Effective Use of Boolean Satisfiability Procedures
in the Formal Verification of Superscalar and
VLIW Microprocessors 1

Miroslav N. Velev " Randal E. Bryant "
mvelev@ece.cmu.edu randy.bryant@cs.cmu.edu
http://www.ece.cmu.edu/~mvelev http://www.cs.cmu.edu/~bryant
*Department of Electrical and Computer Engineering School of Computer Science

Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A.

Abstract 2 Background
We compare SAT-checkers and decision diagrams on the evalua- The formal verification is done by correspondence checking—
tion of Boolean formulas produced in the formal verification of comparison of the superscalar/VLIW Implementation against a
both correct and buggy versions of superscalar and VLIW micro- - non_pipelined Specification, based on the Burch and Dill flushing
processors. We identify one SAT-checker that significantly out- technique [10]. The correctness criterion is expressed as a for-
performs the rest. We evaluate ways to enhance its performance | in the logic of Equality with Uninterpreted Functions and
by variations in the generation of the Boolean correctness formu- \jemories (EUFM) [10] and states that all user-visible state ele-
las. We reassess optimizations previously used to speed up thements in the processor should be updated in sync by either 0, or
formal verification and probe future challenges. 1, or up tok instructions after each clock cycle, whekés the
; issue width of the design. The correctness formula is then trans-
1 Introduction _lated to a Boolean formula by an automatic tool [55] that exploits
In the past few years, SAT-checkers have made a dramatic the properties of Positive Equality [8], tie encoding [18], and
improvement in both their speed and capacity. We compare 28 of a number of conservative approximations. The resulting Boolean
them with decision diagrams—BDDs [7] and BEDs [61]—as formula should be a tautology in order for the processor to be
well as with ATPG tools [21][52] when used as Boolean Satisfi- correct and can be evaluated by any SAT procedure_
ability (SAT) procedures in the formal verification of micropro- The syntax of EUFM [10] includes terms and formulas.
cessors. The comparison is based on two benchmark suites, eachTerms are used in order to abstract word-level values of data, reg-
of 101 Boolean formulas generated in the verification of 1 cor- ster identifiers, memory addresses, as well as the entire states of
rect and 100 buggy versions of the same design—a superscalar memory arrays. A term can be an Uninterpreted Function (UF)
and a VLIW microprocessor, respectively. Unlike existing applied on a list of argument terms, a domain variable, dif&n
benchmark suites, e.g., ISCAS 85 [5] and ISCAS 89 [6], which gperator selecting between two argument terms based on a con-
are collections of circuits that have noth_lng in common, our trolling formula, such thafTE(formula, termi, tern2) will evalu-
suites are based on the same correct design and hence provide &te toterml whenformula= true and toternm2 whenformula=
point for consistent comparison of different evaluation methods. false The syntax for terms can be extended to model memories
The correctness condition that we use is expressed in a decid- hy means of the functiongad andwrite [10][59]. Formulas are
able subset of First-Order Logic [10]. That allows it either to be ysed in order to model the control path of a microprocessor, as
checked directly with a customized decision procedure [51] or to ell as to express the correctness condition. A formula can be an
be translated to an equivalent Boolean formula [55] that can be yninterpreted Predicate (UP) applied on a list of argument terms,
evaluated with SAT engines for either proving correctness or g propositional variable, alTE operator selecting between two
finding a counterexample. The latter approach can directly bene- argument formulas based on a controlling formula, or an equa-
fit from improvements in the SAT tools. tion (equality comparison) of two terms. Formulas can be
We identify Chaff [38] as the most efficient SAT-checker for npegated and connected by Boolean connectives. We will refer to
the second verification strategy when applied to both correct and poth terms and formulas as expressions.
buggy designs. Chaff significantly outperforms BDDs [7] and the UFs and UPs are used to abstract away the implementation
SAT-checker DLM-2 [48], the previous most efficient SAT pro- details of functional units by replacing them with “black boxes”
cedures for, respectively, correct and buggy processors. We that satisfy no particular properties other than thatusictional
reevaluate optimizations used to enhance the performance of consistencyNamely, that the same combinations of values to the
BDDs and DLM-2 and conclude that many of them are no longer jnputs of the UF (or UP) produce the same output value. Then, it
crucial on the same benchmark suites. Our study allows us to no longer matters whether the original functional unit is an adder
eliminate conservative approximations that might result in false or a multiplier, etc., as long as the same UF (or UP) is used to
negatives and thus consume precious user time for analysis. We replace it in both the Implementation and the Specification. Note
also prlorltlze the Optlmlzatlons that are still useful with Chaff in that in this way we will prove a more genera| pr0b|em_that the
the order of their impact on the efficiency of the formal verifica- processor is correct for any implementation of its functional
tion. units. However, that more general problem is easier to prove.
Two possible ways to impose the property of functional con-
1. This research was supported by the SRC under contract 00-DC-684. sistency of UFs and UPs are Ackermann constraints [1] and
nestedITEs [3][4][21]. The Ackermann scheme replaces each
Permission to make digital or hard copies of all or part of this work for ~ UF (UP) application in the EUFM formulg with a new domain
personal or classroom use is granted without fee provided that copies yariable (propositional variable) and then adds external consis-
are not made or distributed for profit or commercial advantage and that tency constraints. For example, the UF applicafi@g, b;) will
copies bear this notice and the full citation on the first page. To copy g replaced by a new domain varialsle another application of
otherwise, or republish, to post on servers or to redistribute to lists, {0 same UFi(ay, b,), will be replaced by a new domain variable

requires prior specific permission and/or a fee. : T
DAC 2001 June 18-22, 2001, Las Vegas, Nevada, USA. Co. Then, the resulting EUFM formul& will be extended as

Copyright 2001 ACM 1-58113-297-2/01/0006...$5.00. [(a1=a) O(by=by) U (c;=¢x)] U F.lInthe nestedTEs

scheme, the first application of the UF above will still be
replaced by a new domain variatide However, the second one
will be replaced by TE((a, = a;) O (b, = by), ¢4, C¢y), wherec, is
a new domain variable. A third onfag, bs), will be replaced by
ITE((ag = ap) O (bg = by), ¢y, ITE((ag = &) U (b3 = by), C5, C3)),
wherecs is a new domain variable, and so on. Similarly for UPs.
Positive Equality allows the identification of two types of
terms in the structure of an EUFM formula—those which appear
in only positive equations and are callpeterms(for positive
terms), and those which appear in both positive and negative
equations and are callegterms(for general terms). A negative

equation is one which appears under an odd number of negations

or as part of the controlling formula for dRE operator. The effi-
ciency from exploiting Positive Equality is due to the observation
that the truth of an EUFM formula under a maximally diverse
interpretation of the p-terms implies the truth of the formula
under any interpretation. A maximally diverse interpretation is
one where the equality comparison of a domain variable with
itself evaluates tdrue, that of a p-term domain variable with a
syntactically distinct domain variable evaluatedatse, and that

of a g-term domain variable with a syntactically distinct g-term
domain variable (a g-equation) could evaluate to eithee or
falseand can be encoded with Boolean variables [18][40].

3 Microprocessor Benchmarks

We base our comparison of SAT procedures on a set of high-level
microprocessors, ranging from a single-issue 5-stage pipelined
DLX [23], 1xDLX-C, to a dual-issue superscalar DLX with mul-
ticycle functional units, exceptions, and branch prediction,
2xDLX-CC-MC-EX-BP [56], to a 9-wide VLIW architecture,
9VLIW-MC-BP [57], that imitates the Intel Itanium [25] [49] in

speculative features such as predicated execution, speculative

register remapping, advanced loads, and branch prediction.

The VLIW design is far more complex than any other that
has been formally verified previously in an automatic way. It has
a fetch engine that supplies the execution engine with a packet of
9 instructions, with no internal data dependencies. Each of these
instructions is already matched with one of 9 execution pipelines
of 4 stages: 4 integer pipelines, two of which can perform both
integer and floating-point memory accesses; 2 floating-point
pipelines; and 3 branch-address computation pipelines. Every
instruction is predicated with a qualifying predicate identifier,
such that the result of that instruction affects user-visible state
only when the predicate evaluates to 1. Data values are stored in
4 register files: integer, floating-point, predicate, and branch-
address. The two floating-point ALUs, as well as the Instruction
and Data Memories, can each take multiple cycles for computing
aresult or completing a fetch, respectively. There can be up to 42
instructions in flight. An extended version, 9VLIW-MC-BP-EX,
also implements exceptions.

We created 100 incorrect versions of botkD2 X-CC-MC-
EX-BP and 9VLIW-MC-BP. The bugs were variants of actual
errors made in the design of the correct versions and also coin-
cided with the types of bugs that Van Campenhautal. [54]
analyzed to be among the most frequent design errors. The
injected bugs included omitting inputs to logic gates, e.g., an
instruction is not squashed when a preceding branch is taken or a
stalling condition for the load interlock does not fully account for

the cases when the dependent data operand will be used. Other

types of bugs were due to using incorrect inputs to logic gates,
functional units, or memories, e.g., an input with the same name
but a different index. Finally, lack of mechanisms to correct a

speculative update of a user-visible state element when the spec-

ulation is incorrect. Hence, the variations introduced were not

completely random, as done in other efforts to generate bench-
mark suites [22][26][27][36]. The bugs were spread over the

entire designs and occurred either as single or multiple errors.

4 Comparison of SAT Procedures

We evaluated 28 SAT-checkers: SATO.3.2.1 [44][63]; GRASP
[17][32] [33], used both with a single strategy and with restarts,
randomization, and recursive learning [2]; CGRASP [12][34], a
version of GRASP that exploits structural information; DLM-2
and DLM-3 [48], as well as DLM-2000 [62], all incomplete SAT-
checkers (i.e., they cannot prove unsatisfiability) based on global
random search and discrete Lagrangian Multipliers as a mecha-
nism to not only get the search out of local minima, but also steer
it in the direction towards a global minimum—a satisfying
assignment; satz [30][45], satz.v213 [30][45], satz-rand.v4.6 [19]
[45], eqsatz.v20 [31]; GSAT.v41l [45][47], WalkSAT.v37 [45]
[46]; posit [16][45]; ntab [13][45]; rel_sat.1.0 and rel_sat.2.1
[3][45]; rel_sat_rand1.0 [19][45]; ASAT and C-SAT [15]; CLS
[41]; QSAT [39] and QBF [42], two SAT-checkers for quantified
Boolean formulas; ZRes [11], a SAT-checker combining Zero-
Supressed BDDs (ZBDDs) with the original Davis-Putnam pro-
cedure; BSAT and IS-USAT, both based on BDDs and exploiting
the properties of unate Boolean functions [29]; Prover, a com-
mercial SAT-checker based on Stalmarck’s method [50]; Heer-
Hugo [20], also based on the same method; and Chaff [38], a
complete SAT-checker exploiting lazy Boolean constraint propa-
gation, non-chronological backtracking, restarts, randomization,
and many optimizations.

Additionally, we experimented with 2 of the fastest (and pub-
licly available) ATPG tools—ATOM [21] and TIP [52]—used in
a mode that tests the output of a benchmark for being stuck-at-0,
which triggers the justification of value 1 at the output, turning
the ATPG tool into a SAT-checker. We also used Binary Decision
Diagrams (BDDs) [7] and Boolean Expression Diagrams (BEDs)
[61]—the latter not being a canonical representation of Boolean
functions, but shown to be extremely efficient when formally
verifying multipliers [60].

The translation to the CNF format [28], used as input to most
SAT-checkers, was done after inserting a negation at the top of
the Boolean correctness formula that has to be a tautology in
order for the processor to be correct. If the formula is indeed a
tautology, its negation will bdalse so that a complete SAT-
checker will be able to prove unsatisfiability. Else, a satisfying
assignment for the negation will be a counterexample.

In translating to CNF, we introduced a newxiliary Boolean
variable for the output of everyAND, OR or ITE gate in the
Boolean correctness formula and then imposed disjunctive con-
straints (clauses) that the value of a variable at the output of a
gate be consistent with the values of the variables at the inputs,
given the function of the gate. Inverters were subsumed in the
clauses for the driven gates. All clauses were conjuncted
together, including a constraint that the only primary output (the
negation of the Boolean correctness formulalrige. The vari-
ables in the support of the Boolean correctness formula before its
translation to CNF will be callegrimary Boolean variables

The experiments were performed on a 336 MHz Sun4 with
1.2 GB of memory and 1 GB of swap space. CUDD [14] and the
sifting dynamic variable reordering heuristic [43] were used for
the BDD-based runs. In the BED evaluations, we experimented
with converting the final BED into a BDD with both the
up_one() andup_all() functions [61] by employing 4 dif-
ferent variable ordering heuristics—variants of the depth-first
and fanin [37] heuristics—that were the most efficient in the ver-
ification of multipliers [60][61].

The SAT procedures that scaled for the 100 buggy variants of
2xDLX-CC-MC-EX-BP are listed in Table 1. The rest of the
SAT solvers had trouble even with the single-issue processor,
1xDLX-C, or could not scale for its dual-issue versios2.X-

CC (without exceptions, multicycle functional units, and branch
prediction). The SAT-checker Chaff had the best performance,
finding a satisfying assignment for each benchmark in less than

40 seconds (indeed, less than 37 seconds). We ran the rest of theone monolithic correctness criterion, while BDDs evaluate 16
SAT procedures for 400 and 4,000 seconds—one and two orders weak (and easier) criteria in parallel [57]. The assumption is that

of magnitude more, respectively. DLM-2 was the second most
efficient SAT-checker for this suite, closely followed by DLM-3.

CGRASP was next, solving only half of the benchmarks in 400
seconds, followed by QSAT with 49 of the benchmarks under
400 seconds. The rest of the SAT procedures, including BDDs,
performed significantly worse. DLM-2000 is slower than DLM-2

and DLM-3 because of extensive analysis before each decision.

% Satisfiable in
SAT Procedure
<40 sec <400 se < 4,000 s¢c
Chaff 100 100 100
DLM-2 61 90 98
DLM-3 58 86 99
CGRASP 46 50 71
QSAT 40 49 52
SATO 22 39 71
rel_sat.1.0 13 20 22
WalkSAT 13 18 32
rel_sat_rand 10 27 34
DLM-2000 9 37 70
GRASP 6 27 48
GRASP + restarts 6 11 18
CLS 5 8 10
rel_sat.2.1 4 71 99
egsatz 3 4 5
BDDs 2 2 5
Table 1: Comparison of SAT procedures on 100 buggy

versions of 2xDLX-CC-MC-EX-BP.
When verifying the correct #DLX-CC-MC-EX-BP, Chaff

there are enough computing resources to support parallel runs of
the tool. As soon as one of these parallel runs comes with a coun-
terexample, we terminate the rest, and consider the minimum
time as the verification time. As shown, the difference between
BDDs and Chaff is up to 4 orders of magnitude.

Applying the scriptsimplify [35] in order to perform
algebraic simplifications on the CNF formula for one of the
buggy VLIW designs required more than 47,000 seconds, while
Chaff took only 14 seconds to find a satisfying assignment with-
out simplifications. This is not surprising, given the CNF formula
sizes of up to 450,000 clauses with up to 25,000 variables.

Hence, based on experiments with two suites consisting of
100 buggy designs and their correct counterpart, we identified
Chaff as the most efficient SAT procedure—more than 2 orders
of magnitude faster than other SAT solvers—for evaluating Bool-
ean formulas generated in the formal verification of complex
microprocessors with realistic features. How does this change the
frontier of possibilities? The rest of the paper examines ways to
increase the productivity in formal verification of microproces-
sors by using Chaff as the back-end SAT-checker.

5 Impact of Structural Variations in Gener-

ating the Boolean Correctness Formulas

Early reduction of p-equations. When eliminating UFs and
UPs that take only p-terms as arguments, the translation algo-
rithm introduces equations between argument terms in order to
enforce the functional consistency property by nestéHs
[8][55]. The argument terms consist of only nestddEs that
select one among a set of supporting domain variables. If the
terms on both sides of an equation have disjoint supports of

again had the best performance, requiring 40 seconds of CPU p-term domain variables, then the two compared terms will not

time, followed by BDDs with 2,635 seconds [56], and QSAT
with 14 hours and 37 minutes. CGRASP, SATO, GRASP, and
GRASP with restarts, randomization, and recursive learning
could not prove the CNF formula unsatisfiable in 24 hours.

10°

—— BDDs: 16 runs
— — Chaff: 1 run

10°E

Time, sec.

.
[10 20 30 6 70 80 90 100
100 Buggy VLIW Designs

Figure 1: Comparison of Chaff and BDDs on 100 buggy ver-
sions of 9VLIW-MC-BP. The benchmarks are sorted in ascend-
ing order of their times for the BDD-based experiment.

We then compared Chaff and DLM-2 on the 100 buggy
VLIW designs: Chaff was better in 77 cases, with DLM-2 being

be equal under a maximally diverse interpretation and their equa-
tion can be replaced witfalse This is already done in the final
step of the translation algorithm [55]. However, an early reduc-
tion of such equations will result in a different structure of the
DAG for the final Boolean formula, i.e., in a different (but equiv-
alent) CNF formula to be evaluated by SAT-checkers.

Eliminating UPs with Ackermann constraints. Ackermann
constraints [1] result in a negated equation for the outputs of the
eliminated UF or UP: §; =a,)0(b; =by) O (c;=cy)] O F,
which is equivalent to:d; = ay)[(b, = by)[(-(c; =¢y) O F'. The
negated equation for the output valugsandc, means that they
cannot be p-terms—something that we want to avoid in order to
exploit the computational efficiency of Positive Equality. There-
fore, Ackermann constraints should not be used for eliminating
UFs whose results appear only in positive equations. However,
they can be used when eliminating UPs—then the negated equa-
tions will be over Boolean variables and that is not a problem
when using Positive Equality. Hence, Ackermann constraints can
be used instead of nestitEs for eliminating UPs.

The data points for 4 runs with structural variations, shown in
Fig. 2, are the minimum times among 4 parallel runs: one with no
structural variations (the data plotted for 1 run), one for each of
the above variations used alone, and one for both variations com-
bined. The data for 4 runs with parameter variations are the mini-
mum among the 1 run with no structural variations and 3

faster with more than 60 seconds on only 10 benchmarks. How- additional runs where some of the input parameters to Chaff were
ever, Chaff took at most 355 seconds, and 79 seconds on average changed. The average time for finding a satisfying assignment

while DLM-2 did not complete 2 of the benchmarks in 3,600 sec-
onds (we tried 4 different parameter sets). When verifying the
correct QVLIW-MC-BP, Chaff required 1,644 seconds, compared
to the 31.5 hours by BDDs [57], using a monolithic correctness
criterion in both cases. Figure 1 compares Chaff and BDDs on
the 100 buggy VLIW designs, such that Chaff is evaluating only

when using structural variations is 45.8 seconds, with the maxi-
mum being 278 seconds, compared to 45 and 254 seconds,
respectively, with parameter variations. Therefore, the effect of
structural variations is almost identical with that of parameter
variations, as can be seen in the figure. Running them in parallel
(7 runs) reduces the average time to 37 seconds and the maxi-
mum to 218 seconds. Hence, only a few parallel runs with differ-

ent structural and/or parameter variations can help reduce the
time for SAT checking with Chaff. Structural variations also
accelerated the verification of correct designs with up to 20%.

10°

— 1run
— — 4 runs, structural variations
4 runs, parameter variations

Time, sec.

10'E

w0 50 e 70 80 %0
100 Buggy VLIW Designs

Figure 2: Using structural vs. parameter variations in Chaff.

The benchmarks are sorted in ascending order of their times

for the experiment with 1 run.

6 Encoding G-Equations

The g; encoding. The equatiory; = g;, whereg; andg; are g-
term domain variables, is replaced by a unique Boolean variable
&; [18]. Transitivity of equality, ¢; = g;) U (g =g U (g = g

has to be enforced additionally, e.g., by triangulating the compar-
ison graph of those; variables that affect the final Boolean for-
mula and then enforcing transitivity for each of the resulting
triangles—sparse transitivity [9]. Although not every correct
microprocessor requires transitivity for its correctness proof, that
property is needed in order to avoid false negatives for buggy
processors or for designs that do need transitivity.

The small domains encodingEvery g-term domain variable is

L L L
0 10 20 30

being 8 variables, and required 1,644 seconds of CPU time.
Since this design does not need transitivity of equality for its cor-
rectness proof, such constraints were not included in the formula
generated with thee; encoding. Adding these constraints
resulted in 705 extra; variables due to triangulating the g-term
comparison graph, and in 2,680 seconds of CPU time—an
increase of over 1,000 seconds. Hence, including transitivity con-
straints for a design that does not need them for its correctness
proof might result in an increase of the verification time.

10*

small domains encoding: 1 run
e, encoding: 1 run

\
I\
I

[

VA

\
M
I

v
VA
<)
o A T VA2
[R VAR TR P
N N ARV AR LR EAT !
PRI

! Y] v f f

! v i

o L L L
o 10

L L L
70 80

10

100 But viiw Desi60r|s
Figure 3: Comparison of the geg; and sr;all domains encodings
on 100 buggy versions of 9VLIW-MC-BP, using Chaff. The
benchmarks are sorted in ascending order of their times for

the experiment with the small domains encoding.

We also compared the two encodings on correct designs that
do require transitivity of equality for their correctness proofs—
superscalar processors with out-of-order execution that can exe-
cute register-register and load instructions. Because instructions
are dispatched when they do not have Write-After-Write (in
addition to Write-After-Read and Read-After-Write) dependen-

100

assigned a set of constant values that it can take on in a way that cies [23] on instructions that are earlier in the program order but

allows it to be either equal to or different from any other g-term
domain variable that it can be transitively compared for equality
with [40]. If the set of constants for a g-term variable consists of
N values, those can be indexed withg,(N)J Boolean variables.
Then two g-term domain variables are equal if their indexing
Boolean variables select simultaneously a common constant.
Note that transitivity is automatically enforced in this encoding.
Depending on the structure of the g-term variable comparison
graphs, the small domains encoding might introduce fewer pri-
mary Boolean variables than tegencoding. That would mean a
smaller search space. However, now the equality comparison of
two g-term domain variables gets replaced with a Boolean for-
mula—a disjunction of conjuncts, each consisting of many Bool-
ean variables or their complements and encoding the possibility
that the two g-term domain variables evaluate to the same com-
mon constant—instead of just a single Boolean variable.

The two encodings are compared on the 100 buggy VLIW
designs in Fig. 3. In a single run of the small domains encoding,
the maximum CPU time for detecting a bug is 3,633 seconds and

are stalled due to data dependencies, transitivity of equality is
required in proving the equality of the final states of the Register

File reached after the Implementation and the Specification sides
of the commutative correctness diagram.

G-Equation Encoding
lssue & small domains
Width Primary CPU Time Primary CPU Time
Boolean [sec] Boolean [sec]
Variables Variables
2 95 3.5 81 3.7
3 201 54 127 64
4 346 810 194 2,358
5 530 2,500 249 3,804

Table 2: Comparison of the e; and small domains encodings
on correct out-of-order superscalar microprocessors that do
require transitivity of equality for their correctness proofs.

While the small domains encoding introduced fewer Boolean

the average is 394 seconds, compared to 355 and 79 secondsyariables—less than half of those required byehencoding for

respectively, for the; encoding (which was used for the experi-
ments before this section). Constraints for transitivity of equality
were included when using the encoding. Structural variations
with 4 runs reduced the maximum time with the small domains

encoding to 1,240 seconds, and the average to 154 seconds, com-

pared to 154 and 46 seconds, respectively, fogtlemcoding.
When verifying the correct 9VLIW-MC-BP, the small
domains encoding resulted in 1,152 primary Boolean variables,
with 890 of them being indexing variables, and required 6,008
seconds of CPU time. On the other hand, e encoding
resulted in 2,615 primary Boolean variables, with 2,353 of them

the 5-wide design—it resulted in longer CPU times. Chaff could
not prove the unsatisfiability of the CNF formula for the 6-wide
superscalar processor with either encoding in less than 24 hours
of CPU time—a direction for future work.

The efficiency of thes; encoding can be explained by the
impact of g-equations on the instruction flow, and hence on the
correctness formula. Such equations determine forwarding and
stalling conditions, based on equality comparisons of register
identifiers, as well as instruction squashing conditions for cor-
recting branch mispredictions, based on equality comparisons of
actual and predicted branch targets. Therefore, g-equations affect

the execution of many instructions. A single Boolean variable,
introduced in theg; encoding, naturally fits the purpose of
accounting for both cases—that the equality comparison is either
true or false Transitivity of equality is never violated—as soon
as twog; variables in a triangle beconteue then the thirde;
varlable in that triangle immediately becomiese, due to the
imposed transitivity constraints and the effect of the unit clause
rule in SAT-checkers, and this is immediately extended to any
cycle of g; variables [9]—which avoids wasteful exploration of
|nfea5|ble portions of the search space.

On the other hand, the small domains encoding enumerates
all mappings of g-term domain variables to a sufficient set of dis-
tinct constants, thus introducing more information than actually
required to solve the problem. Now, an auxiliary Boolean vari-
ablefj is introduced in place of each primagy Boolean variable
from {he previous encoding, such tigtepresents the value of a
Boolean formula enumerating the cases when g-témmslj will
evaluate to the same common constant. Therefodepends on
the indexing Boolean variableg that encode the mapping of
g-termi to its set of possible constants, and on the indexing Bool-
ean variableg;, that encode the mapping of g-tejrto its set of
possible constants. Note that the indexing variaky|esill affect
the value of eaclf,, auxiliary variable that encodes the equality
between g-ternmi and some g-ternm. If a SAT-checker assigns
values tof; variables before all their supporting indexing vari-
ables, then the; values might violate transitivity of equality.
Furthermore, it mlght take a while before enough indexing vari-
ables get assigned in order to detect the violation and to correct it
by backtracking. The work done in the meantime will be wasted.
On the other hand, if all supporting indexing variables get
assigned before thg variables that they affect, then thoge
variables will flip every time when a single indexing variable in
their support flips. Note that each legal assignmeng;toari-
ables is a legal assignmentffovariables, except that now it can
be justified with many possible assignments to the indexing vari-
ables. Hence, multiple branches in the formula will be revisited
for what will be just one visit with the; encoding. As a result,
the small domains encoding is less effjlcient thanghencoding.

In a different application—encoding constraint satisfaction
problems as SAT instances—Hoos [24] similarly found that bet-
ter performance is achieved with an encoding that introduces
more variables but results in conceptually simpler search spaces.

7 Benefits of Conservative Approximations

and Positive Equality

Conservative approximations, such as manually inserted transla-
tion boxes (dummy UFs or UPs with one input) [56] or automati-
cally abstracted memories [57] have the potential to speed up the
verification of correct designs, but might result in false negatives
that will require manual user intervention and analysis. Not
exploiting such optimizations in the verification of 9VLIW-MC-
BP-EX resulted in CPU time of 2,542 seconds with monolithic
evaluation of the correctness criterion and ¢hencoding, com-
pared to 1,513 seconds with the optlmlzatlons However, exploit-
ing structural variations in only one run—combining early
reductions of p-equations and Ackermann constraints for elimi-
nating UPs—resulted in CPU time of 1,964 seconds. This is a
negligible overhead, compared with the burden of manual analy-
sis necessary to identify potential false negatives that might
result when using these optimizations.

We then evaluated the benefits of exploiting Positive Equal-
ity, given the extremely efficient SAT-checker Chaff. This was
implemented by introducing ae; Boolean variable for the
equality comparison of two dlstlnct p-term domain variables as
done originally by Goelet al. [18], instead of treating these
p-terms as different. We started with a buggy version of
1xDLX-C: the bug was detected in 0.02 seconds with Positive

Equality, compared to 20 seconds without. Verifying the correct
1xDLX-C took 0.17 seconds with Positive Equality, compared to
3,111 seconds without. The bug in an erroneous version of
2xDLX-CC-MC-EX-BP was detected in 1.6 seconds with Posi-
tive Equality, compared with 661 seconds without. The correct
2xDLX-CC-MC-EX-BP was verified in 40 seconds with Positive
Equality, consuming 36 MB of memory, but ran out of memory
after 77,668 seconds without exploiting Positive Equality.
Finally, a bug in an incorrect version of 9VLIW-MC-BP was
detected in 173 seconds using 96 MB, compared to running out
of memory after 6,351 seconds without Positive Equality. There-
fore, exploiting Positive Equality is still the major reason for our
success in formally verifying complex microprocessors.

8 Conclusions

We found the SAT-checker Chaff [38] to be the most efficient
means for evaluating Boolean formulas generated in the formal
verification of both correct and buggy microprocessors, dramati-
cally outperforming 27 SAT-checkers, 2 ATPG tools, and 2 deci-
sion diagrams—BDDs [7] and BEDs [61]. Reassessing various
optimizations that can be applied when producing the Boolean
formula for the microprocessor correctness, we conclude that the
single most important step is exploiting Positive Equality [8].
Without it, Chaff would not have scaled for realistic superscalar
and VLIW microprocessors with exceptions, multicycle func-
tional units, branch prediction, and other speculative features.

Exploiting thee; encoding [18] of g-equations resulted in a
speedup of a factor of 4 for our most complex VLIW benchmarks
compared to the small domains encoding [40] when verifying
correct designs, and consistently performed better on buggy ver-
sions. Although theg; encoding results in more than twice as
many primary Boolean variables, its efficiency can be explained
with the conceptual simplicity of the resulting search space—
with eache; Boolean variable naturally encoding the equality
between a palr of g-term domain variables. Transitivity of equal-
ity is never violated, which avoids wasteful exploration of infea-
sible portions of the search space. In contrast, the small domains
encoding enumerates all mappings of g-term domain variables to
a sufficient set of distinct constants, thus introducing more infor-
mation than actually required to solve the problem. This results
in revisiting portions of the search space for what would be just
one visit with thee; encoding. Transitivity of equality is not
guaranteed to be aljways satisfied, also allowing wasteful work.

Conservative approximations, such as automatic abstraction
of memories [57] and manually-inserted translation boxes [56],
are not as essential to the fast verification of correct VLIW and
dual-issue superscalar processors when using Chaff as these opti-
mizations were when using BDDs—previously the most efficient
SAT procedure for correct designs.

Structural variations in generating the Boolean correctness
formulas—early reductions of p-equations and using Ackermann
constraints for eliminating uninterpreted predicates—as well as
parameter variations for Chaff can help to somewhat accelerate
the SAT checking, although no single variation performs best.

Applying algebraic simplifications [35] to the CNF formulas
resulting from realistic microprocessors is impractical, due to the
large number of clauses—hundreds of thousands.

To conclude, we showed that Chaff can easily handle very
hard and big CNF formulas, produced in the formal verification
of microprocessors without applying conservative transforma-
tions that were previously needed in BDD-based evaluations but
have the potential to result in false negatives and to take exten-
sive human effort to analyze. We identified the optimizations that
do help increase the performance of Chaff on realistic dual-issue
superscalar and VLIW designs—Positive Equality, combined
with the g; encoding, and possibly with structural/parameter
variations |n multiple parallel runs. Our study will increase the
productivity of microprocessor design engineers and shorten the

time-to-market for VLIW and DSP architectures that constitute a
significant portion of the microprocessor market [53]. The
benchmarks used in this paper are available as [58].

Acknowledgments

We thank M. Moskewicz for providing us with Chaff and for
fine-tuning it on our benchmarks.

References

[1] W. Ackermann,Solvable Cases of the Decision Probledorth-Holland,
Amsterdam, 1954. . . o)

[2] L. Baptista, and J.P. Marques-Silva, “Using Randomjzation and Learning

to Solve Hard Real-World Instances of Satisfiabil yPnnmgles and

Practice of Constraint Programming (CP ‘O%egtember 2000. .

R.J. Bayardo, Jr., and R. Schrag, “Using CSP look-back techniques to

solve real world SAT instances,14th National Conference on Artificial

Intelllgence (AAAI ‘91)Ju|5y 1997, pp. 203-208.

[4 BED Packag .5, October 2000.

(3]

version 2
5] F. Brglez, and H. Fujiwara, “A Neutral Netlist of 10 Combinational
Benchmark Circuits,International Symposium on Circuits and Systems

ISCAS '85) 1985. o o)

. Brglez, D. Bryan, and K. Kozminski, “Combinational Profiles_of
Seé]uentlal Benchmark Circuitslhternational Symposium on Circuits
an Sgstems (ISCAS '89p89. . .) .
R.E. Bryant, "Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams,” ACM Computing Surveys, Vol. 24, No. 3 (Septem-
ber 1992), pp. 293-318. o .
R.E. Bryant, S. German, and M.N. Velev, “Processor Verification Using
Efficient Redyctions of the Logic of Uninterpreted Functions to Proposi-
tional Logic,”* ACM Transactions on Computational Logic (TOCL),
Vol. 2, No. 1 (January 2001). o . o
R.E. Bryant, and M.N. Velev, “Boolean Satisfiability with Transitivity
Constraints,” Computer-Aided Verification (CAV ‘00.A. Emerson and
A.P. Sistlagds, LNCS 1855, Springer-Verlag, July 2000, pp. 86-98.

J.R. Burch, and D.L. Dill, “Automated Verification of Pipelined Micro-
processor Control,Computer-Aided VerificatiofCAV ‘94), D.L. Dill,

ed, LNCS 818, Sprlng_er—VerIa , June 1994, pp. 68-80.

P. Chatalic, and L. Simon, “Multi-Resolution on Compressed Sets of
Clauses,”12th International Conference on Tools with Atrtificial Intelli-

ence (ICTAI ‘00)November 2000, pp. 2-10.

GRASP, http://vinci.inesc.pt/~lgs/cgrasp.

J.M. Crawford, and L.D. Auton, "Experimental Results on the Crossover
Point in Random 3SAT,” Frontiers in Problem Solving: Phase Transitions
and Complexity, Artificial Intelligence, T. Hogg , B."A. Huberman and
C. Williams, eds, Vol. 81, Nos. 1-2 (March 19 6% pp. 31-57.

14] CUDD-2.3.0, http://visi.colorado.edu/~fabio. .

15] O. Dubois, “Can a Very Simple Algorithm be Efficient for SAT?”,
ftp://dimacs.rutgers.edu/pub/challengé/satisfiability/contributed/dubois/.
J.W. Freeman, “Improvements to Propositional Satisfiability Search
Algorithms,” Ph.D. thesis, Department of Computer and Information
Science, University of Pennsylvania, 1995.

GRASP, httg:/[y|n0|.|nesc.pt/~]£ms/grase/. .

A. Goel, K. Sajid, H. Zhou, A.'Aziz, and V. Singhal, “BDD Based Proce-
dures for a Theory of Equality with Uninterpreted Functior@®dmputer-
Aided Verification (CAV 983 .J. Hu and M.Y. Vardigeds, LNCS 1427,
Spnnger—Verl%g, June 199 ,8p. 244-255. .

C.P. Gomes, B. Selman, N. Crator, and H.A. Kautz, “Heavy-Tailed Phe-
nomena in Satisfiability and Constraint Satisfaction Problems”, Journal of
Automated Reasoning, Vol. 24, Nos. 1-2 (February 2000), pﬁ. 67-100.
J.F. Groote, and J.P. Warners, “The propositional formula checker Heer-
Hugo,” J. of Automated Reasoning, Vol. 24, Nos. 1-2 gebrua_ry_ 2000).
|. Hamzaoglu, and J.H. Patel, “New Techniques for Deterministic Test
Pattern Generation,” Journal of Electronic Testing: Theory and Applica-
tions, Vol. 15, Nos. 1-2 (August 1999), pfp. 63-73. .

J.E. Harlow IIl, and F. Brglez, “Design of Experiments for Evaluation of
BDD Packages Using Controlled Circuit Mutationsgrmal Methods in
Computer-Aided Design (FMCAD '98%. Gopalakrishnan and P. Wind-
ley, eds, LNCS 1522, Springer-Verlag, November 1998, pp. 64-81.

J.L. Hennessy, and D.A. Patters@@pmputer Architecture: A Quantita-
EIZYAe ?ggg)acthd edition, Morgan Kaufmann Publishers, San Francisco,

6]
(71
8]

&)
[10]

[11]

113

[16]

116

[19]

[20]
[21]

[22]

[23]

[24] H.H. Hoos, “SAT-Encodings, Search Space Structure, and Local Search
Performance,International Joint Conference on Artificial Intelligence
fIJCAI '99), August 1999, pp. 296-302. . i
@-6419A £sallcatlon Developer's Architecture Guidentel Corporation,

a .
K. lwama, H. Abeta, and E. Miyano, “Random Generation of Satisfiable
and Unsatisfiable CNF Predicates,” Information Processing 92, Vol. 1:
Algorithms, Software, Architecture, J. Van Leeuwex, Elsevier Sci-
ence Publishers B.V., 1992, pp. 322-328. .
K. lwama, and K. Hino, “Random Generation of Test Instances for Logic
Optimizers,”31st Design Automation Conference SI?AC ‘Mne 1994.
D.S. Johnson, M.A. Trickeds, The Second DIMACS Implementation
Challenge DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. http:/_/dlmac_s.rutgers.edu/challengbes. L
P. Kalla, Z. Zeng, M.J. Ciesielski, and C. Huang, “A BDD-Based Satisfi-
ability Infrastructure Using the Unate Recursive Paradl%mésgn,
Automation and Test in Europe (DATE '0March 2000, pp. 232 -236.
C.M. Li, and Anbulagan, “Heurlisitics Based on Unit Propoagation for
Satlsflablllty Problems,”International Joint Conference on Artificial
Intelligence (IJCAI ‘97)August 1997, pp. 366-371.

[25]
[26]

[27]
(28]
[29]

(30]

http://vinci.inesc.pt/~jpms
http://www.it-c.dk/research/bed
http://lwww.ece.cmu.edu/~mvelev. .
http://developer.intel.com/design/ia-64/architecture.htm

gL

[31] C.M. Li, "Integrating Equivalency Reasoning into Davis-Putnam Proce-
dure,” 17th National Conferencé on Atrtificial Intelligence (AAAI ‘00)
July — August 2000, pp. 291-296. .
[32] J.P. Marques-Silva, and K.A. Sakallah, “GRASP: A Search Algorithm for
Propositional Satisfiability,” IEEE Transactions on Computers, Vol. 48,
No.' 5 (May 1999), pp. 506-521. . L "
[33] J.P. Marques-Silva, “The Impact of Branching Heuristics in Propositional
Satisfiability Algorithms,” 9th Portuguese Conference on Artificial Intel-
I|g§nce (EPIA) September 1999. . o
[34] J.P. Marques-Silva, and L.G. e Silva, “Algorithms for Satisfiability in
_Complnatlonal Circuits Based on Backtrack Search and Recursive Learn-
ing,”“ 12th Symposium on Integrated Circuits and Systems Design
SS CCI '99) September — October 1999, pp. 192-195.)
[35] J.P. Marques- ‘I_|V32 “Algebraic Simplification Techniques for Proposi-
tional Satisfiability,” Principles and Practice of Constraint Program-
mlnl\%(CP ‘0%) September 2000, pp. 537-542. o
[36] D. Mitchell, B. Selman, and H. Levesque, “Hard and Easy Distributions
of SAT Problems,”10th National Conference on Artificial” Intelligence
gAAAI ‘92), July 1992, pp. 459-465. o _
[37] S. Malik,” A.R. Wang, R.K. Brayton, and A. Sangiovani-Vincentell,
“Logic Verification Using Binary Decision Diagrams in a Logic Synthesis
Environment,” International Conference on Computer-Alded” Design
ICCAD '88), November 1988, pp. 6-9.)
Zhao, L. Zhang, and S. Malik,

.W. MoskKewicz, C.F. Madigan, Y. /
“Engineering a Highly Efficient SAT Solver,38th Design Automation
Conterence (DAC _Olilune 2001. o
D.A. Plaisted, A. Biere, and Y. Zhu, "A Satisfiability Procedure for Quan-
tified Boolean Formulae,” submitted for publication, 2000. .
A. Pnueli, Y. Rodeh, O. Shtrichman, and M. Siegel, “Deciding Equality
Formulas by Small-Domain Instantiation§fbmputer-Aided Verification
fCAV '99), N. Halbwachs and D. Peledds, LNCS 1633, Springer-Ver-
a%, June 1999, pp. 455-469. . . .

[41] S.D. Prestwich, “Stochastic Local Search in Constrained SpaResti-
cal Application of Constraint Technology and Logic Programming
SPA(_ZL ‘00) April 2000, pp. 27-39. ’

. Rintanen, “Improvements to the Evaluation of
mulae,” International Joint Conference on
gJCAI '99), August 1999, pp. 1192-1197.) R

. Rudell, “Dynamic Variable Ordering for Ordered Binary Decision Dia-

rams,” International Conference” on Computer-Aided Design
QCCAD '93), November 1993, pp. 42-47.

ATO.3.2.1, http://www.cs.uiowa.edu/~hzhang/sato.

SATLIB—Solvers, htt%//www.satllb.or /solvers.html. o

B. Selman, H. Kautz, B. Cohen, “Local Search Strategies for Satisfiability

Testmg,”_DlMACS Series in Discrete Mathematics and Theoretical Com-
uter Science, Vol. 26 (1996), pp. 521-532.)

. Selman, and H. Kautz, “Domain-Independent Extensions to GSAT:
Solving Large Structured Satisfiability Problemsiiternational Joint
Conference on Atrtificial Intelligence (IJCAI ‘93)August — September
1993, pp. 290-295. .

Y. Shan?, and B.W. Wah, "A Descrete Lagrangian-Based Global-Search
Method for Solvin Satlsflablllt)é Problems,” Journal of Global Optimiza-
tion, Vol. 12, No. I, (January 1998), pp. 61-99. .

H. Sharangpani, “Intel Itanium Processor Michroarchitecture Ovendew,”
Microprocessor ForumOctober 1999. » .

G. Stalmarck, “A System for Determining Propositional Logic Theorems
by Applé/lng Values and Rules to Triplets that are Generated from a For-
mula,” Swedish Patent No. 467 076 (a froved 1992), U.S. Patent No. 5
276 897 19_942, European Patent No. 0403 454 (1995), 1989.

Stanford Validity Checker (SVC), http://sprout.Stanford. EDU/SVC. |

P. Tafertshofer,”A. Ganz, and K.J. Antreich, “"GRAINE—AnN Implication
GRaph-bAsed engINE for Fast Implication, Justification, and Propaga-
tion,” IEEE Transactions on CAD, Vol. 19, No. 8 (August 2000).

D. Tennenhouse, “Proactive Com%utlng," Communications of the ACM,
\ol. 43, No. 5 (May 2000), pp. 43-50. . .
D. Van Campenhout, T. Mudge, and J.P. Hayes, “Collection and Analysis
of Mlcro'arocessor Design Errors,” IEEE Design & Test of Computers,
Vol. 17, No. 4 (October — December 2000), pp. 51-60. .
M.N. Velev, and R.E. Bryant, “Superscalar Processor. Verification Using
Efficient Reductions of the, Logic of Equality with Uninterpreted Func-
tions to Propositional !_o%bl 7'Correct Hardware Design and Verification

[38]

[39]
[40]

[42] uantified Boolean For-

rtificial Intelligence
[43]

i
45
46
[47]

[48]

[49]
[50]

51
52

[53]
[54]

[55]

Methods (CHARME ‘99)L. Pierre and T. Kropf, eds., LNCS 1703,
E{)rln er-Verla ,S(Iag)tem er 1999, p?. 37-53. .
.N. Velev, and R.E. Bryant, “Formal Verification of Superscalar Micro-
Broces_sors,“wnh Multicycle Functional Units, Exceptions, and Branch
rediction,” 37th Design Automation Conference (DAC ;a)ne 2000.
M.N. Velev, “Formal Verification of VLIW Microprocessors with Specu-
lative Execution, ComEuter-Alded Verification (CAV ‘00E.A. Emer-
son and A.P. Sistleds, LNCS 1855, Sgrmsger-VerIag, July 2000.
M.N. Velev, Benchmark suités SSS-SAT.1.0, VLIW-SAT.1.0,
FVP-UNSAT.1.0, and FVP-UNSAT.2.0, October 2000. »
M.N. Velev, “Automatic Abstraction,of Memories in the Formal Verifica-
tion of Superscalar MicroprocessofsJools and AI'g\;/Iorlthms for the Con-
struction and Analysis 0 S&stems (TACAS /a1)Margaria and W. Yi,
eds, LNCS 2031, Springer-Verlag, April 2001, pp. 252-267. o
P.F. Williams, A. Biere, E.M. Clarke, A. Guspta, “Combining Decll(?mn
Diagrams and SAT Procedures for Efficient Symbolic Model Checking,”
Computer-Aided Verification (CAV ‘00E.A. Emerson and A.P. Sistla,
eds, LNCS 1855, Springer-Verlag, July 2000, Bp. 124-138. .)
P.F. Wguams, “Formal Verification Based on Boolean Expression Dia-
rams,” Ph.D. thesis, Department of Information Technology, Technical
niversity of Denmark, Lyngby, Denmark, August 2000. i
Z. Wu, and B.W. Wah, “Solving Hard Satisfiability Problems: A Unified
Algorithm Based on Discrete Lagrange MultipliergIth IEEE Interna-
tional Conference on Tools with Atrtificial Intelligence (ICTAI ‘99)
November 1999, pR. 210-217. » .
H. Zhang, “SATO: An Efficient Propositional Proveltiternational Con-
ference on Automated Deduction (CADE "9ZINAI 1249, Springer-Ver-
lag, 1997, pp. 272-275.

[56]
[57]

[58]
[59]

[60]

[61]

[62]

[63]

