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1 Introduction

For zero-temperature superfluids the only allowed vortex configurations are string-like ob-

jects, the so-called vortex lines. These have a quantized circulation, and a microscopic,

atomic-size thickness [3]. For ordinary fluids one can have much more general vortex con-

figurations, but it is still possible (and fairly easy) to set up a long-lived string-like vortex,

with a thickness that is much smaller than its other typical length scales. In both cases,

the position and shape of a vortex line is a placeholder for a fairly complicated bulk fluid

flow: vorticity is localized on the line, but the velocity field away from it is non-trivial

(albeit irrotational). For instance, for a straight line it circulates with a 1/r profile.

As a result, the equation of motion for the line itself is a complicated integro-differential

(and therefore non-local) equation, which is typically attacked numerically (see e.g. [4, 5]).

It is natural to expect, however, that such a complicated equation of motion can be replaced

by a local effective action for a string coupled to the bulk modes of the fluid, with the usual

conceptual and practical advantages that such a transition — from equations of motion to

Lagrangian and from non-local action at a distance to local interaction with fields — entails.

In the present paper we systematically develop such an effective string theory, gener-

alizing and completing the program begun in [1, 2]. This Lagrangian was also studied in

the nonrelativistic limit in the related work [6–8], where it was derived from the Gross-

Pitaevskii model, and in particular it was used in [8] to analytically study the instability

modes of propagating vortex rings. As we will see, the irrotational bulk fluid flow can

be described in terms of a two-form field, whose excitations decompose under an appro-

priate choice of gauge into sound waves and the non-dynamical ‘hydrophoton’ field. The

two-form can be coupled to (1+1)-dimensional vortex line defects through a Kalb-Ramond

term,1 and the energetics and other microscopic properties of the string can be encoded in

a derivative expansion generalizing the familiar Nambu-Goto action. Our first result is a

general effective action compatible with the symmetries of the system: Poincaré invariance,

which is spontaneously broken by the medium, reparameterization invariance on the string

worldsheet, and the gauge invariance associated with the two-form field.

For strings living in empty space rather than in a medium, the ‘bottom-up’ picture

for effective string theory was investigated in [11, 12] and more recently considered in the

context of QCD flux tubes in [13, 14]. It is worth stressing that while a fundamental (i.e.,

UV-complete) theory of strings is only consistent with Lorentz invariance at the quantum

level in 26D (or 10D with worldsheet supersymmetry), a low-energy effective theory of

strings is possible in any number of dimensions.2 This effective theory will be valid at

distances much greater than the core size, and higher derivative corrections will encode

information about the microscopic degrees of freedom making up the string.

Once the system is described in terms of a local effective action, one can apply standard

field theoretical ideas and techniques to analyze it. We will discuss how renormalization

works in our case, and how to use the resulting RG running of low-energy couplings to

1A two-form description has previously been used to study the relativistic Nielsen-Olesen vortex [9], and

in the context of electric flux tubes in lattice QCD with disorder (see e.g. [10]).
2See however [15] for an example of a non-Abelian vortex which may meet the conditions for criticality

in 4D.
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streamline certain classic computations as well as to efficiently perform new ones. In fact,

we will see that for many purposes the bulk modes can be integrated out; since they are

gapless, however, the resulting worldsheet effective theory is not local. The non-locality

is very mild though, and can be phrased as a simple RG evolution for certain couplings

localized on the worldsheet. In particular, the classic logarithms appearing in a number of

physical quantities concerning vortex lines [4, 16] — from their energy per unit length to

the spectrum of Kelvin waves — can be understood in this way. Such logarithmic running

at the classical level arises quite generally when the dynamics of a codimension-two brane

— which in our case is just the worldsheet spanned by the vortex line — couples to fields

in the bulk [17, 18].

We should emphasize that although for this paper we will be mostly interested in

the classical dynamics of vortex lines, it is straightforward to apply our formalism to

problems at the quantum level as well, and we will present a sample quantum computation

in section 7.3. Moreover, in the following we will refer almost exclusively to the superfluid

case, but everything we say (apart from quantum effects) applies to ordinary fluids as well.

In particular, for irrotational fluid flows there is a duality between superfluids and ordinary

fluids directly at the level of the Lagrangian [19], and so in section 2 we start directly with

the superfluid Lagrangian, with the understanding that that covers both cases. It should be

mentioned that, for ordinary fluids, vortex lines will eventually decay away due to viscosity

(like any other type of fluid flow). Within the regime of validity of the hydrodynamical

description, however, viscosity effects are of higher order in the derivative expansion, and

thus negligible in the first approximation. In this limit Kelvin’s theorem holds, and as a

result the circulation of a vortex line is conserved in time and along the line, and the line

thickness stays small.

Our paper is long, and not all readers will be interested in all of it. We feel that

sections 4, 8, and 9 can be omitted without impacting the general flow, although section 9.1

will be particularly relevant for readers interested in the non-relativistic case.

Conventions: we use the (− + ++) metric signature and ~ = c = 1 units throughout the

paper.

2 Two-form description of superfluids

From a QFT standpoint, superfluids are systems in which a spontaneously broken U(1)

charge Q is at finite density [20]. At zero temperature and at sufficiently large distances and

time-scales, their dynamics are dominated by the single Goldstone excitation (the phonon)

that follows from the breaking of Q. In the relativistic case, the low-energy effective action

for the Goldstone π can be written in the following compact form [21]

S =

∫
d4xP (X), X = −∂µφ∂µφ, φ = µ̄t+ π, (2.1)

where the sign in the definition of X is chosen as to make X positive for our choice of

signature, µ̄ is the equilibrium chemical potential for Q,3 and P is an a priori arbitrary

3Throughout the paper we will denote all equilibrium quantities with a bar, to distinguish them from

the local values the same quantities can take in the presence of fluctuations.
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function whose precise form is determined by the superfluid equation of state. Notice that

the background value 〈φ〉 = µ̄t breaks Lorentz invariance. This is a consequence of the fact

that for the superfluid — like for any other condensed matter system — there is a preferred

reference frame: the one in which the system is at rest. Starting from the action (2.1), it is

easy to check that the stress-energy tensor is that of a fluid with energy density, pressure

and 4-velocity given respectively by

ρ = 2XP ′(X)− P (X), p = P (X), uµ = − ∂µφ√
X
. (2.2)

Since the 4-velocity uµ is the gradient of a scalar (up to a normalization factor), it obeys a

relativistic version of the irrotationality condition and thus describes potential flow — as

befits a superfluid.

The effective description of a relativistic superfluid provided in (2.1) is very economical,

in that it makes use of a single scalar field φ to describe the dynamics of a Goldstone π.

However, this is not the only possibile description. It is in fact known [22] that in 3 + 1

dimensions, the theory of a scalar field whose action is invariant under a global shift

symmetry φ→ φ+ c admits a dual formulation based on a 2-form field Aµν whose action

is invariant under local gauge transformations of the form

Aµν → Aµν + ∂µξν − ∂νξµ (2.3)

(see also [23] for a pedagogical derivation).4 For a non-linear theory such as the one we are

considering, the effective action for the dual theory is

S =

∫
d4xG(Y ), Y = −FµFµ, Fµ =

1

2
εµνλρ∂νAλρ . (2.4)

The gauge-invariant quantity Fµ is the analogue for a 2-form field of the dual electromag-

netic field strength F̃µν = εµνλρ∂λAρ, and the function G is in one-to-one correspondence

with our function P , as we now explain.

Starting from (2.4), it is easy to show that the stress-energy tensor is still that of a

fluid, but now with

ρ = −G(Y ), p = G(Y )− 2Y G′(Y ), uµ = − Fµ√
Y
. (2.5)

The precise relation between the scalar φ and the 2-form Aµν then can be obtained by

comparing the expressions for the 4-velocity in (2.2) and (2.5),

− ∂µφ√
X

= − Fµ√
Y
, (2.6)

as well as the expressions for the density and pressure. We find that the functions P (X)

and G(Y ) are related simply by a Legendre transform (when expressed as functions of
√
X

4In d+ 1 dimensions, the scalar field is dual to a (d− 1)-form Aµ1...µd−1 .
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and
√
Y ):

√
Y =

dP

d
√
X
, G(Y ) = P (X)−

√
X

dP

d
√
X

(2.7)

√
X = − dG

d
√
Y
, P (X) = G(Y )−

√
Y

dG

d
√
Y
. (2.8)

From a thermodynamical viewpoint,
√
X and

√
Y are the most natural variables to use:

they are the local chemical potential and number density,

µ =
√
X , n =

√
Y . (2.9)

Then, P expresses the pressure as a function of µ, and G expresses (minus) the energy

density as a function of n. Our Legendre-transform relations above correspond to the

standard zero-temperature thermodynamic identities

dp = ndµ , dρ = µdn , ρ+ p = µn . (2.10)

From a field-theoretical viewpoint, the important point to stress is that although

eqs. (2.6)–(2.8) provide a local relation between the derivatives of φ and Aµν , the cor-

responding relation between the two fields is highly non-local. This is a standard feature

of dualities in field theory, and means that if one picture admits local terms in the La-

grangian in which some fields appear without derivatives, then these very same terms will

look highly non-local in the dual picture. This is the reason why we are introducing the

two-form formulation of the superfluid effective theory in the first place: it turns out that

the most relevant local coupling between phonons and vortex lines involves an undifferen-

tiated Aµν [1, 24], and thus cannot be easily rewritten in terms of the scalar φ.5 From

a microscopic perspective, this fact has a simple explanation: a vortex line is just a low-

energy proxy for a topological defect in the φ effective theory, and in the presence of such a

defect, φ becomes the winding angle and is not single-valued. Something similar happens in

electromagnetism, where the gauge potential is not single-valued in the presence of a mag-

netic monopole, but it is possible to write a local coupling between the monopole and the

dual gauge potential Ãµ, which is related to the dual field strength by F̃µν ≡ ∂µÃν−∂νÃµ.

Before turning to the study of vortex lines though, we will explicate the duality between

φ and Aµν by showing explicitly that the effective action (2.4) describes a single gapless

degree of freedom — the superfluid phonon. In order to study the spectrum of excitations

in the 2-form language, we first need to determine what background 〈Aµν〉 corresponds to

the Lorentz-violating background 〈φ〉 = µ̄t. To this end, we can evaluate equation (2.6) on

the background to obtain (for the µ = 0 and µ = i components respectively)

1

2
εijk∂i〈Ajk〉 = −n̄, (2.11)

1

2
εijk(2∂j〈A0k〉 − ∂0〈Ajk〉) = 0, (2.12)

5Recently, the dual language was also used to write down a Wess-Zumino term for superfluids in 2+1

dimensions [25]. This term does not have a local counterpart in the φ language [26].
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where the parameter n̄ ≡ 〈
√
Y 〉 is, according to (2.9), simply the background number

density. The most general solution to the equations (2.11) then is

〈A0i〉 = −1

2
ḟij(t)x

j , 〈Aij〉 = −1

3
n̄ εijkx

k + fjk(t) , (2.13)

where fij(t) is an arbitrary function of time only. On the one hand, it should not come as a

surprise that the background (2.13) is not completely specified given that the action (2.4)

for Aµν has a gauge invariance. On the other hand, we can use this gauge invariance to

further simplify our result and set fij(t) to zero via a large gauge transformation with

parameters ξi = 1
2fij(t)x

j . In conclusion, we find that a suitable background value for

Aµν is

〈A0i〉 = 0 , 〈Aij〉 = −1

3
n̄ εijkx

k . (2.14)

Let us now study the linear behavior of fluctuations around such a background. We

can parameterize them using two 3-vectors ~A and ~B,

A0i = n̄ Ai(t, ~x), Aij = n̄ εijk

[
−1

3
xk +Bk(t, ~x)

]
, (2.15)

where the normalization chosen is convenient for what follows. Then, we will add to our

action (2.4) a gauge fixing term of the form

Sgf ∝ −
1

2ξ

∫
d4x (∂iA

iµ)2 . (2.16)

Notice that there is no real disadvantage in choosing a gauge fixing term that is not

covariant, given that Lorentz invariance is spontaneously broken by the background (2.14)

anyway. On the contrary, we will see that this gauge fixing term proves to be particularly

advantageous in the ξ → 0 limit, where ~A and ~B lend themselves to a simple physical

interpretation. If we now expand in perturbations the action (2.4) supplemented with the

gauge fixing term (2.16), and we use the expression Y = n̄2
(
(1− ~∇ · ~B)2 − ( ~̇B − ~∇× ~A)2

)
,

we find the quadratic part of the action to be

S(2) = w̄

∫
d4x

{
1

2
(~∇× ~A)2 +

1

2

[
~̇B2 − c2

s(~∇ · ~B)2
]

(2.17)

− ~̇B · (~∇× ~A)− 1

2ξ
(~∇× ~B)2 +

1

2ξ
(~∇ · ~A)2

}
,

where w̄ = (ρ̄ + p̄) = −2n̄2G′(n̄2) is the background enthalpy density, and we have intro-

duced the speed of sound squared c2
s ≡ (2Y G′′ + G′)/G′ = dp/dρ, also evaluated on the

background.

After switching to Fourier space, it is fairly straightforward to invert the kinetic term

to find the propagators. For arbitrary values of ξ, the final result looks quite complicated

and involves non-vanishing mixed propagators of the form 〈AiBj〉. The explicit expressions

as well as more details on the derivation can be found in appendix A. In the rest of the

paper we will restrict ourselves to the ξ → 0 limit, in which case great simplifications

– 6 –
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occur and the propagator matrix becomes diagonal. The propagators for ~A and ~B are then

respectively

=
1

w̄

i

k2

(
δij − k̂ik̂j

)
, =

1

w̄

i

ω2 − c2
sk

2
k̂ik̂j , (2.18)

where the usual iε prescription is understood.

Taking the ξ → 0 limit amounts to imposing ∂iA
iµ = 0, which is the 2-form analogue

of the Coulomb gauge in electromagnetism. In terms of our 3-vectors ~A and ~B, this is

equivalent to demanding that ~∇ × ~B = ~∇ · ~A = 0. Thus, in this gauge, ~B is purely

longitudinal and ~A is purely transverse. Moreover, we see from (2.18) that in this gauge
~B describes the only propagating degree of freedom — the phonon — whereas ~A is a

Coulomb-type constrained field that does not propagate any additional degree of freedom:

it is (minus) the ‘hydrophoton’ of ref. [2].

When switching to a different gauge, ~A and ~B change as

~A→ ~A+ ~̇ξ − ~∇ξ0 ≡ ~A+ ~̇ξ , ~B → ~B + ~∇× ~ξ , (2.19)

where we have reabsorbed the ξ0 contribution to the gauge variation of ~A into the longi-

tudinal part of ~ξ; such a redefinition does not affect the gauge variation of ~B. Physical

quantities like those of eq. (2.5) are gauge invariant, and thus must be functions of the

gauge-invariant combinations

~∇ · ~B , ~̇B − ~∇× ~A . (2.20)

For instance, the four-velocity field is given by

uµ(x) ∝
(
1− ~∇ · ~B, ~̇B − ~∇× ~A

)
, (2.21)

suitably normalized. By comparing with the standard form uµ = γu (1, ~u ), we see that the

three-velocity is

~u =
~̇B − ~∇× ~A

1− ~∇ · ~B
. (2.22)

3 Effective action for vortex lines

As we have seen, to lowest order in derivatives the bulk dynamics of a superfluid are

described by the action (2.4) for a two-form field Aµν . If we now consider a thin string-

like object living in the superfluid — such as a vortex line — to zeroth order in the core

thickness we can parameterize its dynamics by the positions of its line-elements ~X(t, σ),

where σ is a coordinate along the string. As is the case for standard relativistic string

theory, here too it is convenient to introduce reparameterization invariance for the time

coordinate and use Xµ(τ, σ) instead of the more physical — i.e., less redundant— ~X(t, σ),

where τ and σ are now two arbitrary world-sheet coordinates (more on this in the following

section).

– 7 –



J
H
E
P
1
0
(
2
0
1
5
)
1
5
3

With Xµ we can now construct Lagrangian terms localized on the world sheet of the

string. As we did for the φ and Aµν of last section, we can write arbitrary powers of ∂X,

but we need to work perturbatively in further derivatives. The reason is that the typical

background configurations we will be interested in are of the form

φ ∼ µ̄t , Aµν ∼ n̄x , Xµ ∼ (τ, σ) , (3.1)

which have large first derivatives, but vanishing second derivatives, and so our power-

counting scheme is the correct one for perturbation theory about these backgrounds. The

symmetries that we have to impose are Poincaré-invariance, gauge-invariance for Aµν , and

world-sheet reparameterization invariance. In fact, there is no a priori reason why we

should impose this last symmetry (apart from the fact that we are used to it). We will

explicitly address the physics behind it in the next section, but for the moment we will

take it for granted and move on.

The whole point of trading φ for Aµν in the last section was to write a local coupling

between bulk modes and a string-like defect directly at the level of the potential (rather

than the field-strength). Here it is:

S ⊃ λ
∫
dτdσAµν ∂τX

µ∂σX
ν , (3.2)

where λ is a coupling constant. Such a term is the only invariant that involves Aµν without

derivatives. It is the analogue of
∫
Aµdx

µ for a point-charge in electromagnetism, and λ

thus plays the role of a charge per unit length.

Furthermore, we can also write Nambu-Goto (NG)-type terms:

SNG ∝
∫
dτdσ

√
− det

(
Gµν(X) ∂αXµ∂βXν

)
, (3.3)

where α and β run over (τ, σ), and Gµν(x) is any bulk tensor that can play the role of

a spacetime metric. For standard relativistic strings in empty space the only available

structure is Gµν(x) = ηµν , which leads to the NG action. Here instead the underlying

medium spontaneously breaks Lorentz-invariance, and we can use its four-velocity

uµ(x) = − F
µ

√
Y

(3.4)

as well as the scalar Y = −FµFµ to construct new tensors. For instance,

Gµν(x) = ηµν + C(Y )uµuν (3.5)

is a perfectly fine “metric” to use in (3.3). By varying C(Y ) we can apparently generate

infinitely many inequivalent terms of the form (3.3), and it is not immediately clear what

kind of general structure can emerge from taking their sum. To address this question, we

will use a standard result of bi-gravity theories [27]: given two metric tensors gαβ and hαβ
in D spacetime dimensions, the most general diff-invariant, zero-derivative Lagrangian one

can write down is ∫
dDx

√
− det g f

(
(g−1 · h)αβ

)
, (3.6)

– 8 –
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where f(Mα
β) is a function that is invariant under similarity transformations M → S ·

M · S−1 but is otherwise generic. For our world-sheet, D = 2 and we can take the two

independent induced metrics to be

gαβ = ηµν · ∂αXµ∂βX
ν , hαβ = uµuν · ∂αXµ∂βX

ν . (3.7)

The fact that hαβ is degenerate (it is a rank-one matrix) does not impair the argument.

To figure out how many independent invariants of (g−1 · h)αβ we have, we can com-

pletely specify the coordinates of spacetime and of the string worldsheet. The number of

independent nonzero components of (g−1 ·h)αβ in any such basis is the number of indepen-

dent invariants. For any given worldsheet point (τ0, σ0), we can perform a Lorentz boost

and align the Minkowski time with the underlying fluid flow at that point, uµ = δµ0 . Then,

we can perform a Lorentz rotation and make the X1 direction tangent to the world-sheet

at that point, and via a world-sheet diff we can make τ and σ locally the same as X0 and

X1, so that we have ∂αX
µ = δµα. In conclusion, at that point, in these coordinates we have

gαβ = ηαβ , hαβ = δ0
αδ

0
β , (3.8)

and g−1 ·h has only one nonzero entry, the 00 one. Therefore, we only have one independent

invariant, which in a general coordinate system we can take to be the trace,

gαβhαβ , (3.9)

where gαβ is the inverse of gαβ . We should note that in our case the function f in (3.6) can

also be supplemented with a scalar argument, our Y = −FµFµ, which is invariant under

all the symmetries.

To summarize, the interactions of a relativistic superfluid and of a string-like defect

living in it can be modeled in terms of a two-form field Aµν(x) and of the embedding

coordinates of the string Xµ(τ, σ). To lowest order in the derivative expansion and up to

gauge-fixing terms, the low-energy effective action is the sum of three distinct structures:

S = Sbulk + SKR + SNG′ , (3.10)

with

Sbulk =

∫
d4xG(Y ) (3.11a)

SKR = λ

∫
dτdσ Aµν ∂τX

µ∂σX
ν (3.11b)

SNG′ = −
∫
dτdσ

√
− det g T

(
gαβhαβ , Y

)
. (3.11c)

The first piece encodes the bulk dynamics of the superfluid. The a priori generic function

G(Y ) is completely determined by the equation of state, via the relation

ρ = −G(n2) , (3.12)

where ρ and n are the densities of energy and charge for the superfluid. The second piece is

a Kalb-Ramond-type interaction between the bulk degrees of freedom and the string. The

– 9 –
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third piece generalizes the Nambu-Goto action to our case, where the underlying medium

breaks Lorentz invariance (spontaneously). In particular, the function T is a functional

generalization of the string tension. When expanded in perturbations about a background

configuration, it yields a finite number of couplings at each order in perturbation theory,

which in principle can be fixed by experiment.

Before using the action above for a number of concrete computations, we would like

to pause for a moment and go back to the question of world-sheet reparameterization

invariance. Readers uninterested in this technical detour can safely skip to section 5.

4 World-sheet reparameterization invariance

As is the case for gauge symmetries in general, reparameterization invariance is more

properly thought of as a statement of redundancy rather than one of symmetry. In most

physically relevant situations, gauge redundancy is a property of a gauge field. This may or

may not be a dynamical field. For example, the former class includes the physical electro-

magnetic and gravitational fields, and the latter class includes the non-dynamical metric

we introduce to describe non-gravitational field theories in curved space in a coordinate-

independent fashion. However, for a string with tension T described by the Nambu-Goto

action,

− T
∫
dτdσ

√
− det g , gαβ ≡ ηµν ∂αXµ∂βX

ν , (4.1)

the role of such a gauge field is played by the world-sheet induced metric. Since the

induced metric is a given functional of the embedding fields Xµ(τ, σ) and nothing else, the

redundancy associated with reparameterization invariance must now be a property of those

fields. And it is a physical property, in the sense that it relies on certain (implicit) physical

assumptions about the object that the NG action is supposed to describe. To identify what

these are, it is convenient to analyze reparameterizations of τ and σ in turn.

Reparameterization invariance for τ is just a convenient technical trick to implement

manifest Lorentz invariance. This is already evident for a relativistic point particle with

massm and trajectory ~X(t), whose action can be written in two physically equivalent forms:

−m
∫
dt

√
1−

(
d ~X

dt

)2

= −m
∫
dτ

√
−ηµν

dXµ

dτ

dXν

dτ
. (4.2)

The first form only involves the physical field ~X(t), but at the same time obscures Lorentz

invariance, which acts by mixing such a field with its argument — time. The second form

accomplishes manifest Lorentz invariance, but it does so at the expense of introducing an

arbitrary, Lorentz-scalar parameter τ along with a redundant field X0(τ). To work with

the non-redundant degrees of freedom only, one can always choose the “physical” gauge,

τ = X0, and end up with the first form of the action.

Reparameterization invariance for σ is more interesting. To appreciate why, it is

convenient to work in physical gauge for τ (τ = X0 = t), in which case the Nambu-Goto

action reduces to a functional of the spatial position field ~X(t, σ):

− T
∫
dtdσ

√(
∂σ ~X

)2 − (∂σ ~X · ∂t ~X)2 . (4.3)
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This is still invariant under general, time-dependent reparameterizations of σ,

σ → σ′(σ, t) = σ + ξ(σ, t) , (4.4)

under which our dynamical field ~X(t, σ) shifts by

~X → ~X + ξ ∂σ ~X , (4.5)

where we have kept terms up to first order in the transformation parameter ξ. At any given

point along the string, ∂σ ~X is a vector locally tangent to the string, and ξ is an arbitrary

function of time and σ. Invariance under the transformation above thus means that motion

and deformations along the string are unphysical. This is a very physical, concrete state-

ment. For instance, an infinite straight string formally oscillating in a longitudinal mode,

~X(t, σ) = (σ +A cos(kσ − ωt), 0, 0) , (4.6)

carries no energy associated with such oscillations: its action and energy are identical to

those of the unperturbed configuration, ~X = (σ, 0, 0). Only the transverse oscillations

carry energy.

The physical origin of this behavior can be traced to the fact that the string in question

does not break spacetime symmetries — in particular, Lorentz invariance—along itself. For

instance, its stress-energy tensor is the lower-dimensional analogue of that of a cosmological

constant. As a consequence, motion or deformations like compression or dilation along

the string are unphysical: there is no way to move, compress, or dilate a cosmological

constant. The fields ~X(t, σ), which transform non-trivially under spacetime symmetries,

parameterize the physical Goldstone modes for the symmetries broken by the string —

transverse translations, rotations, and boosts — but have to be redundant when it comes

to parameterizing the Goldstone of a symmetry that is not broken in the first place.

Perhaps the best way to appreciate all this is through a counterexample — a concrete

example of a string system that does not feature the properties above. We do not have to

look very far: consider any ordinary string-like object in the real world, such as a violin

string. The material that makes up such a string is a solid, and as a consequence, the

symmetry breaking pattern of spacetime symmetries along the world-sheet must be that

of a solid. In 1+1 dimensions, boosts and translations are broken along with an internal

shift symmetry down to an unbroken combination that ensures the homogeneity of physical

properties in the ground state (see e.g. [28, 29] for recent reviews). The resulting string

action to lowest orders in derivatives is:∫
dτdσ

√
− det g F

(
(∂φ)2

)
, (4.7)

where gαβ is the same induced metric appearing in the NG action (4.1), and φ(τ, σ) keeps

track of the comoving coordinates of the solid: it is a world-sheet field specifying which

solid line-element occupies position σ at time τ . The implicit contraction in (∂φ)2 is

done through gαβ , and F is a function determined by the equation of state for the solid:

– 11 –



J
H
E
P
1
0
(
2
0
1
5
)
1
5
3

in coordinates locally comoving with the solid (∂αφ ∝ δ1
α), the world-sheet stress-energy

tensor has [30]

ρ = −F , p = F − 2F ′ · (∂φ)2 . (4.8)

Eq. (4.7) is clearly reparameterization invariant, with φ transforming as a world-sheet

scalar, but it involves one extra degree of freedom φ compared to the Nambu-Goto action.

Alternatively, one can work in so-called unitary gauge,

φ(σ, τ) = σ , (4.9)

which is a just a specific choice for the coordinate σ, and end up with an action that

depends on the induced metric only,∫
dτdσ

√
− det g F

(
g11
)
. (4.10)

However, now this action is not reparameterization invariant for σ. Either way, one has

one more physical degree of freedom compared to a string described by the Nambu-Goto

action. This additional degree of freedom corresponds to the longitudinal mode of motion

or deformation of the string, which for a solid string is as physical as the transverse ones: it

is the Goldstone mode associated with the spacetime symmetries broken along the string.

We can thus conclude that a string parameterized by the NG action can be thought of

as a string made up of cosmological constant, which is quite different from being made up

of an ordinary solid material. As a check, notice that if in (4.8) we take the cosmological-

constant limit, p→ −ρ, we get F ′ → 0, φ disappears from the action, and we recover the NG

action. With hindsight, now we can also appreciate that reparameterization invariance for

τ is not that automatic after all: it relies on the implicit assumption that time-translations

are unbroken on the world-sheet. A string made up of supersolid material [28, 29, 31] would

violate this assumption. Its low-energy effective action would be∫
dτdσ

√
− det g F

(
(∂φ)2, (∂ψ)2, ∂φ · ∂ψ

)
, (4.11)

where φ and ψ are two world-sheet scalar fields, playing the roles of the solid comoving

coordinate discussed above and of a superfluid scalar phase like that discussed in section 2.

The action is reparameterization invariant, but we have two additional degrees of freedom

compared to the NG action: they correspond to the two types of gapless phonons — solid

and superfluid — one can have in a supersolid. Alternatively, one can choose unitary gauge,

φ(σ, τ) = σ , ψ(σ, τ) = τ , (4.12)

and work with an action that depends on the induced metric only, but that is not repa-

rameterization invariant anymore,∫
dτdσ

√
− det g F

(
g11, g00, g01) . (4.13)

In fact, it is the most general function of the induced metric.
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In conclusion: as usual, reparameterization invariance can always be achieved by adding

redundant degrees of freedom. However, there are situations in which it can be achieved

by using only the degrees of freedom that are already at one’s disposal, such as, for in-

stance, our embedding fields Xµ(τ, σ). In those situations, reparameterization invariance

is equivalent to the statement that some of those degrees of freedom are redundant — a

property that may or may not be featured by the system under consideration.

So, what about our vortex lines? Vortex lines in fluids and superfluids are defined as

loci of non-zero vorticity. The only quantitative measure of how large vorticity is on them is

the circulation Γ, which is constant along each line. Such a geometric characterization does

not associate any physical meaning to motion or deformation of the lines along themselves.

In particular, only their shapes and their overall Γ’s are sufficient to reconstruct everywhere

the incompressible part of the surrounding velocity field [16]. It is thus natural to postulate

that their world-sheet action is reparameterization invariant already when using just the

embedding fields Xµ(τ, σ), precisely the same as for the NG action.

We would like to stress that — however consistent and natural-sounding — this is

still an assumption. It is not clear how to ascertain which symmetries are broken by

the string along its worldsheet, since the surrounding medium is already breaking some

of these longitudinal symmetries — e.g. Lorentz boosts. Certainly, given the discussion

above, if we were to describe a solid string moving in a superfluid, we should give up σ-

reparameterization invariance. That is because we have an idea of what a solid is on its

own, in the absence of the surrounding superfluid. In the case of our vortex lines instead,

there is no such thing as a vortex line without the surrounding superfluid. However, vortex

lines in superfluids are intrinsically quantum objects, and their characterization purely in

terms of semi-classical concepts like the vorticity of the fluid flow might well turn out to be

incomplete. For instance, it is not obvious to us why quantum effects could not endow the

string with some “materiality”, that is, solid-like physical properties which would imply

the existence of gapless longitudinal degrees of freedom. Ultimately, this is a question that

has to be settled by experiment. For the time being, we content ourselves by noticing

that for vortex lines in non-relativistic classical fluids, the reparameterization invariant

action of [2] (and reproduced here) yields the correct equations of motion as implied by

the Euler equation. We thus postulate reparameterization invariance for vortex lines in

superfluids as well.

5 Expansion of the action

To use the action we derived in section 3 for concrete computations in perturbation theory,

we should expand it in powers of the fields. To begin with, it is important to realize that,

within the regime of validity of the effective theory, the string can only move slowly. This

is not to say that we should take the fully non-relativistic limit: the speed of sound cs can

still be relativistic; but the local speed of the string has to be much slower than cs. To

see this, recall that the circulation Γ is the line integral of the velocity field taken around

the string. So, at distances r from the string the fluid has a typical velocity v ∼ Γ/r.

Imposing that this be sub-sonic all the way down to distances of order of the string core
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radius r ∼ rc, we get Γ . cs rc. Now, suppose that the string is perturbed — that is,

curved — with some typical wavelength `. Up to logarithmic factors, the typical velocity

of the string will be [16]

∂t ~X ∼ Γ/`� cs , (5.1)

where we have used that, for our effective field theory to be valid, ` has to be much bigger

than the string thickness rc.

We can thus expand our action (3.10) in powers of ∂t ~X. Notice that, thanks to the

Kalb-Ramond coupling SKR, the expansion starts at first order in the velocities. This is

quite different from standard mechanical systems in empty space, for which the kinetic

action starts at quadratic order in the velocities, and it is the reason behind the peculiar

mechanical behavior of a vortex line (see [2] for a recent review). We also expand in powers

of the fluctuations of Aµν , parameterized by the ~A and ~B fields of section 2. The expansion

is easy for the bulk and Kalb-Ramond terms in the action. Working in physical gauge for

τ (τ = X0 = t), we get

Sbulk → w̄

∫
d4x

[
1

2
(~∇× ~A)2 +

1

2

(
~̇B 2 − c2

s(~∇ · ~B)2
)

+
1

2
(1− c2

s)
~∇ · ~B( ~̇B − ~∇× ~A)2

+

(
1

2
(1− c2

s)−
2

3
g3

)
(~∇ · ~B)3 + . . .

]
(5.2)

SKR → n̄λ

∫
dtdσ

[
εijk

(
−1

3
Xk +Bk

)
∂tX

i∂σX
j +Ai ∂σX

i

]
, (5.3)

where we have kept up to first order in ∂t ~X, up to first order in ~A or ~B on the world-sheet,

and up to cubic order in ~A or ~B in the bulk. (In section 8 we will study how to expand

the action in a more systematic way.) The ξ → 0 gauge fixing terms are understood, and

we have introduced a shorthand notation for derivatives of the function G(Y ) evaluated on

the background:

gn ≡ Y n−1G
(n)(Y )

G′(Y )

∣∣∣∣
Y=n̄2

. (5.4)

Without prior knowledge of the function G (or of the equation state), the gn’s should be

taken as independent coupling constants, to be fixed by experiment.

Expanding the generalized Nambu-Goto term SNG′ requires more work. We first need

to derive how the arguments of the function T (gαβhαβ , Y ) depend on the fields. For the

second argument, we already know that

Y = n̄2
[(

1− ~∇ · ~B
)2 − ( ~̇B − ~∇× ~A

)2]
. (5.5)

On the other hand, the explicit form of the first argument is quite complicated, and it

is more convenient to express it in terms of the fluid velocity ~u defined in eq. (2.22).

Introducing for notational simplicity the string velocity ~v = ∂t ~X, we can write the first
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argument as follows:

gαβhαβ = −
uµuνε

αγεβδ∂αX
µ∂βX

ν∂γX
λ∂δXλ

det(∂σXρ∂τXρ)

=
γ2
u((1− ~u · ~v)2 + (~u · ∂σ ~X)2(−1 + v2)− 2(−1 + ~u · ~v)(~u · ∂σ ~X)(~v · ∂σ ~X))

1− v2 + (~v · ∂σ ~X)2

=
(1− ~u⊥ · ~v⊥)2 − u2

‖(1− v
2
⊥)

(1− u2)(1− v2
⊥)

(5.6)

In the last line we have decomposed ~u,~v into components which are locally parallel and

perpendicular to the string.

If we now expand the generalized Nambu-Goto terms out to linear order in the fields

∂t ~X, ~A, or ~B, we find

SNG′ →
∫
dtdσ|∂σ ~X|

[
− T + 2T(01)

~∇ · ~B + 2T(10) ( ~̇B − ~∇× ~A)⊥ · ~v⊥ + . . .
]
, (5.7)

where the coupling constants T , T(01) and T(10) are defined as follows. T just denotes the

value of our function T when evaluated on the background; it is the string tension. T(mn)

denotes T ’s derivatives, also evaluated on the background, and normalized as

T(mn) ≡ ambn
∂m

∂am
∂n

∂bn
T (a, b) . (5.8)

They all have units of tension, that is, energy per unit length. Just as for the gn’s, with

no information on the function T in advance, T and the T(mn)’s should all be taken as

independent coupling constants, to be fixed by experiment. We will have more to say on

the systematics of the effective field theory and the relative importance of various terms in

subsequent sections.

As a check of our results, we can see whether we reproduce the vortex-line action

derived in [2] for ordinary fluids in the near incompressible limit. Recall that ~B describes

sound, that is, compressional waves, and so the near incompressible limit corresponds to

working to lowest order in ~B. Keeping interactions that are at most linear in ~B and

neglecting for the moment the SNG′ piece, our action reduces to

Sbulk + SKR → w̄

∫
dtd3x

[1

2
(~∇× ~A)2 +

1

2

(
~̇B 2 − c2

s(
~∇ · ~B)2

)]
+ n̄λ

∫
dtdσ

[
− 1

3
εijkX

k∂tX
i∂σX

j +Ai ∂σX
i
]

(5.9)

+ n̄λ

∫
dtdσ εijkB

k ∂tX
i∂σX

j + w̄

∫
d3xdt

1

2
(1− c2

s)~∇ · ~B(~∇× ~A)2 .

We recognize in the first and second line the lowest-order result of [2]: ~A is (minus)

the ‘hydrophoton’ field and ~B is the sound field. Then, our coupling λ is related to the

vortex circulation Γ =
∮
~v · d~̀ by

λ =
w̄

n̄
Γ . (5.10)
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On other hand, the third line of eq. (5.9) looks more problematic: the first term describes a

local coupling of sound to the string which is simply not there in the result of [2], whereas

the second term describes a bulk BAA interaction that has the same field and derivative

content as an analogous interaction in [2], but with a different structure of contractions.

However, it is straightforward (albeit tedious) to check that, to the order we are working,

both discrepancies can be fixed via non-linear field redefinitions:

~A→ ~A− (~∇× ~A)× ~B , ~X → ~X + ~B( ~X, t) . (5.11)

For what follows it is more convenient to stick with our original parameterization of the

fields and not perform these field redefinitions.

We close this section by noticing that the action of [2] — which reproduces the correct

dynamics of vortex lines in ordinary fluids as derived from the hydrodynamical equations —

lacks our generalized Nambu-Goto piece SNG′ . This is surprising: such a piece is allowed

by all the symmetries, and enters our action at the same order in derivatives as all the

other terms that we are keeping; by the standard rules of effective field theory, it should be

there. We will see below that its absence in the results of [2] is illusory: the zero-thickness

limit for a vortex line is notoriously singular, with many physical observables diverging

logarithmically already at the classical level; our SNG′ term will be needed to correctly

renormalize the theory in that limit. We will now explain in detail how this works, and

how in fact we can use such logarithmic divergences to our advantage. For simplicity, we

will restrict ourselves to classical processes, because many aspects of renormalization and

running will be relevant already there; however, the same ideas and techniques can be

extended to quantum effects as well.

6 A local world-sheet theory with running couplings

Our vortex-line action, eq. (3.10), is not localized on the string worldsheet: it includes

terms that are integrated over the volume of the surrounding superfluid. As a result, even

for the simplest physical processes such as the free vibration of a infinite straight string,

there is a constant interplay between the worldsheet modes (Xµ) and the bulk ones (Aµν).

This makes computations complicated. The bulk modes can be formally integrated out

— at least when they do not appear in the initial or final state — but, being gapless,

they yield a non-local effective action for the worldsheet ones [2]. This phenomenon is at

the origin of the apparent non-locality of the standard vortex-line equations of motion,

which involve Biot-Savart-type integrals [16]: the line is just the ‘tip of the iceberg’ —

it is a placeholder for a quite complicated and highly delocalized velocity profile in the

surrounding superfluid.

However, it is well known that for many processes taking place at length scales much

longer than the vortex-line thickness, things drastically simplify and one can approximate

the equations of motion with local ones [16]. This goes under the name of the LIA —

local induction approximation. We will now see that the LIA and similar but more general

approximations can be understood in RG terms: for a variety of processes, the leading non-

local effect mediated by the bulk modes can be captured by a logarithmic scale-dependence
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for a worldsheet local coupling. That is, we will be able to dispose of most of the bulk

modes and replace them with running couplings for a purely local worldsheet theory. This

classical running of couplings on defects has been studied in the context of braneworld

models [17, 18]. The bulk modes that cannot be gotten rid of in this way are of course

the asymptotic states, which can be absorbed, scattered, or emitted by the string. These

will be kept explicitly, and will interact with the string via worldsheet localized (running)

couplings.

To carry out this program systematically, one should follow for example [32, 33] and

adapt the technology developed there to our case. We will discuss some of the systematics

of the expansion in section 7, but we will leave the full development of the effective theory

for future work. For the moment, we will just analyze a few examples of how these ideas

can drastically simplify certain computations.

6.1 Tension renormalization and the running tension

It is well known (see e.g. [16]) that the classical energy per unit length of a vortex line is

formally divergent, scaling like the log of an infrared cutoff (e.g., the size of the container)

over a UV cutoff (e.g., the line thickness). From a field-theoretical viewpoint, the UV

divergence is harmless, since it can be canceled by a local counterterm. The IR divergence,

however, is interesting: it signals that the corresponding coupling will run with scale.

To see how this works, consider a straight, infinite vortex line, at rest in an unperturbed

superfluid. We have
~X(σ, t) = (0, 0, σ) , (6.1)

where we chose the gauge σ = X3 = z. Such a line will source some static ~A and ~B fields

in the bulk, through the interaction terms

S ⊃
∫
dtdσ

[
n̄λAi ∂σX

i + 2
∣∣∂σ ~X∣∣T(01)

~∇ · ~B
]

≡
∫
d4x
[
~JA · ~A+ ~JB · ~B

]
, (6.2)

where we have rewritten the world-sheet localized interactions formally as bulk sources,

which is convenient for the computations that follow. For our simple configuration, these are

~JA = n̄λ · ẑ δ2(~x⊥) , ~JB = −2T(01) · ~∇δ2(~x⊥) ~x⊥ ≡ (x, y) . (6.3)

To compute the total energy of this configuration, we can now proceed in two equivalent

ways. We can solve the lowest-order equations of motion for ~A and ~B, and plug the solutions

into the energy functional, which for our static configuration to lowest order reads

E =

∫
dz T +

∫
d3x

[
− w̄1

2
(~∇× ~A)2 − ~JA · ~A+ w̄

1

2
c2
s(~∇ · ~B)2 − ~JB · ~B

]
. (6.4)

Such a computation would parallel the standard hydrodynamical one, in which the bulk

energy of the string configuration is simply the kinetic energy of the rotating fluid (see

e.g. [16]). Alternatively, we can use more field-theoretical methods based on the effective-

action formalism (see e.g. [33] for a review). This is more general and can be extended
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Figure 1. Diagrams contributing to the self-energy of the vortex line. In the first diagram, the

hydrophoton (red, dashed line) is emitted and reabsorbed by the worldsheet. In the second diagram,

the same process occurs for the phonon (blue, wavy line).

straightforwardly to quantum phenomena as well; we will therefore carry out the compu-

tation in this way.

The idea is to formally perform the path-integral over ~A and ~B, for given ~X fields,

eiSeff [X] =

∫
DADB eiS[X,A,B] . (6.5)

To lowest order, this shifts the effective action of ~X by

Seff [ ~X] ⊃
∫
d4xd4y

[
1

2
J iA(x) iGijA(x− y) J jA(y) +

1

2
J iB(x) iGijB(x− y) J jB(y)

]
, (6.6)

where the G’s are the propagators (2.18). This is depicted by the self-energy diagram of

figure 1: a string in its ground state exchanges ~A and ~B fields with itself; such a process

shifts the action of the string, and thus its energy. For a static configuration such as ours,

the energy is defined by S = −
∫
dtE. The shift in the energy thus is

E ⊃ −
∫

d3~p

(2π)3

[
1

2
J iA(−~p ) iGijA(~p ) J jA(~p ) +

1

2
J iB(−~p ) iGijB(~p ) J jB(~p )

]
, (6.7)

where the propagators have to be computed at zero frequency, and the J ’s now stand for

purely spatial Fourier transforms.

Including the tension contribution, we get an energy per unit length

dE

dz
= T +

1

2

n̄2λ2

w̄

∫
d2p⊥

(2π)2 p2
⊥
− 2

T 2
(01)

w̄c2
s

∫
d2p⊥
(2π)2

= T +
n̄2λ2

w̄

1

4π
log(LΛ)−

T 2
(01)

w̄c2
s

1

2π
Λ2 , (6.8)

where we integrated from an IR momentum cutoff 1/L — the typical size of the container

— to a UV cutoff Λ. The second term is the standard hydrodynamical result, which is

due to the kinetic energy of the surrounding fluid. The third term is due to sound-mode

exchange and, to the best of our knowledge, has not appeared in the literature.
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Notice that we are formally keeping the UV cutoff Λ separate from the physical thick-

ness of the line a (always with Λ < 1/a, to trust our computations), to emphasize its

arbitrariness: the UV cutoff should be interpreted as a formal device to carry out the

renormalization program, but ultimately one wants to express long distance observables

in terms of physical parameters that can be measured at long distances. Related to this,

unless one knows exactly how this ‘thickness’ is realized (is there a step-function in the

vorticity? an exponential drop-off?), the precise value of a does not have a well defined

meaning anyway. So, it is not wise to have it appear in predictions for long-distance ob-

servables. On the other hand, the IR cutoff L is physical: it can be interpreted as the

typical scale of the process.

As usual, to remove the UV-cutoff dependence from a physical, measurable quantity

— the energy per unit length — we have to move it to a Lagrangian ‘bare’ coupling — the

tension. If we parameterize T as

T = T (µ) +
n̄2λ2

w̄

1

4π
log(µ/Λ) +

T 2
(01)

w̄c2
s

1

2π
Λ2 , (6.9)

where µ is an arbitrary renormalization momentum scale and T (µ) is finite, then eq. (6.8)

is manifestly finite:
dE

dz
= T (µ) +

n̄2λ2

w̄

1

4π
log(µL) . (6.10)

Formally now the energy depends on an arbitrary reference scale µ, but in practice

there are unambiguous physical predictions: for instance, for containers of different sizes

the energies per unit length differ by

dE

dz

∣∣∣
L1

− dE

dz

∣∣∣
L2

=
n̄2λ2

w̄

1

4π
log(L1/L2) . (6.11)

Following standard RG ideology, this is conveniently rephrased in terms of a running ten-

sion: for the physical quantity dE/dz to be independent of the arbitrarily chosen scale µ,

T (µ) has to change whenever µ is changed, in such a way as to leave dE/dz unchanged:

d

d log µ
T (µ) = − n̄

2λ2

w̄

1

4π
, T (µ) = − n̄

2λ2

w̄

1

4π
log(µ/µ0) , (6.12)

where µ0 is a fixed scale, to be determined by experiment. Then, when evaluating the

string energy for a container of typical size L, one can conveniently choose µ ∼ 1/L and

simply get
dE

dz

∣∣∣
L

= T (1/L) . (6.13)

Comparing the energies for two different container sizes now corresponds to making the

tension ‘run’ from µ ∼ 1/L1 to µ ∼ 1/L2:

dE

dz

∣∣∣
L1

− dE

dz

∣∣∣
L2

= T (1/L1)− T (1/L2) =
n̄2λ2

w̄

1

4π
log(L1/L2) , (6.14)

which is the same result as above. We will see below how this viewpoint can significantly

simplify certain computations.
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Notice that, upon renormalization, there is no remnant of the quadratic divergence

in (6.8) (the term due to sound-exchange): for instance, the energy does not depend on the

coupling T(01) anymore. This is the fate of all power-law divergences: they can renormalize

local couplings — in this case, the tension — but they have no measurable consequences at

long distances. For this reason, sometimes it is useful to use a regularization procedure in

which all power-law divergences are automatically set to zero; dimensional regularization

(“dim-reg”) has this property. Perhaps more importantly, it also has the property of

respecting gauge invariance — something we have not been careful about so far. For these

reasons, from now on we will use dim-reg as the UV regulator. The UV-divergent integrals

in eq. (6.8) then become∫
d2p⊥

(2π)2 p2
⊥
→ µ2−d

∫
1/L

ddp⊥
(2π)d p2

⊥
' − 1

4π

[
2

d− 2
+ γE − log 4π

]
+

1

2π
log(µL) (6.15)∫

d2p⊥
(2π)2

→ µ2−d
∫

ddp⊥
(2π)d

= 0 , (6.16)

where µ is an arbitrary renormalization scale. Notice that we had to introduce an explicit

IR cutoff 1/L in the first integral: as we discussed, the dependence on this quantity is

physical, and we should make sure not to lose it by playing with dim-reg (without the 1/L

cutoff, the first integral is formally zero as well). In the MS scheme, one then cancels the

whole term in brackets via the counterterm T ,

T = T (µ) +
n̄2λ2

w̄

1

8π

[
2

d− 2
+ γE − log 4π

]
, (6.17)

after which one is left with expression (6.10) for the energy, exactly as before.

6.2 Running tension for perturbations

Let us now take our straight string and perturb it a little:

~X(t, σ) = (0, 0, σ) + ~π(t, σ) , πz = 0 , (6.18)

where we chose the gauge σ = X3 = z, and ~π has some typical wavelength ` = 2π/k.

The displacement of the string will induce perturbations in the ~A and ~B fields in the bulk,

again through the couplings (6.2), which will in turn backreact on ~π. To find the spectrum

of excitations, one thus has to diagonalize the (~π, ~A, ~B) system. This has been done in the

incompressible limit (i.e., with ~B set to zero) recently in [2], and long ago via traditional

hydrodynamical methods by Lord Kelvin in [34]. Although the modern computation is

conceptually much simpler than the original one, it is admittedly still algebraically tedious.

Armed with our running tension, we can now streamline the computation and reduce it to

a purely world-sheet one, with no reference to bulk modes anymore.

To see how that is possible, consider the relevant diagrams, which are depicted in

figure 2: a world-sheet π field mixes with the bulk modes, and their propagation off the

world-sheet corrects the propagator of π. The couplings responsible for the mixing are still
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Figure 2. Contribution to the propagator of Kelvin waves (black, curly lines) coming from the

mixing with hydrophoton and phonon. The Kelvin waves “live” on the worldsheet, whereas phonons

and hydrophotons can also propagate in the bulk.

of the form (6.2), but now with sources

JaA =
(
n̄λ ∂zπ

a + 2T(10) ε
ab∂zπ̇

b
)
δ2(~x⊥) , (6.19a)

JzA =
(
− n̄λ πa + 2T(10) ε

abπ̇b
)
∇aδ2(~x⊥) , (6.19b)

JaB = 2T(01) (πb∇b)∇aδ2(~x⊥) +
(
n̄λ εabπ̇b − 2T(10) π̈

a
)
δ2(~x⊥) , (6.19c)

JzB = 2T(01)∂zπ
a∇aδ2(~x⊥) , (6.19d)

(the indices a, b run over the directions transverse to the string, and we take the convention

that ε12 = 1), which we get by expanding eqs. (5.3) and (5.7) to first order in the ~π field.

Integrating out A and B yields the correction (6.6) to the effective action, now with these

sources. It is straightforward to guess the result.

First of all, the bulk propagators are the same as we used for the straight-string energy,

eq. (2.18). There, we formally evaluated them at zero momentum and zero frequency.

However, we had to cut off the momentum integral for ~A in the IR at the inverse size of the

container, thus effectively introducing an external momentum of order 1/L. In this case,

the IR cutoff will be set by the wavelength of the ~π perturbation. And, as far as frequency

goes, the ~A propagator does not depend on frequency at all, whereas the ~B propagator

goes schematically as 1/k2 +ω2/k4 + . . . at low frequencies. Working at first order in time

derivatives, we can neglect the frequency-dependence for the ~B propagator as well. In the

limit of vanishing external momentum and frequency, the transverse momentum integrals

we should perform are thus of the form (6.15), (6.16), and generalizations thereof with

higher powers of p⊥, coming from the higher derivatives of the δ2(x⊥) in the sources. In dim-

reg, the only non-trivial one is (6.15), with 1/L replaced by the external π momentum k.

Since such an integral is associated with the non-derivative δ2(x⊥) terms in the sources,

we reach the conclusion that — to the order we are working — the only effect of integrating

out ~A and ~B in the presence of perturbations is to induce a logarithmic running of the

coefficients of several local terms in the action: (∂zπ)2, ε · ∂zπ∂zπ̇, (∂zπ̇)2, π̇2, ε · π̇π̈,

and π̈2. To lowest order in time-derivatives, we can neglect all of them but the first one,

which is related by symmetry to other local terms in the action, all those that come from
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expanding |∂σ ~X| in (5.7). In particular, the logarithmic running of the gradient energy

(∂z~π)2 is nothing but the logarithmic running of the tension we discussed above. Looking

at the result of the energy per unit length of the straight string in the form (6.10), we can

interpret the running tension T (µ) as the sum of all UV contributions, which include those

associated with the microphysics of the string (our original T ) as well as those coming from

the exchange of bulk modes up to scales of order 1/µ. Then, for our new computation, if

we choose the renormalization scale µ to be at the typical momentum scale of our process

— the wavenumber k of the perturbation — we can neglect the contribution of bulk modes

of wavelengths larger than 1/µ, thus effectively concentrating all effects of bulk mode

exchange in the running tension.

In conclusion, we can consistently describe string excitations of typical momentum k

by the simple world-sheet effective action

Seff =

∫
dtdσ

[
− 1

3
n̄λ εijkX

k∂tX
i∂σX

j − T (k)
∣∣∂σ ~X∣∣ ] (6.20)

→
∫
dtdz

[
− 1

2
n̄λ εab π

a∂tπ
b − T (k)

√
1 + (∂z~π)2

]
, (6.21)

where in the second line εab is restricted to the xy plane. Note that although we have only

checked this result explicitly to quadratic order in the perturbation ~π, the symmetries of

the action allows us to extend it to the higher order terms as well.

Given that rotations about the unperturbed string are unbroken, our excitations will

carry a conserved ‘quantum’ number associated with that symmetry, which is nothing

but the z component of angular momentum. To make use of this, it is convenient to

combine the two components of ~π into a complex world-sheet scalar describing circularly

polarized waves,

φ ≡ 1√
2

(πx + iπy) , (6.22)

in terms of which the effective action becomes

Seff =

∫
dtdz

[
n̄λ φ∗i∂tφ− T (k)

√
1 + 2|∂zφ|2

]
. (6.23)

The action is now symmetric under a global U(1) symmetry, and φ and φ∗ carry opposite

charge under it.

6.3 Other running couplings

We can apply the same techniques to processes that involve external ~A and ~B fields as well.

Consider for instance the way an external sound mode ~B can couple to the string: there

is a direct world-sheet interaction in (5.9), as well as a more non-local one mediated by ~A,

as depicted in figure 3. As before, it is useful to phrase the physical effect of the latter in

terms of an effective action, now for ~X and ~B,

eiSeff [X,B] =

∫
DAeiS[X,A,B] . (6.24)
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Figure 3. Hydrophoton correction to the coupling of sound to the worldsheet.

Using standard perturbation theory for the path integral, we get a correction to the effective

action which to leading order is given by

Seff [ ~X, ~B] ⊃ 1

2
w̄(1− c2

s)

∫
d4p

(2π)4

d4q

(2π)4
J iA(−p)J jA(−q)(~∇ · ~B)(−p− q)

×
[
− p · q GikA (p)GkjA (q) + qkplGikA (p)GljA(q)

]
, (6.25)

This is definitely a non-local correction to the action. However, we can get a sense of the

kind of non-locality involved by working at very low momenta for the string excitations

and for the external ~B field. To this end, let us take the simplified configuration in which

the string is straight, so that the source ~JA is simply that given in (6.3). After changing

the q integration variable, −(p+ q)→ q, we get

Seff ⊃
1

2

n̄2λ2

w̄
(1− c2

s)

∫
d2p⊥
(2π)2

d2q⊥
(2π)2

(~∇ · ~B)(~q⊥)
~p⊥ · (~q⊥ + ~p⊥)

p2
⊥(~q⊥ + ~p⊥)2

, (6.26)

where now (~∇ · ~B)(~q⊥) is evaluated at zero frequency and zero qz.

The integral in ~p⊥ diverges logarithmically in the UV. We can first isolate and compute

the divergent piece, and then recover with logarithmic accuracy the finite piece by dimen-

sional analysis. To do so, recall that the external ~B field is concentrated at low momenta:

expanding the integrand in powers of ~q⊥, to zeroth order we get

Seff ⊃
1

2

n̄2λ2

w̄
(1− c2

s)

[ ∫
d2q⊥
(2π)2

(~∇ · ~B)(~q⊥)

]
×
[ ∫

d2p⊥
(2π)2

1

p2
⊥

]
. (6.27)

The p⊥ integral is the same as (6.15), but now by dimensional analysis the IR cutoff 1/L

has to be taken to be of the order of the typical transverse momentum of the external ~B

field, because that was the only momentum scale appearing in the original (q⊥, p⊥) integral.

Rewriting the q⊥ integral in real space and including now the local contribution

from (5.7) we finally get

Seff ⊃
∫
dtdz

{
2T(01) −

1

8π

n̄2λ2

w̄
(1− c2

s)

[
2

d− 2
+ γE − log 4π

]
+

1

4π

n̄2λ2

w̄
(1− c2

s) log(µ/q⊥)

}
~∇ · ~B . (6.28)
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Following the same RG logic we adopted for the renormalization of the tension, we see that

the leading non-local effect of the diagram in figure 3 is to make the local coupling T(01)

run with scale:

d

d log µ
T(01)(µ) = − n̄

2λ2

w̄

1

8π
(1− c2

s) , T(01)(µ) = − n̄
2λ2

w̄

1

8π
(1− c2

s) log(µ/µ′0) , (6.29)

where the reference UV scale µ′0 is in general numerically different from that appearing in

the running tension, although we expect both to be of order of 1/a — the inverse string

thickness.

We thus conclude that, even when we include perturbations of the string, the leading

effects of integrating out ~A are conveniently parameterized by a running T(01) vertex,

Seff ⊃
∫
dtdσ

∣∣∂σ ~X∣∣ 2T(01)(µ) ~∇ · ~B( ~X, t) , (6.30)

to be evaluated at µ of the order of the relevant momentum scale of the process under

consideration, to minimize the contributions coming from ~A modes with momenta between

the scale of the process and µ.

In the computation above, we set the string excitations to zero, and so the only external

momentum that could play the role of an IR cutoff was the transverse momentum of the

external ~B field. But we could have done the opposite: we could have worked at zero

momentum for ~B, but in the presence of string excitations. In that case, we would have seen

that the IR cutoff would have been of order of the typical momentum of these excitations.

For a more generic process, we have both an external momentum for ~B, and momenta for

the string excitations. In such a case, the leading order contribution to the momentum

integrals comes from cutting them off in the IR at the largest of these momentum scales.

Thus, for a generic process involving ~B and string excitations, the appropriate choice for

µ to minimize the error is the largest of the momenta involved.

We can continue this process to higher orders in perturbation theory, and for terms of

higher order in our general action. Before closing this section, we consider the running of

the coupling T(10)(µ), which accompanies the term in the action (5.7) of order Ḃ · Ẋ,

SNG′ ⊃
∫
dtdσ|∂σ ~X|

[
2T(10)( ~̇B⊥ · ~v⊥)

]
, (6.31)

which will be renormalized by the diagram in figure 4 via the ~̇B · (~∇ × ~A)(~∇ · ~B) bulk

coupling in eq. (5.2). The corresponding contribution to the effective action is given by

Seff [ ~X, ~B] ⊃− w̄(1− c2
s)

∫
d4p

(2π)4

d4q

(2π)4
J iB(−p)J jA(−q)Ḃk(−p− q)

× εkab(−iqa)GjbA (q)(−ipl)GilB(p) .

(6.32)

Here we are taking the configuration in which the string is straight but moving with

constant transverse velocity ~v⊥, which is off-shell and does not satisfy the equations of

motion, since an infinite straight string does not move unless we change the boundary

conditions at infinity:
~X = (~v⊥t, σ) , (6.33)
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Figure 4. Leading contribution to the running of T(10).

and then we have

~JA =
(
n̄λ+ 2T(10)vaε

ab∇b
)
ẑ · δ2(~x⊥ − ~v⊥t) , (6.34a)

~JB =
(
n̄λ(~v × ẑ)− 2T(01)

~∇+ 2T(10)~v⊥v
j
⊥∇j

)
· δ2(~x⊥ − ~v⊥t) . (6.34b)

As in the previous subsection, a, b run over the transverse directions, and we ignore the

terms with a derivative on the Dirac delta function in the low-momentum limit. Further-

more, we keep only the leading terms in ~v = ~v⊥ in the small-velocity limit. In this case ~JA
is given by (6.3), and

~JB(~x) = n̄λ(~v × ẑ)δ2(~x⊥) . (6.35)

Changing the integration variable −(p+ q)→ q, we have

Seff ⊃
n̄2λ2

w̄c2
s

(1− c2
s)

∫
d2p⊥
(2π)2

d2q⊥
(2π)2

Ḃk(~q⊥)εimnεkaj ẑj ẑnvm
pi⊥(p⊥ + q⊥)a

p2
⊥(p⊥ + q⊥)2

. (6.36)

Performing the UV part of the ~p⊥ integral using dimensional regularization and rewriting

the ~q⊥ integral in real space, we have

Seff ⊃
∫
dtdz

{
2T(10) +

n̄2λ2

8πc2
sw̄

(1− c2
s)

[
2

d− 2
+ γE − log 4π

]
− n̄2λ2

4πw̄c2
s

(1− c2
s) log(µ/q⊥)

}
( ~̇B⊥ · ~v⊥) ,

(6.37)

and therefore the running of T(10)(µ) is given by

d

d log µ
T(10)(µ) =

n̄2λ2

8πw̄

(1− c2
s)

c2
s

, T(10)(µ) =
n̄2λ2

8πw̄

(1− c2
s)

c2
s

log(µ/µ′′0) . (6.38)

As before, the most convenient choice of µ is the largest of the external momenta involved

in the process.
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6.4 Localized effective action for string and sound

We can now put everything together and write an effective action for the string and its inter-

actions with sound, with only world-sheet localized interactions. Expanding the worldsheet

couplings out to leading order in powers of ~B, this is

Seff [ ~X, ~B] '
∫
d4x

1

2
w̄
(
~̇B 2 − c2

s(
~∇ · ~B)2

)
+

∫
dtdσ

[
− n̄λ1

3
εijkX

k∂tX
i∂σX

j − T (µ)
∣∣∂σ ~X∣∣ (6.39)

+ εijkB
k∂tX

i∂σX
j + 2T(01)(µ)

∣∣∂σ ~X∣∣ ~∇ · ~B( ~X, t)

+ 2T(10)(µ)|∂σ ~X|
(
~̇B · ∂t ~X −

( ~̇B · ∂σ ~X)(∂t ~X · ∂σ ~X)

(∂σ ~X)2

)]
.

The first line describes the free propagation of sound in the bulk of the superfluid, the

second describes the dynamics of the string, and the third and fourth describe its interac-

tions with sound. The T -couplings run with momentum scale according to (6.12), (6.29)

and (6.38). Their running encodes the physical effects of exchanging bulk ~A modes, as

detailed above.

Being linear in ~B, the string-sound interactions above are the leading ones contribut-

ing to sound emission or absorption by the string; on the other hand, to consider sound

scattering off the string, one should extend our analysis beyond leading order and consis-

tently compute the contributions to the effective interactions up to quadratic order in ~B.

Note also that this is not the same expansion as was used in (5.2); we will discuss how to

organize the terms in perturbation theory systematically in section 8.

For a string that is approximately straight, we can choose the gauge σ = X3 ≡ z,

parametrize the perturbations as above,

~X(t, σ) = ~X0(σ) + ~π(t, σ) , ~X0(σ) ≡ (0, 0, σ) , ~π ≡
√

2(Reφ, Imφ, 0) , (6.40)

and, if needed, expand our effective action in powers of φ,

−1

3
εijkX

k∂tX
i∂σX

j → φ∗i∂tφ (6.41)∣∣∂σ ~X∣∣ → √
1 + 2|∂zφ|2 = 1 + |∂zφ|2 + . . . (6.42)

Bi( ~X) → Bi( ~X0) +
1√
2

[
φ ·
(
∂xB

i( ~X0)− i∂yBi( ~X0)
)

+ φ∗ ·
(
∂xB

i( ~X0) + i∂yB
i( ~X0)

)]
+ . . . , (6.43)

and so on.

6.5 A non-renormalization theorem

Before turning our attention to some concrete applications of our formalism, we would like

to conclude this section by briefly discussing one more formal aspect of our effective theory:

a non-renormalization theorem for the Kalb-Ramond coupling λ.
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Let us consider the general relation (5.10) between λ and the circulation, and let us

apply it to the case of a non-relativistic superfluid such as liquid helium. The enthalpy

density w̄ then simply reduces to the number density n̄ times the mass m of a single

particle. Moreover, Γ is quantized in units of 2π/m (for ~ = 1) [3]. So, in this case, our

coupling λ is quantized in units of 2π, with no dependence on any parameter of the theory.

This means that, in this case, λ cannot get renormalized continuously — a statement that

we should be able to prove within our effective field theory, and that would then apply to

more general cases as well.

Further evidence for the non-renormalization of λ comes from the fact that the Kalb-

Ramond term (3.11b), being the integral of a two-form over a two-dimensional world-sheet,

is invariant under generic spacetime diffeomorphisms.6 This part of the action then has

a highly enhanced symmetry compared to the rest; it is unlikely (though not impossible)

that interactions that violate this symmetry yield contributions to the effective action that

respect it.

To prove such a non-renormalization theorem within our effective theory, we first notice

that λ cannot receive quantum corrections that depend on the other couplings. The reason

is that the Kalb-Ramond term is the only term in the action that is invariant under gauge

transformations Aµν → Aµν +∂[µξν] only up to a total derivative. Since all the other terms

in the action are gauge invariant with no need to integrate by parts, they would remain so

even if their coupling “constants” were in fact arbitrary functions of the coordinates. On

the other hand, the Kalb-Ramond term is gauge invariant if and only if λ is a constant.

This means that the renormalization of λ cannot depend on the other couplings, because

that would make λ spacetime dependent whenever the other couplings are.

Although very powerful and probably familiar to many readers, this argument is not

sufficient by itself to rule out the possibility that the Kalb-Ramond term renormalizes

itself. To prove that this is impossible, let us consider for simplicity perturbations around

a perfectly straight vortex line oriented along the ẑ axis, but formally keeping all terms in

the expansion in perturbations. In the gauge τ = X0 ≡ t, σ = X3 ≡ z, we can write

Xµ = (t, π1(t, z), π2(t, z), z) , Aij = −1

3
n̄ εijkx

k + δAij , A0i = δA0i , (6.44)

and thus the Kalb-Ramond term reduces to

SKR =

∫
dtdz

[
1

2
n̄λ εabπ

b∂tπ
a + λ δA0z (6.45)

+ λ
(
δA0a∂zπ

a + δAaz∂tπ
a + δAab∂tπ

a∂zπ
b + · · ·

)]
,

where the dots stand for all the terms that arise when we Taylor-expand δAµν in powers of ~π

around Xµ = (t, 0, 0, z), and so now all the δAµν ’s are evaluated on the unperturbed string.

Gauge invariance and the non-linearly realized spacetime symmetries demand that the

terms in eq. (6.45) always appear in this specific combination. This means that, for our

6More precisely, since the integral does not depend on the metric, this term is diffeomorphism invariant

even without considering the transformation of the metric tensor.
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purposes, it is enough to show that one particular term cannot get renormalized. It is easy

to realize that the second term in (6.45) — the tadpole for δA0z — cannot get renormalized:

it is the only term in the whole Lagrangian with an undifferentiated δA0z, and it is a linear

term that cannot yield vertices with more than one external leg, so there are no interactions

anywhere in the theory that can contribute to a loop with an undifferentiated δA0z. This

implies that its coefficient — our λ — cannot receive loop corrections.

As mentioned previously, this non-renormalization theorem is a low-energy manifes-

tation of the fact that our effective theory admits at least one UV completion where the

coupling λ turns out to be quantized.

7 Applications

We will now use the effective action we have just derived for a number of sample compu-

tations. Some just reproduce classic results in a new language; others actually lead to new

results.

7.1 Kelvons, nonlinear Kelvin waves, and the self-pipe

To begin with, consider the free propagation of small perturbations on a straight string —

the famous Kelvin waves. The effective action (6.23) expanded to quadratic order reads

Seff '
∫
dtdz

[
n̄λ φ∗i∂tφ− T (k)|∂zφ|2

]
. (7.1)

Plugging a plane-wave ansatz φ ∼ e−i(ωt−kz) into the corresponding equations of motion,

we immediately get the dispersion law

ω =
1

n̄λ
T (k) k2 . (7.2)

Using our formula for the running tension, eq. (6.12), we finally get

ω =
1

4π

n̄λ

w̄
log(µ0/k) k2 , (7.3)

which, upon relating our coupling λ to the circulation via eq. (5.10), matches the classic

result [16].

In the literature, our fixed scale µ0 is taken to be the inverse string thickness 1/a times

order-one numerical factors that depend on the model one adopts for the core of the string.

Although by dimensional analysis we do expect µ0 to be of order of 1/a, we will refrain

from being too specific about their relation: as we hope we have made clear, the truly

robust prediction of our effective field theory is the dependence on the IR scale k,

d(ω/k2)

d log k
= − 1

4π

n̄λ

w̄
. (7.4)

If the actual value of µ0 is needed, it is better left as something to be fit for, for instance

by measuring the energy it takes to set up a string in a container of given size L.
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Upon quantization, the Kelvin waves describe gapless excitations traveling along the

string, with energies quantized in units of (7.3). These excitations are called ‘kelvons’.

Notice that, due to the one-derivative nature of our kinetic term, φ only has positive

frequency modes and φ∗ only negative frequency ones. This implies that, in the quantum

theory, φ can only destroy quanta and φ† can only create them:

φ(x) =
1√
n̄λ

∫
dk

2π
ak e

−i(ωkt−kz) , φ†(x) =
1√
n̄λ

∫
dk

2π
a†k e

+i(ωkt−kz) , (7.5)

with canonical commutation relations [ak, a
†
q] = (2π)δ(k − q). In particular, there are no

antiparticles. Yet, the kelvons carry a conserved U(1) quantum number, which is nothing

but the z-component of the angular momentum. This means that kelvons cannot annihilate

nor be created unless some angular momentum is exchanged with the bulk modes. So, for

instance, consider the expansion of the term proportional to T(01)(µ) in (6.39): a scalar

coupling like |∂zφ|2(~∇ · ~B)0 cannot trigger kelvon creation or annihilation — indeed, it

contains aa† only — whereas a tensor coupling like πiπj
(
∂i∂j ~∇ · ~B

)
0

can.

Going back to classical wave solutions, notice that there is no reason why we should

stop the expansion of the effective action at quadratic order in φ: the action (6.23) is valid

at non-linear order as well, as long as the perturbations of the string are characterized by

a single characteristic wavenumber k, and the velocities are small. So, we can look for

non-linear wave solutions as well. Consider then a plane-wave ansatz of momentum k,

φ(t, z) =
1√
2
Re−i(ωt−kz) , (7.6)

where we are parameterizing the amplitude directly in terms of the radius R of the helix

described by the perturbed string. Plugging this into the non-linear equations of motion,

i∂tφ+
T (k)

n̄λ
∂z

(
∂zφ√

1 + 2|∂zφ|2

)
= 0 , (7.7)

we get

ω =
T (k)

n̄λ

k2√
1 + (Rk)2

. (7.8)

For amplitudes much smaller than the wavelength, we get back the correct dispersion law for

linear Kelvin waves. In the opposite limit, we get an approximately linear dispersion law:

ω ' T (k)

n̄λR
· k , R� 1/k . (7.9)

It is interesting to think of this large-amplitude Kelvin wave as a tightly wound

solenoid: recall that there is a formal analogy between vortex lines and magnetostatics,

with the lines playing the roles of current-carrying wires, and the velocity field that of

the magnetic field [2, 16]. Then, for a configuration like ours, we must have a negligible

fluid-flow outside the helix, and an approximately uniform one inside it, given by

~v ' ẑ Γk

2π
, (7.10)

– 29 –



J
H
E
P
1
0
(
2
0
1
5
)
1
5
3

where Γ = n̄λ/w̄ is the line’s circulation. That is, this is a solution of the hydrodynamical

equations in which the fluid arranges itself into a flow-carrying pipe. We call this a “self-

pipe”. Notice that the pipe itself moves, with a velocity given by the propagation velocity

of our non-linear wave,

v(k) ' Γ

4πR
log(µ0/k) . (7.11)

Our non-linear solution is self-consistent, in the sense that one can show that — on this

solution — all the terms we have neglected to arrive at eq. (6.23) are smaller than the ones

we have kept.

Notice also that in the non-linear regime we cannot take linear combinations of our

plane-waves to construct a localized wave packet. So, our non-linear solutions are com-

pletely delocalized monochromatic plane waves. Perhaps this makes them uninteresting

from a physical standpoint. Still, it would be interesting to check their existence via nu-

merical simulations: to the best of our knowledge, they have not appeared in the literature.

In fact, in the standard vortex-filament model the local induction approximation would

break down for R & 1/k — because the typical distance between the spires of the helix

1/k would become smaller than the local radius of curvature R — thus making it difficult

to extend the analysis of Kelvin waves to non-linear amplitudes.7 On the other hand, our

RG considerations are still valid and show that the tension has to be evaluated at k rather

than 1/R: the field theory does not know that the amplitude R is physically a length scale;

thanks to its own ignorance, like Sikorsky’s famous bumblebee, it can fly farther.

7.2 Vortex rings and their interactions

As another application of the same set of ideas, consider a perfectly circular vortex ring of

radius R in an otherwise unperturbed superfluid. As is well known [16], such a ring moves

at a constant speed of order

v ∼ Γ

R
logR/a , (7.12)

where Γ is the circulation, and a is typically taken to be on the order of the inverse core

size. We want to recover this result with our techniques.

Assuming the ring stays circular, we can parameterize its dynamics in terms of its

radius R(t), the position ~x0(t) of its center of mass, and its normal unit vector n̂(t). We

thus have

~X(t, σ) = ~x0(t) + ∆ ~X(t, σ) , (7.13)

where, as a function of σ at fixed t, ∆ ~X spans a circle with orientation n̂(t) and radius

R(t). Choosing σ to be the angle for such a circle and performing the σ integral in our

effective action (6.20), we get

Seff [~x0, R, n̂] '
∫
dt
[
λn̄ πR2n̂ · ~̇x0 − 2πRT (1/R)

]
, (7.14)

7We thank Claudio Barenghi for pointing this out to us.
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where we now chose µ = 1/R as renormalization scale. Recalling that n̂ has to be varied

while preserving its unit norm, the equations of motion are

δ~x0 :
d

dt
(R2n̂) = 0 (7.15)

δn̂ :
(
~̇x0

)
⊥ = 0 (7.16)

δR : n̂ · ~̇x0 =
1

λn̄

1

R
T (1/R) . (7.17)

The first equation says that the ring must preserve its size and orientation; the second

says that the ring can only move along n̂; the third says that it does so at a constant speed

v =
1

λn̄

1

R
T (1/R) =

n̄λ

w̄

log(Rµ0)

4πR
. (7.18)

This matches the standard result [16], again after identifying the prefactor n̄λ/w̄ with the

circulation Γ (see eq. (5.10)).

From the effective action above, we can also derive the momentum and energy of the

ring, either by Noether’s theorem, or most simply by the canonical relations,

~p =
∂Leff

∂~̇x0

= λn̄ 2πR2 n̂ (7.19)

E = ~p · ~̇x0 − Leff =
n̄2λ2

w̄

R

2
log(Rµ0) , (7.20)

in agreement with the classic results [16].

We can use our formalism to keep track of couplings to the bulk fields as well. The

leading couplings are the terms in SKR — expanding out ~X(t, σ) = ~x0(t) + ∆ ~X(t, σ) and

integrating σ over the circle as before, we find

n̄λπR2

∫
dt
{
−∂t ~B + ~∇× ~A− ~̇x

(
~∇ · ~B

)}
· n̂ . (7.21)

Note that this expression contains only gauge invariant combinations of ~A and ~B, as it

must. Moreover, even though ∂t ~B − ~∇× ~A and ~∇ · ~B are separately gauge invariant, the

relative coefficient is not arbitrary but fixed by the non-linearly realized symmetries. By

integrating out ~A and ~B, we can compute the long-distance interaction potential between

two vortex rings. To leading order in the v/cs expansion, such a potential is dominated by

the exchange of a single ~A. The general formalism is still that of section 6.1, but now with

the ~JA source of eq. (6.2) given by

~JA(~x, t) = −
∑
I=1,2

~µI × ~∇δ3(~x− ~xI) , ~µI ≡ n̄λI(πR2
I)n̂I , (7.22)

where I labels the two vortex rings. Plugging in the ~A propagator and recalling that the

potential appears in the action as Seff ⊃ −
∫
dt Veff , we find the effective potential [2]

Veff '
1

4πw̄
· 3(~µ1 · r̂)(~µ2 · r̂)− ~µ1 · ~µ2

r3
, (7.23)
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where ~r is the vector connecting the two rings. Notice that this potential has precisely the

same structure as a dipole-dipole interaction in magnetostatics. In fact, the interaction of

a ring with ~A in (7.21) is formally the same as that of a magnetic dipole with the vector

potential, with dipole moment proportional to our ~µ.

It should be recalled that this effective potential is physically an energy, but it does

not lead to a “force” in any standard sense, because of the unconventional kinetic action

for a free vortex ring (7.14) — in particular, because of its single time derivative [2]. It is

thus better to think of (minus) the effective potential as a term in the effective action for

two rings, which corrects the equations of motion as implied by the variational principle.

The subleading contributions to the two-ring effective action coming from sound ex-

change are also easy to compute. The coupling in (7.21) corresponds to a source for ~B

J iB =
∑
I=1,2

(
− µiI v

j
I + (~µI · ~vI)δij

)
∇jδ3(~x− ~xI) . (7.24)

Plugging in the ~B propagator, we find the correction to the effective Lagrangian

Leff ⊃
1

8πw̄

(µ1v1)(µ2v2)

c2
sr

3

{
− 1 + 2(n̂1 · n̂2)2 − 12(n̂1 · n̂2)(n̂1 · r̂)(n̂2 · r̂)

+ 15(n̂1 · r̂)2(n̂2 · r̂)2
}
.

(7.25)

Recalling that, up to logs, v ∼ Γ/R ∼ (n̄λ/w̄)R, we see that this is suppressed by a factor

of (v/cs)
2 compared to the leading order result (7.23). Then, at this order, there is another

ring-sound coupling that we should consider,∫
dt (4πR)T(01)(1/R) ~∇ · ~B , (7.26)

which comes from taking the integral of (6.30) around the ring. Using this vertex in

conjunction with the previous one, we get a further correction to the two-ring effective

Lagrangian,

Leff ⊃
(µ1v1)(4πR2T(01)(µ)2)

8πc2
sr

3

(
1− 3(n̂1 · r̂)2

)
+ (1↔ 2) (7.27)

(the vertex (7.26) used twice only yields a contact interaction, proportional to δ3(~x1− ~x2),

with no physical consequences at large distances.)

Upon using the free ring eom (7.18), the sum of (7.25) and (7.27) matches the sound-

mediated long-distance interaction computed in [2] via somewhat different methods. There,

two variables (α and β) parametrized the core structure of the ring for the case of somewhat

“fat” rings, which is the realistic case for vortex rings in ordinary fluids like water. Here, the

same role is played by the two UV reference scales (µ0 and µ′0) appearing logarithmically

in v and T01. In the limit of very thin rings, the logs are large and the difference between

these two scales can be neglected.

7.3 Phonon absorption

As a final application of our methods, we now study a process in which a phonon gets

absorbed by a straight string. For simplicity, let us consider first the case in which the
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Figure 5. Absorption of a phonon into a pair of kelvons.

initial phonon propagates perpendicularly to the string, with momentum k and energy

ω = csk. The string breaks translations perpendicularly to itself, which means that the

momentum of the phonon in the transverse direction is not conserved. However, momentum

along the string is conserved, and so is energy. The leading contribution to absorption thus

comes from converting the energy of the phonon into two quanta of Kelvin waves (kelvons)

with equal energies E = ω/2 and opposite momenta ±q along the string, as in the diagram

of figure 5.

Notice that the final kelvon momenta are much larger than the initial phonon momen-

tum. To see this, observe that, for given initial energy ω = csk, the momentum q of the

two final kelvons is given implicitly by their dispersion law:

E = ω/2 =
1

n̄λ
T (q) q2 . (7.28)

Up to logarithmic corrections, q scales as
√
ω, while the phonon momentum k scales as ω,

which makes q much bigger than k in the low-frequency limit. This implies that, if we now

consider the more generic case in which the initial phonon propagates at an angle θ relative

to the string, the kinematics of the process are essentially unaltered. The reason is that even

though now there is a mismatch in the final kelvon momenta, it is only ∆q = k · cos θ � q

and can thus be neglected in first approximation.8 For a generic initial angle θ we thus have

q1 ' −q2 ≡ q , E1 ' E2 ≡ E = ω/2 . (7.29)

Keeping in mind the remarks of section 7.1, the leading contribution to kelvon pair

production by sound comes from expanding the ε ·B ∂X∂X coupling in (6.39):

n̄λ · εijkBk( ~X, t) ∂tX
i∂zX

j ⊃ 1

4
n̄λ · φ∗2

[
∂xḂy + ∂yḂx + i

(
∂yḂy − ∂xḂx

)]
. (7.30)

Without loss of generality, we can take the direction of propagation for the phonon to lie

in the yz-plane. Since ~B is a longitudinal field, this kills all the terms apart from

1

4
n̄λ · φ∗2 i∂yḂy . (7.31)

8Another consequence of the large q/k hierarchy — which turns out not to be relevant for the computation

at hand — is that one should choose µ ∼ q as renormalization scale for all string-sound running couplings.
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We provide a quick derivation of generic amplitude and cross-section formulae for

mixed bulk/world-sheet processes like this in appendix C. After one takes into account

that the single-time derivative nature of the φ kinetic term yields an extra factor of
√

2E

for each external φ line, the final formulae are what one expects from analogy with more

standard relativistic cases: the scattering amplitude is

iM =
2E

n̄λ
√
w̄
× n̄λ

2
ikω sin2 θ , (7.32)

where the first factor collects all the normalization factors associated with the external lines,

including the non-canonical normalizations of our fields, while the second comes from the

interaction Lagrangian. The differential cross section is related to the amplitude by

dσ =
1

cs

1

2ω
|M|2dΠ2 . (7.33)

The two-particle final phase-space integrates to

Π2 '
1

8E2v(q)
, (7.34)

where v(q) is the group velocity of the Kelvin waves,

v(q) ≡ dE/dq ' 2E/q . (7.35)

We assumed that log µ0/q is very large, so that we can neglect terms that are not log

enhanced. Putting everything together, we get a total cross-section

σ ' 1

16 w̄c3
s

ω2q sin4 θ , (7.36)

where ω and q are related by eq. (7.28). Notice that σ has units of length, as befits the

cross-sectional width of a string. It is the probability rate of absorption per unit string

length and unit phonon incoming flux.

To the best of our knowledge, this result is new. We can express it in terms of the

original phonon’s frequency ω = 2E only, by approximately inverting (7.28) at low energies,

q2 ' −8πw̄

n̄λ
· E

log 8πw̄
n̄λ

E
µ2

0

, (7.37)

where we assumed once again that the running log is large. In such a case, one needs not

be too precise about the value of µ0, and one can probably approximate it by µ0 ∼ 1/a.

However, the actual value of µ0 is completely well defined and physical, and can be fit for

by measuring the string tension (6.12) at any chosen scale µ. Plugging (7.37) into (7.36),

we see that the cross section scales as ω5/2/
√

logω at low frequencies. Such a peculiar

scaling is a robust prediction of the effective field theory.
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8 Power counting

The low-energy effective action (3.10) contains an infinite number of terms. From an

EFT viewpoint, however, only a finite number of these terms will contribute to observable

quantities at any given level of precision. The precision is controlled by typical scales in

the system: in the simplest relativistic theories these are usually ratios of energies and

masses to some UV scales, whereas in our theory the expansion parameters will be ratios

of lengths and velocities. In this section we develop a systematic power counting scheme,

along the lines of [32, 33], to estimate the sizes of various terms in the effective action.

Since our action (3.10) should describe superfluids as well as fluids in which the vorticity is

concentrated along lines, in what follows we will err on the side of generality and develop

a power counting scheme that applies to both systems.

Our EFT approach treats the vortex lines as purely (1+1)-dimensional objects. Clearly,

this is a good approximation only if the core radius rc is much smaller than the typical

length scale ` over which the shape of the vortex line changes appreciably. In other words,

one expansion parameter of our theory will certainly be the ratio rc/`, since when this be-

comes of order one our effective theory stops being accurate. At the same time, in ordinary

fluids the radius of a vortex core can be much larger than the inter-particle separation a,

which is the scale suppressing interactions of the bulk hydrodynamical modes.9 Therefore

the ratio a/` is in principle a second parameter independent from rc/`, in general smaller

than it, and potentially much smaller. Finally, we have pointed out in section 5 that the

velocity v of vortex lines has to be much smaller than the speed of sound cs, which in

turn cannot be greater than the speed of light c. This suggests the existence of two more

expansion parameters given by the ratios v/cs and cs/c.

In the simplest case of non-relativistic superfluids like liquid helium, the parameter

cs/c is negligibly small, while rc/`, a/`, and v/cs are all of the same order, and thus the

theory has really just one small parameter. This can be easily explained using dimensional

analysis, keeping separate units for space and time (but still setting ~ = 1). Since the only

microscopic scales that characterize a non-relativistic superfluid are the atomic mass m

and the inter-particle separation a, the vortex core size must be given by rc ∼ a, the speed

of sound by cs ∼ (ma)−1 and the quantized circulation by Γ ∼ csa ∼ 1/m. Therefore, we

must have

v ∼ Γ

`
∼ csa

`
=⇒ v

cs
∼ a

`
∼ rc

`
, (NR superfluid). (8.1)

In more general cases, however, these three parameters are in principle all independent of

each other as well as of cs/c. For this reason, in what follows we will keep track of powers

of rc/`, a/`, v/cs and cs/c separately. Where appropriate, it is straightforward to express

everything in terms of a single expansion parameter using equation (8.1).

9To be precise, for a weakly coupled gas one should replace the inter-particle separation a with the mean

free path, which can be much bigger than a. For simplicity, in the following we will ignore this difference,

and thus strictly speaking our analysis applies to liquids.

– 35 –



J
H
E
P
1
0
(
2
0
1
5
)
1
5
3

8.1 Bulk fields

In order to determine which terms in the action should be kept and which ones should

be neglected to calculate a given observable up to a certain precision, we need to be able

to estimate how each term scales with our expansion parameters. In order to do this

consistently, we will follow [32, 33] and use the method of regions [35, 36]. The main

idea is that to come up with well defined power counting rules one must first identify the

kinematical regions that are relevant for the problem at hand, and then decompose all

fields into a sum of contributions that “live” in the different regions. Let us see how this

works in practice in the case of the bulk fields ~A and ~B.

As we already emphasized in section 2, with our gauge choice the field ~A is purely

non-dynamical (see the ~A propagator in eq. (2.18)). This means that its typical frequency

and wave-number are completely determined by the sources, namely the vortex lines, and

thus we have
~A : ω ∼ v

`
, k ∼ 1

`
. (8.2)

In keeping with the standard nomenclature [33], we will refer to this kinematical region as

the potential region. This terminology emphasizes that the fields are never on-shell in this

region. To capture instead effects such as the emission of on-shell phonons from vortex

lines [2], we need to introduce another kinematical region, which is traditionally called

the radiation region. Since the frequency of the emitted radiation is determined by the

typical frequency of the sources, this will again be of order v/`. However, the relevant

wave-number is now fixed by the phonon dispersion relation, and therefore for radiation

phonons we have
~Brad : ω ∼ v

`
, k ∼ v

cs`
. (8.3)

Finally, consistency requires also the introduction of potential phonons, whose frequency

and wave-number scale as follows:

~Bpot : ω ∼ v

`
, k ∼ 1

`
. (8.4)

This is because potential phonons can be produced for instance when two ~A’s interact in

the bulk via the cubic vertex shown in eq. (5.9). Potential phonons are not just necessary

for consistency, however, but are in fact responsible for very physical effects such as the

phonon-mediated interaction between vortex lines discussed in section 7.2 and in ref. [2]. To

keep track of both potential and radiation phonons, we will simply perform the substitution

~B = ~Brad + ~Bpot (8.5)

in the effective action (3.10). As we will see in what follows, terms in the action that depend

on ~Brad will in general scale differently from terms that depend on ~Bpot, and therefore we

need to separate these two contributions explicitly.

Now that we have identified the relevant kinematical regions, we know how derivatives

acting on ~A, ~Bpot and ~Brad will scale. Next, we need to determine how the fields themselves

scale with `, rc, a, v and cs (for now we are setting c = 1 for simplicity). This can be done
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by estimating the size of the propagators in momentum space. For instance, the Fourier

transform of the field ~A scales schematically as follows:

〈ÃÃ〉 ∼ 1

w̄

δ(ω)δ3(k)

k2
∼ csa4 × `

v
× `3 × `2 ⇒ Ã ∼ c

1/2
s a2`3

v1/2
(8.6)

To estimate the size of w̄ we used the fact that it is a mass density, and thus it must scale

like w̄ ∼ m/a3 ∼ (csa
4)−1. We can now use equation (8.6) and go back to position space

to obtain the scaling

~A ∼
∫
dωd3k Ã ∼ v

`
× 1

`3
× c

1/2
s a2`3

v1/2
∼ (vcs)

1/2a
2

`
. (8.7)

This scaling result should not be confused with the amplitude of a field ~A sourced by a

typical vortex configuration. The latter can be estimated using the scaling (8.7) together

with simple linear response theory; up to order one factors:

〈 ~A〉 '
∫
dtd3x 〈 ~A ~A〉J with J = w̄Γ

∫
dσ δ3(x−X(σ, t))∂σX ⇒ 〈 ~A〉 ' v ` . (8.8)

Instead, the scaling rule (8.7) and the ones that follow should be interpreted as formal

building blocks that we can combine to estimate the relative size of all the terms in the

action that can contribute to a given process, without any direct implication for the absolute

size of those terms for that same process.

In a similar way, we can also find the scaling of potential and radiation phonon fields:

〈B̃potB̃pot〉 ∼
1

w̄

δ(ω)δ3(k)

c2
sk

2
∼ csa4 × `

v
× `3 × `2

c2
s

⇒ ~Bpot ∼
(
v

cs

)1/2a2

`
(8.9)

〈B̃radB̃rad〉 ∼
1

w̄

δ(ω)δ3(k)

ω2
k − c2

sk
2
∼ csa4 × `

v
× c3

s`
3

v3
× `2

v2
⇒ ~Brad ∼

v

cs

a2

`
. (8.10)

Notice that in the Fourier transform of B̃rad, the integration measure d3k scales like

v3/(c3
s`

3). The scalings (8.7), (8.9) and (8.10) do not depend on the radius of the core: this

makes sense, because our estimates are based on the bulk propagators, and the bulk part

of the action does not know anything about the vortex lines.

8.2 Vortex lines as external sources

Let us now consider the vortex lines. If we treat them as external sources rather than

dynamical objects, their scaling is entirely determined by simple geometric considerations

to be:
~X ∼ `, ∂t ~X ∼ v, ∂σ ~X ∼ 1. (8.11)

By combining these scalings with the ones for the hydrophoton and phonon fields, we can

easily estimate the size of all the terms in the action. To this end, we will assume that the

various coefficients in the Lagrangian take on a natural value which can be inferred from

the logarithmic divergences studied in section 6. What follows is a pedagogical derivation

of the size of the most relevant terms in the action. We will repeatedly use the fact that

λ = Γw̄/n̄.
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• First, let us estimate the size of the kinetic term for the vortex lines. Schematically,

we have

n̄λ

∫
dtdσXẊX ′ ∼ v`× 1

csa4
× `2

v
× `× v × 1 ∼ v

cs

`4

a4
∼ L, (8.12)

where L ∼ w̄`3 × v × ` is the typical angular momentum of the whole configuration,

which has the right units to be compared to the Planck constant ~. We will always be

interested in the regime L/~� 1, which makes the dynamics of our strings essentially

classical. It is easy to check that the tension term is also of the same order:

Γ2w̄

∫
dtdσ|X ′| ∼ (v`)2 × 1

csa4
× `2

v
× 1 ∼ L. (8.13)

• Let us now estimate the size of the couplings to the hydrophoton. The most relevant

of such couplings is the non-derivative one, which scales as

n̄λ

∫
dtdσAX ′ ∼ (v`)× 1

csa4
× `2

v
× (vcs)

1/2a
2

`
× 1 ∼

√
L. (8.14)

• The leading non-derivative coupling with the potential phonon is suppressed com-

pared to this by an extra power of v/cs,

n̄λ

∫
dtdσ BpotẊX

′ ∼ v`× 1

csa4
× `2

v
×
(
v

cs

)1/2 a2

`
× v × 1 ∼ v

cs

√
L, (8.15)

and are of the same order as the leading derivative couplings:

n̄2λ2

w̄

∫
dtdσ∇BpotX

′ ∼ (v`)2

csa4
× `2

v
× 1

`
×
(
v

cs

)1/2 a2

`
× 1 ∼ v

cs

√
L, (8.16)

n̄2λ2

w̄c2
s

∫
dtdσ ḂpotẊ ∼

(v`)2

c3
sa

4
× `2

v
× v

`
×
(
v

cs

)1/2 a2

`
× v ∼ v

cs

√
L. (8.17)

• Let us finally consider the couplings to the radiation phonon field. These are sub-

dominant compared to the couplings with both hydrophoton and potential phonons.

In particular, for the non-derivative coupling we have

n̄λ

∫
dtdσ BradẊX

′ ∼ v`

csa4
× `2

v
×
(
v

cs

)
a2

`
× v × 1 ∼

(
v

cs

)3/2 √
L, (8.18)

while derivative couplings are even more suppressed:

n̄2λ2

w̄

∫
dtdσ∇BradX

′ ∼ (v`)2

csa4
× `2

v
× v

cs`

(
v

cs

)
a2

`
× 1 ∼

(
v

cs

)5/2 √
L , (8.19)

n̄2λ2

w̄c2
s

∫
dtdσḂradẊ ∼

(v`)2

c3
sa

4
× `2

v
× v

`
×
(
v

cs

)
a2

`
× v ∼

(
v

cs

)7/2 √
L . (8.20)
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• Finally, we should stress that at higher orders in the v/cs expansion, it becomes

important to take into account that the radiation field is to be evaluated on the

perturbed string; since its spatial derivatives scale like ∂i ∼ (v/cs) 1/`, the expansion

in powers of v/cs remains consistent only if we Taylor expand the radiation field

around some geometric center of the vortex configuration,

~Brad(t, ~X(t, σ)) =

∞∑
n=0

1

n!
Xk1 · · ·Xkn∂k1 · · · ∂kn ~Brad(t, 0) (8.21)

∼
∞∑
n=0

1

n!

(
v

cs

)n
~Brad(t, 0) , (8.22)

and keep only the terms up to the desired order in v/cs. This expansion is equivalent

to performing a multipole expansion [37], and is necessary only for radiation phonons.

The reason is that the derivative of the potential phonons and of the hydrophotons

are not suppressed by powers of (v/cs).

Notice that even though for a generic fluid the small parameters (rc/`) and (a/rc) are

independent, for the leading terms considered above they always appear in combination

and the parameter rc does not appear explicitly. This in turn allowed us to write our

estimates only in terms of v/cs and the angular momentum L. Were we to keep terms with

more than one derivative per field, however, this would no longer be the case. Consider for

instance the term
n̄2λ2

w̄

∫
dtdz |X ′|Rr2

c ∼ L
(rc
`

)2
, (8.23)

where R is the curvature constructed from the worldsheet metric. This kind of terms are

known as finite-size terms [32, 33], in that they account for the fact that the vortex core has

actually a finite thickness. From an EFT viewpoint, they are generated when the dynamics

at scales of the order of core radius is integrated out, and that is why they are suppressed

by powers of rc.

Finally, notice also that all the terms we have considered above are independent of the

ratio cs/c. This is not the case for all the terms in our effective action, and in fact whenever

cs/c � 1 one can safely neglect all the terms that scale with positive powers of this ratio

and obtain the non-relativistic version of our effective action. We will explain how to take

the non-relativistic limit in detail in the following section, but first we need to include

power counting rules for terms involving dynamical perturbations of the vortex line.

8.3 Vortex lines as dynamical fields

Depending on the problem under consideration, it may be necessary to consider perturba-

tions of the vortex geometry around some background configuration, and to assign power

counting rules separately to the background and the perturbations (kelvons). As an illus-

tration, we will perturb around a long straight line and consider the interaction of kelvons

with the hydrophoton and phonon fields. In this simple case, there is only one relevant

region for the kelvons, namely the one in which they are on-shell. As we have seen in sec-

tion 7.1, the dispersion relation for the Kelvin waves is (up to a logarithm) ω ∼ Γk2. Since
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a local perturbation of the line with wave number k ∼ 1/` will result in a local motion of

the line with velocity v ∼ Γ/`, we conclude that the region where the kelvons are on-shell is

~π : ω ∼ v

`
, k ∼ 1

`
. (8.24)

Notice that in this region the frequency and momentum scale like in the phonon potential

region (8.4), but in fact this region is more akin to the phonon radiation region (8.3)

because it is where the field π is on-shell.

As before, we can assign a definite scaling to the kelvon field π but looking at its

kinetic term. Expanding ~X(t, z) = (~π(t, z), z), the leading order kinetic term for ~π is

(schematically)

w̄Γ

∫
dtdz (π̇π − Γπ′π′). (8.25)

This means that its propagator in Fourier space will scale like

〈π̃π̃〉 ∼ 1

w̄Γ

δ(ω)δ(k)

ω − Γk2
∼ csa

4

v`
× `2

v
× `2

v`
, (8.26)

and, going back to real space, we can obtain the scaling of the field π:

π ∼
∫
dωkdk π̃ ∼

v

`
× 1

`
× c

1/2
s

v3/2
a2` ∼

(
v

cs

)−1/2 a2

`
. (8.27)

We can now use this scaling, together with the scalings for the bulk fields, to compare the

relative sizes of various vertices involving kelvons.10

• First, the non-derivative interaction term between a kelvon and a hydrophoton:

n̄λ

∫
dtdσ ~A · ~π ′ ∼ v`

csa4
× `2

v
× (vcs)

1/2a
2

`
× 1

`
×
(cs
v

)1/2 a2

`
∼ 1. (8.28)

Thus, this interaction term is of the same order as the kinetic term of the kelvons.

This was to be expected, since it is the mixing between the hydrophoton and the

kelvons at the level of the propagator that gives the kelvons their gradient energy.

• The non-derivative interaction between kelvons and potential phonons scales like

n̄λ

∫
dtdσ εabB

a
potπ̇

b ∼ v`

csa4
× `2

v
×
(
v

cs

)1/2 a2

`
× v

`
×
(
v

cs

)1/2 a2

`
∼ v

cs
. (8.29)

It is therefore safe to ignore the kelvon-phonon mixing in the propagator (to leading

order in v/cs).

• The analogous coupling to a radiation phonon is further suppressed by a factor of

(v/cs)
1/2.

• For the reasons discussed in section 7.1, the leading interaction that allows a radiation

phonon to be absorbed by the string and converted into a pair of kelvons is the one

we used in section 7.3, which scales like:

n̄λ

∫
dtdz εab ∂cB

a
rad π

cπ̇b ∼
(
v

cs

)2 a2

`2
. (8.30)

10The power counting rules developed in this subsection are valid in the regime where kπ � 1, and as

such they do not apply for instance to the self-pipe solution discussed in section 7.1.
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9 Small velocity approximations

The effective action (3.10) is appealing to the eye of an high energy theorist, but it is

probably overkill for describing the outcome of most experiments that can be carried out

in the lab. In fact, ordinary media in the lab are highly non-relativistic, in the sense

that their sound speed is much smaller than the speed of light. In this limit, an infinite

subset of the terms that appear in the action (3.10) becomes negligible (based on the

power counting scheme developed in the previous section) because they are suppressed by

powers of cs/c, and it would be practical to dispose of them from the very beginning. In

section 9.1 we do this following a somewhat bottom-up approach, by constructing a non-

relativistic action that is manifestly Galilei-invariant. The same result can also be derived

more systematically by taking the formal limit c → ∞ of our action (3.10). We find this

alternative derivation interesting not only because it provides an independent check of our

non-relativistic result, but also because it highlights many of the subtleties involved in

taking the non-relativistic limit. The analysis is quite technical though, and therefore has

been relegated to an appendix (appendix D).

Since we have argued that the typical velocity v of a vortex line is also much smaller

than cs within the regime of validity of the effective theory, it is often a useful approximation

to also let cs → ∞. In this limit the phonons decouple from the vortex lines, and almost

all the terms in the effective action drop out, except for a finite number of them. This is

the incompressible regime, which we will address in section 9.2.

9.1 Non-relativistic limit

We want to find a consistent truncation of the action

S =

∫
d4xG(Y ) +

∫
dτdσ

{
λAµν ∂τX

µ∂σX
ν −

√
− det g T

(
gαβhαβ , Y

)}
(9.1)

that describes the interaction of sound and vortex lines in fluids with sound speed much

smaller than the speed of light. In particular, the truncation we are after should be invariant

under Galilei boosts,

~x→ ~x = ~x+ ~v0 t , t→ t . (9.2)

Our fields Aµν and Xµ have standard transformation properties under Lorentz boosts:

Xµ(τ, σ) → ΛµνX
ν(τ, σ) (9.3)

Aµν(x) → Λµ
ρΛν

σAρσ(Λ−1 · x) . (9.4)

Taking the background value of Aµν into account, in the Galilei limit these reduce to11

~X → ~X + ~v0t (9.5)

~A → ~A+ ~v0 ×
(
− 1

3
~x+ ~B

)
(9.6)

~B → ~B +
1

3
~v0t , (9.7)

11In order to take the non-relativistic limit unambiguously, it is convenient to first gauge-fix τ

reparametrizations on the world sheet, so that the notion of “small” vortex-line velocity becomes par-

ticularly transparent. We will therefore set τ = X0 ≡ t, as we already did in previous sections.
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with the understanding that the arguments of ~A and ~B transform as the inverse of (9.2),

so that the time-derivatives acquire an extra piece:

∂t → ∂t − (~v0 · ~∇) . (9.8)

We find it convenient to discuss the bulk, Kalb-Ramond, and generalized Nambu-Goto

terms in the action separately. Let us start with the bulk part. At lowest order in the

derivative expansion, the non-relativistic action for a fluid takes the well-known form

Snr
bulk =

∫
d4x

{
1

2
mnnr~u

2 −U(nnr)

}
, (9.9)

where m is the mass of the elementary constituents of the fluid, nnr is their non-relativistic

number density (see below), ~u is the local velocity of the fluid, and U is a generic function,

related to the equation of state, which can be interpreted as the internal energy density of

the fluid.

From our discussion in section 2, we know how to express these hydrodynamic variables

in terms of our fields ~A and ~B. The velocity ~u is given in equation (2.22), which we

reproduce here for convenience:

~u =
~̇B − ~∇× ~A

1− ~∇ · ~B
. (9.10)

The number density n follows instead from eq. (2.9) and the expression for Y in terms of ~A

and ~B given above eq. (2.17). Notice however that, based on simple dimensional analysis,

the term Ḃ in the expression for Y must be suppressed by a factor of c compared to ~∇· ~B and

thus becomes negligible in the non-relativistic limit. At the same time, gauge invariance

requires that the quantity ~∇ × ~A also becomes negligible, because only the combination
~̇B − ~∇× ~A would be gauge invariant (see discussion at the end of section 2). We therefore

conclude that in the non-relativistic limit the number density reduces to:

n ' n̄ (1− ~∇ · ~B) ≡ nnr . (9.11)

By plugging the expressions (9.10) and (9.11) into equation (9.9) we get the non-relativistic

bulk action for ~A and ~B.

We can check explicitly for Galilean invariance. Given the transformation

laws (9.5)–(9.8), we have

~∇ · ~B → ~∇ · ~B (9.12)(
~̇B − ~∇× ~A

)
→

(
~̇B − ~∇× ~A

)
+ ~v0 (1− ~∇ · ~B ) . (9.13)

We thus see that nnr is invariant, ~u transforms as expected, ~u→ ~u+~v0, and the action (9.9)

is thus invariant up to a total derivative.

Let us now turn our attention to the worldsheet part of the action. In τ = X0 ≡ t

gauge, the first term — the Kalb-Ramond one — reads

Snr
KR = n̄λ

∫
dtdσ

{
−1

3
~X · ∂t ~X × ∂σ ~X + ~A · ∂σ ~X + ~B · ∂t ~X × ∂σ ~X

}
. (9.14)
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Because ~∇× ~A and ~̇B are of the same order in the expansion in cs/c due to gauge invariance,

it means that schematically we have A ∼ BẊ. Therefore, the A and B terms appearing

in (9.14) are of the same order in cs/c, and both belong in the non-relativistic action.12

It is immediate to check that (9.14) is invariant under the Galilean transforma-

tions (9.5)–(9.7). However, since (9.14) is an exact rewriting of the original relativistic

expression (3.11b), it is still invariant under Lorentz transformations as well. In fact, be-

ing the integral of a two-form over a two-dimensional world-sheet, it is invariant under

generic spacetime diffeomorphisms, which admit Lorentz and Galilei as finite-dimensional

subgroups, even without considering the transformation of the metric.13 As we saw in

section 6.5, this is related to the non-renormalization property of λ: from either viewpoint

— relativistic or non-relativistic — this part of the action has an enhanced symmetry

compared to the rest.

The Kalb-Ramond term did not simplify in the non-relativistic limit, but fortunately,

the generalized Nambu-Goto term will. To begin with, notice that (9.14) only depends

on the components of the velocity ∂t ~X perpendicular to ∂σ ~X. This is no accident: veloc-

ities along the vortex line are not physical, because the action is invariant under (time-

dependent) reparametrizations of σ. For the very same reason, the generalized Nambu-Goto

term will also depend only on the perpendicular components of the velocity. Interestingly,

this prevents us from writing down for a vortex line the standard non-relativistic kinetic

term (∂t ~X)2. One could be tempted to consider instead the term (∂t ~X⊥)2, but it is easy

to check that this would not be invariant under Galilean boosts ~X → ~X + ~v0t, even up to

a total derivative,14 because

∂tX
i
⊥ → ∂tX

i
⊥ +

[
δij −

∂σX
i∂σXj

|∂σ ~X|2

]
vj0. (9.15)

There is however one Galilean invariant that we can build using ~̇X⊥ provided we also

use the perpendicular velocity of the fluid ~u⊥, and that is the difference ~̇X⊥ − ~u⊥. Since

this difference is an exact Galilean invariant (as opposed to up to a total derivative), the

action will in general be an arbitrary function of its square. In fact, in appendix D we

show explicitly that the combination gαβhαβ that appears in (9.1) reduces precisely to(
~̇X⊥ − ~u⊥

)2
in the non-relativistic limit. Since we have already argued that in this limit

Y → nnr, we conclude that the non-relativistic version of the generalized Nambu-Goto

term must be

Snr
NG′ = −

∫
dtdσ|∂σ ~X| T

((
~̇X⊥ − ~u⊥

)2
, nnr

)
, (9.16)

where the (Galilean invariant) overall factor of |∂σ ~X|— which is in fact the non-relativistic

limit of
√
−g — is there to maintain invariance under reparametrizations of σ.

12Notice however that these two terms are not of the same order in v/cs, as we have shown for instance

in equations (8.14), (8.15) and (8.18) using our power counting rules.
13We thank Rachel Rosen for this remark.
14Recall that usual non-relativistic kinetic terms are invariant under boosts only up to a total derivative.
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In conclusion, the full non-relativistic action for vortex lines coupled to sound is

given by:

Snr = Snr
bulk + Snr

KR + Snr
NG′ . (9.17)

For a top-down derivation of this result, we refer again the reader to appendix D.

9.2 Incompressible limit

Let us now turn our attention to the incompressible limit. In this limit, the vortex lines

are moving so slowly compared to the sound speed that for all practical purposes there is

no sound emission associated with their motion. This limit corresponds to an even more

dramatic truncation of the effective action (9.1), in which only the leading terms in the

expansion of v/cs are kept. For simplicity, we will start directly from the non-relativistic

action (9.17), but our final result applies unaltered to the incompressible limit of relativistic

fluids as well.

Based on the power counting rules developed in section 8, we see from eq. (9.11) that

to leading order in v/cs the number density remains constant, i.e. nnr = n̄. This should

not come as a surprise: it is the very reason why this small velocity limit is known as

“incompressible”. Thus, the leading terms in the bulk action are simply

Sinc
bulk =

1

2
w̄

∫
d4x

{
(~∇× ~A)2 − c2

s(~∇ · ~B)2
}
, (9.18)

where we used the fact that in the non-relativistic limit w̄ ≈ mn̄, and the power counting

rules of section 8 imply that the ~̇B terms are subleading.

Moreover, from eqs. (8.12), (8.13) and (8.14) it follows that the leading worldsheet

terms are

Sinc
worldsheet =

∫
dtdσ

{
−1

3
λn̄ ~X · ∂t ~X × ∂σ ~X − T |X ′|+ λn̄ ~A · ∂σ ~X

}
. (9.19)

Notice that we have to include the A ·∂X hydrophoton interaction, even though according

to our estimates it scales as
√
L, a factor of 1/

√
L down with respect to X’s kinetic terms.

The reason is that such an interaction can be used several times in a diagram, to yield

contributions to any process that can scale as higher powers of L. In particular, the

hydrophoton can be integrated out exactly (since it appears quadratically in the action)

to yield a 1/r potential energy between vortex line elements [2] that is of the same size as

the kinetic terms:

Sinc
bulk + Sinc

worldsheet → Sinc = w̄

∫
dtdσ

{
− 1

3
Γ ~X · ∂t ~X × ∂σ ~X − (T/w̄)| ~X ′|

− Γ2

8π

∫
dσ′

∂σ ~X · ∂σ′ ~X ′

| ~X − ~X ′|

}
, (9.20)

where ~X ′ is shorthand for ~X(σ′, t), and we have used eq. (5.10) to trade the coupling λ

for the circulation Γ and match the standard notation in the literature. Notice that ~B is

completely decoupled from the vortex lines, and therefore we have omitted the bulk term

(∇ ·B)2 appearing in (9.18).
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Using our power counting rules it is easy to see that all three terms in (9.20) are of

the same order. We have already shown in (8.12) and (8.13) that the first two terms are

of order of the total angular momentum L, and now we also have

Γ2w̄

∫
dtdσdσ′

∂X · ∂′X ′

|X −X ′|
∼ (v`)2 × 1

csa4
× `3

v
× 1

`
∼
(
v

cs

)
`4

a4
∼ L. (9.21)

Eq. (9.20) is the effective action in the strictly incompressible limit. Next-to-leading

order (in v/cs) corrections to this action were studied systematically in [2]. Notice that, in

the incompressible limit, the tension term is the only counterterm needed to renormalize

the UV-divergence in the σ′ integral of the 1/r potential.

10 Outlook

In this paper we have constructed an effective theory for vortex lines in superfluids, valid

at distances much larger than the core size of the vortex. For classical phenomena, it would

be interesting to investigate potential experimental signatures of our results for vortex lines

and vortex rings in ordinary fluids like water, such as, for instance, their interactions with

sound modes.

Perhaps more interesting would be to use our formalism to investigate quantum phe-

nomena for vortex lines in superfluid helium-4. We are particularly interested in under-

standing rotons — elementary gapped excitations that correspond to a finite-momentum

minimum in the energy-momentum dispersion relation, and that are believed to be some

microscopic cousins of vortex rings [16, 38]. Their size is not much bigger than atomic

scale, and they are thus outside the regime of validity of our effective theory. However, as a

preliminary step, we can use our formalism to study quantum effects like virtual phonon ex-

change for smaller and smaller vortex rings — but still of size big enough that we can trust

our computations — and see whether the resulting quantum-corrected energy-momentum

dispersion relation is consistent with having a roton minimum for smaller sizes. Or, more

responsibly, we should generalize what we have done here and develop the general effec-

tive theory for a roton-like point particle coupled to the superfluid bulk modes, and study

quantum effects there.

It would also be interesting to analyze the Kelvin wave spectrum at high energies, and

whether such study can shed light on the relation between the superfluid transition and

the Hagedorn transition in free bosonic string theory. This would probably lead us outside

the regime of validity of our effective theory, but the integrability of the system in the local

induction approximation (which was noticed in [39]) may be of help here.
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A Sound and hydrophoton propagator

We want to derive the propagators for the ~A and ~B fields in the presence of a generic gauge

fixing term of the form (2.16). Our starting point will be the quadratic action (2.17), which

we reproduce here for convenience:

S(2) = w̄

∫
d4x

{
1

2
(~∇× ~A)2 +

1

2

[
~̇B2 − c2

s(~∇ · ~B)2
]

(A.1)

− ~̇B · (~∇× ~A)− 1

2ξ
(~∇× ~B)2 +

1

2ξ
(~∇ · ~A)2

}
.

This action can also be written more succinctly by switching to Fourier space and intro-

ducing the doublet of vector fields Φi = (Ai, Bi), in which case we find

S(2) =
1

2

∫
d4k

(2π)4
Φi(−k) ·Mij(k) · Φj(k) , (A.2)

with

Mij(k) = w̄

(
k2 δij +

(
1
ξ − 1

)
kikj ωkl εilj

−ωkl εilj ω2 δij − k2 1
ξ δij +

(
c2
s − 1

ξ

)
kikj

)
. (A.3)

The matrix can be inverted using the ansatz

(M−1)ij(k) ≡ 1

w̄

(
c1δ

ij + c2k̂
ik̂j c3k̂lε

ilj

−c3k̂lε
ilj c4δ

ij + c5k̂
ik̂j

)
(A.4)

where the c’s are homogeneous functions of ω and k of degree −2. We get

c1 =
1

k2
− ξ ω

2

k4
(A.5a)

c2 = (ξ − 1)
1

k2
+ ξ

ω2

k4
(A.5b)

c3 = ξ
ω

k3
(A.5c)

c4 = −ξ 1

k2
(A.5d)

c5 =
1

ω2 − c2
sk

2
+ ξ

1

k2
. (A.5e)

The matrix of propagators is then equal to i(M−1)ij(k). In the particular case ξ = 0, we see

that this matrix becomes block diagonal and we recover the propagators in equation (2.18).
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B Generalized Nambu-Goto term from the coset

In this appendix we provide an alternative derivation of our effective action for vortex

lines based on the coset construction [40] for spontaneously broken space-time symme-

tries [41, 42]. This technique has been recently applied to a variety of systems (see e.g. [28]),

and we refer the reader to [43] for a nimble review of this formalism. Our goal here is to use

this technique to confirm that the generalized Nambu-Goto action (3.11c) is indeed the most

general worldsheet action one can write with one derivative acting on each field. Along the

way, our analysis will also provide a nice illustration of how coset calculations can be sim-

plified by temporarily introducing a fictitious hierarchy between symmetry breaking scales.

For simplicity, we will base our discussion on the symmetry breaking pattern that arises

in the scalar field language (where time translations are broken, but spatial translations

are not). Since the generalized Nambu-Goto term (3.11c) depends on the bulk fields only

through the 4-velocity uµ, the scalar field is as good as the 2-form when it comes to this part

of the worldsheet action. A more responsible approach would be perhaps to take as starting

point the symmetry breaking pattern of the 2-form language (where spatial translations

are broken, time translations are not), because this would also allow us to recover the

non-derivative Kalb-Ramond coupling between vortex line and sound. However, since the

2-form theory is gauge invariant, this would require dealing with an infinite number of

non-linearly realized symmetries. Such a construction is feasible [44] but more involved

than the one we will present here.

Let us consider a superfluid with a perfectly straight vortex line embedded in it, and

let us work in the limit of infinite volume and infinite vortex length. Such a configuration

spontaneously breaks several symmetries. Some of these symmetries would be broken even

in the absence of the vortex line, namely boosts, because the superfluid as a whole admits

a preferred reference frame in which it is at rest, and also particle number Q and time

translations, which are broken down to the diagonal linear combination (this is in fact the

defining property of a superfluid [21, 28]). Some other symmetries are instead broken only

because of the vortex line, and these are the translations in the directions perpendicular

to the vortex and rotations around these same directions. The only symmetries that are

left unbroken are translations along the vortex line, rotations around it and, as already

mentioned, a linear combination of particle number and time translations.

To simplify our calculations, we will exploit the fact that in principle there could be

a hierarchy between the interatomic length scale at which boosts and particle number are

broken, and the vortex core size, which sets the scale where the additional translations

and rotations get broken. It just so happens that in superfluids these two length scales are

comparable, but in general the former can be much smaller than the latter, as is the case

for vortex lines in ordinary fluids. For our purposes, it will actually be convenient to work

in the limit where the core size is much larger than the interparticle separation. In a first

approximation, this amounts to consider a system where boosts and particle number are

explicitly broken, but there is still an effective notion of unbroken time translations. This

follows from a universal property of systems featuring spontaneous symmetry breaking:

when the symmetry breaking energy scale is raised, the associated Goldstone bosons become

more and more weakly coupled, among themselves as well as to other sectors; in the limit
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in which the Goldstones become invisible, the corresponding symmetry can be thought of

as being explicitly broken.

The symmetry breaking pattern we are interested in thus is

unbroken =


P0

P3

J3

broken =

{
P1, P2 ≡ Pn
J1, J2 ≡ Jn .

(B.1)

Only at the very end will we restore Lorentz and reparameterization invariance, by reintro-

ducing the 4-velocity of the medium uµ as a spurion field. We will base our construction

on the coset parameterization

Ω = ei(tPt+zPz)eiπ
nPneiξ

nJn , (B.2)

where (t, z) are the coordinates on the worldsheet and πn, ξn are Goldstone fields. Starting

from (B.2), we can calculate the Maurer-Cartan form15

Ω−1∂αΩ ≡ ieαβ(Pβ +∇βπnPn +∇βξnJn +AβJz). (B.3)

The explicit form of the coefficients eα
β ,∇βπn,∇βξn and Aβ can be easily calculated using

the algebra of translations and rotations. For our purposes, the most important quantities

are going to be eα
β and ∇βπn. The former plays essentially the role of a vielbein, in that

dtdz det e is an invariant integration measure on the worldsheet, whereas the latter are

the covariant derivatives of the Goldstones πn. Because [P3, Jn] ∼ Pn, we can impose the

inverse Higgs constraints [45] ∇3π
n ≡ 0 and solve them to express the Goldstones ξn in

terms of the πn’s. The fully nonlinear result reads:

ξn = εnm∂3π
m

(
arctan

√
∂3πp∂3πp√

∂3πq∂3πq

)
, (B.4)

where ε12 = −ε21 = 1 and ε11 = ε22 = 0.

By using this result, we can express ∇0π
n,∇βξn and eα

β solely in terms of the Gold-

stones πn. In particular, since ∇βξn ≈ ∂β∂zπ
n, these quantities are of higher order in

the derivative expansion and thus negligible at low energies. Following the usual coset

mantra [46], at lowest order in derivatives the most general invariant Lagrangian can be

written by taking J3-invariant contractions of ∇0π
n. The corresponding action is

S =

∫
dtdz det eL(∇0πn∇0π

n), (B.5)

with

det e =
√

1 + ∂3πn∂3πn (B.6a)

∇0πn∇0π
n =

∂0πn∂0π
n + (εnm∂0πn∂3πm)2

1 + ∂3πp∂3πp
. (B.6b)

15Our convention for the indices is such that α, β, γ . . . = 0, 3 whereas m,n, p, . . . = 1, 2.
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In order to connect our result (B.5) with the generalized Nambu-Goto term (3.11c), it

is sufficient to notice that the quantities above can be rewritten in terms of the 4-velocity

at rest uµ = δ0
µ and the gauge-fixed embedding Xµ = (t, πn, z) as follows:

det e =
√
εαβ∂βXλ∂δXλεγδ∂αXµ∂γXνuµuν =

√
−gαγhαγ det g (B.7a)

∇0πn∇0π
n = 1 +

det ∂αX
µ∂βXµ

εαβ∂βXλ∂δXλεγδ∂αXµ∂γXνuµuν
= 1− 1

gαγhαγ
. (B.7b)

Thus, we conclude that the action (B.5) can be rewritten in a manifestly covariant and

reparameterization-invariant form as

S =

∫
dτdσ

√
− det g F (gαγhαγ) . (B.8)

In fact, this is the only way to rewrite this equation (B.5) in a way that restores both Lorentz

and reparameterization invariance at the same time. Up to an additional dependence on

Y , which we missed because we worked in the limit of where the U(1) baryon number is

explicitly broken, this result agrees with equation (3.11c).

C Feynman rules for the kelvon field

In this section we derive the Feynman rules for the canonically normalized nonrelativistic

scalar action ∫
ddx

[
φ∗c i∂tφc −

|~∇φc|2

2m
+ · · ·

]
(C.1)

which includes our quadratic kelvon action eq. (7.1) as a special case with d = 2,
√
n̄λ φ→

φc, and m = n̄λ
2T (k) . It is worth emphasizing that, despite the formal similarity between

the kelvon case and the non-relativistic massive particle one, for the former the parameter

m cannot be interpreted as a mass. We use the so-called relativistic convention for the

normalization of the one-particle states,

〈~p |~q 〉 = (2Ep)(2π)(d−1)δ(d−1)(~p− ~q) , 1 =

∫
dd−1p

(2π)d−1
|~p 〉 1

2Ep
〈~p | (C.2)

which, when combined with the mode expansion

φc(x) =

∫
dd−1k

(2π)d−1
a~k e

−i(ωkt−~k·~x) φ∗c(x) =

∫
dd−1k

(2π)d−1
a†~k
e+i(ωkt−~k·~x) , (C.3)

gives

〈0|φc(~x)|~p 〉 =
√

2Ep e
−i(Ept−~p·~x) (C.4)

and so every external scalar line has a factor of
√

2Ep. Note that this is the (non-

relativistic) energy associated with the Lagrangian above, Ep = p2/2m.

The infinitesimal cross section for absorption of a single phonon into n kelvons is

dσ =
1

2Ep cs
|M(p→ n)|2dΠn (C.5)
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where M is given by

〈~p1, · · · ~pn|(S − 1)|~p〉 = (2π)dδd(~p− ~p1 − · · · ~pn)× iM (C.6)

and the n-body phase space is

dΠn = (2π)dδd(~p− ~p1 − · · · ~pn)

 n∏
j=1

∫
dd−1pj
(2π)d−1

1

2Ej

 (C.7)

For a D-dimensional bulk field interacting with a d-dimensional kelvon field, the mass

dimension of the matrix element and the n-body phase space are given by[
M
]

= d+
n

2
− n

(
d− 1

2

)
− (D − 2)

2
,

[
Πn

]
= n(d− 2) (C.8)

where we have made use of (C.6), keeping in mind the factors of
√

2E for each external

kelvon leg. The final dimension of the cross section is therefore[
σ
]

= −1 + n(d− 1) + 2

(
d+

n

2
− n

(
d− 1

2

)
− (D − 2)

2

)
− d = d−D + 1 . (C.9)

For d = 2, D = 4, this has the dimensions of length, as expected.

D Non-relativistic limit as the formal c → ∞ limit

In this appendix, we rederive the non-relativistic effective action discussed in section 9.1 by

taking the formal limit c → ∞ of the relativistic action (3.10). In order to take this limit

correctly, one must keep in mind that the arbitrary functions appearing in the effective

action (3.10) have a non-trivial dependence on the speed of light. In order to illustrate

this point, let us revert for a moment to the scalar field description of a superfluid and

consider a very specific equation of state, namely p = (c2
s/c

2)ρ with c2
s = constant. Such a

superfluid is described by the effective action (2.1) with

P (X) = p̄ (
√
X/µ̄)1+c2/c2s ,

√
X =

√
µ̄2 + 2µ̄π̇ + π̇2 − c2(∇π)2, (D.1)

where p̄ and µ̄ are once again the pressure and chemical potential at equilibrium. Since

we are eventually interested in taking the c → ∞ limit, we have explicitly reintroduced

all factors of c. As a consistency check, one can plug this particular form of P (X) into

equations (2.2) and see that indeed dp/dρ = c2
s/c

2. The factor of c2 is there because ρ is

an energy density, and not a mass density. Then, from equation (D.1), one immediately

sees that the background values of the derivatives of P (X) with respect to
√
X scale for

c� cs like
dnP

d
√
X

n ∝
p̄

µ̄n

(
c2

c2
s

)n
, (c� cs). (D.2)

Therefore, the quadratic Lagrangian for the Goldstone π in the c� cs limit reduces to

L2 =
dP

d
√
X

[
− c

2

2µ̄
(∇π)2

]
+

1

2

d2P

d
√
X

2 π̇
2 c�cs−→ p̄

2µ̄2

[
−c

4

c2
s

(∇π)2 +
c4

c4
s

π̇2

]
. (D.3)
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As usual, the coefficient in front of the π̇2 term sets the magnitude of the field fluc-

tuations with a given wavelength. Since we want the size of these fluctuations to remain

finite while we take c→∞, we introduce the canonically normalized field

πc ≡
p̄1/2

µ̄

c2

c2
s

π (D.4)

and take the c → ∞ limit while keeping πc constant. If we now express the effective

Lagrangian in terms of πc, expand it in series around
√
X = µ̄ and keep in mind that the

derivatives of P (X) scale with c/cs as shown in equation (D.2), we find

L =

∞∑
n=0

1

n!

dnP

d
√
X

n (
√
X − µ̄)n =

∞∑
n=0

p̄1−n/2

n!

[
π̇c − c2

s

(∇πc)2

2p̄1/2
+O(1/c2)

]n
. (D.5)

Thus, we see that in the non-relativistic limit c → ∞ the low-energy effective Lagrangian

depends only on the Galilean-invariant combination π̇c − c2
s(∇πc)2/(2p̄1/2).

The key input that allowed us to derive this result was the scaling behavior (D.2),

which we obtained starting from the particular P (X) shown in (D.1). However, our result

— namely the fact that the nonrelativistic action must be a function of the combination π̇−
(∇π)2 (schematically) — is completely general and it applies to nonrelativistic superfluids

with an arbitrary equation of state [47]. This is because the scaling (D.2) itself can be

derived from very general considerations. In fact, from the quadratic Lagrangian (D.3) we

see that the speed of sound for a generic equation of state is given by c2
s = c2P ′/(µ̄P ′′)

evaluated on the background
√
X = µ̄, with each prime denoting a derivative with respect

to
√
X.16 Now, we would like the sound speed cs to be much smaller than c over a large

range of values of chemical potential, and not just for one particular value µ̄. This can be

arranged provided P ′/(µ̄P ′′) is not only small, but also varies sufficiently slowly with µ̄,

which means

µ̄
d

dµ̄

(
P ′

µ̄P ′′

)
≈ 0 =⇒ P ′′′

P ′′
∝ P ′′

P ′
∝ 1

µ̄

c2

c2
s

. (D.6)

Similarly, it is easy to show that µ̄P ′′′′/P ′′′ ∼ c2/c2
s, and so on. The scaling relation (D.2)

— and therefore the non-relativistic limit — is completely determined within the effective

theory once we require that the speed of sound be smaller than the speed of light for generic

boundary conditions. Let us now see how all this works in the 2-form language.

We can repeat a similar analysis and determine how the derivatives of G(Y ) depend

on the ratio c/cs. We will proceed in three steps. First, we can use the relation between

ρ and p given in (2.5) (remember that there the prime stood for d/dY ) together with the

fact that when c2
s is small and approximately constant we have ρ̄ ≈ p̄ c2/c2

s � p̄ to obtain

dG

dn̄
= − ρ̄+ p̄

n̄
≈ − p̄

n̄

c2

c2
s

. (D.7)

16Notice that in section 2 we used primes to indicate derivatives with respect to X or Y , whereas in this

appendix they will denote derivatives with respect to the square roots
√
X or

√
Y . This change of notation

will help to streamline the discussion in this section, hopefully without generating confusion.

– 51 –



J
H
E
P
1
0
(
2
0
1
5
)
1
5
3

Second, we can combine this result with the definition of the sound speed, c2
s = c2n̄ G′′/G′,

to determine the size of the second derivative of G:

d2G

dn̄2
=

1

n̄

dG

dn̄

c2
s

c2
≈ − p̄

n̄2
. (D.8)

Finally, we impose that c2
s be small (compared to c2) over a large range of values of n̄. This

means that n̄ G′′/G′ must have only a mild dependence on the n̄, or equivalently that

n̄
d

dn̄

(
n̄G′′

G′

)
≈ 0 =⇒ d3G

dn̄3
∝ 1

n̄

d2G

dn̄2
∝ p̄

n̄3
, (D.9)

and similarly G′′′′ ∝ G′′′/n̄ and so on. As we can see, the derivatives of G(Y ) do not scale

like the derivatives of P (X): G′ behaves like P ′ in that they both grow like c2/c2
s, but

all other derivatives of G are of the same order (in units of n̄) and remain constant when

c→∞. This should be contrasted with the scaling for the derivative of P in equation (D.2).

We are now in a position to determine the canonical normalization of our fields ~A and
~B. To this end, let us expand the action up to quadratic order to get

L2 = −G
′n̄

2
(~∇× ~A− 1

c
~̇B)2 +

G′′n̄2

2
(~∇ · ~B)2 ∝ p̄

[
c2

c2
s

(~∇× ~A− 1

c
~̇B)2 − (~∇ · ~B)2

]
. (D.10)

This shows that the canonically normalized fields are

~Ac ≡ p̄1/2 c

cs
~A, ~Bc ≡ p̄1/2

~B

cs
. (D.11)

These are the fields that we need to keep fixed while taking the limit c → ∞. In fact, by

doing so
√
Y admits a well defined nonrelativistic limit, as we can see if we rewrite in terms

of the canonically normalized fields:

√
Y = n̄

(
1− cs~∇ · ~Bc

p̄1/2

){
1− c2

s

c2

(~∇× ~Ac − ~̇Bc)
2

2p̄(1− cs~∇ · ~Bc/p̄1/2)2
+O(1/c4)

}
(D.12)

Keeping in mind the equations (D.7)–(D.9), we find that in the c → ∞ limit the bulk

action (3.11a) reduces to

Sbulk →
∫
d4x

[
(~∇× ~Ac − ~̇Bc)

2

2(1− cs~∇ · ~Bc/p̄1/2)
− p̄ V

(
cs~∇ · ~Bc/p̄1/2

)]
, (D.13)

where we have introduced a new dimensionless function V whose derivatives are all of

order 1. In particular, with our parameterization we have V ′ = 0 and V ′′ = 1/2.

Notice that all interactions are suppressed by the same quantity, namely p̄1/2/cs. Since

in the nonrelativistic limit the energy density is dominated by the rest mass, we have

p̄ = ρ̄c2
s/c

2 → mn̄c2
s, which means that p̄1/2/cs is just the square root of the mass density

ρ̄m ≡ mn̄. After all, given that sound waves are perturbations of the medium that change

the local mass density, it should not come as a surprise that their self-interactions are

suppressed by the mass density at rest: local compressions are small (large) when they
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lead to a small (large) relative change in density. This argument suggests that the ratio

cs~∇· ~Bc/p̄1/2 must be related to the relative density fluctuation δρm/ρ̄m. To find the precise

relation between these two quantities, we can express the 4-velocity of the superfluid given

in (3.4) in terms of the canonically normalized fields and then take the c→∞ to find that

the 3-velocity is

~u ≡ ( ~̇Bc − ~∇× ~Ac)
√
ρ̄m (1− ~∇ · ~Bc/

√
ρ̄m )

. (D.14)

Using this result, we find that the Lagrangian (D.13) takes the usual form for a nonrela-

tivistic fluid, i.e.

L =
ρm~u

2

2
− ρ̄mc2

sV (ρm/ρ̄m), (D.15)

provided we identify the mass density with

ρm ≡ ρ̄m(1− ~∇ · ~Bc/
√
ρ̄m) ≡ ρ̄m + δρm. (D.16)

We have therefore recovered the non-relativistic bulk action in eq. (9.9).

Now that we have figured out that the correct way to implement the nonrelativistic

limit is to send c→∞ while holding ~Ac and ~Bc fixed, it is easy to repeat the same procedure

for the worldsheet part of the action. Let us start with the Kalb-Ramond type interaction.

Keeping in mind that the coupling λ can be expressed in terms of the circulation Γ as

shown in equation (5.10), our starting point becomes

SKR =
(ρ̄+ p̄)Γ

n̄c2

∫
dτdσAµν∂τX

µ∂σX
ν (D.17)

where we have Xµ = (c t, ~X), and we have added the overall factor of 1/c2 based on dimen-

sional analysis. Let us now rewrite this equation in terms of the canonically normalized

fields ~Ac and ~Bc defined in (D.11). If we now fix the time reparameterization by imposing

that τ ≡ t and use once again the fact that ρ̄ ≈ ρ̄mc2 in the nonrelativistic limit, we get

SKR → ρ̄mΓ

∫
dtdσ

[
−1

3
~X · ∂t ~X × ∂σ ~X +

1√
ρ̄m

(
~Ac · ∂σ ~X + ~Bc · ∂t ~X × ∂σ ~X

)]
. (D.18)

As we can see, any dependence on the speed of light drops out and therefore the

nonrelativistic limit does not bring about any simplification. Fortunately, this is not true

for the rest of the worldline action, which we will see simplifies considerably when we let

c→∞. We start from the generalized Nambu-Goto term

SNG′ = −
∫
dτdσ

√
− det g T

(
gαβhαβ , Y

)
. (D.19)

As we have seen in section 6, this term is not only compatible with all the symmetries,

but it is in fact necessary to absorb the logarithmic divergences that arise when vortex

lines interact with the bulk fields. In turn, calculating the coefficients in front of these

logarithmic divergences gave us a sense of what is the natural size of the function T and its

derivatives. More specifically, we have seen that the order of magnitude of the background
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Figure 6. Diagrams contributing to T(n0).

value of T — which, up to a factor of c, is just the tension T — and its derivatives with

respect to Y/n̄ — which we denoted with T(0n) — is

T ∼ T(0n) ∼
w̄Γ2

c3
. (D.20)

We calculated the case of T(01) in detail, and the general result follows by considering the

diagram where we generalize to have n insertions of (~∇· ~B) couple to the hydrophoton loop.

Once again, we have appropriately restored the powers of c based on dimensional analysis.

The derivatives of T with respect to gαβhαβ have instead a nontrivial dependence on the

ratio cs/c and scale like

T(n0) ∼
w̄Γ2

c3

(
c2

c2
s

)n
. (D.21)

Strictly speaking, in section 6 we only considered a diagram with the emission of a single

phonon, and thus we only determined the magnitude of T(10). However, it is easy to

convince oneself that a diagram with emission of 2n + 1 phonons such as in figure 6 is

logarithmic divergent and must scale parametrically like in equation (D.21). The running

vertex gives a contribution of the form

w̄Γ2

∫
dtdz

( ~̇B · ~v)

c2
s

(
~̇B2

c2
s

)n
(D.22)

to the Lagrangian, and while the argument ~̇B2 appears in both gαβhαβ and Y , the extra

factor of 1/c2
s together with the result in eq. (D.20) indicates that the derivative must be

taken with respect to the first argument.

The scaling relations (D.20) and (D.21) suggest that we extract an overall factor of

w̄Γ2/c3 from the function T . Then, we can expand the quantities appearing in (D.19) for

large values of c as√
− det g = c| ~X ′|+O(1/c) (D.23a)

gαβhαβ = −1− ( ~̇X − ~u)2

c2
+

[( ~̇X − ~u) · ~X ′]2

c2| ~X ′|2
+O(1/c4) (D.23b)

Y/n̄2 = (1− ~∇ · ~Bc/
√
ρ̄m)2 +O(1/c2), (D.23c)
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where ~u is the 3-velocity of the superfluid defined in (D.14), and then combine these results

with w̄ ≈ ρ̄mc2 to find that when c→∞ the generalized Nambu-Goto term reduces to

SNG′ → ρ̄mΓ2

∫
dtdσ| ~X ′| f

(
( ~̇X⊥ − ~u⊥)2

c2
s

,
~∇ · ~Bc√
ρ̄m

)
, (D.24)

where we have introduced a dimensionless function f whose magnitude and derivatives

are all of order 1. We have also simplified the notation by denoting with ~̇X⊥ and ~u⊥ the

components of ~̇X and ~u perpendicular to the vortex line.
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