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Abstract

We discuss an effective spin-glass Hamiltonian which can be used to study the glassy-like dynamics observed in the

metastable states of the Hamiltonian mean field (HMF) model. By means of the Replica formalism, we were able to find a

self-consistent equation for the glassy order parameter which reproduces, in a restricted energy region below the phase

transition, the microcanonical simulations for the polarization order parameter recently introduced in the HMF model.

r 2006 Elsevier B.V. All rights reserved.
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Understanding glassy dynamics is one of the greatest challenges in theoretical physics. Many of the recent
developments in this field are based on the analysis of mean-field models [1,2]. The latter are defined by
Hamiltonians with long-range interactions and seem to capture many properties of real systems. The rather
accurate comparison to numerical simulations [3,4] and experiments [5–7] supports the claim that the
mechanism in these models is similar to the one responsible for the glass transition and the glassy dynamics in
real materials.

In this paper we will consider the so-called Hamiltonian mean field (HMF) model, a system of planar
rotators originally introduced in Ref. [8]. This model has been intensively studied in the last years for its
extreme richness and flexibility in exploring the connections between dynamics and thermodynamics in long-
range many-body systems. In fact, on one hand, the model has an exact equilibrium solution and, on the other
hand, because of the presence of a kinetic energy term in the Hamiltonian, the dynamics can be studied by
means of molecular dynamics simulations [8–11]. From these investigations, many new interesting features
have emerged which are common to other systems with long-range interactions [12–14]. One of the most
intriguing characteristics of the dynamics is the existence of quasi-stationary states (QSS), i.e. metastable
dynamically created states, whose lifetime diverges with the system size N [15]. In such states, that
spontaneously appear in the numerical simulations when the system starts from strong off-equilibrium initial
conditions, many anomalies have been observed, such as anomalous diffusion [10], non-Gaussian velocity
distributions [15], vanishing Lyapunov exponents [15], weak ergodicity breaking, hierarchical structures [16],
e front matter r 2006 Elsevier B.V. All rights reserved.
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slow-decaying correlations and aging [17–20]. These features have suggested a possible application of Tsallis
generalized thermodynamics [15,21–24] but also an interesting link with glassy dynamics.

We have shown in previous papers that, in the QSS regime, the HMF system behaves very similarly to a
spin-glass (SG) system [16,25,26]. Actually, by means of a new order parameter called polarization and
inspired by the Edwards–Anderson (EA) SG order parameter [27–30], it has been possible to characterize the
dynamically generated QSS as a sort of glassy phase of the HMF model, despite the fact that neither quenched
disorder nor frustration are present in the interactions.

In this paper, by means of a replica-symmetry analysis performed on an appropriate effective Hamiltonian,
we will show that it is possible to find out a self-consistent equation for a SG order parameter describing, in
the thermodynamic limit, the quenched dynamics observed in the QSS regime. We will also show that the
solutions of this equation reproduce well the microcanonical simulations results for the polarization in the
energy region where the dynamical anomalies are more evident, thus strongly suggesting the identification of
the two order parameters and confirming the interpretation of the limiting QSS regime as a glassy phase.
1. SG Models

In the last three decades SGs have attracted the attention of experimentalists and theoreticians as glassy
prototypical systems showing frustration and quenched disorder [31–36]. Shortly, SGs are systems with
localized electronic magnetic moments whose interactions are characterized by quenched randomness: a given
pair of spins have a roughly equal a priori probability of having a ferromagnetic or an antiferromagnetic
interaction. The prototype material is a dilute magnetic alloy, with a small amount of magnetic impurity
randomly substituted into the lattice of a nonmagnetic metallic host. In this situation, the impossibility to
minimize simultaneously the interaction energies of all the couple of spins leads to a frustration which
determines a very complex energetic landscape in phase space. The latter appears as consisting of large valleys
separated by high activation energies. Each valley contains many local minima in which the system, at low
temperature, can remain trapped for a very long time. This time grows exponentially with the height of the
energy barriers, thus the system shows very slow relaxation, strong memory effects and aging.

The modern theory of SGs [37] began in 1975 with the work of EA [27], who proposed that the essential
physics of SGs lays not in the details of their microscopic interactions but rather in the competition between
quenched ferromagnetic and antiferromagnetic interactions (i.e. in the frustration). Thus they proposed a
short range simplified model for SGs, in which one represents the magnetic impurities with Ising spins si ¼ �1
placed on the vertices of a three-dimensional cubic lattice. The random nature of the interactions are
mimicked with first neighbors random interactions between the spins taken from a Gaussian probability
distribution with zero mean and variance J2

ij ¼
~J
2
=ð2zÞ where z is the connectivity of the lattice. The

Hamiltonian (in the absence of an external magnetic field) is

HJ ½~S� ¼ �
X
hiji

Jijsisj, (1)

where the vector ~S encodes the full set of spins in the sample ~S ¼ ðs1; s2; :::; sN Þ and hiji represents nearest
neighbors on the lattice. Shortly after the appearance of the EA model, an infinite-ranged version was
proposed by Sherrington and Kirkpatrick (SK) [29,30]. For a system of N Ising spins, and in zero external
field, the SK Hamiltonian is

HJ ½~S� ¼ �
1ffiffiffiffiffi
N
p

X
ði;jÞ

Jijsisj, (2)

with a Gaussian distribution of interactions. Note that in Eq. (2) the sum runs over all pair of spins and the
factor 1=

ffiffiffiffiffi
N
p

allows to consider the thermodynamic limit for the free energy and for other thermodynamic
quantities. In Ref. [30] SK showed that their model has an equilibrium phase transition to a SG phase below
the temperature Tc ¼ 1 and for an opportune choice of the parameters J0 and J, respectively, mean and
standard deviation of the Gaussian distribution of interactions.
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A mean field theory, employing the Onsager reaction field term, was proposed two years later by
Thouless et al. [38], which indicated that there might be many low-temperature solutions corresponding to
different SG phases. But the correct solution for the low-temperature phase of the SK model, due to Parisi
[39], employed a novel ansatz and required several more years before a physical interpretation could be
worked out [40]. The picture that finally arose was that of a system with an extraordinary new kind of
symmetry breaking, known today as ‘‘replica symmetry breaking’’ (RSB), after the mathematical procedures
used to derive it. The essential idea is that the low-temperature phase consists not of a single spin-reversed pair
of states, but rather of ‘‘infinitely many pure thermodynamic states’’ [40], not related by any simple symmetry
transformation.

Within the original mean-field framework of the SK model it is possible to observe three different phases,
namely, paramagnetic (PA), ferromagnetic (FE) and SG phase, depending on the temperature and the
parameters of the Gaussian distribution of the interactions [28]. Each phase is characterized by a different
microscopic behavior and a different kind of orientation order, giving rise to a characteristic value of the usual
mean field order parameter, i.e. the magnetization mðTÞ. Thus it is clear that the magnetization, calculated at
one instant of time, vanishes in the SG phase just like in the PA one. Therefore, in order to discriminate
between SG disorder and paramagnetism, one needs an additional order parameter. Such a parameter was
originally proposed in Refs. [27,28]. It is called ‘EA order parameter’ and takes into account the temporal
evolution of each spin. In this way the latter is able to measure the degree of freezing of the system and to
distinguish between the PA phase, where it vanishes together with the magnetization, and the SG phase, where
it remains finite. Actually, in its original formulation, the EA order parameter results to be only an
approximation (the so-called replica symmetry approximation) of the true SG order parameter proposed by
Parisi [39], that has to be defined in the ‘replica space’ and results to be a whole function (see also Refs. [35,33]
for more details). However, we will show that also considering the approximated SK point of view it is
possible to shed new light on the already suggested link between glassy dynamics and the anomalous out-of-
equilibrium behavior of the QSS of the HMF model.

2. Dynamical frustration and polarization in the HMF model

The HMF model describes a system of N fully coupled classical inertial XY spins with unitary module [8]

~si ¼ ðcos yi; sin yiÞ; i ¼ 1; . . . ;N. (3)

For a better visualization these spins can also be imagined as particles rotating on a unit circle. The equations
of motion follow from the Hamiltonian

H ¼
XN

i¼1

p2
i

2
þ

1

2N

XN

i;j¼1

½1� cosðyi � yjÞ�, (4)

where yi ð0oyip2pÞ is the angle and pi the conjugate variable representing the rotational velocity of spin i.
The equilibrium solution of the model in the canonical ensemble predicts a second-order phase transition

from a high-temperature PA phase to a low-temperature FE one [8–11]. The critical temperature is Tc ¼ 0:5
and corresponds to a critical energy per particle Uc ¼ Ec=N ¼ 0:75. The order parameter of this phase
transition is the modulus of the average magnetization per spin defined as: M ¼ �1=Nj

PN
i¼1~sij. Above Tc, in

the PA phase, the spins point in different directions and M�0. Below Tc, in the FE phase, all the spins are
aligned (the rotators are trapped in a single cluster) and Ma0.

However, as already pointed out in the introduction, molecular dynamics simulations, at fixed energy and
for out-of-equilibrium initial conditions, show the presence of long-living QSS in the subcritical energy density
region 0:5pUpUc [9,15,19]. In the thermodynamic limit—when they become stationary and reach a limiting
temperature value TQSSðUÞ—the QSS can be usefully divided in two subset of states, depending on their
magnetization;
�
 M ¼ 0 QSS (for 0:68pUpUc), i.e. anomalous states lying, for N !1, over the extension of the high
temperature branch of the caloric curve (see Fig. 1) and showing a vanishing magnetization ðM ¼ 0Þ.
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Fig. 1. In this figure we plot—for N ¼ 100 000—the molecular dynamics numerical results corresponding to QSS (open squares),

compared with both the canonical caloric curve, plotted as solid line, and the zero magnetization (or minimum temperature) line, reported

as dot-dashed. The temperature is calculated by means of the average kinetic energy K, i.e. T ¼ 2K=N. The QSS follows the latter line only

up to U ¼ 0:68, becoming unstable below this limiting value [20,41].
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It should be stressed that, because of the energy density–temperature relationship [8]:

U ¼
T

2
þ

1

2
ð1�M2Þ, (5)

the zero magnetization constraint forces the system to follow the minimum kinetic energy (maximum
potential energy) line, i.e. the minimum temperature line (dot–dashed in Fig. 1);

�
 Ma0 QSS (for 0:5pUo0:68), i.e. anomalous states with a macroscopic magnetization ðMa0Þ, which for

N !1 tend to rejoin the canonical equilibrium curve.
It has also been shown [20,41] that the M ¼ 0 QSS family is unstable below the limiting energy density
value U�0:68, corresponding to a temperature TQSS ¼ 0:36, around which the anomalies are more evident
(this is also the reason why, historically, the QSS analysis focused on the value U ¼ 0:69). Below such a value
the QSS cannot follow the zero magnetization (minimum temperature) line and the dynamical anomalies start
to decrease until they completely disappear below U ¼ 0:5.

Actually, it was just the vanishing magnetization of the M ¼ 0 QSS and the discovery of aging [17] and of
dynamical frustration [19], i.e. the formation of clusters of particles with power-law size distributions [16], that
suggested the interpretation of such a regime in terms of a sort of SG phase characterized by an EA-like order
parameter [25].

During the QSS regime, the mean-field interaction seems to be broken: in fact, the clusters that compete in
trapping the particles on the unitary circle, generate a dynamically frustrated scenario, in which each particle
never feels all the other particles, but only a restricted number of them. This feature seems to indicate, for finite
sizes of the system, a corrugated potential landscape for the single particle. This effect is very sensitive to the
initial conditions [16]. In the thermodynamic limit (when the QSS become stationary), the force between the
particles—which depends on M—vanishes and the dynamics is quenched (apart from the global motion
imposed by the conservation of total momentum).

Therefore, inspired by the physical meaning of the EA order parameter, we proposed [25] a new order
parameter for the HMF model, the so-called polarization, in order to measure the degree of freezing of the
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particles (rotators) in the QSS regime and, thus, to characterize in a quantitative way the emerging glassy-like
dynamical frustration.

Polarization is defined as the following spatial average:

p ¼
1

N

XN

i¼1

jh~siij, (6)

where

h~sii ¼
1

t

Z t0þt

t0

~siðtÞdt; i ¼ 1; . . . ;N (7)

is the elementary polarization, defined as the temporal average, integrated over an opportune time interval t, of
the successive positions of each rotator.

For the typical energy density value U ¼ 0:69 (corresponding to a limiting temperature TQSS ¼ 0:38), we
showed that, while the magnetization correctly vanishes in the thermodynamic limit, the polarization remains
approximatively constant and different from zero, thus quantifying the freezing of the rotators in the QSS
regime. On the other hand, as shown in Refs. [25,26], for U4Uc the polarization coincides with the
magnetization and goes to zero.

In other words, the polarization seems to play here the same role played by the EA [29,30] order parameter
qEA in the SK model, thus characterizing the anomalous QSS regime, which becomes stable in the
thermodynamic limit, as a sort of SG phase for the HMF model.

In Fig. 2, extending the results reported in Refs. [25,26] for U ¼ 0:69, we plot, as open circles, the values of
the polarization order parameter for the range 0:68oUoUc ðUc ¼ 0:75Þ, where the M ¼ 0 QSS family
results to be stable. These points, reported for convenience as a function of the corresponding N !1 limiting
temperature TQSS ð0:36oTQSSoTc ¼ 0:5Þ were obtained by means of the usual microcanonical molecular
dynamics simulations for N ¼ 1000. The standard ‘‘water-bag’’ initial conditions with initial magnetization
M ¼ 1 (all the angles equal and velocities uniformly distributed according to the available kinetic energy) were
considered. As usual, the integration time t ðt ¼ 2000Þ has been chosen in order to stay inside the QSS
plateaux for every N [16,25,26]. An average over 25 events was also performed. The error bars represent the
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fluctuations of the elementary polarization over the configuration of the N rotators. As previously seen for
U ¼ 0:69 [16], increasing the size of the system the average polarization remains almost constant inside this
error along the QSS plateaux. Please note that for 0:3oUoUc the system is in the so-called translational

regime and its center of mass drifts [8], i.e. the system is always moving with a global resulting motion that can
be expressed by the phase of the average magnetization. Then, as done in the previous calculations [25,26], in
order to compute the elementary polarization, one has to subtract this phase from the spin angles. As
expected, the polarization correctly decreases approaching the phase transition, after which, in the
homogeneous phase (not shown), it vanishes—together with the magnetization—in the thermodynamic limit.

In the following sections we give further support to the claim that the glassy-like behavior characterizing the
QSS regime corresponds to a 2-vector SK SG phase by means of a replica method formalism applied to an
appropriately chosen Hamiltonian.

3. The replica method

Suppose [33] that we have a system characterized by an Hamiltonian HJ ½ s!� depending on the configuration
[ s!] of the N spins and on some quenched variables J’s changing on a time scale infinitely larger than the s!’s.
If we also suppose that these control variables are distributed according to a given probability distribution
P½J�, for each choice of the J’s one can calculate the partition function:

ZJ ¼
X
fsg

expð�bHJ ½ s!�Þ, (8)

and the free energy density

f J ¼ �b
�1 lim

N!1

lnZJ

N
. (9)

The point is that averaging the free energy density over the distribution P½J�, i.e.

f J ¼
X

J

P½J�f J (10)

results to be a task not simple at all. Thus in Refs. [27,28] the so-called replica method was proposed. The latter
is a trick to simplify the calculation of Eq. (10) and consists in computing the average of the free energy density
by some analytic continuation procedure from the average of the partition function of n uncoupled replicas of
the initial system [33]. In fact, using the identity

lnZJ ¼ lim
n!0

ðZJÞ
n
� 1

n
,

together with Eq. (9), Eq. (10) can be rewritten as

f ¼ f J ¼ �b
�1 lim

N!1

1

N

X
J

P½J� lnZJ ¼ �b
�1 lim

N!1
lim
n!0

1

nN

X
J

P½J�fðZJÞ
n
� 1g. (11)

Finally, if we define

ðZJÞ
n
¼
X

J

P½J�fZJg
n (12)

and we use the normalization condition
P

JP½J� ¼ 1, Eq. (11) becomes

f ¼ �b�1 lim
N!1

lim
n!0

1

nN
fðZJ Þ

n
� 1g. (13)

Now, denoting with a the replica index (a ¼ 1; . . . ; n; with integer n), we can write the partition function in Eq.
(12) as the partition function of n non-interacting replicas of the same system (for the same set of J’s)

ðZJÞ
n
¼
X
fs1g

X
fs2g

� � �
X
fsng

exp �
Xn

a¼1

bHJ ½ s!
a
�

( )
¼ Tr exp �

Xn

a¼1

bHJ ½ s!
a
�

( )
, (14)
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where the trace Tr in the last expression synthesizes the sums over the spins in all the replicas. Further
averaging this quantity over the distribution P½J�, the calculation of the averaged free energy density follows
straightforward from Eq. (13).

Our idea is to describe the glassy dynamics of the M ¼ 0 QSS regime of the HMF model by studying the
equilibrium properties of an infinite range XY SG effective Hamiltonian

HJ ½ s!� ¼ �
1

2

X
i;j

Jij si
!
� sj
!, (15)

with an opportune choice of the interactions Jij. In Eq. (15) each spin (rotator) is defined as
si
!
¼ ðcos yi; sin yiÞ, with 0oyio2p and unitary module, while the factor 1

2
before the summation prevents

from counting two times the same spin couples. The distribution of the quenched variables Jij has to be chosen
such that:
�
 it must take into account the presence of the dynamically created clusters of particles observed in the QSS
regime, which in turn generate dynamical frustration;

�
 its first moment J0 should be equal to 1=N (being in the HMF model Jij ¼ 1=N 8i; j); in such a way, for

N !1, Eq. (15) will reduce to the potential term of the HMF model.

Thus, without loss of generality, we can choose a Gaussian distribution:

pðJijÞ ¼ ½ð2pÞ
1=2J��1 exp

�ðJij � J0Þ
2

2J2
, (16)

where the first two moments, the mean J0 and the variance J2, will be set equal to 1=N.
Finally, the inverse temperature b ¼ 1=T will be fixed by the kinetic term of the HMF model Hamiltonian

(being T ¼ 2K=N), that we assume to be constant for the canonical procedure we want to perform. Of course,
we are implicitly assuming that the stationarity of the M ¼ 0 QSS regime in the thermodynamic limit could
enable us to use equilibrium thermodynamics tools.

For fixed J’s we expect that the replica method would enable us to find out a self-consistent equation for the
spin-glass order parameter of the model (15). This equation will be obtained using the replica symmetry (RS)
ansatz in the context of a 2-vector infinite range SG model [30], by imposing the SG extremal constraints
during the steepest descent procedure. Our final goal will be to compare such a theoretical prediction with the
molecular dynamics results for the polarization of Eq. (6), in a range of temperatures corresponding with the
N !1 limiting temperatures ðTQSSÞ that characterize the homogeneous QSS.

Let us start by applying the replica trick to the free energy calculation starting from the effective
Hamiltonian (15), with quenched couplings Jij following the distribution (16).

Using some general properties of the characteristic function of a statistical distribution, and averaging Eq.
(14) over the chosen distribution of the Jij , we can write the free energy density expression (13) as a function of
only the first two moments of the distribution itself

f ¼ �b�1 lim
N!1

lim
n!0

1

nN
� Tr exp

X
ðijÞ

bJ0

X
a

si
!a
� sj
!a
þ b2

J2

2

X
a

si
!a
� sj
!aX

b

si
!b
� sj
!b

 !
� 1

( )
,

(17)

where a; b are replica indexes and i; j are spin indexes in each replica. Thus si
!a
¼ ðcos ya

i ; sin y
a
i Þ represents the

ith spin in the ath replica. As seen before, both the parameters J0 and J2, respectively, mean and variance of
the J’s distribution (16), have to be put equal to 1=N. Finally, the notation ði; jÞ in the sum is equivalent to a
sum over all NðN � 1Þ=2 distinct pairs of sites, thus the factor 1=2 disappears behind the sum over i; j.

Because of the latter notation, and after some rearrangement, we can write the following equivalences:

X
ðijÞ

X
a

si
!a
� sj
!a 1

2

X
a

X
i

si
!a

�����
�����
2

�
nN

2
(18)
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and X
ðijÞ

X
a

si
!a
� sj
!aX

b

si
!b
� sj
!b
¼
X
a;b

X
ði;jÞ

cosðya
i � ya

j Þ cosðy
b
i � yb

j Þ ¼
X
a;b

X
ði;jÞ

1

2
½Si

!ab

� Sj

!ab

þ Ti

!ab

� Tj

!ab

�,

(19)

where two terms of interference between replicas appear

Si

!ab

¼ ðcosðya
i � yb

i Þ; sinðy
a
i � yb

i ÞÞ,

and

Ti

!ab

¼ ðcosðya
i þ yb

i Þ; sinðy
a
i þ yb

i ÞÞ.

The latter term, for a ¼ b, becomes Ui

�!a

¼ ðcos 2ya
i ; sin 2y

a
i Þ.

After further rearrangement in the summations, we obtain the following expression for the free energy
density

f ¼ � b�1 lim
N!1

lim
n!0

1

nN
exp

b2

8
ðnN � 2n2Þ �

nb
2

� �
� Tr exp

b
2N

X
a

X
i

si
!a

�����
�����
2

þ
b2

8N

X
a

X
i

Ui

�!a

�����
�����
2

0@248<:
þ
X
aab

X
i

Si

!ab

�����
�����
2

þ
X

i

T i

!ab

�����
�����
2

0@ 1A1A35� 1

9=;. ð20Þ

In the thermodynamic limit, the first exponential becomes

exp
b2

8
ðnN � 2n2Þ �

nb
2

� �
� exp

nNb2

8

� �
and it does not involve the glassy properties of the system. Therefore, in the following we will concentrate on
the term

I ¼ Tr exp
b
2N

X
a

X
i

si
!a

�����
�����
2

þ
b2

8N

X
a

X
i

Ui

�!a

�����
�����
2

þ
X
aab

X
i

Si

!ab

�����
�����
2

þ
X

i

T i

!ab

�����
�����
2

0@ 1A0@ 1A24 35. (21)

It can be linearized, term by term, with the Hubbard–Stratonovich (HS) Gaussian transformation, i.e.

exp½mx2�ð2pÞ�1=2
Z

dy exp �
y2

2
þ ð2mÞ1=2xy

� �
, (22)

with the positions

S
!a

¼
1

N

X
i

si
!a

; U
!a

¼
1

N

X
i

Ui

�!a

; T
!ab

¼
1

N

X
i

T i

!ab

; S
!ab

¼
1

N

X
i

Si

!ab

,

thus obtaining

I ¼ Tr

Z Y
a

N

2p
dbsa dbua

� �Y
ab

N

2p
dbsab dbtab

� �
� exp �N

1

2

X
a

jbsaj2 þ
1

2

X
a

jbuaj2 þ
1

2

X
aab

ðjbsabj2 þ jbtabj2Þ

"(

�b1=2
X

a

bsa S
!a

�
b
2
bua U
!a

�
b
2

X
aab

ðbsab S
!ab

þ btab T
!ab

Þ

#)
.
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The mean-field approximation consists on saying that one can deal with independent spins feeling the external

conjugated fields c’ so that this last relation becomes

I ¼

Z Y
a

N

2p
dbsa dbua

� �Y
ab

N

2p
dbsab dbtab

� �
� Trn exp �

1

2

X
a

jbsaj2 �
1

2

X
a

jbuaj2 �
1

2

X
aab

ðjbsabj2 þ jbtabj2Þ

("

þb1=2
X

a

bsa S
!a

þ
b
2
bua U
!a

þ
b
2

X
aab

ðbsab S
!ab

þ btab T
!ab

Þ

)#N

, ð23Þ

where from now on the trace is over the n replicas at a single site.

4. SG self-consistent equation and its numerical solution

At this point we have to impose the following spin-glass constraints [30], based on the physical meaning of
the two order parameters in the M ¼ 0 QSS regime (that we are considering as an effective SG phase of the
HMF model):
1.
 The first one refers to the magnetization, that is null in the M ¼ 0 QSS regime, thus implying

jbsaj ¼ 0 jbuaj ¼ 0. (24)
2.
 The second one refers to the SG order parameter, which of course does not vanish in the spin-glass phase
thus quantifying the degree of freezing of the rotators in the M ¼ 0 QSS regime; as usual in standard
replica method for glassy systems, it is chosen as proportional to the module of the overlap between two
different replicas at a single site

qn ¼ qab ¼ 2b�1jbsabj, (25)

where the jbsabj are considered equals 8a; b (replica-symmetry approximation). The phase of bsab, being

arbitrary, can be set to zero for convenience so that its direction is ux
!. Finally, we set also j t

!ab
j ¼ 0.

By incorporating the SG constraints with delta functions one can easily perform the integral in Eq. (23), thus
obtaining

I ¼ Trn exp �
X
aab

bq2
n

4
�
X
aab

b2qn

4
u!x S
!ab

 !" #N

. (26)

Since the first term is independent on the replicas and the trace being a linear application, one has
equivalently

I ¼ exp �N
X
aab

bq2
n

4

 !
Trn exp �

X
aab

b2qn

4
u!x S
!ab

 !" #N

¼ exp �N
nðn� 1Þ

2

bq2
n

4
� lnTrn exp �

b2qn

4

X
aab

u!x S
!ab

 !" # !
. ð27Þ

Reminding that S
!ab

is the replica interference at single site, i.e. S
!ab

¼ ðcosðya
� yb
Þ; sinðya

� yb
ÞÞ, one has

that u!x S
!ab

¼ cosðya
� yb
Þ s!

a
s!

b
, so we can write

X
aab

u!x S
!ab

¼
X

a

s!
a

 !2

� n. (28)
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Inserting the latter relation in Eq. (27), using the Hubbard–Stratonovich transformation (for

exp½�b2qn=4ð
P

a s!
a
Þ
2
�Þ once again and substituting the trace with the following multiple integral

Tr½. . .� ¼

Z 2p

0

Yn

a¼1

dya

2p
½. . .�,

one finally finds

I ¼ exp �N
nðn� 1Þ

2

bqn

2

� �2

� ln

Z 1
0

rdr exp �
r2

2
�

nqnb
2

4

� �
In
0ðbr

ffiffiffiffiffiffiffiffiffiffi
qn=2

p
Þ

" # !
. (29)

The latter exponential, for N !1, will show a maximum at the extremum of its argument, thus we have to
impose the following (steepest descent) extremal condition

q
qqn

nðn� 1Þ

2

bqn

2

� �2

� ln

Z 1
0

rdr exp �
r2

2
�

nqnb
2

4

� �
In
0 br

ffiffiffiffiffiffiffiffiffiffi
qn=2

p� 	" #
¼ 0.

Performing the derivative we find the desired self-consistent equation for the order parameter qn

qnð1� nÞ ¼ 1�

ffiffiffiffiffi
2

qn

s
b�1

R1
0 r2 dr exp½�r2=2�In

0ðbr
ffiffiffiffiffiffiffiffiffiffi
qn=2

p
ÞI1ðbr

ffiffiffiffiffiffiffiffiffiffi
qn=2

p
Þ=I0ðbr

ffiffiffiffiffiffiffiffiffiffi
qn=2

p
ÞR1

0 rdr exp½�r2=2�In
0ðbr

ffiffiffiffiffiffiffiffiffiffi
qn=2

p
Þ

that has to be continued for n! 0, giving finally

q ¼ 1�

ffiffiffi
2

q

s
b�1

Z 1
0

r2 dr exp �
r2

2

� �
I1ðbr

ffiffiffiffiffiffiffiffi
q=2

p
Þ

I0ðbr
ffiffiffiffiffiffiffiffi
q=2

p
Þ
. (30)

Solving numerically this equation, we can immediately calculate the expected value of the SG order

parameter q as a function of the temperature T ¼ b�1 and compare it with the polarization order parameter p

of the HMF model. In particular, since we have to consider M ¼ 0 QSS with null magnetization, we consider
the limiting temperature TQSS (i.e. the temperature for N�!1) and, by varying it in Eq. (30), we obtain the

theoretical curve shown in Fig. 2 (full line). This curve is compared with the molecular dynamics simulations
for the polarization (open circles) performed in the QSS regime of the HMF model for N ¼ 1000 and for
different temperatures in the subcritical region. Some corresponding energy density values are also reported
for convenience. As previously stressed, these results are independent on N within the error bars [16] and this
allow us to extrapolate them to the thermodynamic limit.

The theoretical curve predicts, as expected, a phase transition at Tc ¼
1
2
and superimposes on the values of

the polarization obtained in the range 0:36oTQSSo0:45, that corresponds (being there MQSS ¼ 0) to the
energy density range 0:68oUo0:72 through the zero magnetization (minimum temperature) line equation
U ¼ T=2þ 1

2
, see Eq. (5). The simulations points start to disagree with the results of the theoretical curve

around TQSS�0:45, i.e. for U40:72: above these values the QSS points are very close to the correspondent
equilibrium temperature values on the caloric curve (as visible in the inset of Fig. 2) and the glassy features of
the QSS regime tend to disappear. Inverting the previous argument, we could also suggest that such a
theoretical result allows us to better specify the range of energy densities where the QSS regime can be
considered as a SG phase for the HMF model.
5. Conclusions

We have discussed the glassy phase of the HMF model by means of an effective SG Hamiltonian and shown
that the corresponding order parameter coincides with the polarization in the energy range where HMF
exhibits strong dynamical anomalies and glassy dynamics. Being a long-range Hamiltonian solvable model
and showing the existence of a glassy-like relaxation dynamics along quasi-stationary trajectories, the HMF
model poses new challenging questions on the origin of its glassy unexpected behavior. In these respects, the
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model may be a very useful ‘‘laboratory’’ for studying general trends that can be later tested numerically and
experimentally in more realistic systems and real materials.

These analytical results, obtained within the replica-symmetry SK framework and in the thermodynamic
limit, seem to give further support to the interpretation of the QSS regime as a real SG phase. This is true at
least in the limiting temperature region where the glassy features are more evident. In this region the
elementary polarization seems to play the role of the EA order parameter in giving a measure of the
numerically observed quenched dynamics.

In conclusion, we do hope that this connection between the HMF model and SG systems could bring new
insight on the several common features.
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