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Effective Sensor Scheduling Schemes in a Sensor Network by

Employing Feedback in the Communication Loop

Ling Shi∗, Michael Epstein∗, Bruno Sinopoli† and Richard M.Murray∗

Abstract— In this paper, we consider a state estimation
problem over a bandwidth limited network. A sensor network
consisting of N sensors is used to observe the states of M

plants, but only p ≤ N sensors can transmit their measurements
to a centralized estimator at each time. Therefore a suitable
scheme that schedules the proper sensors to access the network
at each time so that the total estimation error is minimized is
required. We propose four different sensor scheduling schemes.
The static and stochastic schemes assume no feedback from
the estimator to the scheduler, while the two dynamic schemes,
Maximum Error First (MEF) and Maximum Deduction First
(MDF) assume such feedback is available. We compare the
four schemes via some examples and show MEF and MDF
schemes perform better than the static and stochastic schemes,
which demonstrates that feedback can play an important role
in this remote state estimation problem. We also show that
MDF performs better than MEF as MDF considers the total
estimation error while MEF considers the individual estimation
error.

I. INTRODUCTION

Advances in fabrication technology and computer archi-

tecture have led to the rapid growth of computation capa-

bilities while simultaneously decreasing chip size and power

consumption. The latter gave birth to the fast developing

field of sensor networks which have gained great attention

in recent years [1], [2]. Many control applications now

take advantage of sensor networks and the loops are closed

via the network [3]. These types of control system are

called a networked control systems (NCS). NCS provide

many advantages which classical control systems do not

have, for example, reducing the system wiring, making the

system easy to operate and maintain and increasing system

agility. Despite the many advantages NCS has brought, finite

bandwidth, network induced delays and possibly data packet

drops severely degrade the system performance and may even

cause system instability [4].

In the past decade, researchers have studied different

networked control problems, mostly analyzing how the net-

work in the closed loop affects the system performance and

designing controllers that consider this effect to optimize

system performance. For example, in [5], Sinopoli and et

al studied how the packet drops in the network affects

state estimation and provided upper and lower bounds on

the critical packet arrival rate below which the estimation

error diverges. In [6], Liu and Goldsmith studied the same
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estimation problem and gave similar results when only partial

observation is received. Nilsson [7] studied how stochastic

delays affect the control performance. The effect of finite

bandwidth of the network on the control performance was

studied by Wong and Brockett in [8], [9] and further pursued

by [10], [11] where the authors provided the minimum data

rate that the network has to provide in order to have stable

state estimate and closed loop stability.

When bandwidth is limited so that a single network is

shared by many users, effective access control or network

access scheduling schemes are required. Walsh and et al

studied in [12] and [13] the problem of when to schedule

which plant to access to the network so that all plants remain

stable. They proposed a protocol MEF-TOD (Max Error First

Try Once Discard) and showed that under certain conditions

global exponential stability can be achieved. Tiwari and

et.al studied the sensor scheduling problem in [14] where

a single sensor has to determine which one of the two plants

it needs to observe at each time step so as to minimize

the estimation error. In [15], Gupta and et al considered a

different scheduling problem where there is only one plant

but with multiple sensors. They proposed a stochastic sensor

scheduling scheme and provided the optimal probability

distribution over the sensors to be selected.

In this paper, we study a networked state estimation

problem. A sensor network consisting of N sensors is used

to observe the states of M plants, but only p ≤ N sensors

can transmit their measurements to the estimator at each

time. The estimator is a Kalman filter. Since the estimator is

usually attached to the controller which has enough power

capability, we assume feedback from the estimator to the net-

work scheduler is possible. We attempt to explore how much

this feedback can improve the estimator performance. Four

sensor scheduling schemes are proposed for this purpose.

The static and stochastic schemes utilize no feedback while

the two dynamic schemes, Maximum Error First (MEF) and

Maximum Deduction First (MDF) assume such feedback is

available.

The idea of MEF is similar to the MEF-TOD protocol

in [12], however we face a more complicated issue where

there are two levels of scheduling. The first is to schedule

which p sensors to access the network. The second is to

schedule which plants those p sensors observe. We show that

MEF and MDF are both better than the static and stochastic

schemes, which suggests that feedback can play an important

role for this estimation problem. We further show that MDF

is better than MEF. It turns out MDF is even better than the

locally optimal solution using a combinatorial approach as
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shown in Section VI.

We also attempt to include the plug-and-play feature so

that those schemes will be suitable for general ad hoc sensor

networks where the sensors available to use are in general

not fixed. Ad hoc networks have attracted much attention in

recent years due to their flexibility and easy operation [16]–

[18]. Developing efficient algorithms and methods that are

suitable for ad hoc networks is becoming increasingly im-

portant. We show that the MEF and MDF schemes are well

suitable for such a situation.

The rest of the paper is organized as follows. In Section II,

the mathematical model of the problem is given. In Sec-

tion III through V we propose four schemes for scheduling

the access of the sensors and compare their performances

in Section VI. Conclusions and future work are given at the

end.

II. PROBLEM SET UP

Consider a sensor network consisting of N sensors which

can observe the states of M different plants (Figure 1).

state estimator

plant 1 plant j plant M

network access scheduler

1 2 p

sensor 1 sensor i sensor N

Fig. 1. System block diagram

Plant j has the following dynamics

x
j
k+1 = Ajx

j
k + w

j
k, (1)

where j = 1, · · · ,M . When sensor i observes plant j, it

returns

y
ij
k = Cijx

j
k + v

ij
k , (2)

where i = 1, · · · , N . In Eqn (1) and (2), x
j
k ∈ R

nj is the

state vector, y
ij
k ∈ R

mij is the observation vector, w
j
k and v

ij
k

are process and measurement noises which are assumed to

be white, Gaussian and zero mean with covariance matrices

Qj ≥ 0 and Rij > 0 respectively. The sensors send their

measurements to a state estimator via a bandwidth limited

network so that only p ≤ N sensors are allowed to access

the network at each time step.

From now on denote the sensor space as S =
{S1, · · · ,SN} and the plant space as P = {P1, · · · ,PM},

where Si and Pj are the individual sensors and plants.

Further denote Σ
j
k as the set of sensors that all observe Pj

at time k and denote Yj
k , Cj

k and Rj
k as the representation

of all sensors in Σ
j
k. For example, if Σ

j
k = {S1, · · · ,Sp},

then Yj
k = [y1j

k ; · · · ; ypj
k ], Cj

k = [C1j ; · · · ;Cpj ] and Rj
k =

diag (R1j , · · · , Rpj).
The state estimator is a Kalman filter. Denote x̂

j
k as

the estimated state of Pj at time k given all previous

measurements. Also denote P
j
k as the a priori estimation

error covariance (simply write as error covariance later).

Then x̂
j
k and P

j
k evolve as

x̂
j
k+1 = Aj x̂

j
k + K

j
k(Yj

k − Cj
kx̂

j
k) (3)

K
j
k = AjP

j
k (Cj

k)T [Cj
kP

j
k (Cj

k)T + Rj
k]−1 (4)

P
j
k+1 = AjP

j
k (Aj)T + Qj

− AjP
j
k (Cj

k)T [Cj
kP

j
k (Cj

k)T + Rj
k]−1Cj

kP
j
k (Aj)T . (5)

Notice that if there is no sensor observing Pj at time k,

Σ
j
k = ∅, hence Cj

k = 0 and Rj
k = 0. Therefore we simply

have

x̂
j
k+1 = Aj x̂

j
k, (6)

P
j
k+1 = AjP

j
k (Aj)T + Qj . (7)

We are interested in solving the following problem.

Problem 1: Design a sensor scheduling scheme to mini-

mize
M
∑

j=1

Tr(P j
k )

at each time k.

The reason we choose to minimize the cost function at

each time step rather than the steady state estimation error

as in most previous other works is that in general ad hoc

networks N is a varying number, as existing sensors can

quit due to the power drainage or malfunctioning and new

sensors can join. Consequently the sensors available at one

time may be quite different than at another time step. It

therefore does not make sense to consider the long term

behavior of the estimation error. This can be thought as a

best effort minimization problem.

In the following sections, we present four scheduling

schemes and compare their performances through some

examples.

III. STATIC SCHEDULING

Static sensor scheduling schemes are the simplest among

all schemes which only require little computation and are

very easy to implement, for example, in a network using a

token ring or polling. There are many static schemes and we

present one possible scheme in Algorithm I.

Algorithm I is periodic and it takes LCM(M,N) cycles

to repeat, where LCM(M,N) denotes the least common

multiple of M and N . Apparently, Algorithm I guarantees

fair use of the sensors for each plant and hence avoids

overusing some particular sensors and extends the whole

network life.

Given the explicit parameters of the plants and sensors,

we can provide conditions for the convergence of the upper
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TABLE I

ALGORITHM I: STATIC SCHEME

1) k = 1, i = 1.

2) Si mod N , · · · ,Si+p−1 mod N are selected to
access the network.

3) For j = 0, · · · , p − 1, Si+j mod N observes Pi+j mod M .

4) k = k + 1, i = i + p. Go to Step 2.

bound of
∑M

j=1 Tr(P j
k ) when using Algorithm I. Different

static schemes will have different convergence conditions of

the upper bound. For example, with M = 2, N = 3 and

p = 1, we have the following convergence conditions. Define

the following functions for any positive semi-definite X ≥ 0.

gij(X) = AjX(Aj)T + Qj

− AjX(Cij)T [CijX(Cij)T + Rij ]−1CijX(Aj)T

hj(X) = AjX(Aj)T + Qj , (8)

where i = 1, 2, 3 and j = 1, 2. Then for k = 6z, z =
0, 1, · · · , the error covariances for the two plants evolve as

P 1
k+6 = h1g21h1g31h1g11(P

1
k ),

P 2
k+6 = g32h2g12h2g22h2(P

1
k ).

Lemma 2: Let P 1
∞

and P 2
∞

satisfy

P 1
∞

= h1g21h1g31h1g11(P
1
∞

), (9)

P 2
∞

= g32h2g12h2g22h2(P
2
∞

). (10)

Then
∑2

j=1 Tr(P j
k ) is bounded at each time step if and only

if Eqn (9) and (10) have bounded solutions.

Proof: We omit the proof as it is straightforward to show. ¥

In many situations, the plants may have different dynamics

and some are even unstable. It is then natural to schedule

more sensors to observe the more unstable plants and hence

help to control the unstable process. Most good scheduling

schemes are very unfair, i.e., allocating more resources

(sensors in this case) to the plant who has the highest priority

according to some cost functions. The dynamic scheduling

schemes in Section V provide such examples.

IV. STOCHASTIC SCHEDULING

Like the tatic scheme, the stochastic scheduling scheme

also utilizes no feedback from the estimator to the scheduler.

The details of the stochastic scheme are presented Algo-

rithm II.

In Algorithm II, π is the distribution over the subsets of

S which consists of p sensors exactly.
∑M

j=1 χij = 1 for

each i = 1, · · · , N . We are able to give conditions on the

convergence of the upper bound of E[
∑M

j=1 Tr(P j
k )] which

is similar to that in [15] and we refer reader to [15] for

details. The advantage of this algorithm is that by properly

choosing the distributions π and χ according to the plant

and sensor parameters, the upper bound of E[
∑M

j=1 Tr(P j
k )]

TABLE II

ALGORITHM II: STOCHASTIC SCHEME

1) k = 1.

2) Select p sensors out of N sensors according to some
distribution π.

3) If Si is selected, it observes Pj with probability χij .

4) k = k + 1. Go to Step 2.

can be minimized. The disadvantage is that it assumes no

feedback from the estimator to the scheduler as in the static

scheme. As we show in the next two sections, by allowing

such feedback the estimator performance is greatly enhanced.

V. DYNAMIC SCHEDULING

In this section, we first present a locally optimal solution

using a combinatorial approach and show that this locally

optimal solution is intractable due to its high computational

complexity. 1 We then propose two dynamic sensor schedul-

ing schemes which use feedback from the estimator to the

scheduler and show they are computationally tractable.

A. Locally Optimal Solution

There are C
p
N = N !

p!(N−p)! ways to select p out of N

sensors, and each selected sensor can observe any one of

the M plants. As a result, in total there are C
p
NMp ways

to determine which p sensors access the network and their

associated plants to observe. Denoting ω as one such way

and Ω as the space consisting of all such ways, then Ω has

cardinality C
p
NMp. Problem 1 can be cast as

min
ω∈Ω

M
∑

i=1

Tr(P i
k).

Clearly as N becomes large, the above minimization problem

is intractable as it takes O(Cp
NMp+1) times to obtain.

Therefore we seek tractable solutions but possibly at the

price of losing local optimality. We propose two locally

suboptimal solutions to Problem 1 in the next two sections.

The advantages of these solutions are that they only take

polynomial time in M,N, p and are suitable for general ad

hoc networks where N might be varying.

B. Dynamic Scheduling: Max Error First (MEF)

We present a dynamic scheduling scheme and call it with

Maximum Error First (MEF). The idea is that the plant

having the largest open loop error has the highest priority

to use the sensors. Once a sensor is selected by this plant, it

has access to the network. Recall that we have defined Σ
j
k

as the set of sensors observing Pj at time k. Let Si be one

1By locally optimal, we mean the minimization is taken at each time step
rather than over a time horizon.
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TABLE III

ALGORITHM III: DYNAMIC SCHEDULING - MAX ERROR FIRST

1) k = 1.

2) t = 1. S has N − t + 1 sensors. Σj

k
= ∅, j = 1, · · · , M .

3) • For each Pj , j = 1, · · · , M
- Compute the open loop errors according to Eqn (7).

• Store the trace of those errors in a buffer B.
• Sort B in descending order.

4) • Let Pt be the plant having the first value in B.
• For each Si in S

- Compute Eit according to Eqn (11) or (12).
• Let Sq(t) be the one that minimizes the trace of Eit

• Replace the first value in B by the trace of Eq(t)t.

5) • Sort B.

• Record Cq(t)t into array A.

• Move Sq(t) from S to Σj

k
.

6) t = t + 1. If t 6= p + 1, goto Step 4.

7) k = k + 1. Clear array A and goto Step 2.

sensor from S which consists of all the available sensors that

Pj can use. If Σ
j
k is empty, define

Eij = AjP
j
k (Aj)T + Qj

− AjP
j
k (Cij)T [CijP

j
k (Cij)T + Rij ]−1CijP

j
k (Aj)T (11)

where Cij , Rij are parameters for Si. Otherwise add Si to

Σ
j
k and define

Eij = AjP
j
k (Aj)T + Qj

− AjP
j
k (Cj

k)T [Cj
kP

j
k (Cj

k)T + Rj
k]−1Cj

kP
j
k (Aj)T (12)

where Cj
k and Rj

k are defined in Section II. With these

notations the MEF scheme is presented in Algorithm III.

Clearly at each time step the array A tells which p sensors

will access the network and which plants they observe.

Step 3 in Algorithm III takes O(M log M) times to sort

M elements. Step 4 takes O(N − t + 1) times. Before

step 4, B is already sorted and step 4 only changes the

first value in B, hence it takes only O(log M) times to

resort B in step 5. Since t = 1, · · · , p, in total it takes

O(M log M +pN +p log M) times to execute the algorithm

for each k.

With this algorithm, it is possible to schedule multiple

sensors to observe the same plant which may be very

unstable compared with other plants.

C. Dynamic Scheduling: Max Deduction First (MDF)

We present another scheme and call it Dynamic Schedul-

ing with Maximum Deduction First (MDF). The difference

between this and MEF scheme is the different priorities of

plants using the sensors. If Σ
j
k is empty, define

∆ij
k = AjP

j
k (Cij)T [CijP

j
k (Cij)T + Rij ]−1CijP

j
k (Aj)T .

(13)

TABLE IV

ALGORITHM IV: DYNAMIC SCHEDULING - MAX DEDUCTION FIRST

1) k = 1.

2) t = 1. S has N − t + 1 sensors. Σj

k
= ∅, j = 1, · · · , M .

3) For each Pj , j = 1, · · · , M

- Compute ∆ij

k
according to Eqn (13) or (14) for each Si

from S

4) For each Pj , j = 1, · · · , M

- Store the trace of ∆ij

k
in a buffer Bj , i = 1, · · · , N − t + 1.

- Sort Bj in descending order.
- Store Bj [1] in D .

5) • Sort D. Let Pt have the first value in D.
• Let Sq(t) returns the first value in Bt.

• Record Cq(t)t into an array A.

• Move Sq(t) from S to Σj

k
.

6) t = t + 1. If t 6= p + 1, goto Step 3.

7) k = k + 1. Clear array A,D and goto Step 2.

Otherwise add Si to Σ
j
k and call this new set Σ̄

j
k with new

parameters C̄j
k = [Cj

k;Cij ] and R̄j
k = diag (Rj

k, Rij). Define

∆ij
k− = AjP

j
k (Cj

k)T [Cj
kP

j
k (Cj

k)T + Rj
k]−1Cj

kP
j
k (Aj)T .

∆ij
k+ = AjP

j
k (C̄j

k)T [C̄j
kP

j
k (C̄j

k)T + R̄j
k]−1C̄j

kP
j
k (Aj)T .

∆ij
k = ∆ij

k+ − ∆ij
k−. (14)

With these notations, the MDF scheme is presented in

Algorithm IV.

Similar to Algorithm III, array A gives a solution to Problem

1. It is also easy to show that step 3 in Algorithm IV

takes O(MN) times. Step 4 takes O(MN log N) times

because it needs to sort N elements M times. Step 5 takes

O(M log M) times to sort M elements. All the other steps

take constant time. Since t = 1, · · · , p, in total it takes

O(pMN + pMN log N + pM log M) times to execute the

algorithm for each k. This algorithm is also able to schedule

multiple sensors for the same plant.

Compared with the O(Cp
NMp+1) time complexity, these

two schemes provide unbeatable computational advantage,

though MDF is slightly worse than MEF. As we see from the

examples in the next section, MDF gives better performance

than MEF. The reason is that MDF gives the highest priority

to the plant who reduces most of the total estimation error

while MEF gives the highest priority to the plant having the

largest open loop error, i.e., it only considers the individual

estimation error.

These two schemes are also compatible with varying N .

However, unlike the static or stochastic scheduling schemes

in the previous sections, it is quite difficult to give conditions

for convergence for these two schemes. The reason is that

the sensors to be chosen and the plants to be observed are

dynamically changing at all times. There are no clear static or

statistical patterns of the selected sensors and their associated
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Fig. 2. Comparison of different scheduling schemes

plants. We leave this part as future work to be pursued. Intu-

itively, the two schemes make the best effort in minimizing

the cost function and their actual performances are better than

the static or stochastic schemes as demonstrated through the

examples in the next section.

VI. EXAMPLES

We compare the different schemes through some examples

in this section.

Example 3: Here we consider a simple example which is

taken from [15] with slight modification of the measurement

noise covariances. In this case, M = 1, N = 2, p = 1. The

plant and sensors parameters are given as follows.

A =









1 0 0.2 0
0 1 0 0.2
0 0 1 0
0 0 0 1









Q =









0.0004 0.0001 0.0040 0.0010
0.0001 0.0004 0.0010 0.0040
0.0040 0.0010 0.0400 0.0100
0.0010 0.0040 0.0100 0.0400









C11 =

[

1 0 0 1
0 1 0 1

]

, C21 =

[

0 0 1 1
0 0 0 1

]

R11 =

[

2.4 0
0 1.0

]

, R21 =

[

1.8 0
0 0.1

]

We compare the four different schemes here and the results

are shown in Figure 2. We also plot the selected sensors for

the stochastic and dynamic scheduling schemes in Figure 3.

The two schemes from dynamic scheduling turn out to be

the same for this case. This is because M = 1 and there

is no other plant competing to use the sensors. It is also

easy to see the local optimal solution using the combinatorial

approach also overlaps with these two schemes and therefore

the result is not shown in the figures. For this example, the

static scheme is better than the stochastic scheme. In general

this may not be true as we choose an arbitrary distribution

π and χ for this particular example. As shown in the next

example where we optimize the distribution, i.e., put more

0 20 40 60 80 100
0

1

2

time

Stochastic 

0 20 40 60 80 100
0
1
2

time

MEF

0 20 40 60 80 100
0

1

2

time

MDF

Fig. 3. Sensor selection based on stochastic or dynamic schemes

weight for those sensors having smaller noise covariances,

the static scheme is worse than the stochastic scheme.

Example 4: We consider a more interesting example

where six sensors are available to observe three plants, but

only two sensors are allowed to access the network each

time, that is M = 3, N = 6 and p = 2 . To save space,

we only list the parameters for plant two and sensor two

respectively.

A2 =









1 0 0.15 0
0 1 0 0.15
0 0 1 0
0 0 0 1









Q2 =









0.0003 0.0000 0.0034 0.0006
0.0000 0.0003 0.0006 0.0034
0.0034 0.0006 0.0450 0.0079
0.0006 0.0034 0.0079 0.0450









C21 =

[

1 0 0 0
0 1 0 0

]

, C22 =

[

1 0 0 0
1 1 0 0

]

C23 =

[

0 0 1 1
1 0 0 0

]

R21 =

[

1.5 0
0 0.1

]

, R22 =

[

2.0 0
0 0.8

]

R23 =

[

3.0 0
0 0.1

]

.

We compare the four schemes and plot the results in

Figure 4. Figure 5 is the zoomed in version for close

comparison.

Clearly the two dynamic schemes are much better than the

static and stochastic schemes. The MDF and MEF schemes

are about 4 times better than the static scheme and 2 times

better than the optimized stochastic scheme.

The MDF scheme is also observed to be better than the

MEF scheme as we have discussed before. Since the number

of M,N, p are not too big, we can compute the locally

optimal solution in the figure for comparison purpose. With

little surprise, MDF is even better than the locally optimal

solution for most of the time. Again as we have discussed

WeA02.1

1010

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 7, 2009 at 13:43 from IEEE Xplore.  Restrictions apply.



0 20 40 60 80 100
0

2

4

6

8

10

12

14

16

time

c
o

s
t

 

 

static 

stochastical 

MEF

MDF

locally optimal 

Fig. 4. Comparison of Different Scheduling Schemes
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Fig. 5. Close Comparison

before, local optimality does not necessarily imply global

optimality. Therefore other local schemes, even though not

locally optimal, might have better performances.

VII. CONCLUSIONS AND FUTURE WORK

We have considered a remote centralized state estimation

problem with multiple sensors able to observe multiple plants

in this paper. Only a subset of the available sensors are able

to send their measurement to an estimator due to the finite

bandwidth of the network and each sensor can only measure

one of the plants. In order to minimize the total estimation

error at each time step, we have proposed four different

sensor scheduling schemes and showed the dynamic schemes

with feedback from the estimator to the scheduler outperform

those without feedback.

The analysis of the dynamic schemes is quite difficult

as there are no static or stochastic patterns of the selected

sensors and their associated plants. Hence it is not straight-

forward to show the convergence of the total estimation error

as we have done for the static and stochastic schemes. In

the future work, we will look at this issue and pursue the

convergence conditions for the two dynamic schemes.

Another interesting problem is to determine the minimum

number p such that the total estimation error is bounded. It is

clear that if p is sufficiently small and M,N are sufficiently

large, the total estimation error quickly diverges. It will be of

great interest to obtain a closed form relationship between

these numbers and the plants and the sensors parameters,

which shows the fundamental tradeoff between the accuracy

of the estimation and the resources available.

Finally, it would be interesting and natural to close the

loop via the network which is the dual of the estimation

problem we have considered.

REFERENCES

[1] T. Arampatzis, J. Lygeros, and S. Manesis, “A survey of applications
of wireless sensors and wireless sensor networks.” Proceedings of
the 13th Mediterranean Conference on Control and Automation, 2005,
pp. 719 – 724.

[2] M. Aboelaze and F. Aloul, “Current and future trends in sensor
networks: a survey.” Second IFIP International Conference on
Wireless and Optical Communications Networks, March 2005, pp. 551
– 555.

[3] B. Sinopoli, C. Sharp, L. Schenato, S. Schaffert, and S.S.Sastry,
“Distributed control applications within sensor networks,” vol. 91.
Proceedings of the IEEE, Aug 2003, pp. 1235 – 1246.

[4] W. Zhang, “Stability analysis of networked control systems,” Ph.D.
dissertation, Case Western Reserve University, 2001.

[5] B.Sinopoli, L.Schenato, M.Franceschetti, K.Poolla, M.Jordan, and
S.Sastry, “Kalman filtering with intermittent observations,” IEEE

Transactions on Automatic Control, vol. 49, no. 9, pp. 1453–1464,
2004.

[6] X. Liu and A. Goldsmith, “Kalman filtering with partial observation
losses.” IEEE Control and Decision, 2004.

[7] J.Nilsson, “Real time control systems with delays,” Ph.D. dissertation,
Lund Institute of Technology, Lund, Sweden, 1998.

[8] W.S.Wong and R.W.Brockett, “Systems with finite communication
bandwidth-part i: State estimation problems,” IEEE Trans. Automat.

Contr., vol. 42, Sept 1997.
[9] ——, “Systems with finite communication bandwidth-part ii: Stabi-

lization with limited information feedback,” IEEE Trans. Automat.

Contr., vol. 44, May 1999.
[10] S. C. Tatikonda, “Control under communication constraints,” Ph.D.

dissertation, Massachusetts Institute of Technology, 2000.
[11] A. Sahai, “Anytime information theory,” Ph.D. dissertation, Mas-

sachusetts Institute of Technology, 2001.
[12] G. C. Walsh and H. Ye, “Scheduling of networked control systems,”

IEEE Transactions on Control Systems Magazine, vol. 21, pp. 57 –
65, Feb 2001.

[13] G. C. Walsh, H. Ye, and L. G. Bushnell, “Stability analysis of
networked control systems,” IEEE Transactions on Control Systems

Technology, vol. 10, pp. 438 – 446, May 2002.
[14] A. Tiwari, M. Jun, D. E. Jeffcoat, and R. M. Murray, “Analysis of

dynamic sensor coverage problem using kalman filters for estimation.”
Proceedings of the 16th IFAC World Congress, 2005.

[15] V. Gupta, T. Chung, B. Hassibi, and R. M. Murray, “On a stochastic
sensor selection algorithm with applications in sensor scheduling and
dynamic sensor coverage,” Automatica, vol. 42, no. 2, pp. 251–260,
2006.

[16] I. Chlamtac, M. Conti, and J. Liu, “Mobile ad hoc networking:
Imperatives and challenges,” vol. 1, no. 1. Ad Hoc Networks, July
2003.

[17] R. Bruno, M. Conti, and E. Gregori, “Mesh networks: commodity
multihop ad hoc networks,” vol. 43. IEEE Transactions on Commu-
nications Magazine, March 2005, pp. 123 – 131.

[18] C.-Y. Chong and S. Kumar, “Sensor networks: evolution, opportuni-
ties, and challenges,” vol. 91. Proceedings of the IEEE, Aug 2003,
pp. 1247 – 1256.

WeA02.1

1011

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 7, 2009 at 13:43 from IEEE Xplore.  Restrictions apply.


