
IEEE TRANSACTIONS ON RELIABILITY, VOL. 61, NO. 1, MARCH 2012 149

Effective Software Fault Localization
Using an RBF Neural Network

W. Eric Wong, Vidroha Debroy, Richard Golden, Xiaofeng Xu, and Bhavani Thuraisingham

Abstract—We propose the application of a modified radial basis
function neural network in the context of software fault localiza-
tion, to assist programmers in locating bugs effectively. This neural
network is trained to learn the relationship between the statement
coverage information of a test case and its corresponding execu-
tion result, success or failure. The trained network is then given as
input a set of virtual test cases, each covering a single statement.
The output of the network, for each virtual test case, is considered
to be the suspiciousness of the corresponding covered statement. A
statement with a higher suspiciousness has a higher likelihood of
containing a bug, and thus statements can be ranked in descending
order of their suspiciousness. The ranking can then be examined
one by one, starting from the top, until a bug is located. Case studies
on 15 different programs were conducted, and the results clearly
show that our proposed technique is more effective than several
other popular, state of the art fault localization techniques. Fur-
ther studies investigate the robustness of the proposed technique,
and illustrate how it can easily be applied to programs with mul-
tiple bugs as well.

Index Terms—Fault location, radial basis function neural net-
works, software debugging.

ACRONYMS

RBF radial basis function

BP backward propagation

WBC weighted bit comparison

PDG program dependence graph

H3C HeuristicIII(c)

NOTATION

a generic program

the number of (executable) statements in

number of test cases used to test

x input to radial basis function

receptive field center of radial basis function

Manuscript received February 13, 2011; revised April 24, 2011; accepted
May 04, 2011. Date of publication October 21, 2011; date of current version
March 02, 2012. The work was supported in part by Air Force Office of Scien-
tific Research under contract FA9550-08-1-0260. Associate Editor: S. Shieh.

W. E. Wong, V. Debroy, X. Xu, and B. Thuraisingham are with the Depart-
ment of Computer Science, University of Texas at Dallas, Dallas, TX 75247
USA.

R. Golden is with the School of Behavioral and Brain Sciences, University of
Texas at Dallas, Dallas, TX 75247 USA.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TR.2011.2172031

width of receptive field of radial basis

function

generic distance between x and

weighted bit-comparison-based dissimilarity

between x and

parameter to control number of field centers

number of neurons in hidden layer

activation function of th hidden layer neuron

weight associated with the link between the

th hidden layer neuron and th output layer

neuron

output of the th output layer neuron

the th test case

coverage vector of

execution result of

I. INTRODUCTION

R
EGARDLESS of how much effort has gone into devel-

oping a computer program,1 it will still contain bugs.1 But

to remove bugs from a program, we must first be able to iden-

tify exactly where the bugs are. Known as fault localization, this

task can be extremely tedious and time consuming, and is rec-

ognized to be one of the most expensive activities in program

debugging [41]. This growing realization has sparked the de-

velopment of several fault localization techniques that aim to

assist developers in finding bugs. We propose the application of

a modified radial basis function (RBF) neural network as a fault

localization technique. This technique is more effective at lo-

cating bugs, in that a relatively smaller amount of code needs

to be examined to find bugs, compared to other state of the art

contemporary techniques.

Neural network-based models have several advantages over

other comparable models, such as their ability to learn. Given

a sample data set, a neural network can learn rules from the

data with or without supervision. Neural networks are also more

tolerant by virtue of the fact that the information is distributed

among the weights on the connections, and so a few errors in

the network have relatively less impact on the model. In addi-

tion, they have the capability to adapt their synaptic weights to

changes in the surrounding environment. That is, a neural net-

1In this paper, we use “programs” and “software” interchangeably, and “bugs”
and “faults” interchangeably. In addition, “a statement is covered by a test case”
and “a statement is executed by a test case” are used interchangeably.

0018-9529/$26.00 © 2011 IEEE



150 IEEE TRANSACTIONS ON RELIABILITY, VOL. 61, NO. 1, MARCH 2012

Fig. 1. A sample three-layer RBF neural network.

work trained to operate in a specific environment can be easily

re-trained to deal with minor changes in the operating environ-

mental conditions. Such qualities make neural networks pop-

ular among researchers, and therefore they have been success-

fully applied to many fields such as pattern recognition [10],

system identification [6], intelligent control [27], and software

engineering areas including risk analysis [28], cost estimation

[37], reliability estimation [36], and reusability characterization

[5]. However, to the best of our knowledge, they have not been

applied to help find bugs except for in our previous study [48],

which uses a back-propagation (BP) neural network-based tech-

nique for fault localization. In this paper, we propose to use an

RBF neural network-based fault localization technique because

RBF networks have several advantages over BP networks, in-

cluding a faster learning rate, and a resistance to problems such

as paralysis and local minima [19], [39].

A typical RBF neural network has a three-layer feed-forward

structure that can be trained to learn an input-output relation-

ship based on a data set. In this paper, the input is the state-

ment coverage of a test case which indicates how the program

is executed by the test case, and the output is the result (suc-

cess or failure) of the corresponding program execution. Once

the network has been trained, the coverage of a virtual test case

with only one statement covered1 is used as an input to com-

pute the suspiciousness of the corresponding statement in terms

of its likelihood of containing bugs. The larger the value of the

output, the more suspicious the statement seems. Statements

can then be ranked in descending order of their suspiciousness,

such that programmers can examine the ranking of statements

(starting from the top) one by one until the first faulty statement

(statement containing bug(s)) is identified. Good fault localiza-

tion techniques should rank faulty statements towards the top,

if not at the very top, of their rankings. An assumption that is

typically made (by all such fault localization techniques) is that

programmers can correctly identify faulty statements as faulty,

and by the same token, non-faulty statements as non-faulty, on

examination.

There are three novel aspects to our work. First, we intro-

duce a method for representing test cases, statement coverage,

and execution results within a modified RBF neural network

formalism. Moreover, the formulation of the problem in terms

of training an artificial neural network with example test cases

and execution results, and then testing with virtual test cases, is

also novel. Second, we develop an algorithm (Fig. 2) to simul-

taneously determine the number of hidden neurons and their re-

ceptive field centers. Third, instead of using the traditional Eu-

clidean distance, which has proven to be inappropriate in the

fault localization context (Section III-C), a weighted bit-com-

parison-based dissimilarity is defined to estimate the distance

between the statement coverage vectors of two test cases. Such

dissimilarity is used to 1) estimate the number of hidden neu-

rons and their receptive field centers, and 2) compute the output

of each hidden neuron. We systematically evaluate the RBF

technique across many different programs (Unix suite, Space,

Grep, Make, Ant and gcc), each consisting of many faulty ver-

sions (we evaluate on both programs with exactly one, and pro-

grams with multiple faults in them). Previous experiments [49]

have shown that the RBF technique is more effective than the

Tarantula [18], SOBER [22], and Liblit05 [20] fault localiza-

tion techniques. Thus, the focus of our current study is to eval-

uate RBF with respect to other fault localization techniques that

have also reported better results than techniques such as Taran-

tula. Our data suggest that the RBF technique is also more ef-

fective than many other state of the art fault localization tech-

niques that may be statistical in nature (the Crosstab technique

[50]), heuristic-based (HeuristicIII [42]), or even similarity co-

efficient-based (Ochiai [1], and Jaccard [1]).

The remainder of the paper is organized as follows. Section II

provides an overview of RBF neural networks, followed by

Section III which explains the proposed fault localization

technique, as well as presents an example to demonstrate its

application. Section IV then reports on our case studies: we first

describe our experimental design, and subsequently present

data to evaluate the effectiveness of the RBF technique with

respect to Crosstab [50], a technique that has reported very

good fault localization results. In lieu of the fact that several

other techniques have also reported good results, we compare

our RBF technique to a representative set of such techniques



WONG et al.: EFFECTIVE SOFTWARE FAULT LOCALIZATION USING AN RBF NEURAL NETWORK 151

Fig. 2. The algorithm to determine the number of hidden neurons, and their
receptive field centers.

(Ochiai [1], Jaccard [1], and HeuristicIII [42]) in Section V. A

demonstration of the application of our technique to a program

with multiple bugs appears in Section VI, and the robustness

of the RBF technique is evaluated in Section VII. Section VIII

then discusses issues and concerns relevant to the RBF tech-

nique, and threats to validity, while Section IX overviews some

related studies. Finally, our conclusions, and a discussion on

future work, are presented in Section X.

II. AN OVERVIEW OF RBF NEURAL NETWORKS

We first present a general description of neural networks, fol-

lowed by a more specific discussion on the RBF neural networks

which form the basis for the work presented herein.

A. Neural Networks

Traditionally, the term “neural network” has been used to

refer to a network of biological neurons. The modern definition

of this term is an artificial construct whose behavior is based

on that of a network of artificial neurons. These neurons are

connected together with weighted connections following a cer-

tain structure. Each neuron has an activation function that de-

scribes the relationship between the input and the output of the

neuron [11]. The data can be processed in parallel by different

neurons, and distributed on the weights of the connections be-

tween neurons. Different neural network models have been de-

veloped, including BP neural networks [11], RBF neural net-

works [12], self-organizing map (SOM) neural networks [14],

and adaptive resonance theory (ART) neural networks [12]. A

particularly important attribute of a neural network is that it can

learn from experience. Such learning is normally accomplished

through an adaptive process using a learning algorithm. These

algorithms can be divided into two categories: supervised, and

unsupervised [39]. Each network learning algorithm has cer-

tain strengths and weaknesses in the areas of reliability, perfor-

mance, and generality; however, none has a clear advantage over

another.

In fault localization, the output of a given input can be defined

as a binary value of 0 or 1, where 1 represents a program failure

Fig. 3. Inputs and outputs (statement suspiciousness) based on the example.
Part (a): Input coverage vectors. Part (b) Outputs of the trained network are the
suspiciousness of the corresponding statements.

on this input, and 0 represents a successful execution. With this

definition, the expected output of each network input (the state-

ment coverage of each test case) is known because we know ex-

actly whether the corresponding program execution fails or suc-

ceeds. Moreover, two similar inputs can produce different out-

puts because the program execution may fail on one input but

succeed on the other. This makes unsupervised learning algo-

rithms inappropriate for us because they adjust network weights

so that similar inputs produce similar outputs. Therefore, neural

networks using supervised learning algorithms are better candi-

dates to solve the fault localization problem. Although BP net-

works are widely used networks for supervised learning, RBF

networks, whose output layer weights are trained in a supervised

way, are even better in our case as they can learn faster than BP

networks, and do not suffer from pathologies like paralysis and

local minima problems as BP networks do [19], [39].

B. RBF Neural Networks

An RBF is a real-valued function whose value depends only

on the distance from its receptive field center to the input .

It is a strictly positive radially symmetric function, where the

center has the unique maximum, and the value drops off rapidly

to zero away from the center. When the distance between and

(denoted as ) is smaller than the receptive field width

, the function has an appreciable value.

A typical RBF neural network has a three-layer feed-forward

structure. The first layer is the input layer, which passes inputs

to the (second) hidden layer without changing their values. The

hidden layer is where all neurons simultaneously receive the

n-dimensional real-valued input vector . Each neuron in this

layer uses an RBF as the activation function. We made use of

the Gaussian basis function [12] as it is one of the most popular

choices for employment in RBF networks [35].

(1)

Usually the distance in (1) is the Euclidean distance between

and , but in this paper we use a weighted bit-comparison-based

dissimilarity. To make a distinction, hereafter, we use

to represent a generic distance, and ((7) in



152 IEEE TRANSACTIONS ON RELIABILITY, VOL. 61, NO. 1, MARCH 2012

TABLE I
THE COVERAGE DATA AND EXECUTION RESULTS USED IN THE EXAMPLE

TABLE II
SUMMARY OF THE UNIX SUITE

�LOC is the size of the program in terms of the number of lines of code.

Section III-C) for the weighted bit-comparison-based dissimi-

larity. The third layer is the output layer. The output can be ex-

pressed as with as the output of the th

neuron given by

for (2)

An RBF network implements a mapping from the dimen-

sional real-valued input space to the dimensional real-valued

output space with a hidden layer space in between. The trans-

formation from the input space to the hidden-layer space is non-

linear, whereas the transformation from the hidden-layer space

to the output space is linear [14]. Fig. 1 shows an RBF network

with neurons in the input layer, neurons in the hidden layer,

and neurons in the output layer. The parameters to be trained

are the centers and widths of

the receptive fields of hidden layer neurons, and the output layer

weights. Many methods have been proposed to train these pa-

rameters [12]. Section III-B explains how they are trained in our

study.

III. THE PROPOSED RBF NEURAL NETWORK-BASED FAULT

LOCALIZATION TECHNIQUE

We first explain the use of an RBF neural network to compute

the suspiciousness of each statement in a program for effective

fault localization, and then introduce a two-stage training of the

RBF network, including an algorithm for simultaneously deter-

mining both the number and the receptive field centers of hidden

neurons. We also provide the formal definition of a weighted

bit-comparison-based dissimilarity used by the RBF during the

fault localization process, followed by an example to demon-

strate the use of our proposed technique.

A. Fault Localization Using an RBF Neural Network

Suppose we have a program with statements, executed

on test cases. Let be the th statement of . The vector

provides us with information on how the program is cov-

ered by test . In this paper, such coverage is reported in terms

of which statements2 in are executed by . We have

where

if statement is not covered by test

if statement is covered by test

The value of depends on whether the program execution of

succeeds or fails. It has a value of 1 if the execution fails, and a

value of 0 if the execution succeeds. We construct an RBF neural

network with input layer neurons, each of which corresponds

to one element in a given ; and one output layer neuron, corre-

sponding to , the execution result of test . In addition, there

is a hidden layer between the input and output layers, and the

number of hidden neurons can be determined by using the algo-

rithm in Fig. 2, which will be explained in Section III-B. Each of

these neurons uses the Gaussian basis function as the activation

function. The receptive field center and width of each hidden

layer neuron, and the output layer weights, are established by

training the underlying network.

2In addition to statement coverage, without loss of generality, our technique
can also be applied to other program components such as functions, blocks,
decisions, c-uses and p-uses [51].



WONG et al.: EFFECTIVE SOFTWARE FAULT LOCALIZATION USING AN RBF NEURAL NETWORK 153

TABLE III
SUMMARY OF SPACE, GREP, MAKE, AND ANT

Once an RBF network is trained, it provides a good map-

ping between the input (in our case the coverage vector of a test

case) and the output (the corresponding execution result). It can

then be used to identify suspicious code of a given program in

terms of its likelihood of containing bugs. To do so, we use a

set of virtual test cases whose coverage vectors

are , where each test covers only one state-

ment (see Part (a) of Fig. 3). As reported in [3], [45], [47], if

the execution of a test case fails, program bugs that are respon-

sible for this failure are most likely to be contained in the corre-

sponding execution slice, the statements executed by this failed

test case.3 Hence, if the execution of fails, the probability that

the bugs are contained in is high. This result suggests that,

during the fault localization, we should first examine the state-

ments whose corresponding virtual test case fails. However, the

execution results of these virtual tests can rarely be collected

in the real world because it is very difficult, if not impossible,

to construct such tests.4 Nevertheless, when the coverage vector

of a virtual test case is input to the trained neural network,

its output is the conditional expectation of whether the ex-

ecution of fails given . This result implies that the larger

the value of , the more likely it is that the execution of

fails. Therefore, the larger the value of , the more likely it is

that contains a bug. We can treat as the suspiciousness of

in terms of its likelihood of containing a bug. The procedure

for using the RBF technique for fault localization is described

as follows.

1) Build a modified RBF neural network with input neu-

rons, and one output neuron. Each neuron in the hidden

layer uses the Gaussian basis function as its activation

function.

2) Determine the number of hidden neurons , and the recep-

tive field center and width of each hidden neuron.

3) Use the generalized inverse (Moore-Penrose pseudo-in-

verse) to compute the optimal linear mapping from the

hidden neurons to the output neuron.

4) Use the virtual coverage vectors , as the

inputs to the trained network to produce the outputs ,

.

5) Assign as the suspiciousness of the th statement.

The statements can now be examined one by one, in de-

scending order of suspiciousness, until a fault is located.

Hereafter, we refer to our proposed technique simply as ‘RBF’.

We take this opportunity to emphasize that the traditional

3In some situations, a test case may fail only because a previous test did not
set up an appropriate execution environment. To account for this, we combine
these test cases into a single failed test, with an execution slice consisting of the
union of each test case’s slice [45], [47].

4In general, the virtual test cases are not “real” test cases and their coverage
vectors are not used as training data for the RBF network.

RBF neural network has been modified to better fit our fault

localization context. First, in Step 2, we develop an algorithm

(Fig. 2) to simultaneously determine the number of hidden

neurons and their receptive field centers. Second, we define a

weighted bit-comparison-based dissimilarity to estimate the

distance between two coverage vectors, as opposed to using the

traditional Euclidean distance. Further details are provided in

Sections III-B and III-C.

B. Training of the RBF Neural Network

In this section, we discuss details of the training procedure as

described in Section III-A. The training of an RBF neural net-

work can be divided into two stages [39]. First, the number of

neurons in the hidden layer, the receptive field center, and width

of each hidden layer neuron should be assigned values. Second,

the output layer weights have to be trained. Many methods have

been proposed to determine the receptive field centers. Using

standard -means clustering, input data are assigned to clus-

ters, with the center of each cluster taken to be the receptive

field center of a hidden layer neuron [8], [12], [21], [38]. Un-

fortunately, this approach does not provide any guidance as to

how many clusters should be used; the number of clusters (and

so, the number of receptive field centers) must be chosen arbi-

trarily. Another disadvantage is that the -means approach is

very sensitive to the initial starting values. Its performance will

significantly depend on the arbitrarily selected initial receptive

field centers.

To overcome these problems, we developed an algorithm

(as shown in Fig. 2) to simultaneously estimate the number of

hidden neurons and their receptive field centers. The inputs

to this algorithm are the coverage vectors ,

and a parameter for controlling the number

of field centers. The output is a set of receptive field centers

which is a subset of the input vectors such

that for any and , , where

is the weighted bit-comparison-based dissimilarity defined in

Section III-C. Our algorithm not only assigns values to each

receptive field center, but also decides the number of hidden

neurons because each hidden neuron contains exactly one

center. The larger the value of is, the smaller the number

of neurons to be used in the hidden layer, which makes the

training at the second stage much faster (as explained at the

end of this section). However, if the number of hidden layer

neurons is too small, then the mapping between the input and

the output defined by the neural network loses its accuracy.

Once the receptive field centers have been found, we can use

different heuristics to determine their widths to get a smooth

interpolation. Park and Sandberg [29], [30] show that an RBF

neural network using a single global fixed value for all has



154 IEEE TRANSACTIONS ON RELIABILITY, VOL. 61, NO. 1, MARCH 2012

TABLE IV
PAIRWISE COMPARISON BETWEEN RBF AND CROSSTAB

the capability of universal approximation. Moody and Darken

[25] suggest that a good estimate of is the average over all dis-

tances between the center of each neuron and that of its nearest

neighbor. In this paper, we use a similar heuristic to define the

global width as

(3)

where is the weighted bit-comparison-based dis-

similarity between and its nearest neighbor .

After the centers and widths of the receptive fields of the

RBFs in the hidden layer are determined, the remaining pa-

rameters that need to be trained are the hidden-to-output layer

weights .5 To do so, we first select a training

set composed of input coverage vectors , and

the corresponding expected outputs . For an

input coverage vector , its actual output from the network

is computed as

where

for (4)

Thus, the output of the network is

(5)

5In our fault localization study, the RBF network is a single-output network
which produces only one output for each input coverage vector. Hence, each
output layer weight (say� ) has only one subscript, rather than two subscripts as
in (2) Reference source not found., showing the connection between the output
layer neuron and the corresponding hidden layer neuron (�th hidden neuron in
this case).

where

...
...

. . .
...

and

Also, let the expected output , and the

prediction error across the entire set of training data be de-

fined as (the sum of squared error between and ).

To find the optimal weights , we have to compute

. For this calculation

we use the generalized inverse (Moore-Penrose pseudo-inverse)

of [31]:
(6)

The complexity of computing depends on the size of ,

which is , where is the number of test cases in the training

set, and is the number of hidden neurons. For a fixed , the

smaller is, the smaller the complexity. Therefore, an RBF net-

work with a smaller number of hidden neurons can be trained

faster than a network with more hidden neurons.

C. Definition of a Weighted Bit-Comparison-Based

Dissimilarity

From (4), for a given test case and its input coverage vector

, the actual output is a linear combination of the activation

functions of all hidden layer neurons. Each depends on the

distance (referring to (1)). In our case, is the input

coverage vector , and is the receptive field center of the

th hidden layer neuron. So, we have .

From the algorithm in Fig. 2, we observe that the set of recep-

tive centers is a subset of the coverage vectors. This observation

implies each by itself is also the coverage vector of a certain

test case. As a result, the distance can also be viewed

as the distance between two coverage vectors.



WONG et al.: EFFECTIVE SOFTWARE FAULT LOCALIZATION USING AN RBF NEURAL NETWORK 155

The most commonly used distance is the Euclidean distance.

However, this distance is not suitable for our problem because it

cannot represent the difference between coverage vectors accu-

rately. For the purpose of explanation, let us use the following

example. Suppose we have an RBF network trained by

and , and their execution results

and . Suppose also the trained network has two neurons

in the hidden layer with , and . When we have

as the input to the trained neural network,

the output is

where .

Because the first statement is covered by and , but not

, we should have , which implies

. More precisely, is more similar to than

to , which means the output of the hidden neuron with as its

center should contribute more to the network output. That is, we

should have , and therefore

. However, the Euclidean distance between and

is the same as that between and . To overcome this

problem, we use a weighted bit-comparison-based dissimilarity

defined as

(7)

Where

and are the th elements of and , respectively.

The dissimilarity measure between the two binary vectors in (7)

is more desirable because it effectively takes into account the

number of bits that are both 1 in two coverage vectors (those

statements covered by both vectors).

In the above example, if we replace the Euclidean distance by

the weighted bit-comparison-based dissimilarity, then we have

, which is greater than

.

D. An Illustrative Example of the Proposed Technique

Suppose we have a program with ten statements ,

, and that a total of seven test cases have been executed on the

program. Table I gives the coverage vector and the execution

result of each test.

We follow the steps listed in Section III-A. An RBF neural

network with ten input neurons and one output neuron is

constructed. Using the algorithm in Fig. 2 with ,

we find that each coverage vector (one coverage vector

per test case) also serves as the receptive field center of a

hidden neuron. This implies there are seven neurons in the

hidden layer. The field width computed by using (3) is

0.395. The output layer weights are trained by the data in

Table I. We have

. We

use the coverage vectors of the virtual test cases in Part (a) of

Fig. 3 as the inputs to the trained network. The outputs (i.e.,

the suspiciousness values of the respective statements) are

shown in Part (b). Ranking the statements in descending order

of their suspiciousness, we have: , , , , , , , ,

, . Thus, statement is the most suspicious, followed by

statement , and so on; and the statements would be examined

in this order until the faulty statement is found.

IV. EMPIRICAL EVALUATION OF RBF AND COMPARISON

WITH CROSSTAB

In this section, we report our case studies using RBF for fault

localization. Previous experiments have shown that the RBF

technique is more effective (the effectiveness measure is for-

mally defined in Section IV-C) than techniques such as Taran-

tula [49]. We now compare RBF to a statistical fault localization

technique called Crosstab [50], which has also reported results

that are much better (i.e., more effective) than those of Tarantula.

A. Subject Programs

We conducted case studies on five suites of programs: Unix

suite, Space, Make, Grep, and Ant, the first four of which are

written in C, and the fifth in JAVA.

The Unix suite consists of ten Unix utility programs, listed

in Table II. Because these programs have been thoroughly used,

they are a reliable basis for evaluating the behavior of fault-in-

jected programs derived from them. These faulty versions were

created using mutation-based fault injection, which has been

shown in a recent study [4] as an appropriate approach for sim-

ulating real faults in software testing research. More discussion

on this approach appears in Section VIII-D. The same programs

and test cases were also used in other studies [44], [48]. The

Space program developed at the European Space Agency pro-

vides an interface that allows the user to describe the configura-

tion of an array of antennas by using a high level language. The

correct version, its faulty versions, and a test suite were down-

loaded from [15]. Three faulty versions were not used in our

study because no downloaded test cases could reveal the faults

in these versions, whereas eight faulty versions were excluded

in [18] for various reasons.

The Grep program searches for a pattern in a file. The correct

and faulty source code of version 2.2, and a test suite, were

downloaded from [15]. Additional bugs from [22], and faulty

versions created using mutation-based fault injection, were

also used. Similarly, we downloaded version 1.6beta of Ant

(a very large JAVA-based build tool), and version 3.76.1 of

Make (which is a software utility that manages the building of

executables and other products from source code) from [15].

All faulty versions that did not fail on any of the downloaded

test cases were excluded from our studies. As before, additional

faulty versions were created using mutation-based fault injec-

tion. Similar to [18], multiple-line statements were combined

as one source code line so that they would be counted only

as one executable statement. Table III gives a summary of

the Space, Grep, Make, and Ant programs. These programs



156 IEEE TRANSACTIONS ON RELIABILITY, VOL. 61, NO. 1, MARCH 2012

Fig. 4. Effectiveness comparison between RBF, and Crosstab. Part (a). The Unix suite. Part (b). The Grep program. Part (c). The Space program. Part (d). The
Make program. Part (e). The Ant program.

vary dramatically in both their sizes and functionalities, which

makes our results even more convincing and representative. As

of now, each faulty version contains exactly one bug which may

span multiple statements that are not necessarily contiguous or

multiple functions. The same approach is also used in many

fault localization studies [7], [18], [22], [45], [47], [48]. How-

ever, the RBF fault localization technique can be extended to

handle programs with multiple bugs as well, and this extension

is further discussed in Section VI.

TABLE V
TOTAL NUMBER OF STATEMENTS EXAMINED BY RBF, AND CROSSTAB



WONG et al.: EFFECTIVE SOFTWARE FAULT LOCALIZATION USING AN RBF NEURAL NETWORK 157

Fig. 5. Effectiveness comparison of RBF against Ochiai, and Jaccard on the Unix suite. Part (a). Best case comparison. Part (b). Worst case comparison.

Fig. 6. Effectiveness comparison of RBF against Ochiai, and Jaccard on the Grep program. Part (a). Best case effectiveness comparison. Part (b). Worst case
effectiveness comparison.

B. Data Collection

For the Unix suite and Space program, all executions were

on a PC with a 2.13GHz Intel Core 2 Duo CPU, and 8GB phys-

ical memory. The operating system was SunOS 5.10 (Solaris

10), and the compiler used was gcc 3.4.3. For Grep and Make,

the executions were on a Sun-Fire-280R machine with SunOS

5.10 as the operating system, and gcc 3.4.4 as the compiler. The

Ant data was collected on the same machine as for the Unix

suite and Space program, and the JAVA compiler version was

1.5.0_06. Each faulty version was executed against all its avail-

able test cases. The statement coverage with respect to each test

case was measured by using a revised version of [51],

which could collect runtime trace correctly even if a program

execution was crashed due to a segmentation fault, for the C

programs; and Clover for the JAVA-based Ant program [16].

The success or failure of an execution was determined by com-

paring the outputs of the faulty version with the correct version

of a program.

We make several assumptions at this point.

• Although a bug may span multiple statements, which may

not be contiguous, or even multiple functions, the fault lo-

calization stops when the first statement containing the bug

is reached. Note that in no way does this mean the proposed

RBF technique is limited to faults that are only across a

single line.

• We also assume perfect bug detection, that is, a bug in a

statement will be detected by a programmer if the state-

ment is examined. If such perfect bug detection does not

hold, then the number of statements that need to be ex-

amined to find the bug may increase. The same concern

applies to all the fault localization techniques discussed in

this paper.

• In addition, we assume the cost of examining each state-

ment is fixed.

In Section IV-D, the results of our RBF technique are com-

pared with those of Crosstab to evaluate the relative effective-

ness of each technique. For a fair comparison, we compute the

effectiveness of both techniques (RBF, and Crosstab) using the

same data. Note that statistics such as fault revealing behavior

and statement coverage of each test can vary under different

compilers, operating systems, and hardware platforms. Also,

the ability of the coverage measurement tool (revised version

of in our experiments versus gcc with gcov in [18], and



158 IEEE TRANSACTIONS ON RELIABILITY, VOL. 61, NO. 1, MARCH 2012

Fig. 7. Effectiveness comparison of RBF against H3C. Part (a). Comparison on the Unix suite. Part (b). Comparison on the Grep program.

Clover [16]) to properly handle segmentation faults has an im-

pact on the use of certain faulty versions. However, such vari-

ance is not expected to be very large in nature, and does not de-

tract from the validity of our experiments, or the accompanying

results.

C. Criteria to Evaluate Fault Localization Effectiveness

In previous studies, Renieris et al. [33] assign a score to every

faulty version of each subject program, which is defined as the

percentage of the program that need not be examined to find a

faulty statement in the program, or a faulty node in the corre-

sponding program dependence graph. This score (or effective-

ness measure) is later adopted by Cleve and Zeller in [7], and is

defined as where is the set of all nodes exam-

ined, and is the set of all nodes in the program dependence

graph. Instead of the program dependence graph, Tarantula di-

rectly uses the program’s source code, and therefore, to make

their effectiveness computations comparable to those of the pro-

gram dependence graph, Jones et al. [18] consider only exe-

cutable statements to compute their score. The comparison now

becomes a fair one; only statements that can be represented in

the program dependence graph are considered. Because the RBF

fault localizer also operates directly on the program’s source

code, we follow the same strategy and consider only executable

statements in all of our experiments. However, while the authors

of [18] define their score to be the percentage of code that need

not be examined to find a fault, it is more straightforward to

present the percentage of code that must be examined to find the

fault. This modified score is hereafter referred to as ,

and is defined as the percentage of executable statements that

have to be examined until the first statement containing the bug

is reached. We note that the two scores are equivalent, and it

is easy to derive one from the other. A similar modification is

made by the authors of [22] where they define their effective-

ness ( -score) as where is

the size of the program dependence graph, i.e., the total number

of statements, and is the number of statements ex-

amined in a breadth first search before a faulty node is reached.

In this paper, the effectiveness of various fault localization

techniques is compared on the basis of the score. For

a faulty program , if its score assigned by technique

is less than that assigned by technique (that is, can guide

the programmer to the fault in by examining less code than

), then is said to be more effective (better) than for lo-

cating the bug in . If there is more than one faulty program,

technique can be considered more effective than , if as-

signs a smaller score to more faulty programs than .

Although this second criterion quantifies the number of faulty

programs on which one technique is better than another (or

vice-versa), it does not count the magnitude of the difference

in the respective EXAM scores. This approach leads to a third

criterion which measures the cumulative magnitude of differ-

ences between fault localization techniques across all the faulty

versions under study. Suppose we have faulty programs; and

, and give the total number of statements that must be

examined to locate the fault in the th faulty program by tech-

niques , and , respectively. Then we can say is more ef-

fective than if .

The second and the third criteria (which are both based on the

original EXAM score) are somewhat complementary to each

other because each is able to quantify what the other cannot.

The second criterion can reveal how many faulty versions one

technique may perform better against than another without re-

flecting the magnitude of the betterment, which is done by the

third criterion. On the other hand, the third criterion reflects this

magnitude across all of the versions, without necessarily speci-

fying how often one technique is better than the other, i.e., on

how many faulty versions (which is done by the second cri-

terion). Instead of conjecturing on which criterion holds more

practical value, and is therefore a better mode of comparison, we

opt to provide evaluations using all of the three criteria discussed

above. This choice allows for a more comprehensive evalua-

tion of the proposed RBF with respect to other fault localization

techniques.

Note that it is not necessary that the suspiciousness assigned

to a statement by a fault localization technique be unique. Thus,

the same suspiciousness value may be assigned to multiple state-

ments, thereby yielding two different types of effectiveness: the

“best,” and the “worst.” The “best” effectiveness assumes that

the faulty statement is the first to be examined among all the



WONG et al.: EFFECTIVE SOFTWARE FAULT LOCALIZATION USING AN RBF NEURAL NETWORK 159

TABLE VI
PAIRWISE COMPARISON PART (a). RBF VERSUS OCHIAI. PART (b). RBF VERSUS JACCARD

statements of the same suspiciousness. Supposing there are ten

statements of the same suspiciousness of which one is faulty,

the “best” effectiveness is achieved if the faulty statement is

the first to be examined of these ten statements. Similarly, the

“worst” effectiveness occurs if the faulty statement is the last

to be examined of these ten statements. Hereafter, we refer to

the effectiveness of the RBF technique under the best, and the

worst cases as RBFBest, and RBFWorst. Similarly, we have

CBest, and CWorst as the best, and the worst effectiveness of the

Crosstab technique, respectively. Data corresponding to both

the best, and worst effectiveness, according to each of the eval-

uation criteria discussed above, is provided for each of the fault

localization techniques evaluated in this paper.

D. Results

Fig 4 gives the effectiveness of the RBF and Crosstab

techniques for all the programs used in our studies. Zoom-ins

are also included to provide an enhanced view. The curves

labeled RBFBest, and RBFWorst are for the best, and the worst

effectiveness of the RBF technique; and those labeled CBest,

and CWorst are for the best, and the worst effectiveness of the

Crosstab technique.

For a given value (percentage of executable statements ex-

amined), its corresponding value is the percentage of the faulty

versions whose EXAM score is less than or equal to . For ex-

ample, in the case of the Unix suite (Fig 4(a)) we see that RBF

can locate 125 (72.67%) of the 172 faults in the Unix suite in

the best case, and 75 (43.60%) in the worst, when up to 10% of

the code is examined. In contrast, Crosstab can only locate 115

(66.86%) of the 172 faults in the best case, and 68 (39.53%) in

the worst, when up to 10% of the code is examined, in the Unix

suite. In fact, in the Ant program (Fig. 4(e)), RBF is able to lo-

cate all 23 faults by requiring the examination of less than 0.25%

of the code in the best case, and less than 0.5% of the code in

the worst. Crosstab on the other hand requires the examination

of 0.71% of the code in the best case, and 0.74% of the code

in the worst, to detect all the faults on the Ant program. From

Fig. 4, it is therefore clear that RBFBest is more effective than

CBest, and RBFWorst is more effective than CWorst. Another

significant point is that, in many cases, even RBFWorst is more

effective than CBest (as is seen in the case of the Ant, and Grep

programs, for example).

Data are also provided in Table IV to show the pairwise com-

parison between the effectiveness of the RBF technique and

Crosstab (as per the second criterion discussed in Section IV-C)

to decide for how many faulty versions one technique is better

than, the same as, and worse than another. As an example, for

the Make program, RBFBest is more effective (i.e., examining

fewer statements before the first faulty statement is identified)

than CBest for 18 of the 31 faulty versions, as effective (i.e., ex-

amining the same number of statements) for 6 faulty versions,

and less effective (i.e., examining more statements) for 7 faulty

versions. The table also lists the comparisons between RBF-

Worst and CWorst, and shows that the former is more effective

than or as effective as the latter for the majority of the faults.

RBFWorst is also often as effective as, or more effective than,

CBest.

Table V presents the effectiveness comparison in terms of the

total number of statements that need to be examined to locate all

the bugs (as per the third criterion discussed in Section IV-C).

For each program, RBFBest requires the examination of fewer

statements than CBest. The same applies to the comparison be-

tween RBFWorst and CWorst. For example, the ratio of the

number of statements examined by RBFBest to the number of

statements examined by CBest for all 23 faulty versions of Ant

is 21.65% (i.e., 233/1076), and the ratio between RBFWorst and

CWorst is 47.97%. This result also implies that RBFBest exam-

ines 78.35% fewer statements than CBest, and RBFWorst exam-

ines 52.03% fewer statements than CWorst on the Ant program.

Moreover, for two of the programs (Grep and Ant) even RBF-

Worst examines fewer statements than CBest. Note that there

may not be any subset to superset relationship between the state-

ments examined by RBF and Crosstab because their rankings

can be very different. Thus, when we say RBF requires the ex-

amination of only a fraction (percentage) of the statements that

Crosstab requires, this fraction is based purely on the number of

statements, and not on the sets of statements, examined. From

the data collected on the Unix suite, Space, Grep, Make, and

Ant programs, we observe that not only is RBFBest more effec-

tive than CBest, and RBFWorst more effective than CWorst, but

also RBFWorst is more effective than CBest in many cases. This

result clearly indicates that the RBF technique is more effective

in fault localization because less code needs to be examined to

locate faults by using RBF than Crosstab.

V. RBF VERSUS OTHER FAULT LOCALIZATION TECHNIQUES

Recently, other fault localization techniques have been pro-

posed, and reported good results. It is important to compare RBF

to the other techniques, but it is impossible to do so against them

all. Hence, we only present details of our evaluation on a rep-

resentative set of techniques. Also, due to space limitations, we



160 IEEE TRANSACTIONS ON RELIABILITY, VOL. 61, NO. 1, MARCH 2012

TABLE VII
TOTAL NUMBER OF STATEMENTS EXAMINED BY RBF, OCHIAI, AND JACCARD PART (a). BEST CASE EFFECTIVENESS. PART (b). WORST CASE EFFECTIVENESS

cannot show the data on all subject programs. Instead, we se-

lect one set of small-sized programs (the Unix suite), and one

large-sized program (Grep) for the purposes of the discussion.

A. RBF Versus Similarity Coefficient-Based Techniques

In [1], Abreu et al. propose and evaluate the use of the Ochiai

similarity coefficient when applied to the context of software

fault localization. Based on their case studies, the authors con-

clude that the Ochiai coefficient performs better than not just

Tarantula, but also over several other similarity coefficients in

terms of its fault localization effectiveness. We therefore also

present a comparison between RBF and some of the techniques

discussed in [1]. More specifically, we compare RBF with the

Ochiai coefficient-based and Jaccard coefficient-based fault lo-

calization techniques (hereafter, referred to simply as Ochiai,

and Jaccard, respectively). Prior to that, we briefly describe how

the Ochiai and Jaccard techniques work. The Ochiai technique

assigns a suspiciousness value to each statement as

(8)

The Jaccard technique assigns the suspiciousness as

(9)

where , and are the number of failed, and

successful test cases that execute statement , respectively; and

the quantities totalfailed, and totalpassed correspond to the total

number of failed, and successful test cases, respectively. Once

the suspiciousness values for each statement have been com-

puted, the statements are sorted in descending order of their

suspiciousness to produce rankings in the same way as RBF,

and Crosstab. Also, based on the discussion towards the end

of Section IV-C, similar to RBF and Crosstab, the Ochiai and

Jaccard techniques may also result in two levels of effective-

ness, the best, and the worst, because the rankings produced

may not necessarily be free of ties, i.e., two (or more) statements

may have the same Ochiai or Jaccard computed suspiciousness

value. As with RBFBest, RBFWorst, CBest, and CWorst defined

before, the best cases of Ochiai, and Jaccard are annotated as

OBest, and JBest, respectively; and the worst cases as OWorst,

and JWorst, respectively. In the interests of clarity and read-

ability, we separate the best case effectiveness from the worst

case effectiveness, i.e., Fig. 5(a) corresponds to the best case of

each technique on the Unix suite, and Fig. 5(b) corresponds to

the worst. Similarly, Fig. 6(a) corresponds to the best case eval-

uation on the Grep program, and Fig. 6(b) corresponds to the

worst.

From Figs. 6 and 7, we observe that RBF generally does better

than both Ochiai and Jaccard irrespective of whether the best or

the worst case is considered, and this result is especially true for

the Grep program (Fig. 6). It is only in the case of the zoom-in

with regard to the worst case effectiveness on the Grep program

(Fig. 6(b)) that RBF is slightly worse than Jaccard and Ochiai

initially, but it quickly catches up, and in fact beyond the 5%

mark (i.e., when more than 5% of code is examined) RBFWorst

is always better than OWorst and JWorst. When the best case ef-

fectiveness on the Grep program is considered (Fig. 6(a)), RBF

is always better than (or at least equal to) both Ochiai and Jac-

card.

Table VI presents the pairwise comparison between RBF and

Ochiai, as well as RBF and Jaccard, in terms of the number

of faulty versions where one technique might perform better,

worse, or equal to the other. From the table, we observe that

RBF performs better than both Ochiai and Jaccard (regardless

of best or worst case) in the sense that it performs better on more

faulty versions than the other techniques. Data corresponding

to the third criterion in Section IV-C (namely, the total number

of statements that need to be examined to locate faults in all

of the faulty versions) for the RBF, Ochiai, and Jaccard tech-

niques (both best, and worst cases) are presented in Table VII.

We conclude that RBF performs better than Ochiai and Jaccard

(irrespective of whether the best or worst case is considered) as

fewer statements need to be examined to locate all of the faults.

B. RBF Versus a Heuristic-Based Technique

In [42], Wong et al. propose that, in the context of fault lo-

calization, if a statement has been executed by many successful

test cases, then the contribution of each additional successful ex-

ecution to the suspiciousness of the statement is likely to be less

than that of the first few successful tests. Similarly, if a statement

has already been executed by many failed test cases, the contri-

bution of each additional failed execution to its suspiciousness

is likely to be less than the contribution of the first few failed

tests. They also propose that, if a statement has been executed

by at least one failed test case, then the total contribution from

all the successful tests that execute the statement should be less

than the total contribution from all the failed tests that execute it.

To this effect, several heuristics are proposed in [42], of which

the one that yields the best performance is referred to as Heuris-

ticIII (different from the heuristic with the same name in [46]).

Note that the general form of HeuristicIII involves the use of

certain parameters, and we select the same values of the param-

eters as in [42] that result in the best performance (therefore,

HeuristicIII(c) of [42] instead of just HeuristicIII). For further

details on HeuristicIII, we direct the readers to [42]. Because it

is reported that HeuristicIII(c) performs better than Tarantula,

we also compare RBF to HeuristicIII(c). Once again, due to the

space limitation, we present results on the 10 programs in the

Unix suite, and the Grep program. In addition, for brevity, we



WONG et al.: EFFECTIVE SOFTWARE FAULT LOCALIZATION USING AN RBF NEURAL NETWORK 161

TABLE VIII
PAIRWISE COMPARISON BETWEEN RBF, AND H3C

refer to HeuristicIII(c) as H3C in this paper. Keeping with pre-

vious conventions, the best case is referred to as H3CBest, and

the worst as H3CWorst.

Fig. 7 presents the effectiveness comparison between RBF

and H3C based on the score (i.e., the first criterion

in Section IV-C) across the Unix suite, and Grep. Based on

the figures, we find that in general RBF performs better than

H3C. However, in such cases where curves sometimes inter-

sect one another (consider RBFWorst and H3CWorst on the

Unix suite, i.e., Fig. 7(a)) it is hard to determine which tech-

nique performs better using such a comparison alone. Thus, ad-

ditional criteria (namely, the second, and the third criteria) in

Section IV-C should also be used.

Table VI presents a comparison between RBF and H3C in

terms of the number of faulty versions where one technique per-

forms better, worse, or equal to another. We observe that RBF

performs slightly worse than H3C (irrespective of best or worst

case) in the case of the Unix suite. Yet at the same time RBF per-

forms much better than H3C (also irrespective of best or worst

case) in the case of the Grep program. However, it is important

to appreciate that the degree of superiority of H3C over RBF on

the Unix suite is not as significant as that of RBF over H3C on

the Grep program. To better understand this result, we note that

H3CBest on the Unix suite performs better than RBFBest by

four more faulty versions than when RBFBest performs better

than H3CBest (47 versus 43). However, as per Table II, there

are a total of 172 different faulty versions of the Unix suite used

in this study. In the case of the Grep program, RBFBest per-

forms better than H3CBest on four more faulty versions than

when H3CBest performs better than RBFBest (9 versus 5), but

the Grep program has just 19 faulty versions as per Table VIII.

The difference in the case of the Unix suite

does not nearly seem as significant as the difference in the case

of the Grep program . Even so, this crite-

rion still does not allow us to make any decisive conclusions re-

garding the comparison of RBF and H3C. Data corresponding to

the third criterion is presented in Table IX, which clearly shows

that RBF performs better than H3C (in that fewer statements

need to be examined by using RBF as opposed to if H3 were

used). This result is true regardless of whether the best or worst

case effectiveness is considered, and more importantly it is true

across both the Unix suite and Grep. We thus conclude that RBF

is more effective than H3C (by taking the various criteria into

account) based on our data.

Experiments reported in Section V evidence the superior per-

formance of the RBF technique, and results indicate that it per-

forms better than similarity coefficient-based techniques such as

Ochiai [1] and Jaccard [1], and heuristic-based techniques such

TABLE IX
TOTAL NUMBER OF STATEMENTS EXAMINED BY RBF, AND H3C

as H3C (i.e., HeuristicIII(c) in [42]). Combined with the exper-

iments reported in Section IV, and the results from our previous

study [49], it has now been shown that RBF is more effective

than Tarantula [18], SOBER [22], Liblit05 [20], Crosstab [50],

Ochiai [1], Jaccard [1], and H3C (HeuristicIII(c)) [42].

VI. PROGRAMS WITH MULTIPLE BUGS

Thus far, the discussion and evaluation of the RBF tech-

nique has been with respect to programs that categorically are

single-bug in nature, i.e., each has exactly one bug. In this

section, we discuss and demonstrate how the RBF technique

may very easily be applied to programs with multiple bugs in

them as well.

In the case of programs with multiple bugs, two source-inde-

pendent execution failures may not necessarily occur due to the

same causative fault. However, if failed test cases could be seg-

regated into groups such that the tests in one group all fail due to

the same fault, then each group of failed test cases could be used

to locate that particular fault, thereby reducing the multi-bug

problem to a set of single bug problems. This reduction is done

in two steps. The first step is to conduct an appropriate clus-

tering on failed executions or failed tests. Different techniques

have been proposed for this purpose [17], [23], [32], [56]. For

example, we can group failed test cases into fault-focused clus-

ters such that those in the same cluster are related to the same

fault as per [17]. The second step is to combine failed tests in

each cluster with the successful tests for debugging a single

fault. We follow a similar approach as described in [17] to gen-

erate a specialized test suite for each fault. However, instead of

using Tarantula’s ranking (as was done in [17]), we follow the

procedure discussed in Section III to rank the statements. Con-

sequently, the RBF technique can easily be extended to handle

programs that may contain multiple bugs.

We conducted a case study using gcc, the GNU Compiler Col-

lection, to illustrate the concept discussed above. There are mul-

tiple releases of gcc posted at the GNU website (http://gcc.gnu.

org). We used gcc 3.4.1, and the 29 C files in its sub-directory

gcc/cp were instrumented using a revised version of [51].

These files contain 95218 lines. We do not have a separate ver-

sion of gcc, each of which contains exactly one bug. Instead, we



162 IEEE TRANSACTIONS ON RELIABILITY, VOL. 61, NO. 1, MARCH 2012

Fig. 8. Effectiveness comparison between RBF, Crosstab, Tarantula, Ochiai, and H3C for the 5-bug version of gcc. (a) Best case effectiveness comparison.
(b) Worst case effectiveness comparison.

have only one gcc program with multiple bugs. There are 9489

successful test cases for this version.

Defect data retrieved from the gcc Bugzilla database are used

to determine the exact location of each bug. Information on ad-

ditional test case(s) created for each bug is also available from

bug reports to help us determine the failed tests for each bug.

We use such information to accomplish the fault-focusing clus-

tering in step 1 to group failed test cases into clusters that target

different bugs. A more robust clustering technique will be devel-

oped in our future study; however, that discussion is beyond the

scope of this paper. Each fault-focused cluster is combined with

the successful tests for locating a single bug. Five bugs are used

in our study: (ID 16637), (ID 16889), (ID 16929),

(ID 16965), and (ID 18140). Each of the bugs , , ,

and has one failed test, and 9489 successful tests; has

two failed tests, and 9489 successful tests. The execution envi-

ronment for gcc is the same as that for the Space program (see

Section IV-A).

Fig. 8 presents the effectiveness comparison between RBF

and several techniques on the 5-bug version of gcc based on

the description provided above. We split the figure into the best

case comparison (Fig. 8(a)) and the worst case comparison

(Fig. 8(b)) to enhance readability. Based on the curves in the

figure, we observe that RBF performs much better than all of

the other techniques, and is able to locate all of the bugs by

examining much less code, regardless of whether the best case

or worst case effectiveness is considered.

Table X lists the total number of statements examined by RBF

and the other fault localization techniques for the five bugs of

gcc. It is clear from the table that RBF is the most effective

technique in that fewer statements need to be examined if RBF

is used (as opposed to the other techniques), irrespective of the

best case or worst case effectiveness.

To summarize, Sections IV and V show that RBF is more ef-

fective than other fault localization techniques evaluated herein,

with respect to single bug programs, and the experiments in

Section VI reveal that this is also true for programs with mul-

tiple bugs.

TABLE X
TOTAL NUMBER OF STATEMENTS EXAMINED FOR THE 5-BUG VERSION OF GCC

VII. EVALUATING THE ROBUSTNESS OF THE PROPOSED RBF

FAULT LOCALIZATION TECHNIQUE

Thus far, the focus of this paper has been to demonstrate the

fault localization effectiveness of the proposed RBF technique

with respect to other fault localization techniques, i.e., to show

that the RBF provides better results than other state of the art

techniques (which is indicated by our case studies). However, a

fault localization technique, along with being highly effective,

must also be robust and able to perform well even under harsh

circumstances. Therefore, in this section, we aim to investigate

the robustness of RBF, and evaluate how its fault localization ef-

fectiveness changes as the conditions under which it is used de-

teriorate. In doing so, we evaluate RBF with respect to itself, i.e.,

observe how the RBF under a harsh circumstance compares to

the RBF under golden circumstances. The harsh circumstances

are simulated by deliberately modifying the inputs that are fed

to the RBF, and the golden or baseline scenario corresponds to

the use of the RBF against the unmodified input (all the data

presented so far in this paper corresponds to this scenario).

A. Sensitivity to Test Set Size

Comprehensive test sets may not always be available, and

therefore it is important to understand how sensitive a fault lo-

calization technique is to the size of the test set, i.e., the number

of test cases available. Intuitively, the more distinct test cases

we have, the more information (coverage and execution result)

we can provide a fault localization technique with, and conse-

quently, we expect the fault localization results to be better. We



WONG et al.: EFFECTIVE SOFTWARE FAULT LOCALIZATION USING AN RBF NEURAL NETWORK 163

Fig. 9. Effectiveness evaluation of RBF across various sampling rates on the Gzip program. Part (a). Best case effectiveness comparison. Part (b). Worst case
effectiveness comparison. Part (c). Average case effectiveness comparison.

investigate this intuition by using partial (with respect to the en-

tire test set available) test sets, and observing the corresponding

fault localization effectiveness, relative to that when the entire

test available is used. Given a sampling rate , and

an original test suite size of , we randomly select test

cases without replacement to produce a test set (we refer to

such a test set as a -sampled test set). If a does not contain

at least one failed test case, it is discarded, and the process is

repeated until a containing at least one failed test case is pro-

duced. Then, the RBF technique is evaluated based on only the

information in .

We note that one -sampled test suite may differ consider-

ably from another, and therefore the fault localization results

obtained using a test suite of a certain size may vary drastically

from the results obtained from another test suite of the same

size. To reduce such bias, evaluations across any sampling rate

are conducted 100 times (i.e., using 100 distinct for a single

), and the results averaged. We choose sampling rates of 90%

to 10% in increments of 10%, and then 5%, and 1%. Note that

(a sampling rate of 100%) corresponds to using the orig-

inal test suite in its entirety.

Because we are investigating the link between fault localiza-

tion effectiveness and test set size, it is important that the subject

program not have too many test cases to begin with; the reason

being that the effect of reducing the number of test cases is more

appreciable in cases where the test set is small. For example,

even if we restrict ourselves to sampling only 10% of the test

set, i.e., a 0.1-sampled test set, on the Space program, we would

still have about 1359 test cases as there are a total of 13585 test

cases to work with. A good alternative would then be the Unix

suite as these programs have relatively small-sized test sets (as

seen from Table II). However, these programs are themselves

small. With this result in mind, we downloaded version 1.1.2 of

the Gzip program (along with some faulty versions) from [15],

which consists of 6573 lines of code. Additional faulty versions

from other studies [42] were also used, bringing the total number

of faulty versions to 28. The Gzip data set consisted of 211 us-

able test cases, and thus has a good balance between test set size

and program size, making it ideal for these experiments.

Fig. 9 presents the effectiveness comparison (the best and

worst have been separated for clarity) of RBF on the Gzip pro-

gram across various sampling rates. The figures only present

the curves corresponding to sampling rates of 50%, 10%, 5%,

and 1% (even though the experiments were performed using

all the sampling rates discussed above, all of which show the

same trends as the curves shown in the figure). Also, for ease

of comparison, the curves corresponding to RBF on the original

(un-sampled, or equivalently, 100% sampled) test set have also

been provided in the figures. The curves are annotated: RBF-

Best- corresponds to the best case effectiveness of RBF using

a sampling rate of , and the same convention is true of the worst

case (RBFWorst).

From Fig. 9, we observe that the curves corresponding

to lower sampling rates seem to fan away from those cor-

responding to higher sampling rates. Indeed, in the case of

RBFWorst (Fig. 9(b)) we observe that as the sampling rate

is reduced (fewer test cases are used) the effectiveness grows

worse, which is consistent with our initial intuition. However,

the case of RBFBest looks quite contradictory to this intuition

at first glance, as we see that a reduction in sampling rate brings

about an improvement in best case effectiveness. How is this

possible?

To understand this result, let us recall the definition of the best

and worst case effectiveness: in the event that a faulty statement

is tied with several other statements for the same suspiciousness,

then in the best case we assume we examine the faulty state-

ment before the other statements that are tied, and in the worst

case, only after. This event happens when fault localization tech-

niques cannot distinguish between faulty statements and certain

non-faulty statements, and assign them the same suspiciousness.

Consider that the effect of reducing the sampling rate is to re-

duce the number of test cases that fault localization techniques

have to work with. We conjecture that this reduction adversely

affects the ability of fault localization techniques to distinguish

one statement from another. The smaller the sampling rate, the

harder it is for a technique to tell the difference between one

statement and another, and thus there may be more ties among

statements, of which the faulty statement may be one. To see

how this result can lead to an improvement in best case effective-

ness, and deterioration at worst, consider the trivial case where

we have a program with statements, and every statement is

tied with the same suspiciousness. In the best case, we shall need

to examine just one statement to find the fault; and in the worst

case, all statements. Thus, we have a very high best case effec-



164 IEEE TRANSACTIONS ON RELIABILITY, VOL. 61, NO. 1, MARCH 2012

TABLE XI
TOTAL NUMBER OF STATEMENTS EXAMINED FOR DIFFERENT SAMPLING RATES

tiveness, and a very low worst case effectiveness. It is therefore

important to point out that it may be a fallacy to assume that a re-

duction in sampling rate leads to better fault localization simply

based on the curves for RBFBest. Rather, the curves for RBF-

Best (Fig. 9(a)), and RBFWorst (Fig. 9(b)) must be analyzed

collectively, as for any sampling rate an improvement in RBF-

Best seems to be accompanied by a deterioration of RBFWorst.

For this reason, we also present the effectiveness in terms of

an average (which is simply the arithmetic mean of the best and

the worst effectiveness) in part (c) of Fig. 9. The notation RB-

FAvg- denotes the average effectiveness of the RBF when

a sampling rate of is used. The curves clearly demonstrate

that the average effectiveness decreases as the sampling rate de-

creases. An interesting observation is that, while RBFAvg-100%

is better than RBFAvg for any of the smaller sampling rates, RB-

FAvg-100% only converges (the -value reaches 100%) after

all the other curves. This result is because, in the case of RB-

FAvg-100%, 27 out of the 28 faults can be located by exam-

ining less than 35% of the code, yet for the last fault, 76.20%

of the code needs to be examined before the faulty statement is

located. However, this phenomenon is quite certainly dependent

on the test cases and subject programs.

In terms of the total number of statements that need to be ex-

amined to locate all of the faults (namely, the third criterion in

Section IV-C) based on changing sampling rates, we present this

data in Table XI for RBFBest, RBFWorst, and RBFAvg. Fig. 10

provides a graphical perspective of the same. Once again, the

sampling rate of 100% corresponds to using the entire available

test set (i.e., no sampling involved). There may be fractional

values in Table XI, whereas the number of statements that are

examined should be values of integer form. The fractional com-

ponent arises because, as discussed earlier, for each sampling

rate , we generated 100 distinct -sampled test sets, and aver-

aged the results.

As with Fig. 9, we observe that, in terms of the total number of

statements that must be examined to find faults in all faulty ver-

sions, RBFBest seems to grow more effective, and RBFWorst

less effective, as the sampling rate is decreased. Once again,

Fig. 10. Total number of statements that must be examined as a function of
sampling rate (Graphical Perspective).

based on the trend observed in the case of RBFBest alone, it

would be a fallacy to conclude that the overall effectiveness of

the approach increases as the sampling rate is reduced. We also

observe that RBFAvg decreases as the sampling rate is reduced

(though not to the extent that RBFWorst decreases). As far as

the relative magnitude of change in RBFAvg with respect to the

change in sampling rate is concerned (which is a good indicator

of sensitivity), we can utilize the total number of statements that

must be examined as per Table XI. We note that the relative

change in RBFAvg is not nearly as high as the change in sam-

pling rate. Consider for example that, with a sampling rate of

just 1%, the number of statements that we must examine only

goes up by a relative factor of 4.07 (15682.445/3854.5=4.0686),

which is very small when we consider that we used only 1/100th

of the test case information.

B. RBF in the Presence of Noisy Data

A test set, when executed against the same program but in

two different environments, may result in two different sets of

failed test cases. For a fault localization technique relying on the

coverage and test case execution results as its input, its effective-

ness may therefore also vary depending on which environment

it is employed in (or rather depending on which environment its

input data is collected in). In fact, a good technique should not

only be effective when considering one environment, but also in

multiple environments such that, even if the information varies

from environment to environment to a small degree, it is still

able to localize faults effectively. To investigate if the proposed

RBF fault localization technique is still able to perform effec-

tively, even with changes in environments as discussed, we de-

cide to simulate such circumstances by introducing the notion

of noise.

We introduce noise into the collected data by randomly per-

turbing the result of a test case such that, if a selected test case

was previously recorded as failed, it is now recorded as suc-

cessful, and vice versa. This perturbation directly affects fault

localization techniques such as RBF, and Crosstab, among many

others, because it changes one or more variables that are used

as input to each technique. To evaluate how much RBF is af-

fected, we use the Gzip program because it only has 211 test



WONG et al.: EFFECTIVE SOFTWARE FAULT LOCALIZATION USING AN RBF NEURAL NETWORK 165

Fig. 11. The number of statements that require examination versus the level of
noise for RBF on the Gzip program.

cases. Switching the result of one test case implies that we alter a

larger fraction of the input information as opposed to a program

with many more test cases (such as the Space program which

has 13585 test cases). We want to evaluate the performance of

RBF under harsh circumstances, and therefore we decided to

use the Gzip program for this portion of the experiment.

Note that this experiment is considerably different from the

one in Section VII-A in that the previous experiment involved

investigating how the effectiveness of the RBF changed with

respect to a reduction of the input. Test cases were randomly

sampled (ensuring the presence of at least one failed test each

time), and the effectiveness of the RBF technique was re-eval-

uated using the sampled test cases. In contrast, this experiment

preserves the number of inputs (test cases) to the RBF, but per-

turbs data contained in the inputs. Recall that the RBF technique

involves training a neural network on the input data, and the net

effect of perturbing the data in the manner discussed is to pur-

posefully mislead the RBF technique (by training on the mod-

ified data) to evaluate how it performs in such situations. We

perturb the outputs of up to 10 test cases for this experiment.

The reason the maximum number of test cases whose results

are switched is set at 10 (about of all the test

cases) is because it is very unlikely that the switching of envi-

ronments will result in a larger difference in terms of the set of

failed test cases. Therefore, to differentiate between noisy data

and unreliable data, we set the limit at 10 test cases.

Fig. 11 presents the results of RBF against noisy data, once

again making use of the third criterion in Section IV-C (namely,

the total number of statements examined to locate faults on all

faulty versions) as a means of comparison. The -axis in the

figure represents the amount of noise (in terms of the number

of test cases that have their execution results switched) that is

seeded into the input data. The -axis represents the number

of statements that must be examined to locate all the bugs. The

first data point means no noise has been seeded

yet, and has been provided for reference purposes to observe the

change in effectiveness as the noise in the input data is increased.

The first thing we observe based on Fig. 11 is that the effec-

tiveness of both RBFBest and RBFWorst seems to decline as

the amount of noise that is seeded (number of test cases that are

perturbed) is increased, as more statements need to be examined

to locate all the faults. Second, we note that this trend is not

strictly monotonic. For example, the effectiveness of the RBF

(both best and worst) is slightly better when two tests have been

perturbed than when none or one test is perturbed. Similarly, the

effectiveness of the RBF (both best and worst) when three test

cases are perturbed is worse than when four or five test cases are

perturbed. Third, the curves for RBFBest and RBFWorst follow

nearly the same pattern, meaning that the seeding of noise does

not have any special impact on the number of tied statements

with respect to the rankings produced by the RBF. With respect

to the degree, and rate of change in effectiveness as a result of

seeding noise, we find that appreciable differences in effective-

ness do not arise until at least three or more test cases have had

their results changed. However, the effect of changing the re-

sults for three test cases (3614 statements in the best case, and

5391 in the worst) is about the same (i.e., the difference is quite

small) as that of changing the results for six test cases (3678

in the best case, and 5455 in the worst). After seven or more

test cases have had their results changed, the differences in ef-

fectiveness start to become significantly apparent. Yet when as

many as seven test cases have had their results swapped, and the

fault localization effectiveness starts to decline, we must ques-

tion whether the fault localization technique is to blame, or if

the reliability of the input data itself is suspect.

In summary, the experiments in this section reveal that, along

with being highly effective at fault localization, the RBF tech-

nique is also robust in the sense that it performs well, even with

inadequate test sets, or noisy data.

VIII. DISCUSSION

This section discusses important aspects related to the pro-

posed RBF technique, and addresses threats to validity.

A. RBF, and Other Machine Learning Algorithms

The RBF approach is similar to a support vector machine

(SVM) methodology in that an input vector is mapped into a fea-

ture space (in our case the features are the neurons at the hidden

layer of the modified RBF), and then a linear model is used to

compute a weighted sum of features [13]. An SVM is generally

used for classification. Also, SVMs typically use Vapnik’s ep-

silon-insensitive loss function for parameter estimation. How-

ever, we use a negative log-likelihood loss function with respect

to a conditional Gaussian regression model for parameter es-

timation. Furthermore, our focus is not on the classification of

inputs, but on the value of an SVM linear discriminant function,

, which is the measure of suspiciousness of the th statement.

Decision tree methods partition the input vector space into

a set of hyper-rectangles, and a linear model is used to com-

pute a weighted sum of features. An important aspect of deci-

sion tree methods is that algorithms have been developed for

splitting rectangles and creating decision trees with different

types of methodologies. Our modified RBF may be interpreted

as partitioning the input space into a set of hyper-ellipsoids, and

again a linear model is used to compute a weighted sum of fea-

tures [13]. There is no intrinsic advantage in using a decision

space of hyper-rectangular features versus one of hyper-ellip-

soidal features. The advantage of one decision space over an-

other will ultimately be determined by characteristics of the sta-



166 IEEE TRANSACTIONS ON RELIABILITY, VOL. 61, NO. 1, MARCH 2012

tistical data. In general, there is no single machine learning al-

gorithm which provides the optimal generalization performance

for all data sets. Our motivation for using neural networks in the

context of fault localization was primarily due to the many ben-

efits offered by neural networks; and we specifically focused

on RBF networks as they have several advantages over BP net-

works. However, we intend to investigate the use of other ma-

chine learning techniques in the context of fault localization in

the future.

B. Logistic Versus Linear Regression

Along the same lines as the machine learning algorithms

discussed in Section VIII-A, generalized logistic regression

methods also involve having an input vector mapped into a

feature space, and then a weighted sum of features is computed.

In the case of such methods, the weighted sum of features is

mapped via a logistic sigmoid transformation into the proba-

bility of a particular classification [13]. We experimented with

the use of a logistic function to perform the mapping, but it did

not have any beneficial impact on the fault localization results

whatsoever. Moreover, such experimentation is beyond the

scope of this paper. Thus, instead of distracting readers with

more complicated logistic regression modeling, we decided to

employ a linear approach.

C. Sequential Estimation of Hidden Neurons, Receptive Field

Centers, and Weights

As per the RBF technique which has been proposed in this

paper, the number of hidden neurons, receptive field centers, and

weights are not simultaneously estimated. A potential problem

with sequential estimation is that the performance of the net-

work is suboptimal. However, we make no claims of the op-

timality of the proposed technique (or its individual aspects).

We recognize that what was presented herein is an instance

of a more general RBF neural network-based fault localiza-

tion model, and other variations of our approach certainly exist.

However, we did not want to distract readers from the context in

which the RBF is being applied, namely software fault localiza-

tion. Besides, the method implemented here can be interpreted

as a generalized linear regression model with highly nonlinear

preprocessing transformations, which is a reasonable baseline

approach.

D. Threats to Validity

We now discuss some possible threats to the validity of our

experiments and results.

Our use of the score, and the other criteria described

in Section IV-C (such as the total number of statements exam-

ined, and the number of faulty versions where one technique

performs better than, the same as, or worse than another) repre-

sents a threat to construct validity. While such criteria are suit-

able measures of fault localization effectiveness, by themselves

they do not provide a complete picture of the effort spent, as de-

velopers rarely examine statements one at a time, and may not

spend the same amount of time examining different statements.

We also assume that, if a developer examines a faulty statement,

then they will identify the corresponding fault(s). By the same

token, a developer shall not identify a non-faulty statement as

faulty. If such perfect bug detection does not hold in practice,

then the effort spent in examination may increase. However,

such concerns apply to all fault localization techniques, and not

just the RBF technique proposed here.

As far as internal validity goes, as discussed in Section IV-A,

not every downloaded faulty version of a program was usable

for our experiments, and some of the faulty versions had to be

created using mutation-based fault injection. However, such in-

jection has been shown to be an effective approach to simulating

realistic faults that can be used in software testing research to

yield trustworthy results [4], [9], [26]. Other researchers, such

as those of [22], also argue that, although these faults are manu-

ally injected, they do resemble common logic errors. A good ex-

ample is that errors like “off-by-one” may sneak in when devel-

opers are handling obscure corner conditions. Therefore, while

our seeding of faults may represent a threat to internal validity,

it was, nevertheless, a necessary step to make our evaluations

more comprehensive, and does not detract from the validity and

correctness of our results.

Regarding external validity, because our evaluation of the

proposed RBF technique has primarily been based on empir-

ical data, arguably our results may not be generalized to all pro-

grams. To alleviate this threat, we used many different sets of

faulty programs in our evaluation. Furthermore, each program

varies greatly from the other in terms of size, function, number

of faulty versions, number of test cases, etc., and this variability

helps us have confidence in the general applicability of the RBF

to different programs.

Finally, we would also like to emphasize that, similar to any

other fault localization techniques, the effectiveness of RBF

varies for different programs, bugs, and test cases. The abilities

of the coverage measurement tools, such as whether the runtime

trace can be correctly collected even if a program execution

is crashed due to a segmentation fault, and environments,

including compilers, operation systems, hardware platforms,

etc., also have an impact.

IX. RELATED STUDIES

In the recent years, many studies have been performed, and

several techniques proposed, in the area of fault localization.

Renieris and Reiss [33] propose a nearest neighbor debugging

technique that contrasts a failed test with another successful test

which is most similar to the failed one in terms of the “distance”

between them. If a bug is in the difference set between the failed

execution and its most similar successful execution, it is located.

For a bug that is not contained in the difference set, the technique

continues by first constructing a program dependence graph, and

then including adjacent un-checked nodes in the graph step by

step, and checking to see if they are faulty, until the bug is lo-

cated. The set union and set intersection techniques are also re-

ported in [33]. The former computes the set difference between

the “program spectra” of a failed test and the union spectra of a

set of successful tests. It focuses on the source code that is ex-

ecuted by the failed test, but not by any of the successful tests.

The latter is based on the set difference between the intersection

spectra of successful tests and the spectra of the failed test. It fo-

cuses on statements that are executed by all successful tests, but

not by the failed test case.



WONG et al.: EFFECTIVE SOFTWARE FAULT LOCALIZATION USING AN RBF NEURAL NETWORK 167

In [7], Cleve and Zeller report a program state-based debug-

ging technique, cause transition, to identify the locations and

times where a cause of failure changes from one variable to

another. This technique is an extension of their earlier work

with delta debugging [52], [53]. Tarantula [18] follows the intu-

ition that statements primarily executed by failed test cases are

more likely to be faulty than those executed by successful test

cases, and assigns suspiciousness to each statement. Tarantula

performs better than techniques such as set union, set intersec-

tion, and cause transitions; and previously it has been shown that

RBF performs better than Tarantula [49], which means RBF also

performs better than the techniques less effective than Tarantula

such as set union and intersection, cause transitions, etc.

Liblit et al. propose a statistical debugging technique (which

we refer to as Liblit05 in this paper) that can isolate bugs in

the programs with instrumented predicates at particular points

[20]. As an extension (and improvement) to Liblit05, Liu et

al. propose the SOBER technique to rank suspicious predicates

[22]. All instrumented predicates can be ranked in order of their

scores, and examined in order of their fault-relevance. RBF has

been shown to be more effective than the SOBER and Liblit05

techniques in our previous study [49].

Zhang et al. [54] present a technique such that, for a given

failed test, they perform multiple executions against that test. In

each execution, the outcome of one predicate is switched, and

this process continues until the program produces the correct

output as a result of the switch; then the corresponding predicate

is a critical predicate. Bidirectional dynamic slices of such crit-

ical predicates are then computed to help programmers locate

the bugs. There are also many slicing-based studies which can

be further classified as static slicing-based [24], [40], dynamic

slicing-based [2], and execution slicing-based [3], [45], [47]

fault localization techniques. As opposed to directly assessing

the suspiciousness of individual program entities, in [55], the

authors instead focus on the propagation of infected program

states.

In [34], the original Tarantula technique [18] is extended by

making use of the Ochiai coefficient [1] (which is also compared

to RBF in Section V-A) to evaluate the quality of fault local-

ization with respect to multiple coverage types, namely state-

ments, branches, and data dependencies. Their study shows that

no single coverage type performs best for all studied faults, and

that different kinds of faults are best localized by different cov-

erage types. A new coverage-based approach to fault localiza-

tion that leverages each coverage type via combination is also

presented in [34]. For the purposes of this paper, only state-

ment-based coverage is considered as an input to RBF, and the

effects of using multiple coverage types with RBF is deferred to

future study.

We direct readers interested in learning more about fault lo-

calization, and fault localization techniques, to our report, A

Survey on Software Fault Localization [43], where a compre-

hensive survey on the state of the art in fault localization can be

found.

X. CONCLUSION AND FUTURE WORK

An RBF (radial basis function) neural network-based fault lo-

calization technique is presented in this paper. The network is

trained on coverage information for each test case paired with

its execution result, either success or failure, and the network

so trained is then given as input a set of virtual test cases, each

of which covers a single statement. The output of the network

is considered to be the suspiciousness of the statement corre-

sponding to the virtual test. Statements with a higher suspicious-

ness should be examined first as they are more likely to con-

tain program bugs. Empirical data (in Section IV) based on the

Unix suite, Space, Grep, Make, and Ant programs (i.e., both

small and large-sized programs) indicates that RBF is more ef-

fective in fault localization than Crosstab [50]. Section V shows

that RBF is also more effective than similarity coefficient-based

techniques such as Ochiai [1], and Jaccard [1]; and Heuristic-

based techniques such as H3C [42]. Combining the results pre-

sented in this paper with those from a previous study [49] which

shows that RBF is more effective than techniques such as Taran-

tula [18], Liblit05 [20], and SOBER [22], we have shown that

RBF is more effective than 7 different competing fault localiza-

tion techniques: Tarantula, SOBER, Liblit05, Ochiai, Jaccard,

Crosstab, and H3C.

Experiments that both illustrate and evaluate the RBF tech-

nique on programs with multiple bugs (based on the very large

gcc program) are also performed. Our data suggests that the

RBF technique can not only easily be applied to localize bugs in

a multi-bug program, but is also more effective than techniques

such as Crosstab, Tarantula, Ochiai, and H3C in such situations.

Further experiments that evaluate the RBF technique in the pres-

ence of inadequate test sets and noisy data in the Gzip program

show that RBF is not just effective at fault localization, but is

also highly robust.

Studies that target a wider range of application domains are

currently in progress to further validate the general effective-

ness of the RBF technique. As stated earlier, what we have pre-

sented in this paper is an instance of a much larger model where

RBF neural networks are used in the context of fault localiza-

tion. In the future, we intend to investigate other instances of

the same technique by varying our parameters and algorithms,

and evaluating with respect to other distance measures (as op-

posed to the weighted-bit comparison based dissimilarity). We

also plan to extend our studies using other machine learning al-

gorithms (e.g., support vector machines, decision trees, logistic

regression, etc.), and observe the potential variation of the per-

formance, if any. Additionally, we are currently working with

our industry partners to apply the RBF fault localization tech-

nique in their environments.

REFERENCES

[1] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A
Practical Evaluation of Spectrum-based Fault Localization,” Journal

of Systems and Software, vol. 82, no. 11, pp. 1780–1792, 2009.
[2] H. Agrawal, R. A. DeMillo, and E. H. Spafford, “Debugging with dy-

namic slicing and backtracking,” Software: Practice & Experience, vol.
23, no. 6, pp. 589–616, Jun. 1996.

[3] H. Agrawal, J. R. Horgan, S. London, and W. E. Wong, “Fault local-
ization using execution slices and dataflow tests,” in Proceedings of

the 6th International Symposium on Software Reliability Engineering,
Toulouse, France, Oct. 1995, p. 143-15.

[4] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appro-
priate tool for testing experiments?,” in Proceedings of the 27th In-

ternational Conference on Software Engineering, St. Louis, Missouri,
USA, May 2005, pp. 402–411.



168 IEEE TRANSACTIONS ON RELIABILITY, VOL. 61, NO. 1, MARCH 2012

[5] G. Boetticher and D. Eichmann, “A neural network paradigm for char-
acterizing reusable software,” in Proceedings of the 1st Australian Con-

ference on Software Metrics, Sydney, Australia, Nov. 1993, pp. 41–54.
[6] S. R. Chu, R. Shoureshi, and M. Tenorio, “Neural networks for system

identification,” IEEE Control Systems Magazine, vol. 10, no. 3, pp.
31–35, Apr. 1990.

[7] H. Cleve and A. Zeller, “Locating causes of program failures,” in
Proceedings of the 27th International Conference on Software Engi-

neering, St. Louis, Missouri, USA, May 2005, pp. 342–351.
[8] J. Dang, Y. Wang, and S. Zhao, “Face recognition based on radial basis

function neural networks using subtractive clustering algorithm,” in
Proceedings of the 6th World Congress on Intelligent Control and Au-

tomation, Dalian, China, Jun. 2006, pp. 10294–10297.
[9] H. Do and G. Rothermel, “On the use of mutation faults in empirical

assessments of test case prioritization techniques,” IEEE Trans. Soft-

ware Engineering, vol. 32, no. 9, pp. 733–752, Sep. 2006.
[10] K. Fukushima, “A neural network for visual pattern recognition,” Com-

puter, vol. 21, no. 3, pp. 65–75, Mar. 1998.
[11] M. T. Hagan, H. B. Demuth, and M. Beale, Neural Network Design.

New York: PWS Publishing, 1995.
[12] M. H. Hassoun, Fundamentals of Artificial Neural Networks. Cam-

bridge, MA: MIT Press, 1995.
[13] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Berlin, Germany:
Springer, 2001.

[14] S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed.
New York: Prentice Hall, 1999.

[15] [Online]. Available: http://sir.unl.edu/portal/index.html
[16] Clover: A Code Coverage Analysis Tool for Java [Online]. Available:

http://www.atlassian.com/software/clover/
[17] J. A. Jones, J. Bowring, and M. J. Harrold, “Debugging in parallel,” in

Proceedings of the 2007 International Symposium on Software Testing

and Analysis, London, UK, Jul. 2007, pp. 16–26.
[18] J. A. Jones and M. J. Harrold, “Empirical evaluation of the Tarantula

automatic fault-localization technique,” in Proceedings of the 20th

IEEE/ACM Conference on Automated Software Engineering, Long
Beach, California, USA, Dec. 2005, pp. 273–282.

[19] C. C. Lee, P. C. Chung, J. R. Tsai, and C. I. Chang, “Robust radial basis
function neural networks,” in IEEE Trans. Systems, Man, and Cyber-

netics: Part B Cybernetics, Dec. 1999, vol. 29, no. 6, pp. 674–685.
[20] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable

statistical bug isolation,” in Proceedings of the 2005 ACM SIGPLAN

Conference on Programming Language Design and Implementation,
Chicago, Illinois, USA, Jun. 2005, pp. 15–26.

[21] G. F. Lin and L. H. Chen, “Time series forecasting by combining the
radial basis function network and the self-organizing map,” Hydrolog-

ical Processes, vol. 19, no. 10, pp. 1925–1937, Jun. 2005.
[22] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, “Statistical debug-

ging: a hypothesis testing-based approach,” IEEE Trans. Software En-

gineering, vol. 32, no. 10, pp. 831–848, Oct. 2006.
[23] C. Liu and J. Han, “Failure proximity: A fault localization-based ap-

proach,” in Proceedings of the 14th ACM SIGSOFT International Sym-

posium on Foundations of Software Engineering, Portland, Oregon,
USA, Nov. 2006, pp. 46–56.

[24] J. R. Lyle and M. Weiser, “Automatic program bug location by program
slicing,” in Proceedings of the Second International. Conference on

Computer and Applications, Beijing, China, Jun. 1987, pp. 877–883.
[25] J. Moody and C. J. Darken, “Learning with localized receptive fields,”

in Proceedings of Connectionist Models Summer School, 1988, pp.
133–142.

[26] A. S. Namin, J. H. Andrews, and Y. Labiche, “Using mutation analysis
for assessing and comparing testing coverage criteria,” in IEEE Trans.

Software Engineering, Aug. 2006, vol. 32, no. 8, pp. 608–624.
[27] K. S. Narendra and S. Mukhopadhyay, “Intelligent control using neural

networks,” IEEE Control System Magazine, vol. 12, no. 2, pp. 11–18,
Apr. 1992.

[28] D. E. Neumann, “An enhanced neural network technique for software
risk analysis,” IEEE Trans. Software Engineering, vol. 28, no. 9, pp.
904–912, September 2002.

[29] J. Park and I. W. Sandberg, “Universal approximation using radial-
basis-function networks,” Neural Computation, vol. 3, no. 2, 1991.

[30] J. Park and I. W. Sandberg, “Approximation and radial-basis-function
networks,” Neural Computation, vol. 5, no. 2, pp. 305–316, March
1993.

[31] R. Penrose, “A generalized inverse for matrices,” in Proceedings of the

Cambridge Philosophical Society, July 1955, vol. 51, pp. 406–413.

[32] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch, J. Sun, and
B. Wang, “Automated support for classifying software failure reports,”
in Proceedings of the 25th International Conference on Software En-

gineering, Portland, Oregon, USA, May 2003, pp. 465–475.
[33] M. Renieres and S. P. Reiss, “Fault localization with nearest neighbor

queries,” in Proceedings of the 18th International Conference on Au-

tomated Software Engineering, Montreal, Canada, October 2003, pp.
30–39.

[34] R. Santelices, J. A. Jones, Y. Yu, and M. J. Harrold, “Lighweight
fault-localization using multiple coverage types,” in Proceedings of the

31st International Conference on Software Engineering, Vancouver,
Canada, May 2009, pp. 56–66.

[35] P. Singla, K. Subbarao, and J. L. Junkins, “Direction-dependent
learning approach for radial basis function networks,” IEEE Trans.

Neural Networks, vol. 18, no. 1, pp. 203–222, January 2007.
[36] Y. S. Su and C. Y. Huang, “Neural-network-based approaches for

software reliability estimation using dynamic weighted combinational
models,” Journal of Systems and Software, vol. 80, no. 4, pp. 606–615,
April 2007.

[37] N. Tadayon, “Neural network approach for software cost estimation,”
in Proceedings of the International. Conference on Information Tech-

nology: Coding and Computing, Las Vegas,, Nevada, USA, April 2005,
pp. 815–818.

[38] C. Wan and P. B. Harrington, “Self-configuring radial basis function
neural networks for chemical pattern recognition,” Journal of Chemical

Information and Modeling, vol. 39, no. 6, pp. 1049–1056, November
1999.

[39] P. D. Wasserman, Advanced Methods in Neural Computing. New
York: Van Nostrand Reinhold, 1993.

[40] M. Weiser, “Programmers use slices when debugging,” Communica-

tions of the ACM, vol. 25, no. 7, pp. 446–452, Jul. 1982.
[41] I. Vessey, “Expertise in debugging computer programs,” International

Journal of Man-Machine Studies: A Process Analysis, vol. 23, no. 5,
pp. 459–494, 1985.

[42] W. E. Wong, V. Debroy, and B. Choi, “A family of code coverage-
based heuristics for effective fault localization,” Journal of Systems and

Software, vol. 83, no. 2, pp. 188–208, February 2010.
[43] W. E. Wong and V. Debroy, A Survey on Software Fault Localization

Department of Computer Science, University of Texas, Dallas, Tech-
nical Report UTDCS-45-09, November 2009.

[44] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test
set minimization on fault detection effectiveness,” Software-Practice

and Experience, vol. 28, no. 4, pp. 347–369, April 1998.
[45] W. E. Wong and Y. Qi, “Effective program debugging based on exe-

cution slices and inter-block data dependency,” Journal of Systems and

Software, vol. 79, no. 7, pp. 891–903, Jul. 2006.
[46] W. E. Wong, Y. Qi, L. Zhao, and K. Y. Cai, “Effective fault localiza-

tion using code coverage,” in Proceedings of The 31st IEEE Computer,

Software, and Applications Conference, Beijing, China, July 2007, pp.
449–456.

[47] W. E. Wong, T. Sugeta, Y. Qi, and J. C. Maldonado, “Smart debug-
ging software architectural design in SDL,” Journal of Systems and

Software, vol. 76, no. 1, pp. 15–28, April 2005.
[48] W. E. Wong and Y. Qi, “BP neural network-based effective fault lo-

calization,” International Journal of Software Engineering and Knowl-

edge Engineering, vol. 19, no. 4, pp. 573–597, June 2009.
[49] W. E. Wong, Y. Shi, Y. Qi, and R. Golden, “Using an RBF neural

network to locate program bugs,” in Proceedings of the 19th IEEE

Intl. Symposium on Software Reliability Engineering, Seattle, USA,
November 2008, pp. 27–38.

[50] W. E. Wong, T. Wei, Y. Qi, and L. Zhao, “A crosstab-based statis-
tical method for effective fault localization,” in Proceedings of the First

Intl. Conference on Software Testing, Verification and Validation, Lille-
hammer, Norway, Apr. 2008, pp. 42–51.

[51] �Suds User’s Manual Telcordia Technologies, 1998.
[52] A. Zeller, “Isolating cause-effect chains from computer programs,” in

Proceedings of the 10th ACM SIGSOFT symposium on Foundations

of software engineering, Charleston, South Carolina, USA, November
2002, pp. 1–10.

[53] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-in-
ducing input,” IEEE Trans. Software Engineering, vol. 28, no. 2, pp.
183–200, February 2002.

[54] X. Zhang, N. Gupta, and R. Gupta, “Locating faults through auto-
mated predicate switching,” in Proceedings of the 28th International

Conference on Software Engineering, Shanghai, China, May 2006, pp.
272–281.



WONG et al.: EFFECTIVE SOFTWARE FAULT LOCALIZATION USING AN RBF NEURAL NETWORK 169

[55] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang, and X. Wang, “Capturing
propagation of infected program states,” in Proceedings of the 7th joint

meeting of the European Software Engineering Conference (ESEC) and

the ACM SIGSOFT Symposium on the Foundations of Software Engi-

neering (FSE), Amsterdam, The Netherlands, August 2009, pp. 43–52.
[56] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken, “Statis-

tical debugging: Simultaneous identification of multiple bugs,” in Pro-

ceedings of the 23rd International Conference on Machine Learning,
Pittsburgh, Pennsylvania, USA, June 2006, pp. 1105–1112.

W. Eric Wong received his Ph.D. in Computer Science from Purdue University.
He is currently an Associate Professor in Computer Science with the University
of Texas, Dallas. Prior to joining UTD, he was with Telcordia (formerly Bell-
core) as a Project Manager for Dependable Telecom Software Development.
Dr. Wong received the Quality Assurance Special Achievement Award from
Johnson Space Center, NASA, in 1997. His research focus is on the technology
to help practitioners develop high quality software at low cost. In particular, he
is doing research in software testing, debugging, safety, and reliability at the ap-
plication and architectural design levels. Dr. Wong is Vice President-elect for
Technical Operations of the IEEE Reliability Society, and the Secretary of the
ACM Special Interest Group on Applied Computing (SIGAPP).

Vidroha Debroy received his B.S. degree in Software Engineering, M.S. de-
gree in Computer Science, and Ph.D. degree in Software Engineering from the
University of Texas, Dallas. He is currently a Software Testing Engineer at Mi-
crosoft. Dr. Debroy’s research interests include software testing and fault local-
ization, program debugging, and automated and semi-automated ways to repair
software faults.

Richard Golden is a Professor of the Cognition and Neuroscience Ph.D. Pro-
gram within the School of Behavioral and Brain Sciences at the University of
Texas at Dallas. He is also the Program Head of the Undergraduate Cognitive
Science and the Graduate Applied Cognition and Neuroscience at UTD. Dr.
Golden has been a member of the editorial board of the Journal of Mathematical
Psychology since 1996. He was also on the editorial board of Neural Processing
Letters (1999–2004), and the journal Neural Networks (1995–2006). Dr. Golden
received a Bachelor’s degree in Electrical Engineering and Experimental Psy-
chology from the University of California at San Diego, and a Master’s degree
in Electrical Engineering and a Doctoral degree in Experimental Psychology
from Brown University.

Xiaofeng Xu is a Ph.D. student at Xiamen University, who is currently a vis-
iting research scholar at the University of Texas, Dallas under Professor W. Eric
Wong’s supervision. His research interests include code coverage testing, and
fault localization.

Bhavani Thuraisingham is a Distinguished Professor in Computer Science,
and the Director of the Cyber Security Research Center at the University of
Texas, Dallas. She is a Fellow of IEEE, AAAS (American Association for the
Advancement of Science), and BCS (British Computer Society). Prior to joining
UTD, Dr. Thuraisingham was a Program Director at the National Science Foun-
dation, USA. Her work in information security and information management has
resulted in over 80 journal articles, and three US patents. Dr. Thuraisingham was
educated in the United Kingdom at the University of Bristol, and the University
of Wales.


