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E	ciently exploiting SIMD vector units is one of the most important aspects in achieving high performance of the application
code running on Intel Xeon Phi coprocessors. In this paper, we present several e
ective SIMD vectorization techniques such as
less-than-full-vector loop vectorization, Intel MIC speci�c alignment optimization, and small matrix transpose/multiplication 2D
vectorization implemented in the Intel C/C++ andFortran production compilers for Intel XeonPhi coprocessors. A set ofworkloads
from several application domains is employed to conduct the performance study of our SIMD vectorization techniques. �e
performance results show that we achieved up to 12.5x performance gain on the Intel Xeon Phi coprocessor. We also demonstrate
a 2000x performance speedup from the seamless integration of SIMD vectorization and parallelization.

1. Introduction

�e Intel Xeon Phi coprocessor is based on the Intel Many
Integrated Core (Intel MIC) architecture, which consists of
many small, power e	cient, in-order cores, each of which has
a powerful 512-bit vector processing unit (SIMD unit) [1]. It
is designed to serve the needs of applications that are highly
parallel, make extensive use of SIMDvector operations, or are
memory bandwidth bound. Hence, it is targeted for highly
parallel, high performance computing (HPC) workloads
[2] in a variety of �elds such as computational physics,
chemistry, biology, and �nancial services [3]. �e Intel Xeon
Phi Coprocessor 5110P has the following key speci�cations:

(i) 60 cores, 240 threads (4 threads/core),

(ii) 1.053GHz,

(iii) 1 TeraFLOP double precision theoretical peak perfor-
mance,

(iv) 8GB memory with 320GB/s bandwidth,

(v) 512 bit wide SIMD vector engine,

(vi) 32 KB L1, 512 KB L2 cache per core,

(vii) fused multiply-add (FMA) support.

One Tera�op theoretical peak performance is computed
as follows: 1.053GHz× 60 cores× 8 double precision elements
in SIMD vector × 2 �ops per FMA. As such, any compute
bound applications trying to achieve high performance on
Intel Xeon Phi coprocessors need to exploit a high degree of
parallelism and wide SIMD vectors. Using a 512-bit vector
unit, 16 single precision (or 8 double precision) �oating
point (FP) operations can be performed as a single vector
operation. With the help of the fused multiply-add (FMA)
instruction, up to 32 FP operations can be performed at each
core at each cycle. In comparison to the current 128-bit SSE
and 256-bit AVX vector extensions, this new coprocessor can
pack up to 8x and 4x the number of operations into a single
instruction, respectively.

Wider SIMD vector units cannot be e
ectively utilized
by simply extending the vectorizer for Intel SSE and Intel
AVX architecture. Consider the following simple example.
�ere exists a scalar loop that executesN-iterations. Using the
vector length of VL, a vector loopwould execute �oor (N/VL)
full vector iterations followed by NmodVL scalar remainder
iterations. Unless � is su	ciently larger than VL, executing
NmodVL scalar iterations can still be a signi�cant portion
of the vector execution of such a loop. In what follows, we
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Figure 1: SIMD vector compilation infrastructure for function and loop vectorization.

will discuss two approaches in handling such “less-than-full-
vector” situations: the �rst technique is masked vectorization
and the second technique is small matrix optimization and
2-dimensional (2D) vectorization.

Furthermore, architectural or microarchitectural di
er-
ences between Intel Xeon Phi coprocessors and Intel Xeon
processors necessitate that new compiler techniques be
developed. �is paper focuses on three SIMD vectorization
techniques and makes the following contributions.

(i) We propose an extended compiler scheme to vector-
ize short trip-count loops and peeling and remainder
loops that are classi�ed as “less-than-full-vector”
cases, with amasking capability supported by the Intel
MIC architecture.

(ii) We describe our speci�c data alignment strategies
for achieving optimal performance through vector-
ization, as the Intel MIC architecture is much more
demanding onmemory alignment than the Intel AVX
architecture [4].

(iii) We describe our 2-dimensional vectorizationmethod
which is beyond the conventional loop vectoriza-
tion for small matrix transpose and multiplication
operations by fully utilizing long SIMD vector units,
swizzle, shu�e, and masking support on the Intel
MIC architecture.

�e rest of this paper is organized as follows: Section 2
provides a high-level overview of Intel C/C++ and Fortran
compilers. In Section 3, the compiler details of “less-than-
full-vector” loop vectorization are described and discussed.
Speci�c data alignment strategies for the Intel Xeon Phi
coprocessor and the schemes of performing data alignment
optimization are discussed in Section 4. Section 5 presents
the 2D vectorization methods for small matrix transpose and
multiplication. Section 6 discusses related work. Section 7
provides the performance results with a set of workloads and
microbenchmarks. Section 8 concludes the paper.

2. Compiler Architecture for Vectorization

�is section describes the Intel C/C++ and Fortran compiler
support for the Intel Xeon Phi coprocessor at a high level
with respect to loop vectorization and the translation and
optimization of SIMD vector extensions [5–7]. �e compiler
translates serial C/C++ and Fortran code via automatic loop
analysis or based on annotations using the SIMD pragma
and vector attributes into SIMD instruction sequences. �e
compilation process is amenable to many optimizations
such as loop parallelization, memory locality optimizations,
classic loop transformations and optimizations, redundancy
elimination, and dead code elimination before and a�er
the loop/function vectorization. Figure 1 depicts the SIMD
compilation infrastructure of the Intel C/C++ and Fortran
compilers for automatic loop vectorization and compiling
SIMD pragma, vector function annotations, and associated
clauses. �e framework consists of four major parts.

(i) Perform automatic loop analysis and identify and
analyze programmer annotated functions and loops
by parsing and collecting function and loop vector
properties. In addition, our compiler framework can
apply interprocedural analysis and optimization with
pro�ling and call-graph creation for automatic func-
tion vectorization.

(ii) Generate vectorized function variants with properly
constructed signatures via function cloning and vec-
tor signature generation.

(iii) Vectorize SIMD for loops that are identi�ed by
the compiler or annotated using SIMD extensions
(#pragma SIMD can be used to vectorize outer loops)
and cloned vector function bodies and all arguments
by leveraging and extending our automatic loop
vectorizer.

(iv) Enable classical scalar, memory, and loop optimiza-
tions and parallelization e
ectively, before or a�er
loop and function vectorization, for achieving good
performance.
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float x, y[31];
for (k=0; k<31; k++) {

x = x + fsqrt(y[k]);
}

Algorithm 1

3. Less-than-Full-Vector Loop
Vectorization with Masking

Intel Xeon Phi coprocessor provides long (512-bit) SIMD
vector hardware support for exploitingmore vector-level par-
allelism.�e long SIMD vector unit imposes the requirement
of packingmore scalar loop iterations into a single vector loop
iteration, which also results in more iterations in the peeling
loop, and/or in the remainder loop remaining nonvectorized,
due to the fact that they do not constitute the full SIMDvector
(or less-than-full-vector) unit of Intel MIC architecture. For
example, consider the short trip-count loop as shown in
Algorithm 1.

When the loop is vectorized for Intel SSE2 with vector
length = 4 (128-bit), the remainder loop will have 3 iterations.
When the loop is vectorized for the Intel MIC architecture
with vector length = 16 (512-bit), the remainder loop will
have 15 iterations. In another situation, if the loop is unrolled
by 16, then the remainder loop will have 15 iterations,
leaving the remaining 15 iterations in a scalar execution
form. �us, vectorizing the peeling and remainder loops
(i.e., short trip-count loop in general) is very important for
the Intel MIC architecture. �is section describes how to
apply vectorization, with masking support, to peeling and
remainder loops (i.e., short trip-count loop) with special
guarding masks to prevent the SIMD code from exceeding
original loop and memory access boundaries. At a high
level, the following steps describe our vectorization scheme
without vectorization of peeling and remainder loops.

(i) s0: select alignment, vector length, and unroll factor.

(ii) s1: generate alignment setup code.

(iii) s2: compute the trip count of the peeling loop.

(iv) s3: emit the scalar peeling loop.

(v) s4: generate the vector loop initialization code.

(vi) s5: emit the main vector loop.

(vii) s6: compute the trip count of the remainder loop.

(viii) s7: emit the scalar remainder loop.

Given the simple example as shown in Algorithm 2, the
loop trip-count “�” and the pointer “�” (&�[0]) have a
memory alignment that is unknown at compile time.

On the IntelMIC architecture the vector length is 512 bits,
which requires 64-byte alignment for e	cient memory
accesses. To achieve 64-byte aligned memory loads/stores,
we need to pack 16 �oat (32-bit) elements for each single
vector iteration and generate a peeling loop. Pseudocode 1
shows the vectorized loop based on the vectorization steps

float foo(float ∗y, int n)

{ int k; float x = 10.0f;

for (k = 0; k < n; k++) {
x = x + fsqrt(y[k])
}
return x;

}

Algorithm 2

[s0, s1, . . . , s7] described above. �e “less-than-full-vector”
loops, that is, the peeling and remainder loops, are not
vectorized.

Note that we performed loop unrolling for the main
vectorized loop, which allows the hardware to issue more
instructions per cycle by hiding memory access latency and
reducing branching. To enable the “less-than-full-vector”
(i.e., peeling loop, remainder loop, or short trip-count loop)
vectorization, the loop vectorization scheme is extended as
below.

(i) s0: select alignment, vector length and unroll factor.

(ii) s1: generate alignment setup code.

(iii) s2: compute the trip count of peeling loop.

(a) Create a vector of 16 elements with value
⟨0, . . . , 15⟩.

(b) Create a vector of 16 elements with value
⟨peeledTripCount, . . . , peeledTripCount⟩.

(iv) s3: emit the vectorized peeling loop with masking
operations.

(v) s4: generate the main vector loop initialization code.

(vi) s5: emit the main vector loop.

(vii) s6: compute the trip count of the remainder loop.

(a) Create a vector of 16 elements with the value
⟨mainTripCount, . . . ,mainTripCount+15⟩.

(b) Create a vector of 16 elements with the value
⟨origTripCount, . . . , origTripCount⟩.

(viii) s7: emit the vectorized remainder loop with masking
operations.

Pseudocode 2 shows the vectorized loops based on the
extended vectorization schemes [s0, s1, . . . , s7] described as
above.

In the cases of short trip-count loop vectorization of
peeling and remainder loops with runtime trip-count and
alignment checking, loops are vectorized as e	ciently as pos-
sible. �ese loops are vectorized with optimal vector lengths
and an optimal amount of pro�table unrolling regardless of
a known loop trip count. �is provides better utilization of
SIMD vector hardware without sacri�cing the performance
of short loops.�is scheme allows us to completely eliminate
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misalign = &y[0] & 63

peeledTripCount = (63 – misalign)/sizeof(float)

x = 10.0f;

do k0 = 0, peeledTripCount-1 // peeling loop

x = x + fsqrt(y[k0])
enddo

x1 v512 = (m512)0

x2 v512 = (m512)0

mainTripCount = n – ((n – peeledTripCount) & 31)

do k1 = peeledTripCount, mainTripCount-1, 32

x1 v512 = mm512 add ps( mm512 fsqrt(y[k1:16]),x1 v512)

x2 v512 = mm512 add ps( mm512 fsqrt(y[k1+16:16]), x2 v512)

enddo

// perform vector add on two vector x1 v512 and x2 v512

x1 v512 = mm512 add ps(x1 v512, x2 512);

// perform horizontal add on all elements of x1 v512, and

// the add x for using its value in the remainder loop

x = x + mm512 hadd ps(x1 512)

do k2 = mainTripCount, n // Remainder loop

x = x + fsqrt(y[k2])
enddo

Pseudocode 1: Pseudocode without vectorizing “less-than-full-vector” loops.

misalign = &y[0] & 63

peeledTripCount = (63 – misalign) / sizeof(float)

x = 10.0f;

// create a vector: <0,1,2,. . .15>
k0 v512 = mm512 series pi(0, 1, 16)

// create vector: all 16 elements are peeledTripCount

peeledTripCount v512 = mm512 broadcast pi32(peeledTripCount)

x1 v512 = (m512)0

x2 v512 = (m512)0

do k0 = 0, peeledTripCount-1, 16

// generate mask for vectorizing peeling loop

mask = mm512 compare pi32 mask lt(k0 v512, peeledTriPCount v512)

x1 v512 = mm512 add ps mask( mm512 fsqrt(y[k0:16]), x1 v512, mask)

enddo

mainTripcount = n – ((n – peeledTripCount) & 31)

do k1 = peeledTripCount, mainTripCount-1, 32

x1 v512 = mm512 add ps( mm512 fsqrt(y[k1:16]), x1 v512)

x2 v512 = mm512 add ps( mm512 fsqrt(y[k1+16:16]), x2 v512)

enddo

// create a vector: <mainTripCount,mainTripCount+1 . . . mainTripCount+15>
k2 v512 = mm512 series pi(mainTripCount, 1, 16)

// create a vector: all 16 elements has the same value n

n v512 = mm512 broadcast pi32(n)

step v512 = mm512 broadcast pi32(16)

do k2 = mainTripCount, n, 16 // vectorized remainder loop

mask = mm512 compare pi32 mask lt(k2 v512, n v512)

x1 v512 = mm512 add ps mask( mm512 fsqrt(y[k2:16]), x1 v512, mask)

k2 v512 = mm512 add ps(k2 v512, step v512)

enddo

x1 v512 = mm512 add ps(x1 v512, x2 512);

// perform horizontal add on 8 elements and final

// reduction sum to write the result back to x.

x = x + mm512 hadd ps(x1 512)

Pseudocode 2: Pseudocode with vectorizing “less-than-full-vector” loops using mask.
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scalar execution of the loop in favor of masked SIMD vector
code generation. Special properties of the mask are used to
match unmasked code generation inmost cases. For example,
masked scalar memory loads that could be unsafe under an
empty mask are considered safe under a remainder mask
since it is never empty.

Without adding the capability of short trip-count loop
vectorization, the loops in the ConvolutionFFT2D bench-
mark with 7 iterations and double precision data type would
end up as a fully scalar execution. Applying vectorizationwith
masking to these short trip-count loops results in a∼2x to∼5x
speedup for the 7-iteration short trip-count (or less-than-full-
vector) loops in the ConvolutionFFT2D benchmarks on the
Intel MIC Architecture.

4. Alignment Strategy and Optimization

�eIntel XeonPhi coprocessor ismuchmore sensitive to data
alignment than the Intel Xeon E5 processor, so developing
an Intel MIC oriented alignment strategy and optimization
schemes is one of the key aspects for achieving optimal
performance.

(i) Similar to Intel SSE4.2, the SIMD load+op instruc-
tions require vector size alignment, which is 64-byte
alignment for the Intel MIC architecture. However,
simple load/store instructions require the alignment
information to be known at compile time on the Intel
Xeon Phi coprocessor.

(ii) Di
erent from prior Intel SIMD extensions, all SIMD
load/store instructions including gather/scatter
require at least element size alignment. Misaligned
elements will cause a fault. �is necessitates the Intel
MIC architecture ABI [8] to require that all memory
accesses be elementwise aligned.

(iii) �ere are no special unaligned load/store instructions
in the Intel Initial Many Core Instruction (Intel
IMCI) set.�is is overcome by using unpacking loads
and packing stores that are capable of dealing with
unaligned (element-aligned) memory locations. Due
to their unpacking and packing nature, these instruc-
tions cannot be directly used for masked loads/stores,
except under special circumstances.

(iv) �e faulting nature ofmaskedmemory access instruc-
tions in Intel IMCI adds extra complexity to those
instructions addressing data outside paged memory
and may fail even if actual data access is masked out.
�e exceptions are gather/scatter instructions.

�erefore, the compiler aggressively performs data align-
ment optimizations using traditional techniques such as
alignment peeling and alignment multiversioning.

Alignment peeling implies the creation of a preloop that
executes several iterations on unaligned data in order to
reach an aligned memory address. As a result, most of these
iterations are executed using aligned SIMD operations. �e
preloop can be vectorized with masking as described in
Section 2. Unfortunately, this scheme works only for one set

of coaligned memory addresses, and the others are assumed
to be unaligned. In addition, our multiversioning optimiza-
tion can be applied to the second set of coaligned locations
by examining them dynamically. Aligned or unaligned oper-
ations are used based on the results of the examination.

For unmasked unaligned (element-aligned) vector loads
and stores, the compiler uses unpacking/packing load and
store instructions. �ey are safe in this scenario and perform
much better than gather/scatter instructions. If the compiler
cannot prove the safety of the entire address range of a
particular memory access, it inserts a zero-mask check in
order to avoid a memory fault. All instructions with the same
mask are emitted under a single check to avoid execution
under the empty mask and to eliminate multiple checks of
the same condition.

Unpacking and packing instructions may cause fault
when they are used with a mask, as they may address
masked-out invalid memory. On-the-�y data conversion
may cause fault even without masking. �us, for unaligned
masked and/or converting loads/stores, the compiler uses
gather/scatter instructions instead of safety, even though this
degrades performance. Memory faults would never happen
if each memory access had at least one vector (64 bytes) of
memory paged a�er its initial address. �is can be achieved
by padding each data section in the program and each
dynamically allocated object with 64 bytes. For developers
who are willing to do the padding to achieve optimal perfor-
mance from masked code, the compiler knob-opt-assume-
safe-padding was introduced. Under this knob, unaligned
masked and/or converting load/store operations are emitted
as unpacking loads/packing stores.

(i) In unmasked converting cases, as well as cases
with peel/remainder masks, the compiler emits
loads/stores directly. �e mask in this case will work
since it is dense.

(ii) For an arbitrary masking scenario, an unmasked load
unpack instruction is used, which is safe due to the
padding assumption, followed by a masked move
(blend).�e “nonempty-mask” check guarantees that
the 64-byte padding is always enough for safety; that
is, at least one item within the vector is to be loaded.
�us, the tail end of the memory access is within 64
bytes from meaningful data.

�e safe-padding optimization has provided notable
improvements on a number of benchmarks, for example,
10% gain on BlackScholes and selected Molecular Dynamics
kernels.

5. Small Matrix Operations 2D Vectorization

Frequently seen in HPC workloads, operations on small
matrices are a growing, pro�table set of calculations for
vectorization on Intel Xeon Phi coprocessors. With the wider
SIMD unit support, the Intel C/C++ and Fortran compilers
are enhanced to vectorize common operations on small
matrices along 2 dimensions. Small matrices are matrices
whose data can reside entirely in one or two 512-bit SIMD
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real, dimension(4,4):: A, B, C

real sum

integer j, l, i

do j = 1, 4

do l = 1, 4

sum = 0.0

do i = 1, 4

sum = sum + A(i,l) ∗ B(i,j)
enddo

C(l,j) = sum

enddo

enddo

Algorithm 3: Small matrix multiplication summation.

Table 1: Contents of vector register A v512 a�er load.

A v512

A[1][1] A[1][2] A[1][3] A[1][4]
A[2][1] A[2][2] A[2][3] A[2][4]
A[3][1] A[3][2] A[3][3] A[3][4]
A[4][1] A[4][2] A[4][3] A[4][4]

Table 2: Contents of vector register B v512 a�er load.

B v512

B[1][1] B[1][2] B[1][3] B[1][4]
B[2][1] B[2][2] B[2][3] B[2][4]
B[3][1] B[3][2] B[3][3] B[3][4]
B[4][1] B[4][2] B[4][3] B[4][4]

Table 3: A� v512 a�er zero initialization.

A� v512

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

registers. Consider the example Fortran loop nest with 32-bit
�oat (or real) type as shown in Algorithm 3.

With nonunit stride references present in the inner loop
of Algorithm 3, the conventional inner loop vectorization
will not provide the most e	cient vectorization of the loop
nest. �e outer loop vectorization faces similar issues. �e
Intel C/C++ and Fortran compiler employs the wider SIMD
vector unit of the Intel MIC architecture and vectorizes this
example loop across all three loop nesting levels, named as
2-dimensional (2D) vectorization on small matrices.

�e vectorization approach is detailed below with vector
intrinsic pseudocode. For visualization, Tables 1–13 depict
a snapshot of the various vector unit contents a�er each
corresponding instruction. Tables 1–13 represent a vector
unit, whose name is in the le�most column and its contents in
the rightmost four columns. Of the rightmost four columns,
the lowest addressed element is in the top le� corner and each
consecutive element follows a row-major addressing order.

Table 4: Vector register contents a�er �rst shu�e.

A� v512

A[1][1] 0 0 0

0 A[2][2] 0 0

0 0 A[3][3] 0

0 0 0 A[4][4]

Table 5: Vector register contents a�er second shu�e.

A� v512

A[1][1] 0 0 A[4][1]
A[1][2] A[2][2] 0 0

0 A[2][3] A[3][3] 0

0 0 A[3][4] A[4][4]

Table 6: Vector register contents a�er third shu�e.

A� v512

A[1][1] 0 A[3][1] A[4][1]
A[1][2] A[2][2] 0 A[4][2]
A[1][3] A[2][3] A[3][3] 0

0 A[2][4] A[3][4] A[4][4]

Table 7: Vector register contents a�er the �nal shu�e.

A� v512

A[1][1] A[2][1] A[3][1] A[4][1]
A[1][2] A[2][2] A[3][2] A[4][2]
A[1][3] A[2][3] A[3][3] A[4][3]
A[1][4] A[2][4] A[3][4] A[4][4]

Table 8: Vector register contents a�er load with broadcast.

t1 v512

A[1][1] A[2][1] A[3][1] A[4][1]
A[1][1] A[2][1] A[3][1] A[4][1]
A[1][1] A[2][1] A[3][1] A[4][1]
A[1][1] A[2][1] A[3][1] A[4][1]

Table 9: Vector register contents illustrating swizzle.

t2 v512

B[1][1] B[1][2] B[1][3] B[1][4]
B[1][1] B[1][2] B[1][3] B[1][4]
B[1][1] B[1][2] B[1][3] B[1][4]
B[1][1] B[1][2] B[1][3] B[1][4]

First, array data is loaded into a vector unit. With a wider
SIMD vector unit, the compiler is able to load the entire A
and B matrix each into a single vector unit.

(a) Matrices A and B are loaded into two SIMD registers:

//Load A matrix from memory into vector
register,

A v512 = ⟨A[1][1], A[1][2], . . . . . .,
A[4][3], A[4][4]⟩.

For more details see Table 1.

//Load B matrix from memory into vector
register,

B v512 = ⟨B[1][1], B[1][2], . . . . . .,
B[4][3], B[4][4]⟩.

For more details see Table 2.
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Table 10: C v512 vector unit contains elementwise product of
t1 v512 and t2 v512.

C v512 t1 v512 ∗ t2 v512

Table 11: t1 v512 vector register contents illustrating �nal load with
broadcast.

t1 v512

A[1][4] A[2][4] A[3][4] A[4][4]
A[1][4] A[2][4] A[3][4] A[4][4]
A[1][4] A[2][4] A[3][4] A[4][4]
A[1][4] A[2][4] A[3][4] A[4][4]

Table 12: t2 v512 vector register contents illustrating �nal swizzle.

t2 v512

B[4][1] B[4][2] B[4][3] B[4][4]
B[4][1] B[4][2] B[4][3] B[4][4]
B[4][1] B[4][2] B[4][3] B[4][4]
B[4][1] B[4][2] B[4][3] B[4][4]

Table 13: Final C v512 vector unit contains sum of existing values of
C v512 and elementwise products t2 v512 and t v512.

C v512 t2 v512 ∗ t1 v512 + C v512

Next, the compiler optimizes themultiplication operation
between matrix A and matrix B, through a series of data lay-
out transformations and vector multiplication and addition
operations.�e compiler identi�es a matrix multiplication in
this loop and permutes the elements in matrix A and matrix
B setting up simple vector multiplications and additions.

(b) We can simplify the multiplication needed through a
transposition of the elements of A, followed by amultiply and
add of each rowB andwith each rowof transposedA.We start
by transposing the elements of A.

//First, create a vector unit of zeros.

A� v512 = mm512 setzero( )

For more details see Table 3.
For the transpose operation, we use a set of new Intel

MIC mm512 mask shuf128 × 32( ) intrinsic calls. Similarly
in classic architecture, this shu�e intrinsic is bound by four
128-bit “lanes” in each vector register. �us, this intrinsic
contains arguments for permutation patterns for each of the
four 128-bit lanes, as well as a permutation pattern for each
of the four 32 bit boundaries within each of those lanes. �e
arguments are as follows:

m512 res = mm512 mask shuf128 × 32( m512 v1, (I16)
vmask, m512 v2, (SI32)perm128, (SI32)perm32),

(i) res: result vector unit,

(ii) v1: blend-to-vector unit; the values in this vector unit
will be blended with the shu�ed elements of the v2,
according to the write mask,

(iii) vmask: write mask; the write mask is a bit vector
specifying which elements to overwrite in v1 with the
shu�e elements of v2,

(iv) v2: incoming data vector unit; this vector unit holds
the elements which are to be shu�ed,

(v) perm128: 128-bit lane permutation; this value speci�es
the permutation order of the vector unit’s 128-bit
lanes,

(vi) perm32: elementwise permutation; this value speci-
�es the permutation order of the each of the four 32
bit boundaries within each 128-bit lane,

//Begin transpose operation by
shufflingelements into

//desired order. Shuffle used to insert
matrix diagonal

//into transpose result vector unit,

A� v512 = mm512 mask shuf128 ×32(A�
v512, 0 × 8421,A v512,
MM PERM DCBA, MM PERM DCBA).

For more details see Table 4.

//Shuffle the next four elements and
blend-in with the

//elements written from previous
shuffle,

A
�
v512 = mm512 mask shuf128 × 32(A�

v512, 0 × 4218,A v512, MM PERM CBAD,
MM PERM ADCB).

For more details see Table 5.

//Shuffle the next four elements and
blend-in with the

//elements written from previous
shuffle,

A� v512 = mm512 mask shuf128 × 32(A�

v512, 0 × 2184, A v512, MM PERM BADC,
MM PERM BADC)

For more details see Table 6.

//Shuffle the final four elements and
blend-in with the

//elements written from previous shuffle
to obtain the

//complete transpose,

A� v512 = mm512 mask shuf128 × 32(A�

v512, 0 × 1842, A v512, MM PERM ADCB,
MM PERM CBAD).

For more details see Table 7.
A�er the elements of matrix A have been permuted

through transposition, each element of A and B is now in the
correct position within each vector unit for a vector product,
resulting in the same behavior as the dot product of rows and
columns.

(c) Next, we perform themultiplication of each row of the
transposed A with each row of B, maintaining a sum of the
products from row to row:
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//Load the first row of A� v512 and
broadcast that row to

//each of the remaining three rows

t1 v512 = mm512 extload ps(A� v512[0 : 4],
MM FULLUPC NONE, MM BROADCAST 4 × 16,
0).

For more details see Table 8.
Another useful intrinsic used in this optimization is the

Intel MIC mm512 swizzle ps( ) intrinsic. �is intrinsic is
similar to that of the shu�e above except it only permutes
each 128-bit lane and not each of the 32 boundaries within
those lanes. �e arguments are as follows:

m512 res = mm512 swizzle ps( mm512 v1, SI32 perm)

(i) res: result vector unit,

(ii) v1: incoming data vector unit to be permuted,

(iii) perm: permutation pattern for each 128-bit lane,

//Load the first row of B v512 and
broadcast that row to

//each of the remaining three rows

t2 v512 = mm512 swizzle ps (B v512,
MM SWIZ REG AAAA).

For more details see Table 9.

//Multiply each element of t1 v512
with each element of

//t2 v512 and store result in C v512

C v512 = mm512 mul ps (t1 v512, t2 v512).

For more details see Table 10.

//Load the second row of A� v512 and
broadcast that row

//to each of the remaining three rows

t1 v512 = mm512 extload ps(A�

v512[4 : 8], MM FULLUPC NONE, MM
BROADCAST 4 × 16, 0)

//Load the second row of B v512 and
broadcast that row to

//each of the remaining three rows

t2 v512 = mm512 swizzle ps (B v512,
MM SWIZ REG BBBB).

Each subsequent multiplication must be accumulated
for each row. �ese multiplications and additions are the
corresponding dot product of rows and columns found in
matrixmultiplication, but because of the earlier transpose, no
further permuting is required:

//Add the existing values of C v512
with the product of

//t1 v512 and t2 v512 and store
result in C v512

C v512 = mm512 madd213 ps (t2 v512,
t1 v512, C v512)

//Load the third row of A� v512
and broadcast that row to

//each of the remaining three rows

t1 v512 = mm512 extload ps(A�

v512[8 : 12], MM FULLUPC NONE,
MM BROADCAST 4 × 16, 0)

//Load the third row of B v512 and
broadcast that row to

//each of the remaining three rows

t2 v512 = m512 swizzle ps (B v512,
MM SWIZ REG CCCC)

//Add the existing values of C v512
with the product of

//t1 v512 and t2 v512 and store result
in C v512

C v512 = mm512 madd213 ps (t2 v512,
t1 v512,C v512)

//Load the fourth row of A� v512
and broadcast that row

//to each of the remaining three rows

t1 v512 = mm512 extload ps(A�

v512[12:16], MM FULLUPC NONE,
MM BROADCAST 4 × 16, 0).

For more details see Table 11.

//Load the fourth row of B v512
and broadcast that row to

//each of the remaining three rows

t2 v512 = mm512 swizzle ps (B v512,
MM SWIZ REG DDDD).

For more details see Table 12.

//Add the existing values of C v512
with the product of

//t1 v512 and t2 v512 and store result
in C v512

C v512 = mm512 madd213 ps (t2 v512,
t1 v512, C v512).

For more details see Table 13.
A�er the simpli�ed matrix multiplication, the loop fur-

ther requires that results be stored in the C matrix. With all
elements correctly computed and residing in vector unit only
one store operation is generated.

(d) Finally, the result vector unit of values is stored to the
C array:

//The elements of vector register
C v512 are then stored
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//to memory at &C[1][1]

⟨C[1][1], &C[1][2], . . . C[4][3],
&C[4][4]⟩ = C v512.

�e 512-bit long SIMD vector unit of the Intel MIC archi-
tecture supports consumption of both matrix dimensions
for 2D vectorization, �tting an entire small matrix (4 × 4
�oat type) into one 512-bit SIMD vector register.�is enables
more e	cient �exible vectorization and optimizations for
small matrix operations. For example, the scalar version of
single precision 4 × 4 matrix multiply computation naively
executes 128 memory loads, 64 multiplies, 64 additions,
and 16 memory stores. �e small matrix 2D vectorization
reduces instructions to 2 vector loads from memory, 4
multiplications, 4 shu�es, 4 swizzles, 3 additions, and 1 vector
store to memory for a reduction of approximately 15x in
number of instructions.

6. Performance Evaluation

�is section presents the performance resultsmeasured on an
Intel Xeon Phi coprocessor system using a set of workloads
and microbenchmarks.

6.1. Workloads. We have selected a set of workloads to
demonstrate the performance bene�ts and importance of
SIMD vectorization on the Intel MIC architecture. �ese
workloads exhibit a wide range of application behavior that
can be found in areas such as high performance computing,
�nancial services, databases, image processing, searching,
and other domains. �ese workloads include the following.

6.1.1. NBody. NBody computations are used in many sci-
enti�c applications such as astrophysics [9] and statistical
learning algorithms [10].�emain computation involves two
loops that iterate over the bodies and computes a pairwise
interaction between them.

6.1.2. 2D 5 × 5 Convolution. Convolution is a common image
�ltering computation used to apply e
ects such as blur and
sharpen. For a given 2D image and a 5 × 5 spatial �lter
containing weights, this convolution computes the weighted
sum for the neighborhood of the 5 × 5 set of pixels.

6.1.3. Back Projection. Back projection is commonly used for
performing cone-beam image reconstruction of CT projec-
tion values [11]. �e input consists of a set of 2D images that
are “back-projected” onto a 3D volume in order to construct
a 3D grid of density values.

6.1.4. Radar (1D Convolution). �e 1D convolution is widely
used in applications such as radar tracking, graphics, and
image processing.

6.1.5. Tree Search. In memory tree structured index search
is a commonly used operation in database applications. �is
benchmark consists of multiple parallel searches over a tree

Table 14: Target system con�guration.

System parameters Intel Xeon Phi processor

Chips 1

Cores/threads 61 and 244

Frequency 1 GHz

Data caches 32KB L1, 512 KB L2 per core

Power budget 300W

Memory capacity 7936MB

Memory technology GDDR5

Memory speed 2.75 (GHz) (5.5 GT/s)

Memory channels 16

Memory data width 32 bits

Peak memory Bandwidth 352GB/s

SIMD vector length 512 bits

with di
erent queries, where the path through the tree is
determined based on the comparison of results of the query
and node value at each tree level.

6.2. System Con�guration. �e detailed information on the
con�guration of the Intel Xeon Phi Coprocessor used for
the performance study and for evaluating the e
ectiveness of
SIMD vectorization techniques is provided in Table 14.

6.3. Performance Results. All benchmarks were compiled as
native executable using the Intel 13.0 product compilers and
run on the Intel Xeon Phi coprocessor system speci�ed in
Table 14. To demonstrate the performance gains obtained
through the SIMD vectorization, two versions of the binaries
were generated for each workload. �e baseline version
was compiled with OpenMP parallelization only (-mmic -
openmp -novec); the vectorized version is compiled with
vectorization (default ON) and OpenMP parallelization (-
mmic -openmp).

�e performance scaling is derived from the OpenMP-
only execution and OpenMP with 512-bit SIMD vector
execution on the Intel Xeon Phi coprocessor system that we
described at beginning of this section.�at is, when thework-
load contains 32-bit single precision computations, 16-way
vectorization may be achieved. When the workload contains
64-bit double-precision computations, 8-way vectorization is
achieved.

Figure 2 shows the normalized SIMD performance
speedup of �ve workloads.�e generated SIMD code of these
workloads achieved SIMD speedup ranging from 2.25x to
12.45x. Besides those classical HPC applications with regular
array accesses and computations, the workload with a large
amount of branching codes, such as tree search used in
database applications, achieves 2.25x speedup as well with
SIMDvectorization based on themasking support in the Intel
MIC architecture.

6.3.1. Impact of Less-than-Full-Vector Loop Vectorization. To
examine the impact of the less-than-full-vector loop vector-
ization, a simple microbenchmark was written with three
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Figure 2: Performance results of workloads.

small kernel functions: intAdd, floatAdd, and doubleAdd.
Each of them has a short trip-count loop that takes 3 arrays,
a, b, c of size 31, and does an elementwise addition with
respect to int, float, and double data types. �e vector
length is 16 iterations for loops in the intAdd and floatAdd
kernels and 8 iterations for the loop in the doubleAdd
kernel function.�is experimental setup ensures the intAdd
and floatAdd loops contain a 15-iteration remainder loops,
and the doubleAdd loop contains a 7-iteration remainder
loop which can be vectorized with the “less-than-full-vector”
loop SIMD vectorization technique using masking support
described in the Section 2.

Figure 3 shows performance gains from vectorization
without “less-than-full-vector” loop vectorization and with
“less-than-full-vector” loop vectorization for three short trip-
count loops in the intAdd, floatAdd, and doubleAdd
kernel functions. �e generated SIMD code of these loops
achieves a speedup ranging from 2.89x to 3.32x without
“less-than-full-vector” loop vectorization. With “less-than-
full-vector” loop vectorization, the performance speedup is
improved signi�cantly and ranges from 3.28x to 7.68x. Note
that, in this measurement, all data are 64-byte aligned, there
are no peeling loops generated, and the aligned memory
load/store instructions such as vmovaps and vmovapd [1]
are generated to achieve optimal performance. �e next
subsection shows the data alignment impact on the IntelMIC
architecture.

6.3.2. Impact of Data Alignment. �ese kernel loops used in
Section 6.3.1 are reused for this measurement. In this study,
the di
erence is that we do not provide alignment informa-
tion of the arraysa, b, and c.Without alignment information,
given these loops are short trip-count loopswith constant trip
count, the compiler generates SIMD instructions:

(i) vloadunpackld and vloadunpackhd to load
data from unaligned memory locations and
vpackstoreld and vpackstorehd [1] to store data
to unaligned memory locations for the vectorized
main loop,

(ii) vgatherdps and vscatterdps instructions [1] to
load and store for the vectorized remainder loop with
write mask.
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Figure 3: Performance gain with “less-than-full-vector” loop vec-
torization.

1.00 1.00 1.00

1.45x
1.41x

1.32x

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1.50

intAdd short trip-
count loop

doubleAdd short 
trip-count loop

Normalized gain from data alignment

Unaligned memory accesses

Aligned memory accesses

floatAdd short 
trip-count loop

Figure 4: Performance gain with data alignment.

As shown in Figure 4, with data alignment information,
the performance of SIMD execution is 1.45x, 1.41x, and
1.32x better than unaligned cases with respect to int, float,
and double types of three kernel functions. �e alignment
optimization described in Section 3 is critical to achieving
optimal performance on Intel MIC architecture.

6.3.3. Impact of Small Matrix 2D Vectorization. Small matrix
operations such as addition andmultiplication have served as
important parts ofmanyHPC applications. A number of clas-
sic compiler optimizations such as loop complete unrolling,
partial redundancy elimination (PRE), scalar replacement,
and partial summation have been developed to achieve
optimal vector execution performance. �e conventional
inner or outer loop vectorization for 3-level loop nests of 4
× 4 matrix operations is not performing well on Intel Xeon
Phi coprocessor due to

(i) less e
ective use of 512-bit long SIMD unit, for
example, for 32-bit �oat data type, when either inner
loop or outer loop is vectorized. In this case 4-way
vectorization is used instead of 16-way vectorization,

(ii) side-e
ects on classic optimizations, for example, the
partial redundancy elimination, partial summation,
and operator strength reduction, when the loop is
vectorized.
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Figure 5: Performance gain/loss with SIMD vectorization.

As shown in Figure 5, the convention loop vectorization
on small matrix (4 × 4) operations does cause performance
degradation. For both cases of single precision and double
precision matrix (4 × 4) multiplications, the performance
degradation is ∼50% when comparing against cases without
vectorization, which are used as the baseline performance.
In the case of the paired matrix multiplication, there are two
matrix (4 × 4) multiplications done in a single loop nest, and
matrix B is transposed for computing sumy (for more details
see Algorithm 4).

�e classical loop optimizations are not as e
ective as for
the single matrix multiplication case due to the transpose
operation of matrix B and paired matrix multiplications in
the loop. �us, the performance achieved with classical loop
optimization is on-par with applying conventional loop vec-
torization, and nonotable performance di
erence is observed
as shown in Figure 5. Promisingly, applying the small matrix
2D vectorization we proposed in Section 4, we achieved a
performance speedup 1.15x/1.04x for single matrix (4 × 4
�oat/double type) multiplication and a speedup 5.42x/4.18x
for paired matrix (4 × 4 �oat/double type) transpose and
multiplication, which demonstrates the e
ectiveness of small
matrix 2D vectorization using long SIMD vector unit sup-
ported by Intel Xeon Phi coprocessor.

7. Seamless Integration with Threading

E
ectively exploiting the power of a coprocessor like Xeon
Phi requires that both thread- and vector-level parallelism
are exploited. While the parallelization topic is beyond the
scope of this paper, we would still like to highlight that the
SIMD vector extensions can be seamlessly integrated with
threading models such as OpenMP∗ 4.0 supported by the
Intel compilers. Given the Mandelbrot example Mandelbrot
computes a graphical image representing a subset of the
Mandelbrot set (awell-known 2D fractal shape) out of a range
of complex numbers. It outputs the number of points inside
and outside the set.

In the mandelbrot workload, the function “mandel” in
the mandelbrot program is a hot function and a candi-
date for SIMD vectorization, so we can annotate it with
#pragma omp declare SIMD. At the caller site, the hot
loop is a double nested for loop, the outer for loop is asserted
with “omp parallel for” for threading, and the inner loop
is asserted with “omp SIMD” for vectorization as shown in
Algorithm 5. Note that the “guided” scheduling type is used
for achieving a good load balance, as each call to “mandel”
function does varying amount of work in terms of execution
time due to “break” exit of the loop.

Figure 6 shows that the SIMD vectorization alone deliv-
ers a ∼16x speedup, built with option –mmic –openmp –
std=c99–O3 over the serial execution. �e OpenMP paral-
lelization delivers a 62.09x speedup with 61 threads using 61
cores with Hyperthreading OFF, a speedup 131.54x with 244
threads (61 cores with Hyperthreading ON, 4 HT threads
per core) over the serial execution. �e OMP PARALLEL
FOR and SIMD combined execution delivers an OMP PAR
+ SIMD speedup 2067.9x with 244 threads, running on
an Intel Xeon Phi system, which has 61-core on the chip
with Hyperthreading ON. �e performance scaling from
1 thread to 61 threads is close to linear. In addition, the
Hyperthreading support delivers a ∼2x performance gain
by comparing the 244-thread speedup with the 61-thread
speedup, which is better than the well-known 20%–30%
expectation on the performance gain from Hyperthreading
technology due to the nature of less computing resource
contention in the workload, and 4 busy HT threads did
hide latency well. For the system information details see
Section 6.2.

8. Related Work

�e compiler vectorization technology [12] had been one of
the key loop transformations for traditional vector machine
decades ago. However, the recent proliferation of modern
SIMD architecture [1, 4] poses new constraints such as data
alignment, masking for control �ow, nonunit stride access to
memory, and the �xed-length nature of SIMD vectors that
shall demand more advanced vectorization technologies and
vectorization friendly programming language extensions [7].

In the past three plus decades, the rich body of SIMD
vectorization capabilities has been incorporated in a number
of industry and research compilers [5, 6, 12–16].�ese include
works based on ICC (the Intel compiler) [5, 6], XLC (the IBM
compiler) [13, 16], VAST [17], GCC [18, 19], and the SUIF
compiler [20]. However, there are many unknown program
factors such as loop trip count, memory access stride and
patterns, alignment, and control �ow complexity at compile-
time that pose challenges to the modern optimizing com-
piler’s ability to apply advanced and practical vectorization
techniques and ful�ll the semantic gap between application
programs and the modern processors such as Intel Xeon Phi
coprocessor for harnessing its computational power.

Compared to the conventional loop vectorization [5,
12, 20], the “less-than-full-vector” vectorization technique
brings extra performance bene�ts for those vectorizable short
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do j = 1, 4

do k = 1, 4

sumx = 0.0

sumy = 0.0

do i = 1, 4

sumx = sumx + matrixA(i,k) ∗ matrixB(i,j)
sumy = sumy + matrixA(i,k) ∗ matrixB(j,i)

enddo

matrixC(k,j) = sumx

matirxD(j,k) = sumy

enddo

enddo

Algorithm 4
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Figure 6: OpenMP∗ parallel for and SIMD speedup of mandelbrot workload.

trip-count loops, especially when the processor provides the
long SIMD unit masking capability like the Intel Xeon Phi
coprocessor. Our alignment optimizations are built on top of
existing dynamic alignment optimizations as presented in [5,
6]. However, the alignment strategy described in this paper is
designed to satisfy the requirement of Intel MIC architecture
with optimal SIMD instruction selection andmask utilization
for safe and optimal performance. Beyond traditional single-
level loop vectorization [5, 12, 16, 18, 19, 21], the small matrix
operation 2D vectorization increases vector-parallelism and
improves the utilization e	ciency of the long SIMD vector
unit, swizzle, shu�e, broadcast, and mask support in Intel
MIC architecture signi�cantly.

In addition, programming language extensions such as
OpenMP∗ SIMD extensions [22, 23] and Cilk Plus [3, 7]
function vectorization and loop vectorization through the
compiler has been paving the way to enable more e
ective
vector-level parallelism [7, 22] in both C/C++ and Fortran
programming languages. To support these SIMD vector
programming models on the Intel Xeon Phi coprocessor
e
ectively, the practical and e
ective vectorization techniques
described in this paper are essential for achieving optimal
performance and ensuring SIMD code execution safety on an
Intel Xeon Phi coprocessor system.

9. Conclusions

Driven by the increasing prevalence of SIMD architec-
ture in the Intel Xeon Phi coprocessor, we proposed and
implemented new vectorization techniques to explore the
e
ective use of its long SIMD units. �is paper presented
several practical SIMD vectorization techniques such as less-
than-full-vector loop vectorization, Intel MIC speci�c data
alignment optimizations, and small matrix operations 2D
vectorization for the Intel Xeon Phi coprocessor. A set of
workloads from several domains was employed to evaluate
the bene�ts of our SIMDvectorization techniques.�e results
show that we achieved up to 12.5x performance gain on Intel
Xeon Phi coprocessor. Mandelbrot workload demonstrated
the seamless integration of SIMD vector extensions with
threading and showed a 2067.91x performance speedup with
the combined use of OpenMP “parallel for” and “SIMD”
constructs using Intel C/C++ compilers on an Intel Xeon Phi
coprocessor system.

Intel C/C++ and Fortran compilers are highly enhanced
for programmers to harness the computational power of
Intel Xeon Phi coprocessors for accelerating highly parallel
applications found in chemistry, visual computing, computa-
tional physics, biology, �nancial services, pixel, multimedia,
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#pragma omp declare SIMD uniform(max iter) SIMDlen(32)
uint32 t mandel(fcomplex c, uint32 t max iter)

{
// Computes number of iterations(count variable)

// that it takes for parameter c to be known to

// be outside mandelbrot set

uint32 t count = 1; fcomplex z = c;

for (int32 t i = 0; i < max iter; i += 1) {
z = z ∗ z + c;

int t = (cabsf(z) < 2.0f);

count += t;

if (t == 0) { break;}
}
return count;

}
Caller site code:
int main() {
. . . . . . . . .
#pragma omp parallel for schedule(guided)
for (int32 t y = 0; y < ImageHeight; ++y) {
float c im = max imag - y ∗ imag factor;

#pragma omp SIMD safelen(32)
for (int32 t x = 0; x < ImageWidth; ++x) {
fcomplex in val;

in val = (min real + x∗real factor) + (c im∗1.0iF);
count[y][x] = mandel(in val, max iter);

}
}
. . . . . . . . .

}

Algorithm 5: An example of OpenMP∗ parallel for and SIMD combined usage.

graphics, and HPC applications by e
ectively exploiting the
use of the Intel MIC architecture SIMD vector unit beyond
traditional loop SIMD vectorization.
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