
E�ective Strategies for Enumeration Games

Martin Kummer and Matthias Ott
�

Institut f�ur Logik, Komplexit�at und Deduktionssysteme
Universit�at Karlsruhe, D-76128 Karlsruhe, Germany

Email: fkummer; m ottg@ira.uka.de

Abstract

We study the existence of e�ective winning strategies in certain in�nite games, so called
enumeration games. Originally, these were introduced by Lachlan (1970) in his study
of the lattice of recursively enumerable sets. We argue that they provide a general and
interesting framework for computable games and may also be well suited for modelling
reactive systems. Our results are obtained by reductions of enumeration games to regular
games. For the latter e�ective winning strategies exist by a classical result of B�uchi and
Landweber. This provides more perspicuous proofs for several of Lachlan's results as
well as a key for new results. It also shows a way of how strategies for regular games
can be scaled up such that they apply to much more general games.

1 Introduction

In�nite games have been studied for a long time in many areas of mathematical logic. In

recent years they also appeared in computer science as a framework for modelling reactive

systems (see [Tho95] for a recent survey). Here the basic issue is the question of e�ective

determinacy , i.e., which of the players has a computable winning strategy and how to

determine such a strategy e�ectively from the description of the game? A central tool

for answering this question is the e�ective determinacy result for regular games of B�uchi

and Landweber [BL69] which has been restated by McNaughton in a more applicable form

concerning in�nite games on �nite graphs [McN93].

In recursion theory the game theoretic point of view is an important heuristic: Priority

arguments can often be visualized as winning strategies in certain in�nite games. This was

�rst noticed by Lachlan in his inuential paper [Lac70]. In this paper he also introduced

the formal framework of enumeration games and proved an e�ective determinacy result

for an interesting class of such games. In an enumeration game there are two players who

enumerate sets of natural numbers in successive rounds. The winning condition is given by

an open formula in the language of the lattice of recursively enumerable (r.e.) sets. Player I

wins i� the formula is satis�ed by the enumerated sets. Lachlan's determinacy result yields

a decision procedure for the 89-formulae that are uniformly valid in the lattice of r.e. sets

modulo �nite sets.

In the present paper we give some illustrative examples which show that enumeration

games may be useful for modelling aspects of reactive systems. In the main part we study

to what extend enumeration games can be reduced to McNaughton's graph games. It turns

�Supported by the Deutsche Forschungsgemeinschaft Graduiertenkolleg \Beherrschbarkeit komplexer Sys-

teme" (DFG Vo 287/5-5)

1

out that this can be done for interesting subclasses of the games considered by Lachlan.

The reductions are of increasing complexity. In the easiest cases there is a one-to-one

correspondence between the moves in the enumeration game and the graph game. In a

more di�cult reduction it happens that some of the moves in the graph game are never

transferred to the enumeration game. A priority queue is used to guarantee that su�ciently

many moves are transferred.

The original framework of enumeration games can be generalized in two directions, by

changing the language of winning conditions (the \speci�cation language"), or by changing

the rules for enumeration. In the basic case there is just the predicate Finite(U) stating

that U is a �nite set. More generally we consider other �2-predicates P and show that

e�ective determinacy still holds for all �2-predicates which are complete w.r.t. extensional

m-reductions. However, we also provide a natural example where the corresponding game

is not e�ectively determined.

Finally, we present a class of enumeration games where the rules for enumeration are

suitably modi�ed and the original language of Lachlan is extended by cardinality predicates.

In our version both players successively extend initial segments of the characteristic functions

of their sets. E�ective determinacy can again be shown by reductions to graph games and

yields as a corollary that the 89-formulae which are uniformly valid in the boolean algebra

of recursive sets are decidable.

This paper is based on [Ott95] where additional details can be found.

2 Notation and de�nitions

The recursion theoretic notation follows the books [Odi89, Soa87]. ! denotes the set of all

natural numbers. We write XC for the complement of the set X � ! in !. R1 is the set

of all recursive functions. f'igi2! is a G�odel numbering of the partial recursive functions

and Wi = dom('i) is the i-th recursively enumerable set. �n and �n are the classes of the

arithmetical hierarchy.

The notation for handling in�nite objects follows [Tho90]. �! is the set of all !-sequences

over the alphabet �. !-sequences are written in the form � = �0�1 : : : . We use (9!i) as an

abbreviation for \there exists in�nitely many i".

We consider two-person-games of in�nite duration, i.e., the plays consist of ! many

moves. The players are called player I and II. A strategy for a player is a function which

yields the next move for the player, given all the previous moves. For studying e�ective

strategies we assume some e�ective coding of the �nite sequences of moves. � and � denote

strategies for the players I and II, respectively.

In an enumeration game of size n each of the two players enumerates n sets [Lac70].

Player I enumerates the sets U1; : : : ; Un and player II the sets V1; : : : ; Vn. A play of an

enumeration game proceeds in stages. At stage t = 0 all sets are empty. At stages t = 1; 3; : : :

player I can enumerate an element x into a set Ui, which is denoted by �t = hi; xi. He is

also allowed to pass. In this case we write �t = 0. At stages t = 2; 4; : : : player II moves

analogously. U t
i and V t

i are the sets produced after stage t for i = 1; : : : ; n. We stipulate

(for technical reasons) that the players do not repeat any move except possibly 0, i.e., no

element is enumerated twice into the same set.

The winning condition of enumeration games are winning formulas over the sets (set

variables) U1; : : : ; Un; V1; : : : ; Vn. Winning formulas are chosen from a speci�cation language.

Di�erent speci�cation languages lead to di�erent classes of games. In particular, we consider

speci�cation languages in which formulas are built from the predicate In�nite, cardinality

predicates Cardk for k = 0; 1; : : :, set operations \, [and C , and the logical operations

2

^, _ and :. In�nite(X) is true i� X contains in�nitely many elements. Cardk(X) is true

i� X contains exactly k elements. Speci�cation languages of this type were introduced by

Lachlan [Lac70].

Player I wins a play in the enumeration game of size n with winning formula F if F is

satis�ed by the enumerated sets U1; : : : ; Un; V1; : : : ; Vn. Otherwise player II wins the play.

A strategy � is a winning strategy for player I, if player I wins every play in which he follows

�. Winning strategies for player II are de�ned analogously.

A class of (enumeration) games is e�ectively determined, if in every game of the class

one player has an e�ective winning strategy and if this player and his winning strategy can

be e�ectively determined from a description of the game. A description of an enumeration

game is a pair (n; F), where n is the size and F the winning formula of the game.

3 Some examples

The idea of modelling in�nite behaviours of systems with in�nite games is widespread in the

literature, among others in [BL69, ALW89, Mos89, PR89, WD91, NYY92, NY92, TW94,

MPS95]. In�nite games are mainly used to solve Church's problem [Chu63] of synthesizing

processes (or automata) from a speci�cation of the in�nite input-output behaviour.

We give some examples for the application of enumeration games in reactive systems. It

is demonstrated how aspects of the in�nite behaviour of our sample systems can be expressed

in the speci�cation language of enumeration games.

We do not want to give examples which can only be solved by our theorems. For the

given examples the e�ective determinacy theorem of regular games would su�ce (Fact 4.4).

Instead, our emphasis lies in illustrating enumeration games and their connection to reactive

systems.

3.1 Printer-spooler

The origin of our �rst example is [Gur89]. The reactive system of interest is a printer spooler

(player I). The spooler has an input-queue in which the user (player II) can insert print-jobs.

From time to time, depending on the environment like printer-status, network-status etc.,

the spooler takes the �rst job from the input-queue and sends it to the printer. An event

in the system consists of an action a at time t. With each event we associate an identi�er.

When the user (player II) inserts an job into the queue, in our model he enumerates

the associated identi�er into his set V1. The event of removing and sending a print-job is

interpreted as the spooler (player I) enumerates the associated identi�er into the set U1.

Gurevich's speci�cation of the system was that of fairness: Every job inserted into the

input-queue should eventually be sent to the printer. This requirement is ful�lled if the

spooler (player I) wins the game with winning formula

F1 := [In�nite(V1)! In�nite(U1)]:

Obviously, there is an e�ective winning strategy for player I in the game of size 1 with

winning formula F1.

We develop this example further. Instead of one printer there are now 2m printers.

The printers P1; P3; : : : ; P2m�1 are the main-printers and the printers P2; P4; : : : ; P2m are

standby-printers. If printer P2i�1 fails, the spooler may sent jobs to P2i instead of sending

them to P2i�1, for i = 1; : : : ; m. Sending jobs to Printer Pi means enumerating the associated

event-identi�er into the set Ui for i = 1; : : : ; 2m.

3

We stepwise specify the desired in�nite behaviour of the spooler. First we require that

the spooler should distribute the jobs equally among the main-printers in in�nity:

In�nite(V1)!
^

i=1;:::;m

In�nite(U2i�1):

We introduce the possibility of sending jobs to the standby-printers:

In�nite(V1)!
^

i=1;:::;m

(In�nite(U2i�1) _ In�nite(U2i)):

This formula has to be improved. When should the main-printers and when the standby-

printers get in�nitely many jobs? This depends on the error-quota of the main-printers. For

handling error-messages we introduce sets Ei for i = 1; : : : ; 2m. If printer Pi sends an error-

message, the associated event-identi�er is enumerated into Ei. We assume that the printers

send repeatedly error-messages as long as they are not ready to print. So, receiving no error

message from a printer during a period �t of time implies the printer is okay now. The sets

Ei are sets of player II. Thus, player II now comprises the user and the printers, i.e., all

agents of the environment which are relevant for the spooler-speci�cation.

If there are only �nitely many error-messages of printer P2i�1 then only �nitely many

jobs should be sent to the standby-printer P2i.

Jobs can get lost. This can happen when the spooler sends a job to a printer at which an

error occurred. There may be a period of time between the occurrence of an error and the

arrival of the error-message at the spooler. So the spooler may send jobs to a faulty printer

assuming that this printer is okay. We only want to lose �nitely many jobs in this way.

Therefore, we specify that if there are in�nitely many error-messages from printer P2i�1,

then only �nitely many jobs should be sent to this printer:

F2 := [In�nite(V1)!
^

i=1;:::;m

[(Finite(E2i�1) ^ In�nite(U2i�1) ^ Finite(U2i))_

(In�nite(E2i�1) ^ Finite(U2i�1) ^ In�nite(U2i))]]

But in the game with winning formula F2 player II has a winning strategy. Every time,

when player I enumerates a new element in U2i�1, player II extends E2i�1 in one of the next

moves. Additionally, player II enumerates in�nitely many elements in V1. Consequently, the

premise In�nite(V1) of F2 is ful�lled, but the sets E2i�1 and U2i�1 either remain both �nite

or become both in�nite for all i = 1; : : : ; m. Hence, the desired spooler is not realizable. The

requirements on the spooler have to be reduced, e.g. by removing the atoms Finite(U2i�1)

in the second parts of the disjunctions. Then player I has an e�ective winning strategy.

Formula F2 is a good example for a speci�cation, where one gets additional insights by

viewing the speci�cation as a winning formula of a game.

How can one check, if a given speci�cation is realizable or not? It follows from Theorem

4.6 that this can be done automatically for the used speci�cation language. Furthermore,

in the case of realizability an implementation can be determined e�ectively from the speci-

�cation.

A further requirement on the spooler is that the standby-printers should only be used, if

there occurs at least one error at the main printers. This can be expressed by the predicate

Card0 in an additional requirement
^

i=1;:::;m

(Card0(E2i�1)! Card0(U2i)):

The underlying extended speci�cation language is covered by theorem 4.7.

4

3.2 Access-control-system

As an example for the use of set operations in speci�cations, we consider an access-control-

system. Users can prove their rights for using a particular resource by delivering a capability

to the access-control-system. (Of course, in such a system security is an issue and has to

be achieved by cryptographic methods. But this is not relevant in our context.) With

respect to the received capabilities the access-control-system grants or refuses access to the

protected resources.

Because of e�ciency, capabilities are valid for a period of time, i.e., a user may deliver

a capability once and can use the appropriate resource as long as this capability is valid.

Thus, one requirement on the access-control-system is that when the delivering of capabilities

stops, the system must eventually stop granting access to the appropriate resource.

There are resources which may only be used by groups. If user i delivers a capability for

the resource j at day d, the value d is enumerated into the set Vi;j. Access to the resource

j is only granted (for a period of time) if two of the three users 1; 2; 3 deliver a capability

at the same day. Granting access to resource j is modeled by enumerating the associated

event-identi�er into the set Uj . Thus, our requirement is

F3 := [Finite(V1;j \ V2;j) ^ Finite(V1;j \ V3;j)^ Finite(V2;j \ V3;j)! Finite(Uj)]:

Theorem 4.8 deals with the appropriate kind of speci�cation language. Of course, there

are other reasonable premises instead of the premise in formula F3. Indeed, every formula

built from Finite;\;^;_ is in principle a reasonable premise.

4 Reductions to in�nite graph games

In [Lac70] A. H. Lachlan stated the following fact:

Fact 4.1 (Lachlan) The enumeration games with predicate In�nite and the set operations

\, [and C are e�ectively determined.

As a consequence the uniform 89-theory of E�, the lattice of r.e. sets modulo �nite sets, is

decidable: A 89-sentence S = (8V1 : : :8Vn)(9U1 : : :9Un)F [V1; : : : ; Vn; U1; : : : ; Un] with ma-

trix F is called uniformly valid in E� if there is an e�ective procedure to compute from indices

i1; : : : ; in of the Vi's indices j1; : : : ; jn of the Uj 's such that F [Wi1 ; : : : ;Win ;Wj1 ; : : : ;Wjn]

holds. The following folklore proposition connects the existence of e�ective winning strate-

gies in enumeration games with uniform validity.

Proposition 4.2 A 89-sentence S is uniformly valid i� player I has an e�ective winning

strategy in the enumeration game with winning formula S.

Proof: Let S = (8V1 : : :8Vn)(9U1 : : :9Un)F [V1; : : : ; Vn; U1; : : : ; Un] be any given 89-

sentence.

(() : Given i1; : : : ; in simulate the winning strategy of player I against an opponent who

enumerates Wi1 ; : : : ;Win . This de�nes n sets with indices say j1; : : : ; jn (obtained from the

s-m-n theorem) such that F [Wi1 ; : : : ;Win;Wj1 ; : : : ;Wjn] holds.

()) : We show the contraposition. Assume that player I does not have an e�ective winning

strategy in the enumeration game speci�ed by S. Then, by e�ective determinacy, player II

has an e�ective winning strategy. Now suppose for a contradiction that the recursive func-

tion f witnesses the uniform validity of S. Using f , the recursion theorem, and the winning

strategy of player II one can construct indices i1; : : : ; in such that f(i1; : : : ; in) = (j1; : : : ; jn)

and F [Wi1 ; : : : ;Win ;Wj1 ; : : : ;Wjn] does not hold, a contradiction.

5

Lachlan [Lac70, Section 3] gave a very brief sketch of how to prove Fact 4.1. But this

sketched proof is rather di�cult.

We now introduce a method for proving the e�ective determinacy of enumeration games.

This method is suitable for a subclass of the games in Fact 4.1 (the games where the set

operation C is excluded) and for many other classes of enumeration games.

4.1 In�nite graph games

The method is based on a result of R. McNaughton [McN93]. He introduced in�nite graph

games . These two person games are played on a �nite graph. At any time of a play a

marker is on one node of the graph. The players move this marker alternately from node to

node along the edges of the graph. A play consists of ! many moves beginning with a move

of player I. The winner of an (in�nite) play is determined by the set of nodes, which were

visited in�nitely often by the marker.

The formal de�nition of graph games contains some restrictions, which is to some extent

for technical reasons only.

De�nition 4.3 An in�nite graph game G is an ordered sextuple (Q;QI; QII; E; q0;
), where

(Q;E) is a �nite bipartite directed graph, QI, QII are the set of nodes to which player I, II

may move, respectively, q0 is the initial node and
 � 2Q is the set of winning subsets of Q.

We postulate QI[QII = Q 6= ;, QI\QII = ; and that for each e 2 E there exist p 2 QI and

q 2 QII such that either e = (p; q) or e = (q; p). Furthermore, for each p 2 Q there must be

a node q 2 Q with (p; q) 2 E.

A play of a graph game G = (Q;QI; QII; E; q0;
) is a sequence � 2 Q! such that �0 = q0
and (�t; �t+1) 2 E for all t 2 !.

In(�) := fq 2 Q : (9!t)[�t = q]g

is the set of nodes, which were visited in�nitely often during the play �. Player I wins the

play � if In(�) is an element of
, otherwise player II wins the play.

McNaughton proved the following fact:

Fact 4.4 (McNaughton) In�nite graph games are e�ectively determined.

Actually McNaughton showed a stronger result (Theorem 4.1 in [McN93]). Especially he

proved that one can always construct an LVR-strategy for the winner. This is a strategy,

which needs only �nite memory capacity. The name LVR originates in the way of book-

keeping the visited nodes. Fact 4.4 is not really new. It is rather a reformulation of an older

result by B�uchi and Landweber [BL69]. The games solved there are called �nite-state games

or regular games .

4.2 Reductions for games with predicate In�nite

In this section we prove that the enumeration games with predicate In�nite are e�ectively

determined. The proof is by reductions to in�nite graph games. The idea of the reductions

is to associate an in�nite graph game with each enumeration game. In the associated graph

game we can e�ectively compute a winning strategy for one player by Fact 4.4. This winning

strategy is translated into the enumeration game.

Suppose w.l.o.g. that player I has a winning strategy �G in the graph game. Player I

simulates a play in the graph game in parallel to the play in the enumeration game. He has

to translate the moves of player II from the enumeration game into the graph game. In the

6

graph game he follows his winning strategy and retranslates the resulting moves into the

enumeration game.

Assume that the size n of an enumeration game is given. We now construct the graph

game with sets of nodes Qn
I = fU0; U1; : : : ; Ung, Q

n
II = fV0; V1; : : : ; Vng, Qn := Qn

I [Q
n
II and

the edges En := (Qn
I �Qn

II)[(Q
n
II�Qn

I). A visit on a node Ui (Vi) in the graph game shall

correspond to an extension of the set Ui (Vi) in the enumeration game for i = 1; : : : ; n. The

nodes U0 and V0 of the graph game represent passes in the enumeration game.

At the beginning (t = 0) the marker is put on the node V0 (an arbitrary node from Qn
II

would su�ce).

In stage t + 1 = 2s + 1 it is player I's turn to move. He computes qt+1 := �G(q0 : : : qt)

according to his winning strategy �G . If qt+1 = U0 then player I passes in the enumeration

game in stage t+ 1, i.e., he chooses �t+1 = 0. Otherwise qt+1 = Ui for an i 2 f1; : : : ; ng. In

this case player I enumerates a new element into the set Ui by choosing �t+1 = hi; 1+maxUii.

In stage t + 1 = 2s + 2 it is player II's turn to move. Player I observes the move �t+1
of player II in the enumeration game. If player II passes, then the marker is put on the

node V0 of the graph. Otherwise �t+1 = hi; xi for an i 2 f1; : : : ; ng. We stipulated that the

players perform no repeating moves. So we can conclude V t
i � V t+1

i . In this case player I

simulates the move of player II by moving the marker on the node Vi of the graph game.

Let � = q0q1q2 : : : be the produced play in the graph game. It turns out that every node

Ui (Vi) is in In(�) i� the set Ui (Vi) is in�nite in the play of the enumeration game (�).

The given construction depends only on the size n of the given enumeration game, but

not on the winning formula F . We �x the size n. With each winning formula F we can

associate a winning set
(F) by induction on the structure of F :

(In�nite(Ui)) := f� � Q : Ui 2 �g for i=1,: : : ,n:

(In�nite(Vi)) := f� � Q : Vi 2 �g for i=1,: : : ,n:

(F1 ^ F2) :=
(F1)\
(F2)

(:F1) := 2Q �
(F1)

We show that by this de�nition for each winning formula F of the enumeration game of

size n the following Lemma holds:

Lemma 4.5 F is valid in the enumeration game () In(�) 2
(F).

Proof: The proof is by induction on the structure of F . For atomic formulas the state-

ment follows directly from (�). In the induction step one only makes use of the analogy

between the propositional logic operators and the set operations.

Lemma 4.5 says that the plays in both games have the same winner, if player I plays

according to the above translation.

We can now prove the following theorem:

Theorem 4.6 The enumeration games with predicate In�nite are e�ectively determined by

reductions to graph games.

Proof: For a given enumeration game of size n with winning formula F we construct

the graph game G = (Qn; Q
n
I ; Q

n
II; En; V0;
(F)). By Fact 4.4 we can e�ectively determine

the winner and an e�ective winning strategy from G. If player I has an e�ective winning

7

strategy �G in G we translate it into a strategy � for player I in the enumeration game by

the described algorithm.

If player I follows � in the enumeration game he wins the associated play in the graph

game, since �G is an winning strategy for player I. By Lemma 4.5 player I also wins the play

in the enumeration game. Hence � is a winning strategy for player I in the enumeration

game. Since �G is an e�ective strategy and all constructions are e�ective, the strategy � is

also e�ective.

If player II has a winning strategy in G, this strategy can be analogously translated into

an winning strategy for player II in the enumeration game.

One may argue that the above proof for the games with predicate In�nite is somewhat

circumstantial. Actually there are more succinct formulations. But the given formulation

is for demonstrating the method of reductions to graph games. In more di�cult games the

above proof scheme is also applicable and turned out to be very helpful.

A slight modi�cation of the given proof yields the result that the games with the predicate

\is superset of A", for an arbitrary but �xed in�nite r.e. set A, are e�ectively determined.

If A is �nite this predicate is a �1-predicate (see introduction of section 5).

4.3 Predicates In�nite and Cardk

At �rst we extend the class of enumeration games of Theorem 4.6 by allowing cardinality

predicates besides the predicate In�nite:

Theorem 4.7 The enumeration games with the predicates In�nite and Cardk for k 2 ! are

e�ectively determined by reductions to graph games.

Proof: The proof is similar to that for games with predicate In�nite only. But now we

additionally attach to each node of the game graph a counter : fU1; : : : ; Un; V1; : : : ; Vng !

f1; : : : ; k1g. k1 is a number such that for all atomic formulas Cardk(W) occurring in the

given winning formula F the value of k is less than k1. Formally we choose as set of nodes

QI := f(Ui;) : i = 0; : : : ; n and is a counterg

QII := f(Vi;) : i = 0; : : : ; n and is a counterg:

The edges are de�ned in such a way that the cardinality of the sets Ui and Vi are counted

in the appropriate . But we only increment the counters until the bound k1 is reached.

That is for all i; j 2 f0; : : : ; ng and all counters �; we take the edge ((Ui; �); (Vj;)) in the

set En i�

(j = 0 ^ � =)_

(j 6= 0 ^

(Vj) = minf�(Vj) + 1; k1g ^

(8W 6= Vj)[(W) = �(W)]):

The edges ((Vi; �); (Uj;)) are de�ned analogously. The translation of a strategy from such a

graph game into the enumeration game is performed in an obvious manner. The winning sets

are de�ned by structural induction on the formulas which at most contain atomic formulas

Cardk(W) with k < k1. (Note that if this is true for a formula F , it is also true for all

subformulas of F). We only give de�nitions for sets Ui, i = 1; : : : ; n:

(In�nite(Ui)) := f� � Qn : (9)[(Ui;) 2 �]g

8

(Cardk(Ui)) := f� � Qn : (8(W;) 2 �)[(Ui) = k]g for k < k1:

The de�nition for nonatomic formulas is the same as in Section 4.2. With this de�nition one

can prove the analogous statement to Lemma 4.5. The remainder of the proof is identical

with that of Theorem 4.6.

4.4 Predicate In�nite and set operations \ and [

In this subsection we extend the speci�cation language of Theorem 4.6 by introducing the

set operations \ and [while In�nite remains the only allowed predicate.

Theorem 4.8 The enumeration games with predicate In�nite and the set operations \ and

[are e�ectively determined by reductions to graph games.

Proof: Because of the distributivity and associativity laws each term built from sets

with the operations \ and [can be represented in the form
[

i2M

\

j2Mi

Aj :

But for arbitrary sets B1; : : : ; Bm we have

In�nite(
m[

i=1

Bi) ()
m_

i=1

In�nite(Bi): (1)

Hence we can restrict ourselves to the games with atoms

In�nite(
\

W2M

W)

for nonempty sets M � fU1; : : : ; Un; V1; : : : ; Vng.

The idea of the reduction is to introduce graph nodes for each subset M �

fU1; : : : ; Un; V1; : : : ; Vng. A node with M = ; represents a pass in the enumeration game.

A visit on a graph node marked with subset M 6= ; shall correspond to an extension of the

set

S(M) :=
\

W2M

W �
[

W 62M

W:

But there is only hope that player I (II) can extend this set, when at least one Ui (Vi) is a

member of M . This leads one to the following de�nitions:

Qn
I := f(I;M) : M � fU1; : : : ; Un; V1; : : : ; Vng and (M = ; or M \ fU1; : : : ; Ung 6= ;)g

Qn
II := f(II;M) : M � fU1; : : : ; Un; V1; : : : ; Vng and (M = ; or M \ fV1; : : : ; Vng 6= ;)g:

Again, we connect the two sets completely:

En := (Qn
I �Qn

II)[(Qn
II �Qn

I):

We consider the translation of a strategy for player I from the graph game into the

enumeration game. If player II in stage t + 1 enumerates the new element x into V t+1
i , we

determine the set

M := fUi : x 2 U t
i g [fVi : x 2 V t

i g

9

and move the marker to the node (II;M [fVig).

The other direction is a little bit more complicated. Consider the graph move qt+1 =

(I;M) of player I. Now player I wants to enumerate a new element into the set S(M). This

is easy if M = fUig. If jM j > 1 then he has to �nd an Ui such that the set S(M � fUig)

contains at least one element. But it is possible that all of these sets are empty.

The solution is to put all graph moves into a bu�er and to translate them later when the

moves are executable. The bu�er is organized as a (horizontal) queue, that is new moves are

inserted from the right and executable moves are searched from the left. This secures that

all moves which are executable in�nitely often will eventually be translated. For technical

reasons we must allow player I to perform moves in the enumeration game as long as there

are executable ones in the bu�er without any move of player II in-between. I.e., player I

is allowed to perform �nitely many moves at each stage. Otherwise player II could hinder

player I making U1\U2 in�nite by answering every move of x into U1 or U2 with enumerating

x also into V1 in the subsequent move. This generalization does not a�ect the question of

e�ective determinacy.

Let us now construct the winning sets of the graph game such that all plays in both

games have the same winner. A set
T
W2M W becomes in�nite i� there is an N � M such

that the set S(N) is extended in�nitely often during the play. One can show that this is

the case i� either

� (I; N) or (II; N) is visited in�nitely often in the graph game and jN j = 1 or

� (I; N) is visited in�nitely often and there is Ui 2 N such that N � fUig 6= ; and

S(N � fUig) is in�nite or

� (II; N) is visited in�nitely often and there is Vi 2 N such that N � fVig 6= ; and

S(N � fVig) is in�nite.

Let DI := fU1; : : : ; Ung and DII := fV1; : : : ; Vng. We �rst de�ne a relation Consistent(q; �)

for � � Qn and q = (�; N) 2 � as the smallest relation with the following properties:

� jN j = 1 =) Consistent(q; �)

� (9�0 2 fI; IIg)(9W 2 D�)[Consistent((�
0; N � fWg); �)] =) Consistent(q; �).

For each M � fU1; : : : ; Un; V1; : : : ; Vng, M 6= ; we de�ne

(In�nite(
\

W2M

W)) := f� � Qn : (9(�; N) 2 �)[M � N ^ Consistent((�; N); �)]g

The remainder of the proof follows the outline of the previous determinacy proofs.

The method of reductions to graph games fails if one extends the speci�cation language

of Theorem 4.8 by the set operation C . This is because set expressions with complement

behave non-monotonic. Moreover, the arithmetical hierarchy indicates that the problem

with complement is more di�cult. The index set fi : WC
i is �niteg is �3-complete while

fi : Wi is �niteg is only a �2-complete set.

5 Speci�cations by �2-predicates

We call a predicate P on the recursively enumerable sets a �n-predicate if the index set

M := fi : P (Wi)g is in the class �n of the arithmetical hierarchy. Because in the language

10

of winning formulas negation is allowed, the following considerations cover also the case

M 2 �n.

By use of the Rice/Shapiro-Theorem �1-predicates can be extended unambiguously to

the domain 2!. It is easy to show that the enumeration games with such an extended �1-

predicate are e�ectively determined. This can be proved directly by reduction to a �nite

game.

We now consider games for �2-predicates. First we show for a special kind of such predi-

cates that the corresponding games are e�ectively determined. Then we give an example for

a game with a �2-predicate such that none of the players has an e�ective winning strategy.

5.1 �2-complete predicates with extensional m-reductions

In general it is not clear how �n-predicates for n > 1 should be extended to the domain

2!. So we restrict the rules of enumeration games by requiring that both players have to

play according to e�ective strategies. Hence all sets enumerated during a play are always

recursively enumerable. This restriction is only valid for this subsection.

A �2-predicate P is called �2-complete if the index set M := fi : P (Wi)g is �2-

complete. The predicate Finite is an example of a �2-complete predicate, because

Fin := fi : Wi is �niteg is a �2-complete index set. So for every �2-complete set M there

are recursive functions f; g 2 R1 (so-called m-reductions) such that for all i:

(i 2 Fin () f(i) 2M) and (i 2M () g(i) 2 Fin):

A recursive function f 2 R1 is extensional if for all i; j:

Wi = Wj =) Wf(i) =Wf(j):

We consider extensional m-reductions because for these reductions the Theorem of My-

hill/Shepherdson is applicable:

Theorem 5.1 (Myhill/Shepherdson) If f 2 R1 is extensional, then there exists an enu-

meration operator �: 2! ! 2! with �(Wi) = Wf(i) for all i 2 !.

The de�nition of an enumeration operator can be found e.g. in the book [Rog67], as well

as Theorem 5.1 and Lemma 5.2. We don't state this de�nition because we only need one

property of enumeration operators here, the continuity:

Lemma 5.2 Every enumeration operator �: 2! ! 2! is continuous. I.e., for each increas-

ing sequence (As)s2! of subsets of !:

�(
[

s2!

As) =
[

s2!

�(As):

We are now ready for proving the following result:

Theorem 5.3 Let P be a predicate such thatM := fi : P (Wi)g is �2-complete and there are

extensional m-reductions between M and Fin. Then the enumeration games with predicate

P in which both players follow e�ective strategies are e�ectively determined.

Proof: We will reduce the games with predicate P to the games with predicate Finite,

which are e�ectively determined by Theorem 4.6. U1; : : : ; Un; V1; : : : ; Vn denote the sets

which are enumerated in the games with predicate P , and ~U1; : : : ; ~Un; ~V1; : : : ; ~Vn denote the

sets of the games with predicate Finite. Let F be the winning formula of a game with

11

predicate P . Then ~F is the winning formula of the game with predicate Finite built by

replacing all occurrences of P (Ui), P (Vi) with Finite(~Ui), Finite(~Vi), respectively.

Assume w.l.o.g. that player I has an e�ective winning strategy in the game with winning

formula ~F . We translate this winning strategy into the game with winning formula F .

Let �f and �g denote the corresponding enumeration operators from Theorem 5.1:

(8j)[�f(Wj) = Wf(j)] and (8j)[�g(Wj) = Wg(j)]:

Because f and g are m-reductions we have:

(8j 2 !)[Finite(Wj) () P (�f (Wj))] (2)

(8j 2 !)[P (Wj) () Finite(�g(Wj))] (3)

In the translation we use the operators �f and �g to transform the enumerated sets between

the two games:

1 Translation from ~F to F

For all i 2 f1; : : : ; ng; t 2 ! compute an index ~h(i; t) with ~U t
i = W~h(i;t) and enumerate

the set W
f(~h(i;t)) into Ui (by dovetailing).

2 Translation from F to ~F

For all i 2 f1; : : : ; ng; t 2 ! compute an index h(i; t) with V t
i = Wh(i;t) and enumerate

the set Wg(h(i;t)) into ~Vi (by dovetailing).

The indices h(i; t) and ~h(i; t) can be computed because the sets ~U t
i and V t

i are �nite. By

Lemma 5.2 we get for all i = 1; : : : ; n:

Ui =
[

t2!

W
f(~h(i;t)) =

[

t2!

�f(~U
t
i) = �f (

[

t2!

~U t
i) = �f (~Ui)

~Vi =
[

t2!

Wg(h(i;t)) =
[

t2!

�g(V
t
i) = �g(

[

t2!

V t
i) = �g(Vi):

Because both players follow e�ective strategies (by hypothesis) the sets ~Ui and Vi are all

recursively enumerable. Hence the sets Ui and ~Vi are recursively enumerable, too. From (2)

and (3) it follows that the formula F is ful�lled i� the formula ~F is ful�lled. Since player I

follows an e�ective winning strategy in the game with winning formula ~F , he also wins the

game with winning formula F . Thus we have constructed an e�ective winning strategy for

player I in the game with winning formula ~F .

5.2 A game which is not e�ectively determined

It can be shown that Theorem 5.3 does not hold if the hypothesis `extensional' is omitted

[Ott95]. However, the counterexample looks somewhat contrived.

We now present a more natural example of a speci�cation which is not e�ectively deter-

mined (however, in this case the �2-predicate is not m-complete).

It is well-known that for every r.e. set A the index set fi :Wi 6� Ag belongs to �2.

Theorem 5.4 There is a recursively enumerable set A such that the enumeration game

with winning formula

F := [U1 � A$ (V1 � A _ V2 � A)]

in which both players follow e�ective strategies is not e�ectively determined.

12

Proof sketch: For every A, player I has a winning strategy recursive in A: As long as

V t
1 and V t

2 are subsets of A, player I does nothing. If for the �rst time V t
1 6� A ^ V t

2 6� A,

then player I chooses an x 2 V t
1 � A and puts x into U t+1

1 .

Now it is easy to see that for every strategy � of player II there is a recursive strategy

of player I which wins against � .

The r.e. sets A for which player I has a recursive winning strategy can be characterized

as follows.

Claim: Player I has a recursive winning strategy in the enumeration game with winning

formula

F := [U1 � A$ (V1 � A _ V2 � A)]

i� there is a recursive function f such that for all x; y:

Wf(x;y) � A () (x 2 A _ y 2 A):

Using a �nite injury priority argument one can construct an r.e. set A which does not satisfy

the condition of the claim. Thus, for the corresponding game neither player I nor player II

has a recursive winning strategy.

6 Enumeration games on recursive sets

We now consider enumeration games in which the players enumerate characteristic functions

instead of sets. Consequently, if both players follow e�ective strategies the enumerated

games are recursive. Therefore we call them games on recursive sets.

In his moves player II de�nes the values of the characteristic functions �V1(x); : : : ; �Vn(x)

successively for x = 0; 1; 2; : : : , i.e., in each move he chooses an element from the alphabet

f0; 1gn. Player I is allowed to de�ne the values of �U1(x); : : : ; �Un(x) for an x such that

�V1(x); : : : ; �Vn(x) are already de�ned, i.e., he extends the corresponding move b 2 f0; 1gn

from player II with a vector a 2 f0; 1gn and produces the word ba. Player I is also allowed

to pass in his moves. But he must extend all moves from player II exactly once during a

play. In this case we call the play complete. However, for each move of player II he can wait

arbitrary long until he extends it. By convention player I loses all incomplete plays. We let

player II do the �rst move.

In the above de�nition the options of player I and player II are asymmetric.

However, this is just what is needed to decide the uniformly valid 89-sentences in

B, the boolean algebra of recursive sets (see Corollary 6.2). A 89-sentence S =

(8V1 : : :8Vn)(9U1 : : :9Un)F [V1; : : : ; Vn; U1; : : : ; Un] with matrix F is called uniformly valid

in B if there is an e�ective procedure to compute from indices i1; : : : ; in of character-

istic functions of Vi's indices j1; : : : ; jn of characteristic functions of the Uj 's such that

F [Mi1 ; : : : ;Min ;Mj1 ; : : : ;Mjn] holds. Here Mk denotes the recursive set with characteristic

function 'k.

For games on recursive sets we can allow the entire speci�cation language of Lachlan

still preserving e�ective determinacy:

Theorem 6.1 The enumeration games on recursive sets with the predicates In�nite and

Cardk for k 2 ! and the set operations \, [and C are e�ectively determined by reductions

to graph games.

13

Proof: If player I extends a move b = b1; : : : ; bn 2 f0; 1gn of player II with a =

a1; : : : ; an 2 f0; 1g
n this means that the corresponding x 2 ! is enumerated into the set

S(ba) :=
\

ai=1

Ui \
\

bi=1

Vi \
\

ai=0

UC
i \

\

bi=0

V C
i :

For ab 6= a0b0 the sets S(ab) and S(a0b0) never have an element in common. Each set

expression built from the sets U1; : : : ; Un; V1; : : : ; Vn and the operations \, [and C can be

represented as a disjoint union of sets S(c) where c 2 f0; 1g2n. Because of (1) and

Cardk(
[

c2C

S(c)) ()
X

c2C

jS(c)j= k ()
_

fkc2!: c2CgP
c2C

kc=k

^

c2C

Cardkc(S(c))

for C � f0; 1g2n, we can restrict the speci�cation language by admitting only set expressions

S(c) for c 2 f0; 1g2n.

With every play of the game an interpretation of the winning formulas is associated:

In�nite(S(c)) is true () c is produced in�nitely often;

Cardk(S(c)) is true () c is produced exactly k times:

Player I wins a play in the game with winning formula F i� the play is complete and F is

true under this interpretation.

We now describe how these games can be reduced to a special kind of games, in which the

rules are more restrictive. We call the original games the target games and the second games

restricted games. The reductions of restricted games to graph games are straightforward.

Restricted Games: We �x a winning formula F in the target game. Let k1 be a number

such that k < k1 for all atoms Cardk(S(c)) occurring in F .

A central idea of the reduction is that if player II plays m := 2nk1-times the same move

b 2 f0; 1gn, then at least one word ba will be produced at least k1-times. So there is no

more chance for atoms Cardk(S(ba)) occurring in F to become true .

The rules of the restricted games are as follows. At stage t = 1 player II plays a single

move b11 and m-times a move b12 which we indicate by writing (b12)
m. At stage t = 2 player I

extends b11 to b
1
1a

2
1, and k1 moves from (b12)

m with the same element a22. At stage t = 3 player

II again plays a single move b31 and a block (b
3
2)
m. At stage t = 4 player I accordingly extends

b31 and k1 moves from (b32)
m with a41 and a42, respectively. But additionally he extends all

m�k1 remaining moves from the block (b12)
m. These m�k1 extensions are called the update

in state t. From now on the following stages proceed like the stages 3 and 4.

Reducing target games to restricted games: We have to show that if a player has

an e�ective winning strategy in the restricted game with formula F , this player also has

an e�ective winning strategy in the target game. For player I this is easy. He only has to

reorder the moves of player II in the target game into the form b11(b
1
2)
mb21(b

2
2)
m : : : . This is

always possible, because the alphabet f0; 1gn is �nite and player I can pass in the target

game as long as there are not enough moves of player II to build the next block. His strategy

in the restricted games then tells him, how to extend all moves to win the game.

Assume now that player II has an e�ective winning strategy in the restricted game.

There occurs the following problem. Consider the moves bt1(b
t
2)
m from player II at a stage

t � 3 in the restricted game. Player II can translate these moves by playing correspondingly

one time bt1 and m-times bt2 in the target game. Now he has to translate the next moves

14

from player I from the target game into the restricted game. For this he needs the extension

of bt1, k1 equal extensions of the played bt2's, and all extensions of the moves bt�22 . But by

passing, player I can wait with these extensions as long as he wants to, while player II has to

perform a proper move in each step. And player II gets the next suggestion, how to move,

from his strategy in the restricted game not earlier than he has simulated the next moves

of player I.

Player II solves this problem by playing additional moves bt2, until player I has done all

extensions needed for the next translation step. The intuition is that player I already can

produce at least k1-times the word b
t
2a for each a 2 f0; 1gn, if he wants to. In other words,

player I gets no further advantage.

In particular, at each stage t � 3 player II waits, until all of his bt�22 -moves from the

stage t � 2 have been extended. These may be more than m extensions. For the update

in stage t he has to select exactly m � k1 of those extensions which are not among the

k1 extensions a
t�2
2 of stage t � 2. He selects all extensions which occur less than k1-times.

From each of the others (excluding the at�22 -extensions) he selects k1 occurrences. He �lls up

this selection with arbitrary additional extensions of the bt�22 -moves such that at all exactly

m � k1 extensions are selected. Player II then translates the selected extensions into the

restricted game.

At each stage player II plays at most �nitely many additional moves in the target game.

So he only plays a move in�nitely often i� the appropriate move also occurs in�nitely often

in the restricted game. By the translation an extension occurs in�nitely often in the target

game i� it occurs in�nitely often in the restricted game. For the extensions which occur less

than k1-times there is a one-to-one correspondence between the two games. Hence in both

plays exactly the same atomic formulas are valid. Therefore the translated strategy is an

e�ective winning strategy for player II in the target game.

Reducing restricted games to graph games: The nodes of the graph games are com-

posed of three types of information. Of course, we need the letters b1; b2 and a1; a2 used

in the current moves, and for each a 2 f0; 1gn the number of extensions in the current

update step. The nodes in Qn
II contain the bi, and the nodes in Qn

I the ai and the update

information.

In order to de�ne the edges and the winning sets we also need some book-keeping of

the letters used in preceeding moves. To the nodes of player II we add a component b3
which stores the component b2 of the preceeding node of player II. The nodes of player I are

equipped with components b1; b2; b3 holding the values of the corresponding components of

the preceeding node of player II.

At last, we need a counter in each node analogously to the proof of Theorem 4.7. The

counter holds the number of occurences of each word ba 2 f0; 1g2n. We only count until the

boundary k1 is reached.

Now it is straightforward to de�ne the edges and the winning sets. For the de�nition

of
(In�nite(S(c))) one has to notice that there are three possibilities of building a word

c 2 f0; 1g2n: as a single extension b1a1, as a block extension b2a2 or as an extension of b3
in an update step. Because there is a one-to-one correspondence between the moves in the

two games, it is easy to translate strategies from the graph game into the restricted game.

An interesting consequence of the given proof is that if player I has a winning strategy,

he actually has a winning strategy which extends every move of player II after a constant

amount of time. This is because he only has to await a constant number of player II-moves,

15

until he can build the next input bt1(b
t
2)
m for the restricted game.

Corollary 6.2 The 89-sentences which are uniformly valid in the boolean algebra of recur-

sive sets are decidable.

Proof sketch: Given an 89-sentence S with matrix F we consider the enumeration game

on recursive sets with winning formula F . The sets which are universally quanti�ed in S

belong to player II, the sets which are existentially quanti�ed belong to player I. Similar as

in Proposition 4.2 one can show that S is uniformly valid in the boolean algebra of recursive

sets i� player I has an e�ective winning strategy. The latter is decidable by Theorem 6.1.

7 Conclusion

There are many more interesting speci�cation languages which remain to be considered. An

open problem of Lachlan [Lac70] is whether the enumeration games with predicates Card0
and the set operations \;[and C are e�ectively determined. An enumeration game on

partial functions was studied in [Ott95] motivated by a question from inductive inference.

Here the e�ective determinacy result yields a decision procedure for parallel learning [KS94].

In this paper we have presented the notion of enumeration game and clari�ed the connec-

tion with graph games by giving several nontrivial reductions. Enumeration games may be

a suitable framework for modelling reactive systems. From the standpoint of computability

they o�er a rich source for studying e�ective strategies. In contrast, if recursive games are

approached by e�ectivizing the de�nition of Borel games, then already in the basic case of

recursive winning conditions there may be only non-arithmetical winning strategies [Bla72].

Acknowledgement: We would like to thank Susanne Kaufmann for helpful discussions.

References

[ALW89] Martin Abadi, Leslie Lamport, Pierre Wolper. Realizable and unrealizable spec-

i�cations of reactive systems. In Proc. of 16th Int'l Colloquium on Automata,

Languages, and Programming, Lect. Notes in Comput. Sci., Vol. 372, pages 1{17.

Springer-Verlag, 1989.

[BL69] J. Richard B�uchi, Lawrence H. Landweber. Solving sequential conditions by �nite-

state strategies. Trans. Ameri. Math. Soc., 138:295{311, 1969.

[Bla72] Andreas Blass. Complexity of winning strategies. Discrete Mathematics, 3:295{

300, 1972.

[Chu63] Alonzo Church. Logic, arithmetic and automata. In Proceedings of the Interna-

tional Congress of Mathematicians, August 1962, pages 23{35, Stockholm, 1963.

[Gur89] Yuri Gurevich. The logic in computer science column: In�nite games. Bulletin of

the European Association for Theoretical Computer Science, 38:93{100, 1989.

[KS94] Martin Kummer, Frank Stephan. Inclusion problems in parallel learning and

games. Proceedings of the Seventh Annual ACM Conference on Computational

Learning Theory, COLT 94, pages 287{298, ACM Press, 1994.

16

[Lac70] Alistair H. Lachlan. On some games which are relevant to the theory of recursively

enumerable sets. Ann. of Math., 91(2):291{310, 1970.

[McN93] Robert McNaughton. In�nite games played on �nite graphs. Annals of Pure and

Applied Logic, 65:149{184, 1993.

[Mos89] Yiannis N. Moschovakis. A game-theoretic modeling of concurrency. In Proceed-

ings, Fourth Annual Symposium on Logic in Computer Science, pages 154{163.

IEEE Computer Society Press, 1989.

[MPS95] Oded Maler, Amir Pnueli, Joseph Sifakis. On the synthesis of discrete controllers

for timed systems. In STACS 95, Lect. Notes in Comput. Sci., Vol. 900, pages

229{242. Springer-Verlag, 1995.

[NY92] Anil Nerode, Alexander Yakhnis. Modelling hybrid systems as games. Technical

Report 92-36, Mathematical Sciences Institute, Cornell University, October 1992.

[NYY92] Anil Nerode, Alexander Yakhnis, Vladimir Yakhnis. Concurrent programs as

strategies in games. In Logic from Computer Science: Proceedings of a Workshop

held November 13-17, 1989. Springer-Verlag, 1992.

[Odi89] Piergiorgio Odifreddi. Classical recursion theory. North-Holland, Amsterdam,

1989.

[Ott95] Matthias Ott. Strategien in Aufz�ahlungsspielen. Diplomarbeit, Institut f�ur Logik,

Komplexit�at und Deduktionssysteme, Universit�at Karlsruhe, February 1995.

[PR89] Amir Pnueli, Roni Rosner. On the synthesis of a reactive module. In Conference

Record of the Sixteenth Annual ACM Symposium on Principles of Programming

Languages, pages 179{190, Austin, Texas, 1989.

[Rog67] Hartley Rogers. Theory of recursive functions and e�ective computability.

McGraw-Hill, New York, 1967.

[Soa87] Robert I. Soare. Recursively enumerable sets and degrees. Perspectives in Mathe-

matical Logic. Springer-Verlag, Berlin, 1987.

[Tho90] Wolfgang Thomas. Automata on in�nite objects. In Jan van Leeuwen, editor,

Handbook of Theoretical Computer Science, pages 133{191. Elsevier Science Pub-

lishers B. V., 1990.

[Tho95] Wolfgang Thomas. On the synthesis of strategies in in�nite games. In STACS 95,

Lect. Notes in Comput. Sci., Vol. 900, pages 1{13. Springer-Verlag, 1995.

[TW94] J. G. Thistle, W. M. Wonham. Supervision of in�nite behaviour of discrete-event

systems. SIAM Journal on Control and Optimization, 32(4):1098{1113, 1994.

[WD91] Howard Wong-Toi, David L. Dill, Synthesizing processes and schedulers from tem-

poral speci�cations. In Computer-Aided Veri�cation '90, DIMACS Series in Dis-

crete Mathematics and Theoretical Computer Science Volume 3, pages 177{186.

American Mathematical Society, 1991.

17

