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Abstract
Software self-testing for embedded processor cores

based on their instruction set, is a topic of increasing
interest since it provides an excellent test resource
partitioning technique for sharing the testing task of
complex Systems-on-Chip (SoC) between slow,
inexpensive testers and embedded code stored in memory
cores of the SoC. We introduce an efficient methodology
for processor cores self-testing which requires knowledge
of their instruction set and Register Transfer (RT) level
description. Compared with functional testing
methodologies proposed in the past, our methodology is
more efficient in terms of fault coverage, test code size
and test application time. Compared with recent software
based structural testing methodologies for processor
cores, our methodology is superior in terms of test
development effort and has significantly smaller code size
and memory requirements, while virtually the same fault
coverage is achieved with an order of magnitude smaller
test application time.

1. Introduction
Almost every complex System-on-Chip (SoC) consists

of at least one embedded processor core which may be
either a general purpose processor or a special purpose
processor for graphics, audio/video applications etc. with
enhanced DSP functionality. Such processor cores are
surrounded by memory cores (RAM or ROM) of various
sizes used for code and data storage.

The complexity of SoC designs consisting of deeply
embedded cores with poor accessibility makes their
testing process a difficult task. Additionally, the
increasing gap between the operating frequencies of
Automatic Test Equipment (ATE) and the operating
frequencies of SoC lead to the escape of failures that may
be detected only when testing is performed in the actual
speed of the IC (at-speed testing). The transfer of the SoC
test task from an external ATE to an internal built-in self-
test (BIST) mechanism provides significant advantages
not only for processor cores but also for other types of
cores like memories. The use of self-test methodologies
for processor testing reduces yield loss and drives down
the overall test cost of the SoC [1] while actual at-speed
testing is possible. In addition, the use of self-test reduces
the design cycle and thus improves time-to-market, while

it also provides better Intellectual Property (IP) protection
than classical scan-based external testing techniques.

When a self-test methodology is based on hardware
mechanisms, special parts of the circuit are synthesized
for Test Pattern Generation and Output Data Evaluation.
In this case, the extra circuit area may be significant, but
the most important is the possibility of significant
performance loss due to the introduction of extra logic in
the critical paths of the circuit. Recent applications of
hardware-based commercial logic BIST techniques in
large industrial designs and microprocessors [2], [3], [4],
revealed that extensive design changes have to be
performed (most of them manually). Theses changes have
a negative impact in the circuit area and performance
since extensive test point insertion is necessary to achieve
an acceptable fault coverage mostly because of the
random pattern resistance of the circuits. In the case of
processor cores, which are very carefully designed IP
entities optimized for performance or power
consumption, such hardware-based self-test mechanisms
that seriously impact performance and power
consumption can be considered of limited practical value.

Software-based self-test methodologies for embedded
processor cores have the advantage that they utilize the
processor functionality and instruction set for both Test
Pattern Generation and Output Data Evaluation and thus
do not add hardware or performance overheads in the
optimized design. Such self-testing approaches have been
recently proposed in the literature,  [4]-[8].

In [4] the concept of self-test signatures is introduced
and a structural testing methodology for processor cores
is presented. At the test preparation stage, pseudorandom
patterns are used for each processor component in an
iterative method taking into consideration the constraints
imposed by its instruction set, based on the knowledge of
the gate-level netlist of every component. At the test
execution (test application) stage, pseudorandom test
patterns developed at the test preparation stage and
encapsulated into self-test signatures, are first expanded
on-chip by a software-emulated LFSR (test generation
program) and stored in embedded memory. Then, the
pseudorandom test patterns are applied by software test
application programs and responses are collected into
memory again. At the test preparation stage, as an
alternative, gate level ATPG can be used to generate test
patterns for processor components in the iterative



constrained test generation method. This methodology is
restricted by the need of gate-level details of the
processor structure. Such information may not be
available, but even in the case that it is actually available,
the instruction set imposed constraint test generation of
deeply embedded functional modules of the processor is a
very time consuming task, which may not always lead to
an acceptable fault coverage. Besides, the pseudorandom
nature of the methodology leads to large self-test code,
large memory requirements and excessive test application
time (total number of processor clock cycles for the self-
test session).

The processor self-testing approaches of [5], [6] rely
on the use of random instruction sequences, while those
of [7], [8] rely on pseudorandom operations and
operands. In particular, the functional testing
methodologies of [5] and [8] are based only on the
knowledge of the instruction set architecture of the
processor (instructions, registers, addressing modes). The
obtained structural fault coverage is low due to the high
level of abstraction of the methodology. Besides, the self-
test code sequences and the test application time are both
excessively large due to the use of a pseudorandom
strategy. The large size of the self-test code significantly
increases the overall test time since the self-test code
sequences are downloaded into memory at the low
frequency of the external tester.

An attractive alternative to pseudorandom software
self-testing is deterministic software self-testing. As
mentioned above, if the gate-level information of the
processor core is available, deterministic patterns can be
generated by an ATPG taking into consideration the
control signal constraints imposed by the instruction set.
These test patterns do not have an inherent regularity and
thus are difficult to be generated by efficient software
code based on small loops of instructions and compact
test routines. Only in the case that the number of test
patterns is very low this method is efficient. In this case
the test patterns have to be downloaded by the external
ATE into memory along with a simple test application
program.

Fortunately, it has been shown that very small
deterministic self-test sequences are sufficient for testing
the functional modules of a processor datapath. The self-
test sequences can be generated by simple hardware
machines [9]-[12]. In the case of processor cores when no
hardware additions may be affordable, the test sequences
can also be generated by software routines [13]. When
self-test routines are based on deterministic test sets for
the functional modules, they have two main advantages.
First, the self-test code is very small and based on short
loops of a few instructions. Second, the achieved fault
coverage is guaranteed for any width of the operands and
any internal implementation of the functional modules
[9]-[12].

In this paper, we propose a software-based self-test
methodology for embedded processor cores that is based
on the knowledge of the Instruction Set Architecture
(ISA) of the processor and its Register Transfer (RT)
level description. The RT level description showing the
connections among the functional parts of the processor
(ALUs, adders, multipliers, shifters, etc), the storage
elements (registers, register files, flags) and the steering
logic modules (multiplexers, bus elements) is a piece of
information which is usually available and is much more
easily managed than a detailed gate-level netlist.
Therefore, a limited engineering effort is required. Our
methodology is based on the application of deterministic
test patterns targeting structural faults of individual
processor components. The deterministic test patterns are
not ATPG generated but are developed by our
methodology in order to excite the entire set of operations
that each component performs. For each component
operation (arithmetic or logic operations, data transfer
operations etc) a basic self-test routine is developed based
on a deterministic test set for the component (i.e.
functional modules like an ALU, a shifter or a multiplier)
that performs the operation after mapping each operation
to a processor instruction. The derived self-test code is
compact due to the use of small regular test sets. The
regularity of the basic test sets for the functional module
components is essential for the success of the proposed
software self-test methodology, since it is the driving
force for the small size of the self-test code and thus its
small memory requirements.

We demonstrate our methodology in detail using the
same processor core used in [4] and provide detailed
experimental results. The first advantage of our
methodology is the significantly smaller self-test code
size and memory requirements. The self-test code
reduction leads to an important reduction in the time
required to download the program from external tester
into internal memory. Besides, the number of processor
clock cycles required for execution of our test code is by
an order of magnitude smaller than [4]. The combination
of the reduced test code size and reduced test code
execution time leads to a large total reduction in the
overall test application time for the processor.

2. Self-Test Methodology

2.1 Overview
According to the proposed self-test methodology for

processor cores, self-test routines based on the instruction
set architecture and the RT level description of the
processor core are first developed. These routines are
either stored in a ROM for in-the-field periodic testing or
are loaded in a RAM by a low cost external ATE for
manufacturing testing.



Subsequently, these self-test routines are executed at-
speed to generate the necessary test patterns for testing
the complete set of operations performed by the
components of the processor and test results are stored
back in RAM. These test results may be in a compacted
or uncompacted form and can be again unloaded by the
low cost external ATE for manufacturing testing.

The proposed processor self-test methodology due to
its compact test code and reduced data is also an excellent
solution for in-the-field periodic testing where the small
size of memory portions dedicated to test is important.

2.2 Testability of processor components
Every processor component is either a functional unit,

an internal processor register or a steering logic element
(i.e. multiplexer, tri-state buffer).

The testability of the processor components depends
on the controllability of the component inputs and the
observability of the component outputs. If the component
is a functional unit or steering logic element, its
testability depends directly on the controllability of the
processor registers that drive the component inputs and
the observability of the processor registers driven by the
component outputs. The data inputs of a functional unit
component are usually fully controllable and data outputs
are fully observable since there are several registers (i.e.
the accumulator, general purpose registers) accessible
through primary inputs and outputs, respectively, using
processor instructions. On the other hand, the control
inputs and outputs of a functional unit component are less
controllable and thus, special self-test routines have to be
developed. This testing difficulty results from the fact
that these control inputs and outputs are driven and drive,
respectively, hard to control and observe processor
registers like the status register.

In the case that the component is an internal processor
register, its testability depends on the existence of
processor instructions (or instruction sequences, in
general) capable of assigning the required test patterns to
them (from primary inputs or on-chip generated) and
propagate their values to primary outputs (test response).
Therefore, each processor register has its own
controllability and observability characteristics.

As in previous processor self–test approaches we do
not develop a special routine for the control unit
component of the processor. This component is tested
sufficiently when other specific processor  components
are tested with their self-test routines.

2.3 Self-Test Program Development
The development  of the dedicated self-test routines

for testing specific processor components according to
our test methodology is performed  in three steps:
Information extraction (Step 1). From the processor
instruction set architecture and RT level description, we
extract the effects of the execution of each instruction to

every component. Thus, for every instruction I and for
every component C participating in the instruction
execution the following information is extracted:
 The specific operation O, that the component

performs along with the relevant control signals
which are enabled by the control unit for the
execution of this operation.

 For every operation O, the involved internal
processor registers and memory for data and control
storage, along with their controllability and
observability characteristics.

The extracted pieces of information from this step are
used for (a) mapping the component operations and
related control signals to processor instructions, (b)
sorting the instructions according to the controllability
and observability characteristics of the involved
processor registers and memory.
Instruction selection (Step 2). For every component C
we first identify the set of operations OC that  component
C performs.

We denote IC,O the set of processor instructions that,
during execution, enable the same control signals and
cause, component C to perform operation O.

It is evident that for each component C there is at least
one processor instruction that, during its execution,
causes  component C to perform operation O, i.e. IC,O ≠∅.
The instructions which belong to the same set IC,O:
 have different observability properties since, when

operation O is performed, the outputs of component
C drive internal processor registers with different
observability characteristics.

 have different controllability properties since, when
operation O is performed, the inputs of component C
are driven by internal processor registers with
different controllability characteristics

After identification of the set IC,O for every component
operation we select an instruction I of the set IC,O
according to the following criteria:
Criterion 1: Discard instructions belonging to IC,O that,
when operation O is performed, the outputs of component
C do not propagate to an internal processor register. This
criterion is a simple one since if the effect of an
instruction to a component operation is not stored in a
register the possibly faulty component output cannot be
propagated furthermore.

The remaining instructions belonging to IC,O are sorted
in an Instruction Priority List (IPL) using the extracted
information of Step 1 in accordance to the following
criteria:
Criterion 2:  Between instructions IA and IB belonging to
IC,O, IA is ranked higher than IB in the IPL (higher
priority), if it requires a smaller instruction sequence to
propagate the outputs of component C through the related
internal processor register to primary output ports. That
means that instruction IA is more easily observable than
IB and should be preferred over IB.



Criterion 3: If Criterion 2 ranks two different instructions
IA and IB belonging to IC,O, at the same position in the
priority list, we select the one that requires smaller
instruction sequence to generate a specific test pattern at
the internal processor register that drives the inputs of
component C. This instruction sequence can be either a
simple load instruction (for a single test vector that comes
from primary input, that is stored in memory), or
generated on chip by an efficient deterministic test
generation algorithm (for complex arithmetic and logic
operations), but in both cases the vector should end in the
internal processor register that drives the inputs of
component C.

The above three criteria aim to the efficiency of self-
test routines for single components. If a global
optimization is performed for the total test program,
different criteria could be followed.
Operand selection (Step 3). In this step we consider  the
deterministic operands that must be applied to each
component to achieve high structural fault coverage.
Each component category (functional modules, registers,
steering logic) requires special test patterns.

The most difficult to test processor components are the
functional module components. The functional units (i.e.
ALU) data inputs and outputs are usually fully accessible,
since their inputs are driven directly from memory or
very well controllable processor registers (i.e.
accumulator, general purpose registers) and their outputs
drive well observable processor registers or directly
propagate to primary outputs. Thus, after applying each
test and the test response is kept in a very well observable
register, the most suitable processor instruction for
propagating test response to primary output (memory) is
a simple Reg→Mem instruction like STORE.

If part of the test response of a component is not
driven to a well accessible internal register (that is the
case of flag outputs driving status register) an extra
instruction sequence is required to propagate first to
accessible registers and then to primary outputs
(memory).

For hard to test functional modules, self test routines
are developed based on deterministic test sets providing a
test code library. These software test routines, developed
for components implementing a large number of
arithmetic and logic operations (i.e. ADD, MULTIPLY,
AND), are generated on-chip using the processor
instruction set and consist of efficient loops. For this
reason they are very compact and require a very small
number of bytes. The operations performed in these loops
are very simple operations (mostly additions) on contrast
with a software LFSR implementation in a pseudorandom
based methodology (where complex parity bit
computations, bit wise logic operations and shifting must
be performed). They also apply a limited number of test
vectors resulting in very short test program length.

The overall process is outlined in the following:

for (each component C)  {
  for (every operation o∈OC) {
       Determine IC,O   

Select I ∈ IC,O, using
      controllability and
      observabillity criteria
Using instruction I,
      apply deterministic data
      patterns at C data inputs

}
  if fault coverage ≥ target, exit
}

One should note that in a processor instruction set, it is
very usual for two different components C1, C2 that:

∃ I : IC1,O1∩ IC2,O2≠∅
That means that there are instructions their execution
applies to two different components C1, C2 operations
O1,O2. If the outputs of both components are propagated
to primary outputs, although test vectors were prepared
for one of the two (i.e, C1), faults of C2 will be also
detected during the instruction execution and output
propagation. This results to the fact that during software
testing of the hard to test components, several other
processor components are tested as well, thus eliminate
the necessity for considering every individual component
in the test preparation process. Therefore, processor
components with a high potential to activate multiple
operations in other components during the application of
instructions that test them must be considered first. Such
components are the functional modules and as it is
demonstrated in the next section, only the two functional
modules of the example processor are sufficient to
provide a very high fault coverage for all the others.

An important aspect of the proposed methodology is
that it does not require synthesis and gate level
description of the tested components. Due to its
deterministic nature, a basic knowledge of information in
terms of functionality or functional blocks inside the
component is required. This information is easily implied
by the control signal applied to it or a related output. The
only information necessary is an RT level description of
the processor.

3. Experimental results
We have evaluated the effectiveness of the proposed

methodology on the same accumulator-based processor
core Parwan (see Figure 1) as in [4]. It is an 8-bit CPU
with a 12-bit address bus (4Kbytes memory). Parwan
instruction set includes most common instructions like
load and store, arithmetic and logical operations, jump
and branch instructions. It also supports direct and
indirect addressing modes. Considering both addressing
modes, Parwan instruction set has a total of 24 different
instructions.
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Figure 1. Parwan CPU

Parwan includes the following components: arithmetic
logic unit (ALU), shifter unit (SHU), accumulator (AC),
program counter (PC), status register (SR), memory
address register (MAR), instruction register (IR) and
control unit (CTRL). From the seven processor
components only ALU and SHU are combinational
circuits and also the only functional units. These two
components have fully controllable and observable data
inputs and outputs as a result of the fact that they operate
in operands from/to memory and accumulator which is
fully accessible in terms of controllability and
observability.

The Parwan processor synthesized design contains a
total of 1300 2-input NAND gate equivalents out of
which 53 are flip-flops. Tristate buffers control the 8-bit
data and 12-bit address buses. For synthesis, VHDL
simulation and fault simulation we used the Leonardo,
ModelSim and FlexTest products, respectively, from
Mentor Graphics in a test evaluation framework similar
to [4].

Test programs were prepared for the ALU and SHU
components according to our methodology. A total of 36
deterministic test patterns for the six ALU operations and
25 test patterns for the three SHU operations are applied
respectively to ALU and SHU, in the form of loops
consisting of simple instructions. During test program
execution, other components including the control unit
are tested as well.

Test program statistics such as the number of
instructions, the program size in bytes, the response data
size in bytes and the program execution time in clock
cycles are presented in Table 1. In the same Table, we
provide statistics from the software self test methodology
of [4].

Method
of [4]

Proposed
Method

Redu-
ction

# instructions 575 444 22.8%

Program Size (bytes) 1,129 885 21.6%

Response data (bytes) 514 122 76.3%

Exec. Time (cycles) 137,649 16,572 87.9%

Table 1. Test program statistics

Fault coverage results for every component along with
the total processor fault coverage are illustrated in Table
2. The tick marks denote the targeted components by the
proposed methodology and the methodology of [4].

Fault coverage (%)
Component Method

of [4]
Proposed
method

ALU 98.48 98.48
SHU 94.08 93.82
PC 89.16 88.10
AC 99.33 98.67
IR 98.61 98.26

MAR 97.22 97.22
SR 98.88 92.13

CTRL 88.26 85.52

Total CPU 91.42 91.10

Table 2. Fault coverage results

The proposed methodology achieves a significant
amount of reduction on key test program statistics like the
number of processor instructions, the program size (the
number of bytes to be downloaded by an external ATE to
memory or stored in ROM)  and the response data size
(the number of test response bytes to be stored in memory
and later to be unloaded by an external ATE or
compressed by a test response analysis program) while it
achieves virtually the same fault coverage results. It
should be noted that conventional testing techniques (non
software based) fault coverage results are presented in
[4]. Full Scan and Logic BIST achieve total fault
coverage 89.39% and 88.69%, respectively, while both
techniques require circuit modifications. Also, they both
result to area overhead (Logic BIST in particular) while
Full Scan requires a high performance tester to apply at-
speed.

It is evident that the proposed methodology is superior
when compared to [4] with respect to the total memory
requirements (test program size, data memory for test
response storage). Furthermore, if one considers the
additional memory requirements as a result of the self-
test signature expansion into a large number of test
vectors that have to be stored in memory [4], our
proposed methodology memory requirements advantage



is further validated. (In [4], self-test signatures are
expanded by the test generation program - software LFSR
- into test vectors stored in memory, which subsequently
are applied by the test application program).

The program (test code) size along with the response
data size (the later applies when an on-chip test response
analysis program is not employed to compress  test
responses into signatures) determines the total number of
bytes that have to be downloaded and unloaded
respectively, by the external ATE (for manufacturing
testing) and thus relates directly to the tester time. Even if
an on-chip test response analysis program is employed,
its execution time relates directly to the test response data
size and thus affecting the tester time.

The superiority of the proposed methodology on the
test program execution time is obvious. The proposed test
program, by addressing carefully the testability of key
functional modules (ALU, SHU) achieves an almost one
order of magnitude reduction of the test application time
when compared to [4].

With a minimal amount of information extracted from
the processor instruction set and RT level description, our
methodology compares favorably to the one of [4] with
respect to engineering effort. The methodology of [4],
considering every component fault at the gate level,
requires much larger engineering effort to perform
repetitive, time consuming, LFSR pseudorandom
constrained test generation and fault simulation in an
iterative method at the test preparation stage.
Furthermore, in [4], in case of using ATPG based stored
test patterns for some components, constrained based
ATPG at the gate level must be performed, where
instruction set imposed constraints must be extracted,
requiring a large engineering effort as well.

4. Conclusions
We proposed a software based self-test methodology

for embedded processor cores that enables at-speed
testing and achieves high fault coverage with no
hardware overhead and performance degradation. The
methodology targets processor components and applies
deterministic data patterns (operands) for every
component operation. When compared with existing
software based self test methodologies (pseudorandom
and ATPG based) it requires much less computational
effort while it achieves a guaranteed high fault coverage
facing the most hard to test functional modules favorably.
We have demonstrated its effectiveness in the same
processor core used in a recently published work [4]. The
superiority of the proposed methodology in terms of both
test program size, memory requirements and test
application time is significant.
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