
In Proc. 2004 IEEE Int’l Conf. on Robotics and Automation (ICRA 2004)

Effective Sampling and Distance Metrics for 3D Rigid Body Path Planning

James J. Kuffner

The Robotics Institute Digital Human Research Center
Carnegie Mellon University National Institute of Advanced

5000 Forbes Ave., Pittsburgh, PA 15213, USA Science and Technology (AIST)
email: kuffner@cs.cmu.edu 2-41-6 Aomi, Koto-ku, Tokyo, Japan 135-0064

Abstract— Important implementation issues in rigid body path plan-
ning are often overlooked. In particular, sampling-based motion planning
algorithms typically require a distance metric defined on the configuration
space, a sampling function, and a method for interpolating sampled points.
The configuration space of a 3D rigid body is identified with the Lie group
SE(3). Defining proper metrics, sampling, and interpolation techniques
for SE(3) is not obvious, and can become a hidden source of failure for
many planning algorithm implementations. This paper examines some
of these issues and presents techniques which have been found to be
effective experimentally for Rigid Body path planning.

I. INTRODUCTION

The configuration space (C -space) of a 3D rigid body is usually
defined as the set of all possible positions and orientations of a
body-fixed frame relative to a stationary world frame. This identifies
the C -space with the Lie group SE(3), the special Euclidean group
in three-dimensions. Geometric path planning problems defined on
SE(3) arise in a number of important application domains including
mechanical assembly planning and part removability analysis, control
of free-flying robots and UAVs, satellite motion, and biochemical
simulations of molecular protein docking. The topology of the space
induced by the rotation component of SE(3) has important implica-
tions for rigid body path planning algorithms intended to efficiently
represent and search this space. Unless implemented carefully, these
representational details can become a hidden source of failure.

This paper investigates several important implementation issues
in rigid body path planning that are often overlooked. In particular,
sampling-based motion planning algorithms typically require: 1) a
distance metric defined on the configuration space, 2) a function to
generate a sample in the space, and 3) a method for interpolating
sampled points. Defining proper metrics, sampling methods, and
interpolation techniques for SE(3) is not immediately obvious.

This paper explores some of these implementation issues and
presents techniques which have been found to be effective exper-
imentally for rigid body path planning. In particular, methods for
generating a uniform distribution of randomly sampled rotations
for both Euler angle and quaternion parameterizations are given in
Section IV. Examples of distance metrics on SE(3) and geodesic
interpolation functions for rotations are presented in Section V and
Section VI respectively. Section VII shows experimental results
aimed at evaluating the computational performance and tradeoffs
for different implementations, and Section VIII concludes with a
summary discussion.

II. BACKGROUND

The space of configurations of a 3D rigid body is usually defined as
the set of all possible positions and orientations of a body-fixed frame
relative to a stationary world frame. This identifies the C -space with
the Lie group SE(3), as it has the structure of both a differentiable
manifold and an algebraic group (under matrix multiplication).

Because of its importance, the characteristics of SE(3) and its
structural properties has been a topic of research across a number of

(a) Naı̈ve sampling (b) Uniform sampling

Fig. 1. Naı̈ve sampling (a) and uniform sampling (b) of SO(3) using euler
angles. There are a total of 5000 rotation samples, with each sample visualized
as an oriented arrow on the surface of the unit sphere.

different fields, including physics, mathematics, computer graphics,
engineering and robotics. One of the fundamental results of rigid
body mechanics which was proved by Chasles in the early 19th
century is that any rigid body displacement can be realized by a
rotation about an axis combined with a translation parallel to that
axis [1]. Recall that a particular displacement can be understood as
an element of SE(3), while a motion is a curve on SE(3). If the
rotation from Chasles’s theorem is performed at constant angular and
translational velocity, the motions are commonly referred to as screw
motions, and have been used as the basis for defining a number of
metrics on SE(3) [2]. A brief discussion of the geometry of SE(3)
can be found in the appendix of [3]. In the context of path planning
in SE(3), there has been some previous work aimed at evaluating
implementation issues. Different distance metrics for planning are
evaluated and discussed in [4], with further details in [5]. This work
tackles the issue of relative weighting of translation and rotation
components of SE(3) (see Section V), though only in the context
of an euler angle representation of rotation.

Other related research efforts have focused mainly on developing
kinematic metric functions: distance and Riemannian metrics. It has
been proven that there exist no bi-invariant Riemannian metrics on
SE(3) [6], and that there are no differentiable bi-invariant distance
metrics on SE(3) [7]. Lin and Burdick provide an excellent summary
of the details of these results in the context of frame-invariant
kinematic metric functions in [8].

III. REPRESENTING ROTATIONS IN THREE DIMENSIONS

There are a variety of conventions for representing and parameter-
izing rotations in three dimensions. In this section, three of the more
popular representations are discussed: rotation matrices, euler angles,
and unit quaternions. A number of important characteristics and
tradeoffs exist in terms of performance, storage efficiency, numerical

1

stability, and ease of use. Several of these tradeoffs are summarized
in the paragraphs that follow.

A. Rotation Matrices

Defining SE(3) as the set of all possible positions and orientations
of a body-fixed frame relative to a stationary world frame naturally
leads to a matrix representation. As a homogeneous matrix, this is
usually written as:

M =
[

R X
0 1

]

Considering just the rotation subcomponent R, valid rotations are
comprised of all 3x3 orthonormal matrices with unit determinant.
Although nine numbers are used to specify this matrix, there are a
total of six constraints: three for keeping the columns of R to be of
unit length, and three pairwise orthogonality constraints between the
columns. Thus, a total of 9−6 = 3 degrees of freedom exist.

Although seemingly convenient at first, matrix representations of
rotations suffer from a number of problems when implemented in a
finite-precision computing system. Aside from being space inefficient
in terms of memory usage, matrices often suffer from numerical drift
during use as a result of the underlying floating-point approximation
of real numbers. For example, multiplying two rotation matrices
together will result in a matrix that represents the composed rotations.
However, due to floating-point error, the resulting matrix will often
be not quite orthonormal, and the most appropriate method for re-
normalizing the matrix is typically ill-defined.

For path planning applications, we are interested in sampling,
distance metrics, and interpolation of rotations. Unfortunately, it is
unclear how to easily define a function ρ(R1,R2) that represents the
“distance” between two rotation matrices, or to interpolate between
two matrices R1 and R2 in order to generate a series of smooth
intermediate rotations.

B. Euler Angles

According to Euler’s rotation theorem, any orientation can be
described by three successive rotations (θ,φ,η) about certain sets of
three axes (v1,v2,v3). Since rotations do not commute, the order in
which rotations are applied about these axes is important. There are
at least 24 standard euler angle conventions in use depending upon
which axes are used and the order in which the rotations are applied.
For details of these conventions explained in a robotics context, see
[9].

Euler angles are compact: three angles for three rotational degrees
of freedom. They also are stable numerically, relatively computation-
ally efficient, and are considered to be more intuitive to work with and
visualize than matrices. Due to their simplicity, euler angles have been
used in a number of path planning implementations. Unfortunately,
there are problems with using euler angles to represent rotations.
Within a given euler angle convention, there are multiple sets of
parameter values which can yield the same rotation, leading to a
fundamental ambiguity. This ambiguity exists due to the interdepen-
dence of the rotations, which also manifests itself when two or more
axes happen to align, causing a loss of a degree of freedom known
as “gimbal lock”. But more importantly, euler angles have serious
problems in the context of path planning, namely: proper sampling,
interpolation, and distance metrics. These issues are discussed in
more detail throughout the remaining sections of this paper.

C. Unit Quaternions

Hamilton formulated over a century ago the mathematics with
which a vector of unit magnitude with four components can be used

to parameterize rotations in three dimensions. The intuition behind
quaternions is apparent by considering their relationship to axis-angle
pairs. Namely, Euler showed that any arbitrary orientation in three
dimensions could be achieved by a single rotation θ about a single
axis v = (vx,vy,vz). The corresponding unit quaternion is given by:

Q = (w,x,y,z) = (cos(
θ
2
),vxsin(

θ
2
),vysin(

θ
2
),vzsin(

θ
2
))

These four scalar numbers still have only three degrees of freedom
due to the unit magnitude constraint ||Q||= 1. For further derivation
and details, see [10].

Unit quaternions are relatively compact and efficient to work with.
Computing with quaternions can introduce slight numerical drift due
to floating-point errors. However, it is fortunately straightforward
to renormalize a quaternion by simply dividing each quaternion
component by the magnitude of its length, resulting once again
in a 4-vector of unit length. In the context of path planning, unit
quaternions are an excellent choice for representing rotations since it
is relatively easy to define proper methods for sampling, interpolation,
and computing a measure of distance between quaternion rotations.
Several of these techniques are explained and investigated in the
following sections.

IV. SAMPLING ISSUES

The majority of popular heuristic path planning algorithms for
searching high-dimensional configuration spaces are sampling-based
planners. Examples include the probabilistic roadmap (PRM) and its
variations [11], [12], and single-query path planners like the RRT
[13] or expansive-space planners [14], [15]. These planners build
graphs or trees of connected sampled configurations that attempt to
approximate the connectivity of the actual free configuration space,
C f ree. When applied to searching the 6-dimensional space of rigid
body motions, some care must be taken.

A fundamental component of sampling-based motion planners is
a function to incrementally generate samples in the configuration
space C . For spaces such as an n-dimensional cube in ℜn, a standard
pseudo-random number generator can be used to generate samples,
or for better uniformity in terms of dispersion and discrepancy, a
deterministic sequence of quasi-random numbers has been shown to
offer advantages [16].

Sampling the space of rigid body configurations SE(3) is more
complicated than sampling a cube in ℜn due to the topology of
the space. Here, the choice of parameterization for the rotation
component is important. Assume that we have available a pseudo-
random number generator function rand(), which returns a floating
point number on the range [0,1). Sampling the translation component
is straightforward, as we can simply generate independent random
values along each axis and scale by the axis dimension:

(x,y,z) = (Xdimrand(),Ydimrand(),Zdimrand())

The rotation component must be handled differently. In particular,
care must be taken so that the resulting distribution of samples is
not biased to favor specific rotations. Rather, we desire our sampling
function to yield a uniform distribution of rotations in the limiting
case. In the context of path planning, having a uniform sampling
distribution will prevent search algorithms from oversampling or
undersampling large portions of the C -space. This affects both the
performance and reliability of planning algorithms.

Intuitively, picking a random rotation axis and a random angle will
generate the desired distribution of rotations. We can visualize this as
randomly oriented objects distributed uniformly across the surface of

2

a three-dimensional sphere. An equivalent intuitive way of iteratively
accomplishing this effect is to successively rotate objects located at
the north pole vertically by a random amount, and then rotate the
axis of the north pole to a random position on the sphere. This is
the inspiration behind Jim Arvo’s method for generating fast random
rotation matrices derived in [17].

A. Uniform Sampling of Euler Angles

A naı̈ve attempt at uniformly sampling euler angles might try to
uniformly sample each angle independently. However, this results in
a distribution that is heavily biased towards “polar” regions according
to the set of rotation axes. In Figure 1, sets of oriented arrows on
the surfaces of two spheres are shown as visual representations of
sampling distributions in SO(3) of 5000 Roll-Pitch-Yaw euler angles.
The first shows the result of a naı̈ve sampling, while the second
shows a uniformly distributed sampling of rotations. Notice the
concentration of samples at the poles when using the naı̈ve method.
This can adversely affect the convergence of many sampling-based
path planning algorithms.

In addition to the lopsided distribution, multiple angle sets may
map to the same rotation over a large portion of C . For example, if
the limits are set equally on the range [−π,+π], the parameterization
results in a double coverage of the space of rotations. To prevent this,
the range of one of the angles should be set to [− π

2 ,+ π
2] while the

other two should be set to [−π,+π]. Which angle should have the
reduced range depends on which of the 24 euler angle conventions
used.

Fortunately, there exists a simple and efficient way to generate
uniform random distributions of euler angles. Figure 1(b) shows a
uniform distribution of 5000 random Roll-Pitch-Yaw angles that was
generated using a method based on uniform spherical sampling. The
idea is to generate uniform distributions on the range [− π

2 , π
2) for

both θ and η, and use the inverse cosine relationship for φ to avoid
oversampling the polar regions. Since the arccos() maps from the
domain [−1,+1] to [0,π], an adjustment should be made if necessary
to map to the proper range of φ. An example implementation in
pseudocode is given in Algorithm 1.

Algorithm 1: Pseudocode to generate uniformly-distributed ran-
dom Roll-Pitch-Yaw euler angles.

Input: none

Result: uniform random euler angles (θ,φ,η)
θ = 2π∗ rand()−π;
φ = arccos(1−2∗ rand())+ π

2 ;
if rand() < 1

2 then
if φ < π then φ = φ+π;
else φ = φ−π;

end
η = 2π∗ rand()−π;
return (θ,φ,η)

B. Uniform Sampling of Unit Quaternions

Generating uniformly distributed random unit quaternions is rel-
atively straightforward. If we have already computed a uniform
random axis v and angle θ, we can use the equation in Section III-C to
generate the equivalent unit quaternion. However, a direct and more
efficient method of computing uniform random quaternions is derived
in [18]. This method utilizes three intermediate random variables to

compute four quaternion parameters that map uniformly to the unit
sphere in four dimensions. This calculation produces a quaternion
of unit length, so it is not necessary to renormalize the result.
Performance comparisons of both Algorithm 1 and Algorithm 2 are
included in Section VII.

Algorithm 2: Pseudocode to generate uniformly-distributed ran-
dom unit quaternions.

Input: none

Result: uniform random quaternion Q = (w,x,y,z)
s = rand();
σ1 =

√
1− s;

σ2 =
√

s;
θ1 = 2π∗ rand();
θ2 = 2π∗ rand();
w = cos(θ2)∗σ2;
x = sin(θ1)∗σ1;
y = cos(θ1)∗σ1;
z = sin(θ2)∗σ2;
return (w,x,y,z)

V. DISTANCE METRIC ISSUES

Many sampling-based planning algorithms require a distance metric
be defined over C in order to give an approximate measure of the
“closeness” between pairs of configurations. We define the symmetric
scalar function:

ρ(q0,q1) �→ ℜ q0,q1 ∈ C

that returns a measure of the relative distance between the configu-
rations q0 and q1. The efficiency and accuracy of the distance metric
can have a large impact on the efficacy of the planning algorithm.

Intuitively, an ideal metric for path planning in SE(3) would corre-
spond to a measure of the minimum swept-volume in the workspace
while moving a rigid object from one configuration to another.
Intuitively, minimizing the swept-volume will minimize the chance
of collision with obstacles, which in turn maximizes the chance of
discovering collision-free paths between pairs of configurations in
C . Unfortunately, computing the exact swept-volume is a notoriously
difficult geometric problem, and although recently developed approx-
imate techniques have demonstrated improved efficiency [19], [20],
they are currently too expensive for path planning. Instead, heuristic
metrics are typically defined that generally attempt to approximate
the ideal swept-volume metric. The most simple and commonly used
metrics consider the C -space as a Cartesian space and define a
Euclidean metric. For example, if X and R represent the translation
and rotation components of the configuration q = (X ,R) ∈ SE(3)
respectively, then:

ρ(q0,q1) = wt ||X0 −X1||+wr f (R0,R1)

is a weighted metric with the translation component ||X0 − Xq||
using a standard Euclidean norm, and the positive scalar function
f (R0,R1) returning an approximate measure of the distance between
the rotations R0,R1 ∈ SO(3). The rotation distance is scaled relative
to the translation distance via the weights wt and wr. One of
the difficulties with this method is deciding proper weight values.
Previous research has suggested that the relative importance of the
rotation component decreases as the planning queries become harder
(see [4], [5] for a discussion).

3

A. Euler Angle Distance Metric

For the case of using roll-pitch-yaw euler angles for rotation, we
first define a distance function ∆(θ1,θ2) that returns the difference
between two angles θ1 and θ2. When subtracting angles that “wrap-
around”, there two possible interpolation directions, so care must be
taken to use the “shortest path” direction between the angles:

Algorithm 3: Computes “shortest path” difference between two
angles (Hereafter denoted by the function ∆(θ1,θ2)).

Input: Two angles θ1 and θ2

Result: “shortest path” angle difference δθ ∈ [−π,+π]
δθ = θ2 −θ1;
// normalize δθ on the range [−π,+π)
if δθ < −π then δθ = δθ+2π;
else if δθ < π then δθ = δθ−2π;
return δθ

The sum of each of the euler angle differences gives an ap-
proximate measure of the distance between the two rotations, as in
Algorithm 4:

Algorithm 4: Compute approximate euclidean distance metric
between two sets of euler angles.

Input: euler angles (θ1,φ1,η1) and (θ2,φ2,η2)
Result: The weighted rotation distance component ρr.

ρr = wr ∗
√

∆(θ1,θ2)2 +∆(φ1,φ2)2 +∆(η1,η2)2;
return ρr

However, this measure of distance between euler angles does not
correctly handle multiple representations of the same rotation. In
other words, it is possible that the summed difference between each
of the individual angle components is large while the actual rotations
they represent are very close or even identical.

B. Unit Quaternion Distance Metric

Unlike euler angles, it is possible to derive a geodesic metric
for unit quaternion representations of SO(3). As we shall see again
in Section VI-B, the “great circle arc” on the 4D unit sphere
between two unit quaternions defines a geodesic path for interpolating
two rotations. This suggests a number of possible metrics. Park
and Ravani have defined a bi-invariant distance metric for SO(3)
in [7], which has been used by Choudhury and Lynch for rolling
manipulation planning [21]:

ρr = ||log(Q−1
1 Q2)||

An alternative metric that provides a simple and convenient measure
of approximate rotation distance can be defined using an inner
product. Given two unit quaternions Q1 = (w1,x1,y1,z1) and Q2 =
(w2,x2,y2,z2), we define the inner product λ of two quaternions as:

λ = Q1 ·Q2 = w1w2 + x1x2 + y1y2 + z1z2

This is the scalar inner product of two 4D unit vectors. As in 3D, the
angle α formed by this pair of vectors is related to the inner product
by its cosine:

α = arccos(Q1 ·Q2)

The length of the geodesic path on the 4D unit sphere is proportional
to α. However, there is an important property of unit quaternions that
must be considered: polar opposite points on the 4D unit sphere are
identified, meaning there are exactly two unit quaternion represen-
tations for the same rotation. For example, both Q = (w,x,y,z) and
its opposite −Q = (−w,−x,−y,−z) represent the same rotation. An
intuitive explanation for this is based on the equivalent angle-axis
representation: a rotation of θ about an axis v results in the same
orientation as a rotation of −θ about the opposite axis −v.

To account for multiple representations in our definitions of unit
quaternion distance metrics and interpolation schemes, we can simply
test whether λ is negative, and negate one of the quaternions to obtain
its equivalent alternative. Note that if λ = Q1 ·Q2, then −λ = −Q1 ·
Q2 = Q1 ·−Q2. Algorithm 5 computes a scalar approximate distance
measure ρr that returns a value on the range [0,wr], where wr is the
rotation weight.

Algorithm 5: Compute approximate distance metric between two
unit quaternions

Input: Two unit quaternions Q1 and Q2

Result: The weighted rotation distance component ρr on the
range [0,wr].

// compute the quaternion inner product λ
// (The result is on the range [−1,1])
λ = Q1 ·Q2;
ρr = wr ∗ (1−||λ||) ;
return ρr

This metric obeys the triangle inequality and is fairly efficient to
compute.

VI. CONFIGURATION INTERPOLATION ISSUES

The problem of interpolating two configurations in SE(3) shares
much in common with the problem of defining metrics. We would
like to have an efficient and accurate method for calculating a
continuous series of intermediate transformations between two given
transformations. For 3D rigid body path planning implementations
that interpolate the translation and rotation components separately,
let us consider the problem of interpolating two rotations in SO(3).

A. Interpolation of Euler Angles

The obvious but naı̈ve way to interpolate two rotations represented
by sets of euler angles is simply to linearly interpolate each angle
independently:

Algorithm 6: linear interpolation between two sets of euler angles
by the fraction f ∈ [0,1].

Input: two euler angle sets (θstart ,φstart ,ηstart) and
(θend ,φend ,ηend)

Result: interpolated euler angles (θ,φ,η)
θ = θstart + f ∗∆(θstart ,θend);
φ = φstart + f ∗∆(φstart ,φend);
η = ηstart + f ∗∆(ηstart ,ηend);
return Normalize(θ,φ,η)

Using the function ∆(θ1,θ2) from Algorithm 3, we compute the
”shortest” path of interpolation between each of the angle components

4

and normalize the resulting angles on the desired range according
to the euler angle convention used. Observe that this implementation
suffers from the same problems arising from multiple representations
that can occur when computing distances. Namely, two sets of euler
angles with relatively large differences in individual angle values may
actually map to very similar or identical rotations in SO(3). This
produces a relatively large swept-volume resulting from the spurious
interpolated values, which is disadvantageous to path planning. This
problem along with the difficulty in defining metrics generally makes
euler angles a poor choice for representing the rotation component
of SE(3) in path planning applications.

B. Interpolation of Unit Quaternions

Perhaps the biggest advantage to using unit quaternions to represent
configurations of SO(3) is the ability to smoothly interpolate between
two configurations along geodesics. As mentioned in Section V-B,
the great-circle arc between two points on the surface of the 4D
unit sphere represents a geodesic interpolation path between two unit
quaternions. Points along this curve represent configurations in SO(3)
that correspond to a set of smoothly-varying intermediate rotations.
One simple way to generate this set of points is to linearly interpolate
two unit quaternions as points in ℜ4 and projecting the result onto
the 4D unit sphere. As in Section V-B, care must be taken to ensure
an interpolation path of minimal length by computing the alternative
representation of one of the unit quaternions.

Algorithm 7: Calculates an approximate linear interpolation be-
tween two quaternions by the fraction f ∈ [0,1] using a straight
line in ℜ4 projected onto the unit quaternion sphere.

Input: two quaternion rotations Q1 and Q2

Result: interpolated quaternion Q = (w,x,y,z)
// compute the quaternion inner product
λ = Q1 ·Q2;
if λ < 0 then

// the quaternions are pointing in opposite directions, so
// use the equivalent alternative representation for Q2
w2 = −w2; x2 = −x2; y2 = −y2; z2 = −z2;

end
w = w1 + f ∗ (w2 −w1);
x = x1 + f ∗ (x2 − x1);
y = y1 + f ∗ (y2 − y1);
z = z1 + f ∗ (z2 − z1);
Q = (w,x,y,z);
// normalize the result
Q = Q

||Q|| ;
return Q

The projection on the unit sphere in ℜ4 is done by simply
normalizing the interpolated vector:

Q =
Q

||Q|| =
Q√

w2 + x2 + y2 + z2

The drawback to this approximate scheme is that the interpolated
intermediate points will not be evenly-spaced along the geodesic,
especially if the two endpoint rotations are dissimilar. A better
method is to use spherical linear interpolation or “slerp”, as it is
commonly called [10]. Algorithm 8 shows an implementation that
first computes the nearby representation for two unit quaternions,
and then calculates their inner product. If the rotations are very close

(the inner product is smaller than ε), then linear interpolation from
Algorithm 7 is performed. Otherwise, spherical linear interpolation
factors are computed that result in evenly-distributed intermediate
points along the geodesic arc. We normalize the final resulting
intermediate quaternion in order to prevent numerical drift resulting
from floating-point approximation errors.

Algorithm 8: interpolate quaternions using ”slerp” (spherical
linear interpolation)

Input: two quaternion rotations Q1 and Q2

Result: interpolated quaternion Q = (w,x,y,z)
// compute the quaternion inner product
λ = Q1 ·Q2;
if λ < 0 then

// the quaternions are pointing in opposite directions, so
// use the equivalent alternative representation for Q2
w2 = −w2; x2 = −x2; y2 = −y2; z2 = −z2;
λ = −λ;

end
// calculate interpolation factors
if ||1−λ|| < ε then

// the quaternions are nearly parallel, so use
// linear interpolation
r = 1− f ;
s = f ;

else
// calculate spherical linear interpolation factors
α = arccos(λ);
γ = 1

sinα ;
r = sin((1− f)∗α)∗ γ;
s = sin(f ∗α)∗ γ;

end
// set the interpolated quaternion
w = r ∗w1 + s∗w2;
x = r ∗ x1 + s∗ x2;
y = r ∗ y1 + s∗ y2;
z = r ∗ z1 + s∗ z2;
Q = (w,x,y,z);
// normalize the result
Q = Q

||Q|| ;
return Q

VII. EXPERIMENTAL RESULTS

Based on the techniques and sample code presented in the pre-
vious sections, experiments were conducted to evaluate the relative
performance in terms of computation speed and planning efficiency.
Results were calculated using the GNU gcc compiler with level
2 optimization running in VMware on a 1.1 GHz Pentium III
with 512MB or RAM. Table I compares the performance of dif-
ferent representations of rotation. Numerous trials where conducted
N = 1,000,000 to collect the average absolute time (in seconds)
required to calculate random sampling functions, distance metrics,
and interpolation functions. In addition to this raw performance
evaluation, experiments were conducted to determine the effects of
representation on the success and performance of a randomized path
planning strategy based on Rapidly-exploring Random Trees (RRTs)
[13]. This planner has been used to efficiently solve several well-
known motion planning benchmarks, such as the “Alpha 1.0 puzzle”
(Figure 2) and “Flange 1.0 problem” (Figure 3 - left), which are

5

TABLE I
PERFORMANCE COMPARISON OF ROTATION REPRESENTATIONS

Rotation Rep. Sample ||L||2 Dist. (||L||2)2 Interp.

Euler angles 1.70 0.40 0.22 0.40

Quat. (w/ lerp) 2.05 0.28 0.15 0.54

Quat. (w/ slerp) 2.15 0.28 0.14 1.03

3 54

2

1

Fig. 2. Solving the “Alpha Puzzle” 1.0 Benchmark.

considered difficult due to the presence of narrow passages in the
configuration space [4]. Based on my own numerous trials and
experiments using different metric and interpolation schemes, two
general recommendations can be made: 1) If you expect to find paths
through narrow passages in C , using a weighted quaternion distance
metric ||L||2 with slerp interpolation of samples yields the best
performance for RRT-based path planners. Roughly a 45% speedup
in average calculation time can be expected over using euler angles
to represent rotation depending on the difficulty of the problem.
For the alpha 1.0 puzzle, only the quaternion-based implementations
were able to consistently solve the query. 2) If the majority of the
queries you will face involve relatively large areas of open space in
C f ree, then the performance advantages of using quaternions and slerp
interpolation over other, less-costly alternatives are still apparent in
terms of the average number of samples needed to solve a particular
query, but less apparent in terms of the overall average running time.

VIII. SUMMARY AND DISCUSSION

Geometric path planning problems defined on SE(3) arise in a num-
ber of important application domains. Rigid body path planning algo-
rithms intended to efficiently represent and search this space need to
take into account the structure and topology of SE(3), and implement

Fig. 3. Left: The “Flange” Benchmark. Right: Part removability test for
assembly analysis of a detailed motorcycle and engine model.

carefully the sampling, distance metrics, and interpolation functions.
Utilizing unit quaternions to represent the rotation component has
been found to be both efficient and effective for path planning, and
is recommended over other alternatives such as euler angles. Future
work includes gathering additional experimental performance data
for path planning implementations across a wider range of queries
and obstacle arrangements, and investigating alternative quaternion
distance metrics in the hopes of achieving a deeper understanding of
performance tradeoffs in terms of computation costs, average overall
planning time, and the overall rate of success in finding a path.

ACKNOWLEDGMENT

I thank Steve LaValle and Al Rizzi who provided helpful insights and
pointers to related research. This research was partially supported by NSF
grants ECS-0325383, ECS-0326095, and ANI-0224419.

REFERENCES

[1] J. McCarthy, An Introduction to Theoretical Kinematics. MIT Press,
1990.

[2] G. Zefran, M. Kumar, and V. Croke, “Metrics and connections for rigid
body kinematics,” Int. J. of Robotics Research, 1998.

[3] R. Murray and S. Sastry, “Nonholonomic motion planning: Steering
using sinusoids,” IEEE Trans. on Automatic Control, vol. 38, no. 5,
pp. 700–716, 1993.

[4] N. Amato, O. Bayazit, L. Dale, C. Jones, and D. Vallejo, “Choosing good
distance metrics and local planners for probabilistic roadmap methods,”
IEEE Trans. Robot. & Autom., vol. 16, no. 4, pp. 442–447, Aug. 2000.

[5] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo,
“Choosing good distance metrics and local planners for probabilistic
roadmap methods,” Texas A & M Univ, Tech. Rep. TR98-010, 14, 1998.

[6] J. Loncaric, “Geometric analysis of compliant mechanisms in robotics,”
Ph.D. dissertation, Harvard Univ., 1985.

[7] F. Park and B. Ravani, “Smooth invariant interpolation of rotations,”
ACM Trans. on Graphics, vol. 16, no. 3, pp. 277–295, July 1997.

[8] Q. Lin and J. Burdick, “Objective and frame-invariant kinematic metric
functions for rigid bodies,” Int. J. of Robotics Research, 1997.

[9] J. J. Craig, Introduction to Robotics : Mechanics and Control. Addison-
Wesley, 1989.

[10] K. Shoemake, “Animating rotation with quaternion curves,” in Proc. of
SIGGRAPH ’85, 1985, pp. 245–254.

[11] L. Kavraki, P. Svestka, J. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. & Autom., vol. 12, no. 4, pp. 566–580, 1996.

[12] V. Boor, M. Overmars, and A. van der Stappen, “The Gaussian sampling
strategy for probabilistic roadmap planners,” in Proc. of IEEE Int. Conf.
Robotics and Automation, Detroit, MI, 1999.

[13] J. Kuffner and S. LaValle, “RRT-Connect: An efficient approach to
single-query path planning,” in Proc. IEEE Int’l Conf. on Robotics and
Automation (ICRA’2000), San Francisco, CA, Apr. 2000, pp. 995–1001.

[14] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” Int. J. Comput. Geom. & Appl., vol. 9, no. 4-5,
pp. 495–512, 1997.

[15] G. Sanchez and J. Latombe, “A single-query bi-directional probabilistic
roadmap planner with lazy collision checking,” in Robotics Research:
The Tenth Int. Symp. on Robotics Research (ISRR’01). Springer, 2001,
pp. 403–417.

[16] S. M. LaValle and M. S. Branicky, “On the relationship between classical
grid search and probabilistic roadmaps,” in Proc. Workshop on the
Algorithmic Foundations of Robotics, Dec. 2002.

[17] J. Arvo, Fast Random Rotation Matrices, ser. Graphics Gems III.
Academic Press, 1992, ch. ., pp. 117–120.

[18] K. Shoemake, Uniform Random Rotations, ser. Graphics Gems III.
Academic Press, 1992, ch. ., pp. 124–132.

[19] P. Xavier, “Fast swept-volume distance for robust collision detection,”
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 1997, pp. 1162–1169.

[20] Y. J. Kim, G. Varadhan, M. C. Lin, and D. Manocha, “Fast swept volume
approximation of complex polyhedral models,” in Proc. SM03, 2003.

[21] P. Choudhury and K. Lynch, “Rolling manipulation with a single
control,” in Conf. on Control Applications, 2001.

6

