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Abstract 

Whereas for smaller animals the eardrums are well-characterized as excitable 

membranes or drums, some animals such as several archosaurs feature, as a 

first approximation, a rather stiff elastic shell supported by an elastic ring. 

Mathematically, the theory of plates and shells is applicable but its governing 

equations overly complicate the modeling. Here the notion of tympanic 

structure is introduced as a generalization of “ordinary” tympanic mem-

branes so as to account for sound perception as it occurs in archosaurs, such 

as birds and crocodilians. A mathematical model for the tympanic structure in 

many archosaurs called two-spring model implements this notion. The model 

is exactly soluble and solutions are presented in closed form and as a series 

expansion. Special emphasis is put onto offering an easy-to-apply model for 

describing experiments and performing numerical studies. The analytic 

treatment is supplemented by a discussion of the applicability of the 

two-spring model in auditory research. An elasticity-theoretic perspective of 

the two-spring model is given in the Appendix. 
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1. Introduction 

1.1. Internally Coupled ears (ICE) 

More than half of the land-living vertebrates possess an air-filled cavity con-

necting left and right eardrums. That is, they possess internally coupled ears, for 

short ICE [1]. Figure 1 shows the evolution of hearing in vertebrates using ICE 

[2] [3] [4]. In the simplest models [5] [6] of this widespread mechanism the two 

eardrums are an elastic structure interfacing the external acoustic environment  
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Figure 1. Left: Evolution of vertebrate hearing systems and animals using ICE. Courtesy of Anupam P. Vedurmudi for the full 

graphic, adapted from van Hemmen et al. [1]. Right: The elastic shell of a crocodilian (youngster’s) eardrum. The black bar sets a 

length scale of 1 cm. The diameter and height of the shell structure are 8 mm and 2 mm, respectively. The extracolumellar lever is 

located in the upper right quadrant of the picture. Its geometry resembles a spherical sector. Picture courtesy of Bruce A. Young. 

 

with the interaural cavity, functioning as an acoustic wave guide [7] [8]. The in-

teraural cavity ensures that the membranes’ vibrations are not independent but 

mutually coupled. For neuronally less developed animals, the coupling provides 

an easy-to-realize mechanism to generate a more precise directional hearing 

than without ICE; for early attempts at an explanation, see Autrum [9] [10]. 

Although the mechanism of internally coupled ears seems in principio uni-

versal for numerous animals, the biological realization differs from species to 

species and animal to animal [1]. Aquatic frogs such as Xenopus [11] employ 

plate-like eardrums bounding an air-filled cavity whereas several birds, in par-

ticular chicken, use a flexible membrane in a cavity filled with, surprisingly, not 

air [3]. Lizards [5] [6] [12] use flexible membranes connected by a large cylin-

drical cavity whereas crickets employ, possibly to comply with their exoskeletal 

anatomy, a complicated tracheal system featuring two membranes connected 

through a complicated cavity system. The latter is partitioned itself into two 

symmetric halves by another elastic structure called septum [13]. 

An increase in the area covered by the eardrums leads to a lowering of the 

fundamental frequency in a “clamped membrane model” because the first ei-

genvalue of the Laplacian (with Dirichlet boundary conditions) scales as the in-

verse of the square of the area covered by the eardrums. Thus a small eardrum 

area seems favorable to these animals. Anatomically, these requirements are rea-

lized in some archosaurs through a self-supporting spherical shell supported by 

an elastic ring. In reptiles and birds, an elastic ring occurs far more often [14] in 

the middle ear than one might naively expect. 

The construction is shown schematically in Figure 2. The spherical shell itself 

may vibrate due to bending and is shown in vitro in Figure 1. Its net displace-

ment in vertical direction leads to an induced vibration of the ring supporting 

the spherical shell elastically. This means that the notion of a tympanic membrane 

naturally breaks down because the shell is far less flexible than the elastically  

 

DOI: 10.4236/ojbiphy.2019.91003 22 Open Journal of Biophysics 

 

https://doi.org/10.4236/ojbiphy.2019.91003


D. T. Heider, J. L. van Hemmen 

 

 

Figure 2. Left: Schematic physical decomposition of the vibration of the tympanic struc-

ture due to an incident pressure signal. Right: Conceptual representation of the 

two-spring model. The pressure signal causes a uniform displacement of the spherical 

shell or, equivalently, an elastic deformation xr of the supporting ring underneath. The vibra-

tion of the ring leads, once the shell is not a hemisphere, to a an excess torque applied to 

the boundary of the shell and thus to shell bending, xs, and has been incorporated 

through a coupling of the xr-oscillator to the xs-oscillator through a massless spring of 

spring constant k0. 

 

supporting ring so that the latter is responsible most for the fundamental fre-

quency of the “eardrum”. It needs to be constantly borne in mind that the am-

plitudes are in the nm range whereas the ring has a thickness of mm so that the 

difference is at least 5 orders of magnitude. Physical auditory research [13] cur-

rently lacks both adequate jargon and formalism to capture these phenomena 

and indicate the direction of useful modeling. This is the gap we aspire to fill 

with the present treatment. 

1.2. Tympanic Structures 

A tympanic structure is defined to be the (finite) set of elastic elements that 1) 

interface the interaural cavity of the animal under consideration with its external 

acoustic environment, 2) by virtue of mutual elastic coupling of the constituents 

function as a single elastic structure, and 3) respond in this form at least locally 

to auditory signals. We call a given tympanic structure N-constituent tympanic 

structure, if the set of elastic elements in the sense of the previous definition has 

cardinality N. An elastic element of a tympanic structure is also called a consti-

tuent.  

2. Two-Spring Model  

2.1. Heuristic Derivation of the Two-Spring Model 

The two-spring model is based on two simplifying assumptions. First, we are 

only interested in the impact that the vibration of a tympanic structure has on 

the volume in the interaural cavity. Vibrations give rise to a local mass density 

change in the cavity and thus trigger the formation of a pressure wave traveling 

between the, usually two, tympanic structures [1] [5] [6]. We refer to Howe [8] 
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[7] for an introductory treatment of sound generated by vibrating elastic struc-

tures, to Timoshenko [15] [16] for a detailed treatment of elasticity, and to van 

Hemmen and Leibold [17] for elasticity theory as applied to biological mem-

branes. 

Let ( )1 2 3, ,q q q  be coordinates such that 3 0q =  and ( )1 2,q q ∈Γ  define the 

equilibrium position of an elastic element where 2Γ ⊂   is bounded and suit-

ably regular domain. (For two eardrums there is, say, another element at 

3 0q L= > .) Furthermore, let u be the displacement, i.e., a small ( )Areau Γ  

perturbation from the former equilibrium. Solving elasticity equations for 

two-dimensional elastic structures is equivalent to the inversion of operators 
2 Ot∂ +  where O typically is the Laplacian ∆ , its square 2∆ , the bi-harmonic 

operator 2

bi∆  or linear combinations thereof [17]. Let us replace the displacement 

of the constituents of a tympanic structure by its average  

( ) ( ) ( ) ( )2

1 2 1 2

1
d , , , .

Area
x t q q u t q q

Γ
≡

Γ ∫              (1) 

This approximation is called piston approximation [5] [12]. Assuming physical 

behavior of the full displacement u depending on the temporal variable t as well 

as the spatial coordinates 1 2,q q , we can apply the mean value theorem of integra-

tion. It ensures the existence of a ( )1 2,q q′ ′ ∈Γ  such that ( ) ( )1 2, ,u t q q x t′ ′ = . 

We now perform a partial Taylor series expansion in the spatial variables  

( ) ( ) ( )1 2 1 2, , , ,u t q q x t R t q q= +                 (2) 

where ( )1 2, ,R t q q  is Lagrange’s remainder,  

( ) ( ) ( ){ }( )2
1

1 2 0
1

, , d , 1 .i i i j j j
i

R t q q q q s u t s q sq
=

′ ′= − ∂ − +∑ ∫          (3) 

The remainder is absolutely bounded from above by firstly applying Cauchy’s 

inequality to the Euclidean inner product. We note that  

( ) ( ) ( ) ( ) ( ) ( ){ }1 1 2 2 1 2 1 2 1 2 1 22 2
, diam sup , , : , , ,q q q q q q q q q q q q′ ′ ′ ′ ′ ′− − ≤ Γ ≡ − ∈Γ   

and that the function inside the integral is smaller than or equal to its maximum 

modulus. The remainder is now bounded by  

( ) ( )
( )

( ) ( )
1 2 1 2

, 2,
diam max .

q q q q
R t u t

∈Γ
≤ Γ ∇               (4) 

In particular, the piston approximation is dynamically accurate, if  

( )
( ) ( ) ( )

( )1 2
2,

max .
diamq q

x t
u t

∈Γ
∇

Γ
                   (5) 

Our first assumption is that the above inequality is fulfilled. 

Next we define x  and 2 0ω >  through averaging over ( )[ ]O u− ,  

( ) ( ) ( )( )[ ]( )2 2

1 2 1 2

1
d , O , , .

Area
x t q q u t q qω

Γ
≡ −

Γ ∫         (6) 

Since O 0− ≥ , i.e., O is positive-definite for all practical purposes, we obtain a 

square of an effective average frequency and an average displacement x  that 
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may be different from x. By inspection of a formal eigenfunction expansion of u, 

it is seen that  

,x x≈                              (7) 

if dominantly one eigenmode is excited in the spatial vibration pattern. The do-

minant biological mode is the fundamental mode, which is most often the ex-

cited vibrational mode of elastic structures relevant to auditory processes. The 

second assumption is that x x≈   can be utilized as x x=  . That is, only one 

mode of the elastic structure is excited dominantly. 

Effectively, the partial differential equation that would be needed for a full de-

scription of one constituent of the tympanic structure can be written in the form 

of a harmonic oscillator equation,  

full .mx kx F+ =                         (8) 

To derive the two-spring model we will use the following argument: Since the 

spherical shell is supported elastically by a ring underneath, we only need to 

store local vibrations of the shell surface in sx . 

The displacement of the shell as a whole along the symmetry axis of the ring is 

equal to the displacement rx  of the ring. With phenomenological damping 

coefficients sγ  and rγ  average displacements sx  and rx  in the sense of 

the piston approximation satisfy damped harmonic oscillator equations with two 

driving source terms 
,fullsF  and 

,fullrF   

( ),full2 ; , ,s s s s s s s s s rm x m x k x F t x xγ+ + =                 (9) 

( ),full2 ; , .r r r r r r r r s rm x m x k x F t x xγ+ + =                 (10) 

We now need to specify the driving forces 
,fullsF  and 

,fullrF  in more detail. 

First, we assume that an external pressure signal p hits the spherical shell homo-

geneously. Put simple, p transfers a uniform momentum to the shell’s surface 

and thus makes the shell move up and down without deformation of its equili-

brium shape. By definition of ,s rx x , this corresponds to an external force ap-

plied to rx  because sx  shall only store local shell vibrations but no global 

piston modes. Since the ring itself is elastic, it will vibrate and thus lead to a 

small bending of the shell [15]. 

For the elastic interaction between the two constituent elastic structures, we 

use the Hooke approximation. We regard the constituents as being coupled by a 

massless, elastic spring with spring constant 0k : 
,full 0s rF k x=  and 

,full 0r sF F k x= +  where 0k  is treated as a fitting parameter. A rough estimate 

concerning the ratio 0 rk k  can be found in the Appendix. The other parameters 

, , , , ,s r s r s rm m k kγ γ  can be determined from experimental measurements. The 

above choice of source terms defines the two-spring model. Its underlying phys-

ical picture is summarized for the reader’s convenience in Figure 2, on the right.  

2.2. Two-Spring Model 

The deliberations of the previous paragraph are summarized by the governing 
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equations of our two-spring model,  

02 ,s s s s s s s rm x m x k x k xγ+ + =                  (11) 

02 .r r r r s r r sm x m x k x k x Fγ+ + = +                (12) 

We assume { }0 0min ,sk k k< . This means that the coupling through the mass-

less spring does not dominate the spring constants corresponding to eigenmodes 

of the individual constituents. 

Since the tympanic structure is supposed to be at rest in the absence of an in-

cident acoustic pressure signal on the shell, the initial conditions at 0t = , i.e., 

when a signal is about to hit the shell, are fully homogeneous:  

( ) ( )0 0 0s rx t x t= = = =  and ( ) ( )0 0 0r sx t x t= = = =  . 

Let us denote the surface of the shell by ( )tΣ . An incident pressure wave is de-

scribed as ( ),p t x  where x  are the coordinates in the surrounding space. It 

becomes a vector quantity when we multiply it by the direction of wave propa-

gation, viz., the normal to the wave front. Then the scalar net force exerted on 

the shell is given by  

( ) ( )( )( )3d , .F t t
Σ

= Σ∫ S p                  (13) 

In practice, a time harmonic signal ( ) ( )0 0 expF t p i t iω φΣ +  proves to give 

decent results for an incident low-frequency plane-wave-like signal with uniform 

scalar amplitude 0p  due to a sourced at a position in the acoustic far field. 0Σ  

is the area of the equilibrium shape of the shell constituent, ω  denotes the 

frequency carried by the acoustic signal, and φ  symbolizes where to place an 

additive phase to account for directional information stored in the signal. 

2.3. Solution of the Two-Spring Model 

We solve the two-spring model by reduction to a first-order system. Let us de-

fine s sy x=   and r ry x=  . With r ra F m≡ , the first-order system reads  

2 2

,

2 2

,

0 1 0 00

2 00d
where .

0 0 0 10d

0 2

s s

s s d ss s

r r

d r r rr r r

x x

y y

x xt

y a y

ω γ ω

ω ω γ

      
       − −      = + ≡       
        − −       

M M    (14) 

We have employed the following definitions of squares of reduced frequencies: 
2

r r rk mω = , 2

s s sk mω =  and 2

, 0d s sk mω =  as well as 
, 0d r rk mω = . The 

system is linear so that we can invoke the variation-of-constants or Duhamel 

formula [18]. We denote by [ ]
kl

A  the ( ),k l -entry of a matrix A . Conveniently, 

the initial conditions to be satisfied by ,r sx x  are homogeneous so that the vari-

ation of constants method yields  

( ) ( )( ) ( )
0 14
d exp ,
t

s rx t t aτ τ τ = − ∫ M               (15) 

( ) ( )( ) ( )
0 34
d exp
t

r rx t t aτ τ τ = − ∫ M               (16) 
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2.4. Solution to the Eigenvalue Problem 

The matrix exponential requires the solution of the eigenvalue problem for the 

matrix M  and, in particular, knowledge of the zeros of the characteristic po-

lynomial ( ) ( )4det 1iχ ω ω≡ − +M M . More precisely, we need the roots of the 

following quartic equation,  

( ) ( )
( ) ( )

2 2 2 2 2 2

, ,

2 2 2 3 4

2 3 4

0 2

4 2

.

r s d r d s r s r s

r s r s r s

i

i

d c b a

ω ω ω ω ω ω γ γ ω

ω γ γ ω ω ω γ γ ω

ω ω ω ω

= − + +

+ − − − − + +

≡ + + + +

         (17) 

The above equation can be analytically solved for ω  by combining the me-

thods of Cardano and Ferrari [19] [20] for the solution of a generic cubic (Car-

dano) and quartic (Ferrari) polynomial equations by algebraic completeness of 

 . By a somewhat lengthy but straightforward calculations we can specify the 

four, possibly multiple, roots kω ’s for { }1,2,3,4k ∈  in terms of  

2 2 2 2

, ,, , , , ,s d s r d r s rω ω ω ω γ γ : 

( ) 2 2 2

1
2

2 2 4 2,
2 2

s r

q
i p p p

p
ω γ γ

  
  = + − + Ω + + Ω + + +Ω
  + Ω   

(18) 

( ) 2 2 2

2
2

2 2 4 2,
2 2

s r

q
i p p p

p
ω γ γ

  
  = + − + Ω − + Ω + + +Ω
  + Ω   

(19) 

( ) 2 2 2

3
2

2 2 4 2,
2 2

s r

q
i p p p

p
ω γ γ

  
  = + + + Ω + + Ω + − + +Ω
  + Ω   

(20) 

( ) 2 2 2

4
2

2 2 4 2
2 2

s r

q
i p p p

p
ω γ γ

  
  = + + + Ω − + Ω + − + +Ω
  + Ω   

(21) 

( ) ( ) ( )

( ) ( )

2
2 23 2 2 3 2 2 2

2

3

2

2
2 23 2 2 3 2 2 2

5 5125 4 4 125 4 4 25
27 729 108 2

108 3 8 108 3 8 12
5

6 54

5 5125 4 4 125 4 4 25
27 729 108

108 3 8 108 3 8

p p r p p rp p pr q p p pr q p
p r

p

p p r p p rp p pr q p p pr q p

   − −  − − − −   − + + − + + + −         Ω = − +

   − −− − − −   − + − − + +
   
   +

( )2

3
2

12

54

p r
 

+ − 
 

(22) 

( )3 2 23 4r s r s r sp i γ γ γ γ ω ω= − + − − −                   (23) 

( )( ) ( ) ( )( )32 2 2 24 2 ,r s r s r s r s r s r sq i γ γ γ γ ω ω ω γ γ ω γ γ= − − + + + − + + +   (24) 

( ) ( ) ( )

( )( ) ( )

24 2 2

2 2 2 2 2 2

, ,

43

16 4

.

s r r s s rs r

s r r s s r s r d s d r

r
γ γ γ γ ω ωγ γ

γ γ γ ω γ ω ω ω ω ω

+ + ++
= +

+ + + + −

          (25) 
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2.5. Damping 

It is interesting to note that damping enters directly through the average 

( ) 2s rγ γ+  of the individual damping coefficients rγ , sγ  as specified in Eq-

uation (11) and Equation (12). Under physical assumptions regarding the mea-

surement parameters, , , , , ,s r s r s rk k m mγ γ  and the fit parameter 0k , we may 

assume that all four roots (18), (19), (20), and (21) are pairwise distinct. By a 

small variation of the parameters within the range of measurement uncertainty, 

this assumption can be fulfilled trivially. We denote by   the resulting set of 

the four solutions ω  to the eigenvalue problem of the matrix M . 

2.6. Calculation of the Matrix Exponentials 

To obtain sx  and rx  from (15) and (16), we need to calculate the matrix ex-

ponential. The calculation is performed with the aid of Mathematica. 

We find  

( ) ( ) ( )
0
d ,
t

s rx t G t aω
ω

τ τ τ
∈

= −∑∫


                (26) 

( ) ( ) ( )
0
d
t

r rx t H t aω
ω

τ τ τ
∈

= −∑∫


                (27) 

where the sum runs over the four solutions 1 2 3 4, , ,ω ω ω ω  obtained in the pre-

vious paragraph. The kernels ( )G tω τ−  and ( )H tω τ−  are obtained from the 

eigenmode solutions upon diagonalization of M  and defined such that  

( ) ( )
14

e ,
t

G t
τ

ω
ω

τ−

∈

  = −  ∑M



                  (28) 

( ) ( )
34

e .
t

H t
τ

ω
ω

τ−

∈

  = −  ∑M



                  (29) 

Assuming regularity of the input force F and thus of ra  and by the assumption 

of distinctness of the kω ∈ , the sum and the integral in the solution formulas 

(26) and (27) have been interchanged. Using the computational methods summa-

rized above, we find the convolution kernels Gω  and Hω  to be given by  

( )
( )2

,

3 2 2 2 2 2 2

e

2 2 3 3 4

i t
d r

r s r s r s r s r s

G t
i i i i

ω τ

ω

ω
τ

ω ω γ ω γ ωγ γ ωω ωω ω γ γ ω

−

− =
− − − + + + + +

(30) 

( )
2 2

3 2 2 2 2 2 2

e 2 e e1
.

2 2 3 3 4

i t i t i t

r

r s r s r s r s r s

i
H t

i i i i

ω τ ω τ ω τ

ω
ω ωγ ω

τ
ω ω γ ω γ ωγ γ ωω ωω ω γ γ ω

− − −− + +
− =

− − − + + + + +
(31) 

Needless to say that although the model is simple and captures the physics of a 

combined movement of the spherical shell membrane due to bending and the 

elastic deformation of the supporting ring, the solution is somewhat cumbersome.  

3. Numerics & Physical Discussion  

3.1. Numerical Results 

For the numerical simulation we use a time scale with units 1

rω
−  and a length 

scale of units ( )2

0 r rF m ω . The remaining parameters are fixed by 0.5r rγ ω= , 

0.7s rγ ω= , 2 20.8s rω ω=  and s rm m= . The fit constant 0k  is chosen such that 
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2 2 2

, , 0.25d s d r rω ω ω= =  and 0.9 rω ω= . In the top row of Figure 3, one sees that 

the elastic ring vibrates at a larger amplitude than the amplitude of bending of 

the spherical shell for both the real part (left) and the imaginary part (right) of 

the solution for the input ( )exp 0.8i t  in the unit system specified above. 

The color code employed in Figure 3 is as follows for the ring’s vertical elastic 

displacement rx . The real part [ ]rxℜ  in the top left plot and the imaginary 

part [ ]rxℑ  in the top right plot are shown as solid blue curves. As for the shell’s 

bending displacement sx , the following color code is employed in Figure 3. The 

real part [ ]sxℜ  in the top left plot and the imaginary part [ ]sxℑ  in the top 

right plot are shown is solid orange curves. Varying the parameter 0k  in the 

model simulation, it is found that the smaller 0k , the smaller the amplitude of 

sx . 

For the same choice of parameters, we have plotted the ratio  

[ ] [ ] [ ]( )s s rx x xℜ ℜ + ℜ  

in the bottom-left plot of Figure 3 and  

[ ] [ ] [ ]( )s s rx x xℑ ℑ + ℑ   

in the bottom-right plot of Figure 3. By definition, both ratios are smaller than 

unity. This is indicated by the orange lines in the two bottom plots. The ratios 
 

 

Figure 3. Top-left plot: [ ]rxℜ  (blue) and [ ]sxℜ  (orange) in units of ( )2

0 r r
F m ω  over time [ ]0,15t∈  in units of 

1

r
ω− . Bottom-left: Absolute displacement over sum of absolute displacements [ ] [ ] [ ]( )s s r

x x xℜ ℜ + ℜ  as a function of 

[ ]0,15t∈  measured in units of 1

r
ω−  Top-and bottom-right plots: Analogous plots as in the left column with the corres-

ponding imaginary parts used instead of the real parts. 
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quantify how important the bending of the plate is in comparison to the vertical 

oscillation of the ring at a given time t. The peaks in the bottom row plots in 

Figure 3 result from distinct zeros of [ ] [ ],s rx xℜ ℜ  and [ ] [ ],s rx xℑ ℑ . Yet, 

and most of the time, the bending of the spherical shell is small compared to the 

vertical displacement of the ring. 

The amplitude ratios [ ] [ ]max maxs rx xℑ ℑ  and [ ] [ ]max maxs rx xℜ ℜ  

have been found by looking for the maximum amplitudes in [ ]4,15t∈  after 

the periodic behavior stabilizes in the range 4t   because of relaxation of the 

system (by damping) into the quasi-stationary state. We found  

[ ] [ ] [ ] [ ]max max 0.2 max maxs r s rx x x xℑ ℑ ≈ ≈ ℜ ℜ ,  

rounded mathematically to one counting digit. This agrees with the reasoning of 

the introduction that the elastic ring is the preferred constituent of the tympanic 

structure of multitudinous archosaurs to generate the fundamental frequency 

that is processed further by ICE. As for the extracolumella that is wired to the 

cochlea, the relative smallness of the bending of the shell compared to the elastic 

stretching of the ring implies that the its deflection from equilibrium, s rx x+ , 

can be approximated as rx  for sufficiently small 0k  compared to rk  and 

sk .  

3.2. Physical Discussion 

The quantity of keen interest to model builders in auditory research is the veloc-

ity of the tympanic membrane, or, more generally, of the tympanic structure [13]. 

While for geckos and frogs the interaural cavity can be and has been approx-

imated by a cylinderical acoustic waveguide of equivalent volume [3] [4] [6], the 

archosaur counterpart has the topology of a, sometimes even higher-genus, torus 

[21]. In view of ongoing analytic approaches to the study of hearing in “icy” 

animals, the geometric complexity as well as the number of equations required 

for mathematical description both necessitate approximations for efficient solu-

tions. The piston approximation in conjunction with approximate modeling of 

the entire interaural cavity as effectively one-dimensional wave guide form the 

base of the preferential toolkit. 

For comparison with biological data, quantities of the structure  

10ILD 20log L

R

u

u
=




                       (32) 

have proved useful [3] [4]. Such quantities are inspired by the definition of the 

sound pressure level in acoustics. Via no-penetration boundary conditions 

( ) ( )air
ˆ

t tu pρ ∂ ∂ = − ⋅∇n  at the eardrums, these quantities compare the acoustic 

pressure at the left to the one at the right ear. In Equation (32), Lu  and Ru  

denote the (total) speed of the left and right tympanic membrane. In the new 

case of a tympanic structure with more than one constituent, a similar measure 

can be obtained by considering the total displacement of the tympanic structure, 

denoted by LU  and RU . In the case of the present two-spring model, we iden-
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tify 
, ,L s L r LU x x= +    and 

, ,R s R r RU x x= +    for the total speed at the left and right 

tympanic structure. The substitutions L Lu U→  and R Ru U→  in (32) result 

in  

, ,

10

, ,

ILD 20log .
s L r L

s R r R

x x

x x

+
=

+

 
 

                   (33) 

The primary objective of this work is to provide auditory research with a 

practically applicable model for the tympanic structure of numerous archosaurs. 

We discuss a simpler treatment of the two-spring model in Section 4.1.  

4. Approximate Solution  

4.1. Iterative Solution of the Two-Spring Model 

Since the constituents of the tympanic structure—see (11) and (12)—are damped, 

an iterative solution is to be favored instead of the lengthy closed form solution de-

rived in the previous paragraph. By iterative solution, we mean a decoupling of the 

equations of motion for the full tympanic structure into the individual equations of 

motion for its constituents using the assumption { }0 min ,r sk k k< . 

Because of damping, the impact of higher-order coupled contributions to the 

displacement of either constituent from the other constituent will decrease in 

time. We refer to Hassani [18] for a mathematical introduction to operators as 

used in physics. For the sake of notational brevity, we introduce the following 

constant-coefficient differential operators  

2 2D 2 ,s s t s s t sm d m d kγ≡ + +                   (34) 

2 2D 2 .r r t r r t rm d m d kγ≡ + +                   (35) 

They are defined on the space ( )2

0

+= →   . Moreover, we require the 

driving force F to be smooth. Both operators are accompanied by homogeneous 

initial conditions. We have 
2 2D ,D 0r s

  =   on ( )4

0

+ →    . That is, the 

operators defined in (34) and (35) commute for high enough regular functions. 

The governing equations of the two-spring model read in operator notation  

[ ] [ ]2 2

0 0D & D .s s r r r sx k x x k x F= = +               (36) 

Using one of Schwarz’ representation theorems, we can represent the inverse 

operator by a convolution-type integral [18]. Let ( )0

0

+•∈ →   and 0t ≥ . 

We then find  

[ ]( )
( ) ( )( )

( )
2 2

2

0 2 2

d e sin
D = ,

s t

s st

s

s s s

t
t

m

γ ττ ω γ τ
τ

ω γ

− −

−
− −

• •
−

∫      (37) 

[ ]( )
( ) ( )( )

( )
2 2

2

0 2 2

d e sin
D .

r t

r rt

r

r r r

t
t

m

γ ττ ω γ τ
τ

ω γ

− −

−
− −

• = •
−

∫      (38) 

By direct computation, it is seen that 2 2 2 2D D 1 D Dr r r r

− −= =   on   and ana-

logously for 2Ds
 and 2Ds

− . 
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Next, the smoothness assumption ( )0F ∞ +∈ →   allows us to confine 

the search to smooth solutions ( )0,s rx x ∞ +∈ →    . If we are able to find 

such sx  and rx , the existence and uniqueness theorems from the theory of 

ordinary differential equations guarantee that we have also found the only solu-

tion to the inhomogeneous initial value problem. Using the inverse operators (37) 

and (38), we recast (36) into the equivalent system of integral equations  

[ ] [ ] [ ]2 2 2

0 0D & D Ds s r r r s rx k x x k x F− − −= = +              (39) 

The Banach fixed-point theorem entails a construction to obtain the fixed-point by 

iteration. In order to satisfy the model’s initial conditions, we choose 

( ) ( ), 0,0s rx x ∞= ∈ . Let 0t >  and define for all n∈  by  

( ) ( )0 1 00, , ,
n

nt t t t += = ∈   

with 1i it t +<  for 0 1i n< < −  a subdivision of [ ]0, t . We introduce the nota-

tion for subdivisions ( ) ( )3

0 1 2 0, ,t t t +∈  ,  

( ) ( )2 1

0 1 2 2 1 2 0, , , , , , 1
k

k kt t t t t k
++

− ∈ >    

with the properties declared above  

( ) ( ) ( ) ( ) ( )
1 2

1 2 1 2 2 1 2

2 2

, 0 2 0 1 2

, , , , ,

A D D ,

A A A .
k k

t t s r

t t t t t t

t t t t t

−

− −    • ≡ •    
≡  

          (40) 

The indices have been inserted in the definition of the A operators to make the 

nesting of integrals explicit. They indicate the integration variables in the nested 

integrals. 

For 0t > , we find the following series representation for the components of 

( ),s rx x   

( ) ( ) ( )
1 20 , , 0

1

A ,
m

m

s t t
m

x t k F t t
∞

=

  =    
∑                (41) 

( ) ( ) ( )
1 2

2

0 , , 0
0

D A .
m

m

r r t t
m

x t k F t t
∞

−

=

   =     
∑             (42) 

The above expression is not a Neumann series because of the appearance of the 

nested integrals. It cannot be summed up to a closed-form solution. Recalling 

the fixed-point argument from above, we see that the maximum norm of the se-

ries converges. The regularity properties of ,s rx x  are the result of smoothness 

of the input F and the fact that the operators (37) and (38) have smooth integra-

tion kernels and thus do not decrease the regularity of their arguments. Equa-

tions (41) and (42) can be applied in practice by truncating the series. In the next 

paragraph, we compare truncations of the series solutions (41) and (42) with the 

exact solutions of the two-spring model for a given parameter set. 

4.2. Discussion of the Applicability in Auditory Research 

We state the first two iterations. In the notation of the previous paragraph, this 

corresponds to ( ) ( )
,

N N

s rx x  with { }1,2N ∈ ,  
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( ) ( )
( ) ( )( )

( )
2 2

1

0 2 2

d e sin
,

r t

r rt

r

r r r

t
x t F

m

γ ττ ω γ τ
τ

ω γ

− − − −
=

−
∫          (43) 

( ) ( )
( ) ( )( )

( ) ( )( )
( )

2 2

1 2

, 0 2 2

2 2

0 2 2

d e sin

d e sin
,

s

r

t

s st

s d r

s s s

r r

r r

t
x t

m

F

γ τ

γ τ τ
τ

τ ω γ τ
ω

ω γ

τ ω γ τ τ
τ

ω γ

− −

′− −

− −
=

−

 ′ ′− − ′⋅  −  

∫

∫

      (44) 

( ) ( )
( ) ( )( )

( )

( ) ( )

( ) ( )( )

( ) ( )( )
( )

2 2

2

0 2 2

2 2

2 2

, , 0 2 2

2 2

0 2 2

2 2

0 2 2

d e sin

d e sin ( )

d e sin

d e sin
,

r

r

s

r

t

r rt

r

r r r

t

r rt

d r d s

r r r

s s

s s

r r

r r

t
x t F

m

t

m

F

γ τ

γ τ

γ τ τ
τ

γ τ τ
τ

τ ω γ τ
τ

ω γ

τ ω γ τ
ω ω

ω γ

τ ω γ τ τ

ω γ

τ ω γ τ τ
τ

ω γ

− −

− −

′− −

′ ′′− −
′

− −
=

−

− −
+

−

 ′ ′− −⋅ 
−


 ′′ ′ ′′− −  ′′⋅  −   

∫

∫

∫

∫

    (45) 

( ) ( )
( ) ( )( )

( ) ( )( )
( )

( ) ( )( )

( ) ( )( )

( )

2 2

2 2

, 0 2 2

2 2

0 2 2

2 2

2 4

, , 0 2 2

2 2

0 2 2

0

d e sin

d e sin

d e sin

d e sin

d e si

s

r

s

r

s

t

s st

s d r

s s s

r r

r r

t

s st

d s d r

s s s

r r

r r

t
x t

m

F

t

m

γ τ

γ τ τ
τ

γ τ

γ τ τ
τ

γ τ τ
τ

τ ω γ τ
ω

ω γ

τ ω γ τ τ
τ

ω γ

τ ω γ τ
ω ω

ω γ

τ ω γ τ τ

ω γ

τ

− −

′− −

− −

′− −

′ ′′− −
′

− −
=

−

 ′ ′− − ′⋅  −  

− −
+

−

 ′ ′− −⋅ 
−



′′
⋅

∫

∫

∫

∫

∫
( )( )2 2

2 2

n s s

s s

ω γ τ τ

ω γ

 ′ ′′− −
 −

 

( ) ( )( )
( )

2 2

0 2 2

d e sin
.

r

r r

r r

F

γ τ τ
τ

τ ω γ τ τ
τ

ω γ

′′ ′′′− −
′′

 ′′′ ′′ ′′′− −  ′′′⋅  
−   

∫   (46) 

From the phenomenological point of view, the “strength” of coupling can be 

determined from the ratios 2 2

, 0d s s sk kω ω =  or 2 2

, 0d r r rk kω ω =  for 

2-constituent tympanic structures. By the assumptions regarding 0k , both ratios 
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are smaller than unity. A suitable smallness parameter is defined through 

{ }0 0max ,s rk k k k= . By mathematical induction it follows  

( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2N N N N N N

s s s r r sx x x x x x
− − − −− −   . 

The series solution gradually builds up the coupling between the two constituents 

of the tympanic structure. 

4.3. Numerical Results 

In order to assess the accuracy of the iterative solution developed in this section, 

we simulate the Equation (43) and Equation (44), respectively (45) and (46), for 

both the parameter choice and the input model used for the simulation of the 

full two-spring model presented the previous section. The numerical results for 

(43) and (44) are shown in Figure 4. The axis units therein have been chosen in 

accordance with Figure 3 and the unit system introduced at the beginning of the 

previous section. The numerical results for (45) and (46) are shown in Figure 5. 

In each of Figure 4 and Figure 5, the left column depicts results for the real 

parts ( )1

rx ℜ   and ( )1

sx ℜ  , respectively ( )2

rx ℜ   and ( )2

sx ℜ  . 

The right columns of Figure 4 and Figure 5 show the results for ( )1

rx ℑ   

and ( )1

sx ℑ  , respectively ( )2

rx ℑ   and ( )2

sx ℑ  . In the top row of Figure 4, 
( ) ( )1 1

,r rx Im x   ℜ     is shown as solid blue curves, while ( ) ( )1 1
,s sx Im x   ℜ     is 

represented by the solid orange curves. The same color code has been employed 

in the top row of Figure 5 with ( )2

rx  and ( )2

sx  used in place of ( )1

rx  and ( )1

sx . 

The bottom rows of the two figures are devoted to quantifying the absolute 

deviations from the full solution obtained by means of the simulation presented 

in the previous section. In the two bottom plots of Figure 4, the differences 

[ ]( ) [ ]1

r r
x xℜ − ℜ  and [ ]( ) [ ]1

s s
x xℜ − ℜ  are shown as the solid blue and solid 

orange curve on the left and the differences [ ]( ) [ ]1

r r
x xℑ − ℑ  and 

[ ]( ) [ ]1

s s
x xℑ − ℑ  are shown as the solid blue and solid orange curve on the right. 

Similarly, the differences [ ]( ) [ ]1

r r
x xℜ − ℜ  and [ ]( ) [ ]1

s s
x xℜ − ℜ  are shown 

as the solid blue and solid orange curve in the left plot and the differences 

[ ]( ) [ ]1

r r
x xℑ − ℑ  and [ ]( ) [ ]1

s s
x xℑ − ℑ  are shown as the solid blue and solid 

orange curve in the right plot of the bottom row in Figure 5. 

At a first sight, the top rows of Figure 4 and Figure 5 look like their “exact” 

pendants in the top row of Figure 5. We see, however, that the deviations of the 

moduli of the real and imaginary part of the first iterates, i.e., (43) and (44), from 

the moduli of the real and imaginary part of the exact solution of the two-spring 

model do not equilibrate fast into the quasi-stationary state behavior; cf. the 

bottom row of Figure 4. 

In contrast, the bottom row of Figure 5 shows that, for the specified parame-

ter values, the moduli of the real and imaginary part of the exact solution of the 

two-spring model and the absolute values (45) and (46) of the real and imaginary 

part of the second iterates match well, as compared with the amplitude of the exact 

solution, after equilibration into the quasi-stationary state. For 16 rt ω− , the 
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Figure 4. Top-left: Approximate solution 
( )1

r
x ℜ   (blue) and 

( )1

s
x ℜ   (orange) in units of ( )2

0 r r
F m ω  

after the first iteration as a function of [ ]0,15t∈  in units of 1

r
ω− . Bottom-left: Comparison of the solu-

tion for the full two-spring model with the approximate solutions: ( ) [ ]1

r r
x x ℜ − ℜ   (blue) and 

( ) [ ]1

s s
x x ℜ − ℜ   (orange) in units of ( )2

0 r r
F m ω  as a function of [ ]0,15t∈  in units of 1

r
ω−  

Top- and bottom right: Analogous plots as in the left column with the corresponding imaginary parts 

used in place of the real parts. 

 

 

Figure 5. Top-left: Approximate solution 
( )2

r
x ℜ   (blue) and 

( )2

s
x ℜ   (orange) in units of 

( )2

0 r r
F m ω  after the second iteration as a function of [ ]0,15t∈  in units of 1

r
ω− . Bottom-left: 

Comparison of the solution for the full two-spring model with the approximate solutions: 
( ) [ ]2

r r
x x ℜ − ℜ   (blue) and ( ) [ ]2

s s
x x ℜ − ℜ   (orange) in units of ( )2

0 r r
F m ω  as a function of 

[ ]0,15t∈  in units of 1

r
ω− . Top- and bottom-right: Analogous plots as in the left row with the cor-

responding imaginary parts used in place of the real parts. 
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relative deviation compared to the amplitudes is below 1% for both real and im-

aginary part for both the ring and the shell displacement. This is lower than the 

relative deviation compared to the amplitude of the oscillation of the real and 

imaginary part of rx  and sx  found for the first iterates from the bottom row 

of Figure 4. In this case, we find the ratio in question being under 6% for 
16 rt ω− .  

5. Summary  

For the first time in auditory research, we have articulated a physically imple-

mentable definition of tympanic structures that generalizes the notion of a tym-

panic membrane. In the terminology introduced in the main body of the present 

article, a tympanic membrane is seen to be a special case of the wider notion of 

“tympanic structure”. The case of archosaurs as “icy” animals exemplified the 

necessity to define a more general notion in order to model the tympanic res-

ponses in these animals in a physically meaningful way. Favoring applicability of 

the ICE model in auditory research over mathematical complexity, the 

two-spring model has been derived from the piston approximation applied to 

the elastic constituents of the 2-constituent tympanic structure as observed in 

numerous archosaurs. Two damped harmonic oscillators, interacting via a 

Hooke-elastic coupling, were found to account for the combined motion of the 

tympanic structure. That is, the displacement of the spherical shell membrane of 

the animals without local bending and bending of the shell. 

By numerical simulations with parameters chosen from the expected parame-

ter range, the biologically motivated hypothesis that the overall displacement of 

the extracolumella is mainly due to uniform, piston-like displacement of the 

shell as a whole without large contributions due to local bending, could be sup-

ported. Only a maximum of 20% of the extracolumella displacement’s amplitude 

was found to be on the part of shell bending in the two-spring model with the 

chosen simulation parameters. 

Because of the length of the analytic solution formulas, a simpler iterative 

treatment has been developed. Treating the two-spring model as a set of two 

damped, suitably weakly coupled harmonic oscillators, a Banach fixed-point ite-

ration scheme has been derived. Simulations of the first two non-trivial iterates 

for the model solutions were performed using the same parameters as in the ex-

act solution of the two-spring model. For sufficiently weak coupling of the two 

constituents of the tympanic structure, the second iterates were found to be suffi-

ciently accurate and efficient-to-calculate at the same time so as to be favored over 

the exact solution, if the computational power available is limited. The strength of 

the coupling is stored in the parameter { }0 0max ,r rk k k k= , which requires 

specification through up-to-now unavailable experimental data.  
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Appendix  

The two-spring model is an effective model, a strong simplification of both bio-

logical and mathematical reality. In order to ensure the overall applicability of 

the model as well as the readability for a less mathematically inclined audience, a 

more complete, yet mathematically more advanced model, has been postponed 

to this appendix. Here spheroidal wave functions will appear at the end. Unfor-

tunately, the state of the art in the numerics of spheroidal wave functions ob-

structs a detailed numerical evaluation while further analytic investigations are 

ruled out by the non-existence of closed form representations of spheroidal wave 

functions. 

Geometry of the configuration 

As explained in the main text, the two constituents of the tympanic structure 

in multitudinous archosaurs are (1) an elastic sectorial spherical shell and (2) an 

elastic circular symmetric ring. In spherical coordinates, the shell has radius 0R , 

azimuthal opening angle [ ]0 0,π 2θ ∈ , and a polar opening angle [ ], 2πφ β β∈ −  

where 0 πβ<  . The breaking of the full rotational symmetry of the tympanic 

structure results from the presence of the extracolumella; cf. Figure 1. It is a 

bony structure placed in the sector [ ) ( ]0, 2π , 2πφ β β∈ −  of the shell. The 

extracolumella effectively prevents vibrations on the shell surface itself. Yet, in 

the present model the shell is allowed to move up and down, the entire shell 

moving uniformly as a piston. 

For the ensuing treatment, the extracolumella is assumed to be only connected 

to the shell but not to the underneath ring. The ring itself has radius 0R  and 

height H, extending in negative z-direction. We denote by 0 0 3,s rΩ Ω ⊂   the equi-

librium surfaces of shell and ring,  

( ) ( ){ }3
0

0 2 3, , | 0 ,s RS x y z zΩ = ∈ ≥0


               (47) 

( ) [ ]2
0

0 1 0, .r RS HΩ = × −

0                    (48) 

For the elasto-dynamic analysis, it is useful to account for the small but finite 

thickness of the elastic constituents as well. Let us denote the corresponding 

compacta by sd

sΩ  and rd

rΩ  where { }0, min ,s rd d R H  stand for the thickness 

of the shell and the ring, respectively. We assume s rd d=  and use sd  as a 

symbol for the thickness of shell and ring. Explicitly, sd

rΩ  and sd

sΩ  are de-

fined as  

( ) ( )( ) ( ){ }3 3
0 0

3 3 3

2 2Cl \ , , | 0 ,s

s s

d

s R d R dB B x y z z+ −Ω = ∈ ≥
 

 0 0    (49) 

( ) ( )( ) [ ]2 2
0 0

2 2

2 2 0Cl \ 0,s

s s

d

r R d R dB B H+ −Ω = ×
 
0 0         (50) 

where ( )Cl M  denotes the topological closure operation on the set M in brack-

ets. Letting 0sd ≥  tend to zero from above, we reproduce 0

sΩ  and 0

rΩ  as the 

maximal set contained in all the sd

sΩ ’s and sd

rΩ ’s, respectively. The interface 

between the two constituents is given the intersection s s sd d d

s rΩ Ω ≡ Γ . It is lo-

calized in the 0z = -plane, { }2 0sdΓ ⊂ ×  and is isometrically homeomorphic 
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to the closed annulus 
0 02, 2s sR d R d− + . If 0sd ≥  tends to zero from above, the 

intersection of all the sd

sΓ ’s gives ( ) { }2
0

0 1 0RSΓ ≡ ×

0 . 

Physical description of the problem 

Each of the two constituents of the tympanic structure is an elastic material 

that satisfies approximately material isotropy and homogeneity assumptions. 

That is, shell and ring have respective Lamé constants ( ),s sλ µ  and ( ),r rλ µ . 

Since, even in the absence of a physical cause for deformations, the shell plus 

extracolumella has the shape of a hemisphere, it is treated as self-supporting: If 

stimulated by an pressure signal incident from the z-direction, the shell under-

goes elastic deformations only along the z-direction. 

Navier-Cauchy equation 

The continuum momentum balance equations simplify to linear partial diffe-

rential equations if only small elastic deformations are to be modeled. For the 

shell and the ring, they read quite generally  

2 ,s t s s sρ ∂ = ∇ +u fσ                       (51) 

2

r t r r rρ ∂ = ∇ +u fσ                        (52) 

where ,s rρ ρ  denote the constant mass per volume density of shell and ring 

material, respectively, sf  and rf  stand for an external force density applied 

to the shell and ring, and rσ  and rσ  denote the (symmetric) stress tensors. 

The Navier-Cauchy equations [23] are obtained as a consequence of the as-

sumption of a linear stress-strain relation. The linearized strain tensors 

( ) ( )( )T
1 2r r r= ⋅ ∇⊗ + ∇⊗u u  and ( ) ( )( )T

1 2s s s= ⋅ ∇⊗ + ∇⊗u u  for the 

ring and shell occur in the linear stress-strain relation as  

( ) ( )( )::
s

s sij ij
=σ Λ  and ( ) ( )( )::

r

r rij ij
=σ Λ . 

The ::  denotes double contraction in engineers’ notation. The material homo-

geneity and isotropy assumptions reduce the number of components from a 

priori 43 81=  to 2 for both of the rank 4 tensors ( )rΛ  and ( )sΛ . The stress 

tensors rσ  and sσ  are themselves symmetric. They can only depend linearly 

on the respective strain tensor and the trace of the respective strain tensors. A 

textbook calculation [23] demonstrates that the Equation (51) and Equation (52) 

reduce to the elasto-dynamic equations, also known as the Navier-Cauchy equa-

tions,  

( ) ( )2 2 ,s t s s s s s s sρ λ µ µ∂ = + ∇ ∇⋅ − ∇×∇× +u u u f          (53) 

( ) ( )2 2 .r t r r r r r r rρ λ µ µ∂ = + ∇ ∇⋅ − ∇×∇× +u u u f          (54) 

Relations of the Lamé constants to other elastic parameters 

Let λ  and µ  indicate Lamé’s constants. The literature denotes µ  occa-

sionally by G and calls G the shear modulus. The expression  

( )1 2 pGλ µ ν+ = −  defines the Poisson number ν  and is smaller than 0.5. The 

Young’s modulus E satisfies ( ) ( )22 1 4 2E G ν µ µ λ= + = − . The bulk modulus K 

relates to the Lamé constants via ( )( ) ( )( ) ( )3 1 2 2 3pK E ν λ µ µ λ µ= ⋅ − = + − . 
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Model specification 

The shell’s force-density drive is assumed to take place only in the z-direction 

due to the self-supporting property of the shell. The prototypical external sti-

mulus used in auditory research is a pressure signal emanating from a point far 

away from the shell surface so that a plane is the more appropriate shape for the 

wave front than a shell. Since the propagation speed of sound times a few milli-

seconds still exceeds the geometric dimensions of the tympanic structure, arrival 

time differences on the shell surfaces are negligible. Thus the net force-per-volume 

density on the shell is spatially uniform and purely time-dependent, and only 

has a non-trivial z-component: 
( ) ( ) ˆ
s

s z zf t e=f . 

Its relation to the acoustic pressure signal is established by considering the 

z-component of force-per-volume density to be the pressure difference along the 

thickness of the shell: 
( ) ( ) ( )s

z sf t p t d= . Indeed, integrating over the homoge-

neous membrane’s thickness sd , we reproduce the pressure difference ( )p t  

as the force-per-surface density which is responsible for driving the system. 

The ICE model has proven quite successful in auditory research [1] [12]. Due 

to the superposition principle, the investigation is confined to a pure tone, 

( ) ( )0 expp t p i tω=  with a fixed positive stimulus angular frequency 0ω > . 

The ring only interacts with the shell but receives no external stimulation, i.e., 

r =f 0 . The ring-shell interaction via boundary conditions will be discussed lat-

er on. 

Our focus is on the quasi-stationary state. That is, the tympanic structure is 

assessed at a time where tympana’s undulations generated previously have de-

cayed as a result of damping. Mathematically, this amounts to working in fre-

quency-domain space where linearity ensures that the tympana undulate with 

the same angular frequency ω  as carried by the stimulus but in general with a 

phase shift for stimulus directions ≠ 0. The self-supporting assumption reduces 

the components of the displacement vector field su  from 3 to only 1, namely, 

to the component aligned in parallel to the external stimulus: ( ) ˆz

s s zu e=u . 

As mentioned before, the shell rests on top of the ring. If piston-like motion is 

excited, the entire ring vibrates as if it were a point mass under the influence of 

Newton’s law in vertical direction. Neglecting back-couplings of the ring’s dis-

placement to spatially dependent vibrations on the shell, the ring’s displacement is 

aligned in parallel to su  so that 
( ) ( ) ˆ
r

r z zu t e=u . The configuration hints at using 

cylindrical coordinates for the spatial arguments of the functions ( )s
zu  and ( )r

zu . 

Upon insertion of the vector operators in cylindrical coordinates [22], (53) and 

(54) simplify,  

( ) ( ) ( ) ( ) ( )2 2 ,
s s s

s t z s s z z s s z su u u p t dρ λ µ µ∂ = + ∂ + ∆ +          (55) 

( ) ( ) ( ) ( )2 2 .
r r r

r t z r r z z r r zu u uρ λ µ µ∂ = + ∂ + ∆              (56) 

s∆  and r∆  denote the Laplace-Beltrami operators in cylindrical coordinates 

on the three-dimensional equilibria volumes of shell and ring. That is, on sd

sΩ  

and sd

rΩ . The expression ( )v∆ = ∇ ∇⋅ −∇×∇×  can be utilized to convert (54) 
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and (53) to hyperbolic differential equations akin to (56) and (55) featuring only 

the vector Laplacian and the composition of gradient and divergence as differential 

operators in spatial variables. 

Compressional coupling 

We now deal with appropriate elastic matching conditions at the interface of 

ring and shell, i.e., on sdΓ . Requiring validity of the differential Equation (56) 

and Equation (55) on s sd d

rΩ ⊃≠ Γ  and s sd d

sΩ ⊃≠ Γ , respectively, ensures that 
( )s
zu  and ( )r

zu  are 2  on sdΓ  as well. As a side comment this means that we 

would be allowed to extend the solutions to a larger but open domain, say, 

,
sd

r r+Ω ⊃≠ Ω  and ,
sd

s s+Ω ⊃≠ Ω , so that we can already assume the solutions to 

be sufficiently well-behaved. 

We recall that the compression of an elastic medium generates an excess 

pressure inside that medium through m m mp K= − ∇ ⋅u . The index m refers to 

the medium, whence { },m r s∈  here. Upon insertion of the divergence opera-

tor in cylindrical coordinates and due to the ansatz for ru  and su  from the 

previous paragraph, the excess pressures rp  and sp  are given by  

( )r
r r z zp K u= − ∂                        (57) 

( )s
s s z zp K u= − ∂                        (58) 

The regularity requirement discussed at the beginning of this paragraph per-

mits the usage of these expressions on the interface sdΓ . The difference in ma-

terial generates a pressure difference ( ) ( )r s

r s r z z s z zp p p K u K uδ = − = − ∂ + ∂  loca-

lized at 0z = . One possible boundary condition would be to equate this com-

pressional pressure difference and its partial derivative in z-direction to zero on 
sdΓ . In the configuration under consideration this is, however, not a good idea 

because the ring experiences yet another pressure on sd

sΓ . Viz., the one gener-

ated by pressure signal ( )p t , which pulls the shell as a mass point up and down. 

The detailed discussion of the consequences is the subject of the next paragraph. 

Here we confine ourselves to introducing the compressional coupling conditions 

at the interface sd

sΓ . In Newton’s second law, the gradient of the pressure dif-

ference pδ  generates a force-per-volume. The boundary of shell and ring vi-

brate in such a way that the pressure gradients in positive and negative z-direction 

are compensated,  

( ) ( ) ( )2 2 2 ,
s r s

s t z z r z z s z zu p K u K uρ δ∂ = ∂ = − ∂ + ∂           (59) 

( ) ( ) ( )2 2 2 .
r r s

r t z z r z z s z zu p K u K uρ δ∂ = −∂ = ∂ − ∂           (60) 

The equations express mathematically that the two constituent structures can 

be compressed at the interface. The resulting difference in excess pressures, pδ , 

acts as force drive for the shell and the ring at the interface in the 0z =  plane. 

The bulk moduli rK  and sK  are material constants that can be determined 

from the Lamé constants ( ),r rλ µ  and ( ),s sλ µ  for the ring and shell, respec-

tively, see the paragraph entitled “Relations of the Lamé constants to other elas-

tic parameters”. In order to deal with the piston mode where the total of shell 
 

DOI: 10.4236/ojbiphy.2019.91003 42 Open Journal of Biophysics 

 

https://doi.org/10.4236/ojbiphy.2019.91003


D. T. Heider, J. L. van Hemmen 

 

and extracolumella is driven as one point mass by the incident pressure signal 

needs to be considered in the above equations. 

Force-collector model 

Let us suppose that the shell is placed on an incompressible iron floor instead 

of an elastic ring. Since the shell is self-supporting and the pressure uniform, 

only forces in z-direction need to be considered. By Newton’s third law, the iron 

floor enacts a excess normal force on the annular interface region of floor and 

shell as a reaction to the total of excess pressure driving the membrane. The re-

sulting reaction force equates to the reaction pressure intp  times the area of the 

interface intA . Since the shell obviously does not oscillate up and down through 

the “iron” force, the reaction force needs to compensate the total force generated 

by the incident pressure p on the area of the shell plus extracolumella as seen 

from a point on the z-axis, 2

hit 0πA R= . We note 2

hit hemisphere 02πA A R≠ =  because 

radial oscillations of the sphere are prohibited by the self-supporting assumption. 

The interface region sdΓ  between shell and floor is annular and has the area  

( ) ( )2 2

int 0 0 0π 2 π 2 2πs s sA R d R d R d= + − −   

neglecting contributions of order ~ 2 2

0sd R  relative to hitA . The global force 

balance according to Newton’s third law (actio = -reactio) translates into  

( )int ext hit int ext 0 2 .sp p A A p R d= − = −  

The difference between the iron floor and the elastic ring is that the latter ex-

periences the interface pressure as an additional pressure. We observe that (59) 

needs no correction, if the piston mode is subtracted from ( )s
zu  since ( )s

zu  only 

quantifies dislocations generated by the compressional coupling between shell 

and ring. 

One technical issue needs to be fixed. In the shell model (55) the pressure dif-

ference along the shell interface enters the force-per-volume balance rather than 

only an incident pressure gradient. The shell collects the pressure difference, the 

physical motivation for the nomenclature “force-collector model”. It needs to be 

shown that the interface region sdΓ  is subject to the collected pressure differ-

ence. Namely, the force-collector model demonstrates that an additional 

force-per-volume density acts on the ring at the boundary namely  

( ) ( )ext 0 2 s sf R d p t d∂ = ⋅ .  

Shell and ring extend in radial direction by sd . Let us replace the fields ( )s
zu  

and ( )r
zu  in (59) and (60) by their respective average along a ray segment of 

length sd  in the { }0z =  plane. After multiplication by sd , Equation (59) and 

Equation (60) read  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2

,avg

2 2

,avg ,avg

, 0,

, 0, , 0, ,

s

s t z

s r

s s z z r s z z

u t z

K d u t z K d u t z

σ φ

φ φ

∂ =

= − ∂ = − ∂ =
    (61) 

( ) ( )
( ) ( ) ( ) ( )

2

,avg

2 ( ) 2

,avg ,avg

, 0,

, 0, ( ) , 0, .

r

r t z

sr

r s z z s s z z

u t z

K d u t z K d u t z

σ φ

φ φ

∂ =

= − ∂ = − ∂ =
    (62) 
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The quantities rσ  and sσ  are effective surface mass densities defined 

through r r sdσ ρ≡  and s s sdσ ρ≡ . Given that 0 ,sd R H , the approximation 

is sensible. Its advantage lies in the fact that intp−  as specified at the beginning 

of the paragraph can be included in these boundary conditions in the spirit of 

the “force collector” argument,  

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2

,avg

2 2

,avg ,avg

, 0,

, 0, , 0, ,

s

s t z

s r

s s z z r s z z

u t z

K d u t z K d u t z

σ φ

φ φ

∂ =

= − ∂ = − ∂ =
    (63) 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2

,avg

2 2

,avg ,avg

, 0,

, 0, , 0, .

r

r t z

r s

r s z z s s z z

u t z

K d u t z K d u t z p t

σ φ

φ φ

∂ =

= − ∂ = − ∂ = +a
  (64) 

The dimensionless quantity ( )0 2 sR d≡a  is called amplification factor. 

Upon division by sd , the statement that also the pressure difference along the 

interface is collected holds true in an approximate sense. Namely, we need to re-

place the fields ( )r
zu  and ( )s

zu  by the averages over the thickness of the annulus. 

Effectively, we are left with fields on the interface 0Γ  rather than sdΓ . In-

deed, 0,sd H R  already hints at using 0

sΩ  and 0

rΩ  in place of sd

sΩ  and 
sd

rΩ . We need to answer the question of whether or not to keep the source term 

in (55). In order to address this issue, we need to asses the ratio of maximum 

amplitudes of shell and ring. At the sphere’s top at ( )0z H= , the shell experiences 

a pressure as 
( ) ( ) ( )2

,avg 0,
s

s t zu t z H p tσ ∂ = = . Neglecting spatial variations on the 

interface for the estimate, (64) reduces to  

( ) ( ) ( )2

,avg , 0,
r

r t zu t z p tσ φ∂ = = a . 

Since ( ) ( )0 expp t p i tω , the quotient becomes  

( ) ( )
( ) ( )

,avg 0

0,avg

, = 21
1

, = 0,

s

z s s s

r
r rz

u t z H d

Ru t z

σ ρ
σ ρφ

= = 
a

             (65) 

in the quasi-stationary state, i.e., only the solution to the inhomogeneous prob-

lem is considered. The “ ” awaits some justification. 

Typically, ( )s rρ ρ  because the material of the shell and ring are biolog-

ical tissue. That is, mostly water. However, the thickness of the membrane 
5

010 msd R−   exceeds 2

0 0.5 10 mR −×  by 2 to 4 orders of magnitude! 

Compared to the elastic deformation of the ring which experiences an amplifica-

tion 0pa  of the pressure collected by the shell, the shell only a pressure of am-

plitude 0p . The amplification factor a  contains purely geometrical informa-

tion, ( )0 hit int2 sR d A A= =a . The estimate of the orders of magnitude shows 

that the maximum amplitude of the piston shell is small compared to the ampli-

tude of the ring compression. The “up and down” oscillation of the shell plus 

extracolumella system is thus dominantly due to the compressional oscillation of 

the elastic ring as a response to the total pressure. It therefore makes sense to 

drop the source term in (55) and account for the external stimulus in (64) in-

stead. 

The limit of thin shells and rings, 0sd
+→  
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Since we are only interested in displacement averaged over the shell’s thick-

ness sd , the variables r and z are no longer independent but subject to the con-

straint ( ) 2 2

0r r z R z= = − . The clamping due to the presence of the extraco-

lumella is unproblematic and only settles [ ], 2πφ β β∈ − . The constraint 
2 2 2

0r z R+ =  with 0z ≥  is a cue to try transforming the differential operator of 

the spatial variables in (55) into spherical coordinates. The problem, however, is 

that 0s sλ µ+ ≠ . The case 0s sλ µ+ =  corresponds to a negative Poisson 

number, more precisely 1ν = − . The relation between the shell’s Lamé con-

stants sλ  and sµ  on the one hand and the Young’s modulus E and the Pois-

son number ν  on the other hand becomes ill-defined. Furthermore, the Pois-

son number is typically between 0 and 1/2. Biological tissue does not increase its 

volume in such a way that it gets thicker under application of an external pulling 

force. Rather, its volume stays constant or increases while the shell becomes 

thinner [23]. 

In view of the above issues, a different method to localize the shell on 
2 2 2

0r z R+ =  for 0z ≥  is what we look for. One possibility starts with redefining 

z z′≡ ⋅ℵ  where 0ℵ>  is a suitable re-scaling factor involving the Lamé con-

stants. It is then chosen so that the problematic partial differential operator with 

spatial variables in (55) equals the Laplacian in the new coordinates. ℵ  is then 

determined to be  

2 1.s

s

λ
µ

ℵ≡ + >                        (66) 

In the new coordinates ( ), ,r zφ ′ , the physical hemisphere defined through 
2 2 2

0r z R+ =  with 0z ≥  is half of an oblate spheroidal hemisphere,  

( )22

2 2

0 0

2

1.
zr

R R

′
+ =

ℵ

                        (67) 

Implementing the deliberations outlined above, (55) reads in ( ),z r′

-coordinates  

( ) ( )( ) ( ) ( )( )2 1 2 2 2s s s s

s t z s r r z z z zu r r u r u uφρ µ − −
′∂ = ∂ ∂ + ∂ + ∂        (68) 

where 
( ) ( ) ( ), , ,
s s

z zu u t r zφ ′= . In view of (67), oblate spheroidal coordinates are 

useful. For their definition, we refer to Spencer and Moon [22]. We need to solve 

the equations 2 2 2

0 0coshR a η=  and 2 2 2 2

0 0sinhR a ηℵ = . This results in 

( )2 2 2 2

0 01a R R−= −ℵ <  and ( )00 arcothη< = ℵ . We then let  

( )0 02, 2η η δη η δη∈ − +  

model the finite thickness of the membrane. This is needed because the Helm-

holtz operator cannot be restricted to the 0η η=  iso-surface in oblate sphe-

roidal coordinates so that a solvable eigenvalue problem is maintained. This is in 

contrast to spherical coordinates where we can restrict them to the r R=  

iso-surface. 

The coordinate transform we aim at is established as cosh sinr a η θ=  and 
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sinh cosz a η θ= . The result is a Laplacian in oblate spheroidal coordinates [22]. 

Let Φ  be a suitably function depending on the oblate spheroidal variables 

( ), ,η θ φ . The Laplacian ∆Φ  is then given by the expression  

( )

( )

2 2 2

2

22 2 2

1 1 1
cosh sin

cosh sincosh sin

1
.

cosh sin

a

a

η θ
η η η θ θ θη θ

φη θ

  ∂ ∂Φ ∂ ∂Φ ∆Φ = +    ∂ ∂ ∂ ∂−    

∂ Φ
+

∂−

(69) 

It is convenient to define 2 2

s s sk ρ ω µ≡  for a stimulus of frequency ω . Qua-

si-stationarity permits the assumption that the shell oscillates with the same fre-

quency. The resulting Helmholtz equation ( ) ( )2 0
z z

s s su k u∆ + =  will be separated in 

oblate spheroidal coordinates in the next paragraph. 

Separation of the Helmholtz equation in oblate spheroidal coordinates 

As a separation Ansatz, we take 
( ) ( ) ( ) ( )s

zu O P Aη φ θ=  with as yet 

to-be-determined functions O, P & A. Along the lines indicated elsewhere ([22], 

p. 36), the following equations result,  

( ) ( )
2

2 2 2

2

1 d d
cosh cosh 1 0,

cosh d d cosh
s

O q
k a p p Oη η η

η η η η
  

+ − + + =  
   

 (70) 

( ) ( )
2

2 2 2

2

1 d d
sin sin 1 0,

sin d d sin
s

A q
k a p p Aθ θ θ

θ θ θ θ
   + − + + − =  

   
   (71) 

( ) ( )
2

2

2

d
0

d

P
q P

φ
φ

φ
+ =                      (72) 

where 0p >  and 0q >  are separation parameters. They will be fixed during 

the discussion to follow. The thickness ( sd≈ ) of the elastic shell in η-direction 

enters by noting that ( )0 02, 2η η δη η δη∈ − +  has a small interval length. We 

force ( ) ( )0 0O Oη η= ≠  to be a non-zero constant in the interval. This corres-

ponds to requiring that the whole shell moves along its thickness in η-direction. 

At π 2θ = , the η-average is consistent with the radial average performed to 

obtain Equation (64) and Equation (63). Physically, the average under consider-

ation formalizes the requirement that only constant elastic deformations with 

respect to η occur. The equation (70) then gives rise to an equation for the sepa-

ration parameter p,  

( )
2

2 2 2

2
cosh 1 0.

cosh
s

q
k a p pη

η
− + + =               (73) 

The above equation can be solved for p and the correct sign in front of the 

square root of the discriminant is fixed by the requirement 0p > . The result 

for p is then  

( )

2 2 4 2

2

cosh
1 1 4

cosh
, .

2

sk a q

p p q

η
η

η

 +
− + +  

 = =          (74) 

The function p depends on η and q in a well-behaved way. The dependence 
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upon η can actually be eliminated. The interval for η has a length δη  suitably 

small so that 0η η≈  introduces a negligible error. The dependence upon q is 

fixed by investigating the polar part ( )P P φ= . The clamping of extracolumella 

needs to be accounted for as the piston mode of the shell plus extracolumella 

system has already been massaged into (64). The vibrations on the shell’s surface 

follow from the compressional coupling conditions defined before in (64) & (63), 

where the shell had been excluded as immobile element. The clamping at 

{ }, 2πφ β β∈ −  requires Dirichlet boundary conditions for (72):  

( ) ( )0 2πP Pφ β φ β= = = = − , 

which settles as a pair of [ ]( )2 , 2πL β β− -normalized solutions  

( )
( )( )( )sin

,
πq

q m φ β
φ

β

−
Φ =

−
                  (75) 

( ) ( )π
.

2π 2

m
q m m

β
= ∈

−
                    (76) 

The q-dependence of the parameter p in (74) can be specified explicitly,  

( )

( )
( )

2 2 2 4 2 2

0

2 2

0

2π 2 cosh π
1 1 4

2π 2 cosh
.

2

sk a m

p m

β η

β η

 − +
 − + +
 − =      (77) 

The obstruction for further analytic investigation is rooted in the solution of 

(71). Since the separation parameter p is constant with respect to θ , the azimu-

thal dependence of ( )s
zu  is contained in functions of the form  

( ) ( )
( ) ( ) ( )

( ) ( )ps ,cos qs ,cos .
q m q m

m m s m sp m p m
A A ik a B ik aθ θ θ= +       (78) 

The objects denoted by ( )
( ) ( )ps ,
q m

p m
i xλ  and ( )

( ) ( )qs ,
q m

p m
i xλ  are known as (azi-

muthal-) angular part of oblate spheroidal functions. No closed-form analytic re-

presentation is known [24]. Following the notation of Falloon, Abbott, and 

Wang [25] and taking , ,z µ γ ∈ , they are solutions of the following ordinary 

differential equation of Sturm-Liouville type,  

( ) ( )
2

2 2 2

2

d d
1 1 0

d d 1

f
z z

z z z

µ
ν

µλ γ
  − + + − − =   −   

          (79) 

We refer to the literature [25] [26] [27] for a further treatment of spheroidal 

wave functions for non-integer parameters p and q. Here we restrict ourselves to 

noting that the general solution ( )s
zu  for the shell equation can be expressed as  

( ) ( )

( )
( ) ( )( )( )

( )

( )
( ) ( )( )( )

( )

2

0

0

1

2

0

0

1

, ,

ps 1 , sin

exp
2π 2

qs 1 , sin

exp
2π 2

s

z

q m s

p m

s

m
m

q m s

p m

s

m
m

u t z

z
i R q m

R
A i t

z
i R q m

R
B i t

φ

ρ
ω φ β

µ
ω

β

ρ
ω φ β

µ
ω

β

−

∞

=

−

∞

=

 
−ℵ −  

 =
−

 
−ℵ −  

 +
−

∑

∑

 (80) 
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The quantity ℵ  is defined in (66), ( )q m  is specified in (76) and ( )p m  in 

(77) where ( )0 arcoth 2 s sη λ µ= +  is to be used in these equations. The two 

constants mA  and mB  for a polar mode of index m∈  are theoretically 

fixed by the boundary conditions (64) and (63) as well as by the requirement 

that the top of the shell does not vibrate after exclusion of the piston mode: 

( )0, , 0u t z R φ= = . As of 2017 [28], no stable computer algebra system seems to 

be available. As such, more than a specification of the general expression (80) is 

out of reach. 

Elastic ring 

Expressing the Laplacian ∆  in (56) in cylindrical coordinates, a restriction to 

0r R= , ( )r
zu  is the solution of the differential equation  

( ) ( ) ( ) ( )2 2 2 2

02 .
r r r

r t z r r z z r zu u R uφρ λ µ µ −∂ = + ∂ + ∂               (81) 

Quasi-stationarity is employed to factor out an ( )exp i tω  and thus convert 

the above wave equation to a Helmholtz equation. The method to re-scale the 

variable z that has been employed to convert (55) to (68) applies to (81) as well, 

with the obvious substitutions of Lamé constants. Let us define 2 2

r r rk ω ρ µ=  

and redefine z z′ ′′=ℵ  where  

2 1.s

s

λ
µ

′ℵ ≡ + >                         (82) 

At z H= − , we demand that the ring is clamped. The elastic ring is supposed 

to terminate by being “glued” into the bony structure of the animal’s skull. In the 

variable z′′ , the clamping condition is imposed at ( ) 1

0z H H H
−′ ′= ≡ ℵ < . 

Because of the ring’s axial symmetry, periodic boundary conditions are appro-

priate for the cylindrical angular variable. Then the ( )r
zu  solving (81) is of the 

form  

( ) ( )
( )

2
2

2

0
, , sin e e .

s

r im i t

z m
m

m
k z H

R
u t z C φ ωφ

∞

=−∞

 
 − +
 =  ′ℵ 
 
 

∑         (83) 

For m∈ , mC  is a constant that can be found by insertion of (80) and (83) 

into the compressional boundary conditions (63) and (64). Together with the 

condition 
( ) ( )0, , 0
s

zu t z R φ= = , the constants in ( ){ }, |m mA B m∈  for the 

shell’s displacement as given in (80) and { }|mC m∈  for the ring’s displacement 

as given in (83) are the solutions to the inhomogeneous system of linear equations 

that would be defined by the boundary conditions—but: 

Analytic investigations of the resulting equations are out of reach because of 

the lack of closed form expressions for the spheroidal wave functions ps and qs. 

Because of serious concerns over the reliability of numerical predictions even for 

integer-indexed spheroidal wave functions, a numerical treatment is ruled out. 

So we face the question: How can we still make a bit of progress? 

Weak coupling assumption 
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We recall that amplitudes of the piston vibration of the shell have already been 

shown to be small compared to the vibration amplitude of the ring; cf. Equation 

(65). Furthermore, biological tissue consists, to a large fraction, of water. Under 

small external pressures, water is practically incompressible. Also the generation 

of excess-pressure contributions to the compressional boundary conditions (63) 

and (64) should be small. In view of the amplification factor a , we therefore 

assume that the compressional moduli ,r sK K  of ring and shell are sufficiently 

small so as to permit iteration of the boundary conditions (63) and (64), a weak 

coupling assumption. 

That is, we assume ( ) ( ) ( )2 2,
r s

s z z s z zKd u Kd u p t∂ ∂  a . The assumption corres-

ponds to requiring that the elastic coupling in the two-spring model impacts the 

overall coupled vibration of shell and ring sub-dominantly as compared to the 

stimulus’ impact. From a biological viewpoint, this behavior is reasonable be-

cause the tympanic structure shall respond predominantly only to the external 

stimulus p that an animal needs to detect. Furthermore, the similarity in materi-

al composition between water and biological tissue hints at the smallness of 

compressional effects compared in driving the membrane system as compared to 

the influence of the external pressure p. The boundary conditions (64) and (63) 

are the understood as differential equations defined on the joint boundary at 

0z =  and finally subjected to a Picard-iteration. The iterated analogues of (64) 

and (63) read  

( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( )

1
2

2 2

,0,

,0, ,0, ,

k
s

s t z

k k
s r

s s z z r s z z

u t

K d u t K d u t

σ φ

φ φ

+
 ∂  

   = − ∂ + ∂   

    (84) 

( ) ( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

1
2

2 2

,0,

,0, ,0,

k
r

r t z

k k
r s

r s z z s s z z

u t

K d u t K d u t p t

σ φ

φ φ

+
 ∂  

   = − ∂ + ∂ +    a

 (85) 

at 0z = . 

The iteration index k is a non-negative integer. As a starting value for the 

boundary conditions, we specialize to ( ) ( ) ( ) ( )1 1

= 0 =
s s

z zu u
− −

   
    . The fact that the 

external stimulus is the physical cause for the displacement of the tympanic 

structure underlies this choice of starting values. 

For the 0-th iterate in (84), we find ( ) ( )
( )

0
2 , , 0 0

s

s t zu t zσ φ ∂ = =   for the shell, 

which is fulfilled, if 0m mA B= =  for all m∈  so that 
( ) ( ), , 0
z

su t zφ = . The 

result means that apart from the piston mode, which has already been translated 

into a contribution to the ring’s displacement, the shell exhibits no vibrations. 

For the ring, (85) produces  

( ) ( )
( ) ( )

0
2 , , 0

r

s t zu t z p tσ φ ∂ = =  a                  (86) 

as 0-th iterate boundary condition. In the quasi-stationary state  

( ) ( )
( )

0

exp
r

zu i tω 
   , 

the above equation reduces to inhomogeneous Dirichlet boundary conditions, 
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viz.,  

( ) ( )
( ) ( )

0
0

2
, , 0 exp .

r

z

r s

p
u t z i t

d
φ ω

ρ ω
−  = = 
a

             (87) 

Since the homogeneous part of the boundary conditions in 0-th iteration is Di-

richlet, the eigenfrequencies of the ring’s vibration pattern in 0-th order can be 

obtained, following the standard procedure to solve Dirichlet eigenvalue prob-

lems, from the requirement 2 2 2

0 πrk m R n H′− =ℵ  in (83). This is equivalent 

to requiring that the z-dependent contribution to ( )r
zu  in (83) satisfies homo-

geneous Dirichlet boundary conditions, so that  

2 2 2

2 2

0

2r r r
nm

r r

m n

R H

µ λ µ πω ω
ρ ρ

+
≡ = +                 (88) 

where n∈  and m∈ . It remains to solve (56) with 0-th order boundary 

condition (87) imposed instead of the full (64). The approximate boundary value 

problem gives rise to approximate solutions to (55) and (56) where, instead of 

the boundary conditions (64) and (63), the iterated boundary conditions (85) 

and (84) are used in 0-th order. In doing so, we assume that compressional ef-

fects of the membrane tissue is small compared to the external pressure drive. 

Due to axial symmetry of the stimulus ( )p p t=a a , only the 0m = -mode in 

(83) contributes. Consequently, the 0-th iterate solution reads  

( ) ( )
( )

2 2 2

0

2

0
0 0

2 2
2 2 2

0

2

0

sin
2e

, , ,
2

sin
2

r rr

i t
r r rr

z

r s
r rr

r r r

R m
z H

RR p
u t z

d R m
H

R

ω

ρ ω µµ
λ µ µ

φ
ρ ω ρ ω µµ

λ µ µ

 −
 +
 + = −

 −
 
 + 

 (89) 

where 0 2 sR d=a  has been reinstalled. 

Implications for the iteration parameter of the two-spring model 

The absence of tools to generate reliable numerical predictions for the coupled 

motion of shell and ring led to the creation of the two-spring model as an effec-

tive theory in which the compressional coupling has been stored in the fit con-

stant 0k . One possible approach to obtain insights in the strength is by noting 

( )0 2r r r rk k K λ µ+  in view of the solution (89). Under the additional assump-

tion that the shell vibration supports an analogous sinusoidal behavior as in (89), 

an analogous estimate results: ( )0 2s s s sk k K λ µ+ . In terms of elastic para-

meters  

( )
( )

0
1 11

,
3 1 3 1

r r r

r r r r

Ek

k E

ν ν
ν ν

+ +
=

− −
                  (90) 

( )
( )

0
1 11

.
3 1 3 1

s s s

s s s s

Ek

k E

ν ν
ν ν

+ +
=

− −
                  (91) 

Since for most materials 0 , 0.5r sν ν≤ ≤ , the assumption 0 0, 1r sk k k k   

seems quite reasonable.  
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