective resistance ωij between a pair of nodes i and j in
a graph with Laplacian Q can be calculated, and thus defined, as follows
[10, 40, 9]:

ωij = (ei − ej)
TQ†(ei − ej), (4)
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with basis vectors (ei)k = 1 if k = i and zero otherwise. In other words, the
effective resistance can be found from a quadratic product with the pseu-
doinverse Laplacian. The n× n matrix Ω containing all effective resistances
as its entries (Ω)ij = ωij, is called the resistance matrix.
An important property of the effective resistance is that it provides another
‘bridge’ between Laplacian matrices and Simplices. If we introduce the Gram
representation Q† = STS of the pseudoinverse Laplacian in definition (4), we
find that

ωij = (ei − ej)
TQ†(ei − ej) = ‖S(ei − ej)‖2 = ‖si − sj‖2. (5)

In other words, for a graph G with Laplacian matrix Q and corresponding
Simplex S, the effective resistance between a pair of nodes in G equals the
squared distance between the corresponding pair of vertices in S; equiva-
lently, the vertices of S are an embedding of the nodes of G into R

n−1 where
the effective resistance matrix thus plays the role of the squared Euclidean
distance matrix of the simplex S. In fact, since distances between vertices are
invariant with respect to reflections, rotations and translations, and contain
all information necessary to reconstruct a Simplex, the resistance matrix Ω
characterizes the equivalence class as

S =
{

S ′ : ‖S ′(ei − ej)‖2 = ωij for all i, j
}

.

We will also write S(Ω) if we want to further specify the effective resistance
matrix and conversely for Ω(S).
The effective resistance allows the bijection between simplices, graphs and
Laplacian matrices to be summarized beautifully by the following identity:

Theorem 2 (Fiedler’s identity). For a weighted graph G with Laplacian
matrix Q and Simplex S with resistance matrix Ω, the following identity holds

−1

2

(

0 uT

u Ω

)

=

(

4R2 −2rT

−2r Q

)−1

(6)

where r = 1
2
Qζ + u

n
with ζ = diag(Q†) determines the circumcenter of S as

Sr, and with R =
√

1
4
ζTQζ + uT ζ

n
the circumradius of S.

Proof: We will conduct the proof in four steps.
Step 1 We start by showing that Ω is invertible: from definition (4) of
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effective resistances, the resistance matrix can be decomposed as

Ω = uζT + ζuT − 2Q† with ζ = diag(Q†). (7)

From this decomposition we find that xTΩx = −2xTQ†x < 0 for all vectors
xTu = 0, where the inequality follows from the spectral properties of the
pseudoinverse Laplacian. Furthermore, from the fact that the resistance
matrix has positive off-diagonal entries we know that uTΩu > 0. Combining
these inequalities shows that the resistance matrix has precisely one positive
eigenvalue and n− 1 negative eigenvalues (i.e. it is an elliptic matrix) and is
thus non-singular.
Step 2 Following the invertibility of the resistance matrix, we can solve the
equation Ωx = u for x: using decomposition (7) of the resistance matrix, we
find that

u = (uζT + ζuT − 2Q†)x

⇔ u = u(ζTx) +

(

I − uuT

n
+

uuT

n

)

ζ(uTx)− 2Q†x

⇔ u

(

1− ζTx− (uT ζ)(uTx)

n

)

=

(

I − uuT

n

)

ζ(uTx)− 2Q†x

Since the lefthandside of this equation is a multiple of u while the righthand-
side is perpendicular to u, it follows that both sides must be zero, and thus















ζTx = 1− (uT ζ)(uTx)

n

2Q†x =

(

I − uuT

n

)

ζ(uTx)

(8)

Multiplying both sides of the second expression in (8) by Q, we find

2

(

I − uuT

n

)

x = Qζ(uTx) ⇔ x = (uTx)(1
2
Qζ + u

n
). (9)

After multiplication by ζT (which is not the zero vector, see next step) and
introducing the value for ζTx from the first expression in (8), this yields

(uTx)

(

1

2
ζTQζ + 2

uT ζ

n

)

= 1. (10)
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Introducing r = 1
2
Qζ + u

n
into expression (9) for x, and 2R2 = 1

2
ζTQζ +2u

T ζ

n

into expression (10) for (uTx), this becomes

x = (uTx)r and (uTx)2R2 = 1.

If we assume that 0 < 2R2 (which is confirmed at the end of this step), these
expressions imply that x = r

2R2 and thus give the equation

Ωr = 2R2u, (11)

and the relation 2R2 = rTΩr. By inverting Ω, multiplying by uT and invoking
the unit-sum property uTr = 1 (as follows from Qu = 0), equation (11) yields
an alternative definition of R, r in terms of the resistance matrix:

2R2 =
1

uTΩ−1u
and r =

Ω−1u

uTΩ−1u
.

We now verify the bound for 2R2 = 1
2
ζTQζ +2u

T ζ

n
: by positive semidefinite-

ness of Q and rewriting uT ζ = tr(Q†) – which is a strictly positive trace by
the spectral properties of Q† and n ≥ 2 – we find that 2R2 > 0 as required.
Step 3 Next, we show that the matrix

(

0 uT
u Ω

)

is invertible: assuming oth-
erwise, there must exist a scalar α and vector y, not both zero, such that

(

0 uT

u Ω

)(

−α
y

)

=

(

0
0

)

⇔
{

uTy = 0

Ωy = αu,
(12)

First, assuming y 6= 0 then by non-singularity of Ω and the second equation
Ωy = αu in (12), we know that α 6= 0 must hold as well. But from equation
(11) we then find that y = αΩ−1u = αr/(2R2) which means that uTy =
α(uTr)/(2R2) 6= 0 since uT r = 1, α 6= 0 and 0 < 2R2 < ∞. This is in
contradiction with uTy = 0 in equation (12), hence y 6= 0 is not possible.
But if y = 0 then by equation (12) also α = 0 must hold, in contradiction
with the assumption that y and α are not both zero. It thus follows that
(

0 uT
u Ω

)

is invertible.
Step 4 Finally, we can verify the proposed matrix inverse (6): combining
expression (11) as −2R2u+Ωr = 0 and the unit-sum property uT r = 1 into
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a single matrix expression, we find
{

(−2R2).0 + uTr = 1

−2R2u+ Ωr = 0
⇔

(

0 uT

u Ω

)(

−2R2

r

)

=

(

1
0

)

⇔
(

0 uT

u Ω

)−1(
1
0

)

=

(

−2R2

r

)

⇔
(

0 uT

u Ω

)−1

=

(

−2R2 ∗
r ∗

)

⇔
(

0 uT

u Ω

)−1

=

(

−2R2 rT

r A

)

where the last step follows by symmetry, and where A is some symmetric ma-
trix that is yet to be determined. From the matrix product

(

0 uT
u Ω

) (

−2R2 rT

r A

)

=
I we then find that A must satisfy

urT + ΩA = I and Au = 0. (13)

Left-multiplying the first equation by Q and making use of Qu = Au = 0 and
(7) retrieves the Laplacian matrix A = −1

2
Q. Since the inverse is uniquely

determined this verifies Fiedler’s identity (6). To conclude, the interpreta-
tion of R and Sr as the respective circumradius and circumcenter of S are
proven by Fiedler [16, Cor. 1.4.13], and in [41].
We remark that while deriving Theorem 2 as above requires some work, it is
much easier to verify once the expressions for r and R are known; multiply-
ing both sides of Fiedler’s identity (6) retrieves the identity matrix and thus
constitutes a more direct but less transparent proof. �

While G,Q,S,Ω are mutually interchangeable, it is somehow natural to think
of G and S as the combinatorial and geometric objects of interest, with Q
and Ω as convenient and practical algebraic representations. From this per-
spective, Fiedler’s identity sets up the graph-Simplex correspondence via a
direct inverse relation between their respective representations. Importantly,
this direct algebraic identity also gives a way to characterize how certain
operations on Laplacian matrices translate to operations on the resistance
matrix and vice versa. This fact will be key in our discussion of the Schur
complement in Section 3 and plays a major role in the final structure under-
lying the proof in Section 4.
Apart from providing a concise summary of the equivalences, Fiedler’s iden-
tity brings up a number of additional interesting results. It show how the
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circumradius and circumcenter of S are expressed in terms of the (pseudoin-
verse) Laplacian Q, and introduces the matrix

(

0 uT

u Ω

)

which is known as the
Cayley-Menger matrix and is related to the volume of S [16]. We further-
more believe that the vector r and scalar R are important algebraic objects
associated to a graph, worthy of a deeper study, e.g. as initiated in [41].
Remark: While stated in terms of Laplacian and resistance matrices, Fiedler’s
identity also holds for non-hyperacute Simplices since the proof of Theorem
2 does not rely on the sign of Laplacian entries or the dihedral angles of a
Simplex. For a non-hyperacute Simplex S, this yields the matrix identity

−1

2

(

0 uT

u D(S)

)

=

(

4R2 −2rT

−2r M †(S)

)−1

(14)

between the squared Euclidean distance matrix D(S) and canonical pseu-
doinverse Gram matrixM †(S) of S. More generally, for any invertible matrix
A with uTA−1u 6= 0 we find that the matrix

(

0 uT

u A

)

is invertible; consequently,
certain results and techniques that follow from Fiedler’s identity will also be
applicable to the analysis of A. In particular, we believe that this might be
relevant to the theory of magnitude of metric spaces [42], where for matrices
of the form (At)ij = exp(−d(i, j)t) for some t > 0 and metric d, the magni-
tude is defined as |At| := uTA−1

t u if this inverse exists.
Remark: The matrix inverse of resistance matrices was rediscovered later,
independent of Fiedler’s work, by Graham and Lovász [43] for tree graphs
and by Bapat [40] for general weighted graphs. They describe the elegant

relation Ω−1 = −1
2
Q+ rrT

2R2 which follows from expression (13) in the proof of
Theorem 2 by left-multiplication with Ω−1 and from (11), or more directly
from Fiedler’s identity by taking the Schur complement introduced in Section
3.2.

3. Maps between Laplacians, maps between Simplices

In the previous section we defined graphs, Laplacians, resistance matrices
and simplices and the relations between these different objects. Here, we will
study instead the relation between instances of the same type of object, e.g.
between pairs of Laplacian matrices and pairs of Simplices. Starting from the
‘face relation’ between simplices, we find a corresponding ‘submatrix’ rela-
tion for Laplacian matrices (the Schur complement) which retains important
properties of the original Laplacian.
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3.1. Faces of a Simplex
We recall that the face of a simplex S is the convex hull of a subset V

of the vertices of S, and is denoted by SV . Similarly, we define the face of a
Simplex S/Vc as the equivalence class

S/Vc , {S ′ : S ′ ∼ SV} for any S ∈ S (15)

with the equivalence ∼ as defined in (3). We will also call S/Vc the V-face
of S. The choice for this notation will be explained later. An important
property of faces is the following:

Property 2. The face of a Simplex is again a Simplex.

Proof: Let S = [s1 . . . sn] be a representative simplex of S. Since S is a
simplex, the vertices are affinely independent, i.e. {si − sj}i 6=j is a linearly
independent set for all j, and rank(S) = n− 1. Removing any subset Vc of
vectors from this set of vector differences yields the set {si − sj}i∈V\j whose
rank is reduced by at most (n− v) (by properties of the rank), with v = |V|.
As a consequence, this set has rank ≥ (v−1) where equality must hold since
the rank cannot exceed the cardinality of the set. Since this holds for any j,
SV is again a simplex and the equivalence class {S ′ : S ′ ∼ SV} is a Simplex.
�

This property is a fundamental characteristic of simplices; in fact, ‘closure
under taking subsets’ is part of the axiomatic definition of a simplex in the
study of abstract simplices and simplicial complexes. An example of faces of
a Simplex is shown in Figure 2.
Definition (15) for faces follows from the perspective of simplices as being
specified by a given set of vertices. An alternative definition of the face of
a Simplex follows from specifying the squared Euclidean distance matrix D
between the vertices instead. A face determined by a subset V of the vertices
then corresponds to a submatrix of the distance matrix

D(S/Vc) = (D(S))VV , (16)

and we have S/Vc = S((D)VV). This alternative description based on taking
submatrices of the distance matrix clearly highlights the following property
of the face relation:

Property 3 (composition). The face relation between Simplices can be
composed: for any W ⊆ V ⊆ N , the W-face of the V-face of a Simplex
S equals the W-face of S; in other words

S/(N\W) = [S/(N\V)]/(V\W).
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Proof: Let {si}i∈N be the vertices of a representative simplex of S. Fol-
lowing definition (15) of faces of a Simplex, the W-face of the V-face of S is
represented by a simplex with vertices {si}i∈W⊆V . This is just the simplex
with vertices {si}i∈W which by definition (15) is a representative simplex of
the W-face of S. Since every representative simplex corresponds to a unique
Simplex (equivalence classes determine a partition), both Simplex faces are
equal as required. �

A property of this type is also called a quotient property which supports our
notation of faces as a ‘quotient’ over a subset of the vertices.
We remark that in terms of the distance matrix of a simplex, the composition
property of faces is reflected in the submatrix relation

(D(S))WW = [(D(S))VV ]WW . (17)

3.2. The Schur complement

In this section, we show how the two definitions of faces, via a subset of
the vertices or via a submatrix of the distance matrix, lead to complementary
expressions for the so-called Schur complement of a (Laplacian) matrix. From
definition (15), a first expression for the canonical Gram matrix of a face
follows:

Proposition 3. The canonical Gram matrix of a face of a Simplex S is equal
to

M(S/Vc) = (I − uuT/v)(M(S))VV(I − uuT/v). (18)

Proof: Let S be the vertex matrix of a representative of the Simplex S.
Restricting to the columns corresponding to the vertices in the face, we get
the vertex matrix (S)∗V of S/Vc which has all rows of S (denoted by the
subscript ∗) and only those columns in V. The canonical Gram matrix (18)
of the face is then found by centering this vertex matrix as (S)∗V(I−uuT/v)
and using the fact that (S)T∗V(S)∗V = (M(S))VV . �

As a consequence of (18), we find that quadratic products with the canonical
Gram matrix of a face correspond to quadratic products with the canonical
Gram matrix of the Simplex as

xTM(S/Vc)x = xTM(S)x (19)

for all x ∈ R
n with xTu = 0 and xi = 0 if i /∈ V. This expression recovers

the fact expressed by (16) that the distances between vertices of a face are
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equal to the distances between the corresponding vertices of the Simplex –
which is obtained by choosing x = (ei − ej) in (19) to yield xTM(S)x =
‖si − sj‖2. Proposition 3 furthermore says that the canonical pseudoinverse
Gram matrix of a Simplex face equals

M †(S/Vc) =
[(

I − uuT/v
)

(M(S))VV

(

I − uuT/v
)]†

.

In terms of algebraic operations, this corresponds to first taking a submatrix
(∗VV) of the canonical Gram matrix followed by taking the pseudoinverse
(∗†). Performing these operations in reverse order will give rise to a second
expression for the canonical pseudoinverse Gram matrix.

When combining matrix inverses and submatrices, the concept of Schur com-
plements is relevant. For an invertible matrix A =

(

AVV AVVc

AVcV AVcVc

)

, the subma-
trix of its inverse equals [44, Thm. 1.2]

(A−1)VV =
(

AVV −AVVc(AVcVc)−1AVcV

)−1
, (A/Vc)−1, (20)

where the introduced matrix9 A/Vc is called the Schur complement of A
with respect to (the index subset) V. The Schur complement is defined more
generally for any matrix A and subset V such that AVcVc is invertible. In
the case of canonical pseudoinverse Gram matrices (and thus Laplacians),
the spectral properties guarantee that (M †)VcVc is invertible10 and thus that
the Schur complement M †/Vc, exist for any (nonempty) subset V ⊂ N .
The Schur complement is a widely studied matrix operation in linear algebra
and our discussion here will be limited to a number of properties which are
relevant to our problem. For a general overview of the history and algebraic
properties of the Schur complement, we refer to the excellent survey [44].
We now follow a second approach to identify the canonical pseudoinverse
Gram matrix of a Simplex face. Combining the submatrix formula (16) for
the face distance matrix and Fiedler’s identity for Simplices (14), we find

−1

2

(

0 uT

u D(S/Vc)

)

(16)
= −1

2

[(

0 uT

u D(S)

)]

V+V+

(14)
=

[

(

4R2 −2rT

−2r M †(S)

)−1
]

V+V+

9This Schur complement A/Vc is sometimes denoted by A/AVcVc instead.
10Assume for contradiction that (M †)VcVc is singular, then (M †)VcVcx = 0 holds for

some vector x. But this implies that M † ( 0
x
) = 0 which contradicts the spectral properties

(ii)σ-(iii)σ of M †.
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where V+ is the set of indices V together with the first row/column index.
Using the Schur complement and invoking Fiedler’s identity for the Simplex
face then yields the following result:

Proposition 4. The canonical pseudoinverse Gram matrix of a face of a
Simplex is equal to the Schur complement of the canonical pseudoinverse
Gram matrix of the Simplex; in other words:

M †(S/Vc) = M †(S)/Vc (21)

Proof: Starting from Fiedler’s identity for a Simplex face we can derive

(

4R̃2 −2r̃T

−2r̃ M †(S/Vc)

)−1
(14)
= −1

2

(

0 uT

u D(S/Vc)

)

(16)
=

[

−1

2

(

0 uT

u D(S)

)]

V+V+

(14)
=

[

(

4R2 −2rT

−2r M †(S)

)−1
]

V+V+

where R̃, r̃ and R, r are the circumradius and circumcenter coordinates of
Simplex S/Vc and S, respectively11 (as in Theorem 2). Next, invoking the
Schur complement definition (20) for the V+ submatrix of the inverse, we
find

(

4R̃2 −2r̃T

−2r̃ M †(S/Vc)

)−1

=

[(

4R2 −2rTV
−2rV (M †(S))VV

)

−
(

−2rTVc

(M †(S))VVc

)

[(M †(S))VcVc]−1
(

−2rVc (M †(S))VcV

)

]−1

which by inverting both sides and considering the V submatrix yields

M †(S/Vc) = (M †(S))VV − (M †(S))VVc[(M †(S))VcVc ]−1(M †(S))VcV

= M †(S)/Vc

11The specific values of R̃, R, r̃, r are not important in this proof, see [41] for further
details on how they are related.
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as required. �

As a result of Proposition 4 and expression (18) we moreover have the follow-
ing (known) alternative expression for the Schur complement of the canonical
pseudoinverse Gram matrix:

M †(S)/Vc = M †(S/Vc) =
[

(I − uuT/v)(M(S))VV(I − uuT/v)
]†
. (22)

This expression is complementary to definition (20) as some important prop-
erties of the Schur complement are more apparent in the former expression
than the latter.
Next, from the relation between the Schur complement and the Simplex face
relation we find the following composition property:

Property 4 (composition). For any canonical pseudoinverse Gram ma-
trix M † and index subsets W ⊆ V ⊆ N , the Schur complement of M †/Vc
with respect to W is equal to the Schur complement of M † with respect to W;
in other words, the Schur complement composes as

M †/(N\W) = [M †/(N\V)]/(V\W).

Proof: This composition property for the Schur complement of canonical
pseudoinverse Gram matrices follows from the fact that these Schur comple-
ments correspond to faces of the Simplex (Proposition 4) together with the
composition property of faces of a Simplex (Property 3). Repeated applica-
tion of these two properties yields:

(M †(S))/(N\W)
Propos.4

= M †(S/(N\W))

Proper.3
= M †

(

[S/(N\V)]/(V\W)
)

Propos.4
=

[

M †(S/(N\V))
]

/(V\W)

Propos.4
= [(M †(S))/(N\V)]/(V\W)

as required. �

Property 4 holds in general for the Schur complement and was discovered
by Emilie Haynesworth in [23], where it was coined the quotient property
of the Schur complement and motivated the quotient notation of the Schur
complement. One consequence of the composition property is that it allows
the Schur complement M †/Vc with respect to any set V to be decomposed as
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a repeated application of the Schur complement with respect to complements
of single indices as

M †/Vc = M †/{v1}/ . . . /{vk} (23)

with the indices in Vc = {v1, . . . , vk} in any order.

3.2.1. Closure properties

We now return to the particular case of hyperacute Simplices where the
canonical pseudoinverse Gram matrix is Laplacian. In the context of graph
Laplacians, the Schur complement

Q/Vc , QVV −QVVc(QVcVc)−1QVcV (24)

is also known as Kron reduction, after the foundational work of Gabriel Kron
in the study of networks and their reductions [45]. For an extensive discussion
on Schur complements (Kron reductions) as a tool in electrical circuit and
graph theory, we refer to the survey [24].
Decomposing the Schur complement of a Laplacian matrix incrementally as
in expression (23) leads to the following important closure result:

Property 5 (closure). The Schur complement of a Laplacian matrix is
again a Laplacian matrix.

Proof: By Property 4 and consequently expression (23) every Schur comple-
ment can be written as a repeated Schur complement with respect to all but
a single index v ∈ N . We will show that for any Laplacian matrix Q and any
index v, the Schur complement Q/{v} is again Laplacian. We permute the
rows and column ofQ such that v is in the last position, which gives the block-

structure: Q =
(

Q′+diag(q) −q

−qT dv

)

, where Q′ is the Laplacian of the (n−1)-node

graph without node v, where (q)i = wvi if (i, v) ∈ L and with dv the degree
of v. The Schur complement equals Q/{v} = Q′ + (diag(q)− qqT/dv), where
the second term (between brackets) has positive diagonal and non-positive
off-diagonal showing that Q/{v} has a positive diagonal and non-positive off-
diagonal. Furthermore, the matrix is symmetric by construction, and we find
that Q/{v}u = Q′u + diag(q)u − qqTu/dv = 0 since Q′u = 0 and qTu = dv.
Finally, assume the Laplacian Q/{v} were reducible, then there exists a bi-
partition N\{v} = W1 ∪W2 such that (Q/{v})ij = 0 for all i ∈ W1, j ∈ W2.
However, this would imply that (Q′)ij = 0, i.e. W1 andW2 are not connected
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in Q′, as well as qiqj = 0, i.e. the node v can be connected to, say W1, in Q
but not to W2 at the same time. In other words, this would imply that the
partitions W1∪{v} and W2 are not connected in Q which is in contradiction
with the fact that Q is Laplacian and thus irreducible. Hence, also Q/{v} is
irreducible and thus Laplacian. �

Interestingly, the closure property of Laplacian matrices in combination with
Fiedler’s identity (6) yields a surprising closure result for hyperacute Sim-
plices. From Property 2 we know that the faces of a hyperacute Simplex are
Simplices, but the stronger result that these faces are hyperacute holds as
well:

Property 6 (closure, Fiedler [16, Thm. 3.3.2]). The face of a hypera-
cute Simplex is again a hyperacute Simplex.

Proof: From Proposition 4 and Property 5 we have that the canonical pseu-
doinverse Gram matrix of any face S/Vc of a hyperacute Simplex is a Lapla-
cian matrix. Consequently, the face is hyperacute as well by the bijection
between Laplacians and hyperacute Simplices, Theorem 1. �

Property 6 is surprising since it implies that the n(n−1)/2 angle constraints
between the dihedral angles of a Simplex somehow also influence the dihedral
angles between all faces of this Simplex. The bijection Theorem 1 combined
with the fact that the face relation of a Simplex translates to a Schur com-
plement relation, which maps Laplacians to Laplacians, shows how exactly
this (top-level) Simplex constraint on the angles is inherited by the (lower-
level) faces. The interrelated ‘nested structures’ of graphs and Simplices is
illustrated by an example in Figure 2.

Figure 2: An example of a graph-Simplex pair and some graphs corresponding to Schur
complements of the Laplacian, and faces of the Simplex. By Proposition 4 these sub-
objects are again in correspondence. The numbers on the graph indicate the link weights,
with unit weights omitted.
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4. A geometric proof of the resistance distance

Our discussion of the relation between Laplacians and hyperacute sim-
plices now enables a geometric and intuitive proof of the fact that the effective
resistance is a metric function; we recall that a function d : N ×N → R+ is
metric if it satisfies the following criteria:

(i)m d(x, y) = 0 if and only if x = y

(ii)m d(x, y) = d(y, x) for all x, y

(iii)m d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z

for any three elements x, y, z ∈ N in the set. Properties (i)m-(ii)m are usually
easily confirmed, while property (iii)m, the triangle inequality, is typically
harder to verify for a candidate metric function d.
In our case, we are interested to show that the effective resistance d(i, j) = ωij
is a distance function. To start, we have already shown the following related
result:

Lemma 2. The square root of the effective resistance
√
ω : (i, j) 7→ √

ωij
is a metric function. Moreover,

√
ω is a Euclidean metric which embeds the

elements in N as the vertices of a hyperacute Simplex.

Proof: This Lemma follows from expression (5) for the effective resistance
and Lemma 1. �

From the fact that
√
ω is metric, it follows by the square relation that the

effective resistance ω satisfies properties (i)m-(ii)m as well. It thus remains
to verify the triangle inequality on all triples (ωij, ωjk, ωik). By Lemma 2,
every such triple corresponds to the squared edge-lengths of a triangular face
of the hyperacute Simplex corresponding to

√
ω. By the closure property of

hyperacute simplices, every such triangular face is a hyperacute triangle and
we have that every triple (ωij, ωjk, ωik) corresponds to the squared edge-lengths
of a hyperacute triangle. Finally, by basic trigonometry (for instance, the
cosine rule) we have that a triangle with squared edge-lengths (ωij, ωjk, ωik)
and a non-obtuse angle between the edges with lengths ωij and ωjk satisfies

ωij + ωjk ≥ ωik.

Since this holds for any of the three angles, and for any triple of effective
resistances, the triangle inequality is satisfied in general and we have:
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Theorem 3 ([17] and [7]). The effective resistance ω : (i, j) 7→ ωij is a
metric function.

Proof: We summarize the derivation above; by Lemma 2 the effective re-
sistances are squared edge lengths of a hyperacute Simplex. By the closure
property of hyperacute Simplices, any triangular face is hyperacute as well
such that its squared edge lengths, which are the effective resistances, satisfy
the triangle inequality. �

The geometric proof described above highlights the fact that the effective re-
sistance being metric is actually just a manifestation of a much richer struc-
ture. In a certain sense, Lemma 2 which states that the (square root) effective
resistance determines a hyperacute Simplex better captures this structure.
One could in fact write down the ‘non-obtuse dihedral angle’ constraint for
any v-dimensional face in terms of the effective resistances, which would yield
a set of (non-trivial) inequalities that the effective resistances must satisfy;
the triangle inequality is then just one example of such inequalities, obtained
from the non-obtuseness of triangular faces. This perspective is also explored
by Klein in [46]. Another important remark is that it is not sufficient for a
simplex to just have hyperacute triangular faces in order for its squared edge
lengths to determine an ‘effective resistance metric’, but that the hyperacute
inequalities need to be satisfied for all faces simultaneously; the following
example illustrates this fact.
Example: below we give an example of a non-hyperacute Simplex S with
hyperacute triangular facets, whose squared edge-lengths thus determine a
metric. The simplex S and its faces have the following canonical pseudoin-
verse Gram matrices:

M †(S) = 18









9 1 −5 −5
1 9 −5 −5
−5 −5 15 −5
−5 −5 −5 15









with

M †(S/{1}) = M †(S/{2}) = 20





8 −4 −4
−4 11 −7
−4 −7 11





M †(S/{3}) = M †(S/{4}) = 12





11 −1 −10
−1 11 −10
−10 −10 20
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Since (M †(S))12 > 0 the angle between S{1}c and S{2}c is obtuse and hence
the Simplex S is not hyperacute. However, all triangular faces have pseudoin-
verse Gram matrices with [M †(S/{i})]ab < 0 for a 6= b which are Laplacian
and thus correspond to hyperacute triangles.

Conclusion: The example above is a good reflection of the key message
of this article: the effective resistance is more than just a distance; it reflects
the geometric structure of graphs as a hyperacute simplex whose proper-
ties translate to properties of the Laplacian via Fiedler’s algebraic identity.
Moreover, the key role of the Schur complement, which maps Laplacians to
Laplacians and the corresponding hyperacute simplices to hyperacute sim-
plices is clearly highlighted in our setup for the geometric proof of the resis-
tance distance.

Outlook: While not further developed in this document, our description
of the relation between graphs via the Schur complement and Simplices via
the face relation, which are both closed and composable, provides the nec-
essary setup to define a category of graphs G and a category of hyperacute
Simplices S (see e.g. [47] for an introduction to category theory). The ob-
jects in G are finite connected graphs with finite, non-negative link weights
and the morphisms between graphs follow from the Schur complement. The
objects in S are finite, non-degenerate hyperacute Simplices and the mor-
phisms between Simplices correspond to the face relation. In this setup, the
bijection of Theorem 1 between the objects of both categories is in fact a
functorial relation between categories G and S due to Proposition 4 which
implies that the diagram below commutes:

G S

G′ S ′

f

φ ψ

g

with G,G′ ∈ G and S,S ′ ∈ S.

In other words, there is not only a bijection between graphs and Simplices,
but this bijection also respects the interconnection structure (i.e. morphisms)
between the respective objects themselves. Consequently, a stronger version
of Theorem 1 would say that the categories G and S are equivalent, which is a
more complete characterization of the relation between graphs and simplices
discovered by Fiedler. As an outlook, we might hope that this abstract cat-
egorical perspective provides a new stepping stone for further developments

27



in the theory of graphs, Laplacians, effective resistances and hyperacute sim-
plices. In particular, we believe that the above described structure ‘sits
inside’ the larger categorical framework for passive linear circuits described
in [48] by Baez and Fong and that a specialization of their results to our
setting and, similarly, a generalization of our results to their broader setting
would be an interesting way forward.
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[18] F. Göbel, A. Jagers, Random walks on graphs, Stochastic Processes and
their Applications 2 (4) (1974) 311–336.

[19] A. K. Chandra, P. Raghavan, W. L. Ruzzo, R. Smolensky, P. Tiwari,
The electrical resistance of a graph captures its commute and cover
times, Computational Complexity 6 (4) (1996) 312–340.

29



[20] M. Fiedler, Aggregation in graphs, in: Combinatorics (Proc. Fifth Hun-
garian Colloq., Keszthely, 1976), Vol. I, Vol. 18 of Colloq. Math. Soc.
János Bolyai, North-Holland, Amsterdam-New York, 1978, pp. 315–330.

[21] G. E. Sharpe, D. J. H. Moore, Transfer impedances and the no-
amplification property of resistive networks, Proceedings of the IEEE
56 (6) (1968) 1116–1117.

[22] K. Devriendt, P. Van Mieghem, The simplex geometry of graphs, Jour-
nal of Complex Networks 7 (4) (2019) 469–490.

[23] D. E. Crabtree, E. V. Haynsworth, An identity for the Schur complement
of a matrix, Proceedings of the American Mathematical Society 22 (2)
(1969) 364–366.

[24] F. Dörfler, F. Bullo, Kron reduction of graphs with applications to elec-
trical networks, IEEE Transactions on Circuits and Systems I: Regular
Papers 60 (1) (2013) 150–163.

[25] P. Slepian, Mathematical Foundations of Network Analysis, Springer
Berlin Heidelberg, 1968.

[26] N. Biggs, Algebraic potential theory on graphs, Bulletin of the London
Mathematical Society 29 (6) (1997) 641–682.

[27] R. B. Bapat, Graphs and Matrices, Springer London, 2010.
doi:10.1007/978-1-84882-981-7.

[28] F. Dörfler, J. W. Simpson-Porco, F. Bullo, Electrical networks and alge-
braic graph theory: Models, properties, and applications, Proceedings
of the IEEE 106 (5) (2018) 977–1005.

[29] L. Sun, W. Wang, J. Zhou, C. Bu, Some results on resistance distances
and resistance matrices, Linear and Multilinear Algebra 63 (3) (2015)
523–533.

[30] R. Merris, Laplacian matrices of graphs: a survey, Linear Algebra and
its Applications 197-198 (1994) 143 – 176.

[31] B. Mohar, Y. Alavi, G. Chartrand, O. Oellermann, A. Schwenk, The
Laplacian spectrum of graphs, Graph Theory, Combinatorics and Ap-
plications 2 (1991) 871–898.

30

https://doi.org/10.1007/978-1-84882-981-7


[32] F. Fouss, M. Saerens, M. Shimbo, Algorithms and Models for Net-
work Data and Link Analysis, Cambridge University Press, 2016.
doi:10.1017/CBO9781316418321.

[33] L.-H. Lim, Hodge Laplacians on graphs, SIAM Review 62 (3) (2020)
685–715.

[34] J. Hansen, R. Ghrist, Toward a spectral theory of cellular sheaves, Jour-
nal of Applied and Computational Topology 3 (2019) 315–358.

[35] T. N. E. Greville, Note on the generalized inverse of a matrix product,
SIAM Review 8 (4) (1966) 518–4.

[36] M. Fiedler, Some characterizations of symmetric inverse M-matrices,
Linear Algebra and its Applications 275-276 (1998) 179 – 187, proceed-
ings of the Sixth Conference of the International Linear Algebra Society.

[37] Y. C. de Verdière, I. Gitler, D. Vertigan, Reseaux électriques planaires
II, Comentarii Mathematica Helvetici 71 (1996).

[38] E. Curtis, D. Ingerman, J. Morrow, Circular planar graphs and resistor
networks, Linear Algebra and its Applications 283 (1) (1998) 115 – 150.

[39] H.-C. Chang, Tightening curves and graphs on surfaces, Ph.D. thesis,
University of Illinois at Urbana-Champaign (2018).

[40] R. Bapat, Resistance matrix of a weighted graph, MATCH Commun.
Math. Comput. Chem. 50 (02 2004).

[41] K. Devriendt, S. Martin-Gutierrez, R. Lambiotte, Variance and co-
variance of distributions on graphs, arXiv e-prints (Aug. 2020).
arXiv:2008.09155.

[42] T. Leinster, The magnitude of metric spaces, Documenta Mathematica
18 (2013) 857–905.

[43] R. Graham, L. Lovász, Distance matrix polynomials of trees, Advances
in Mathematics 29 (1) (1978) 60–88.

[44] F. Zhang (Ed.), The Schur Complement and Its Applications, Springer-
Verlag, 2005.

31

https://doi.org/10.1017/CBO9781316418321
http://arxiv.org/abs/2008.09155


[45] G. Kron, Tensor Analysis of Networks, J. Wiley & Sons, New York,
1939.

[46] D. J. Klein, Graph geometry, graph metrics and Wiener, MATCH Com-
mun. Math. Comput. Chem. 35 (7) (1997).

[47] T. Leinster, Basic Category Theory, Cambridge University Press, 2014.

[48] J. C. Baez, B. Fong, A compositional framework for passive linear net-
works, Theory and Applications of Categories 33 (38) (2018) 1158–1222.

32


	1 Introduction
	2 Graphs, Laplacians and Simplices
	2.1 Laplacian matrices
	2.2 Simplices
	2.3 Simplices and Laplacians
	2.4 Effective resistances and Fiedler's identity

	3 Maps between Laplacians, maps between Simplices
	3.1 Faces of a Simplex
	3.2 The Schur complement
	3.2.1 Closure properties


	4 A geometric proof of the resistance distance

