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Abstract An effective fractional derivative-based visco-elastic model of tough, doubly cross-linked, single-
network polyvinyl alcohol (PVA) hydrogels, embodying both chemical and physical cross-links, is developed
using a Mittag–Leffler relaxation function of order 1/2 while applying only three material parameters that
are physically quantifiable, namely frequency for maximum loss modulus, equilibrium elastic modulus and
relaxation intensity. The resulting 3-parameter shear modulus model is possible to additively split into chemical
and physical parts; the split being the study focus. Physical explanations of the visco-elastic low-, mid- and
high-frequency range properties, and their transitions between the frequency ranges, are given mainly in
terms of the permanent chemical cross-links and the distinct adhesion–deadhesion processes of the transient
physical cross-links. The latter are running from an associated Rouse mode low-frequency behaviour through a
maximum adhesion–deadhesion dissipation and to an elastic, fully active cross-link high-frequency behaviour,
while the former are displaying essentially an elastic, fully active cross-link behaviour throughout the frequency
range. The developed model covers the full frequency range while matching measurements results remarkably
well. Furthermore, the model is refined into a 4-parameter model by additively including an Abel relaxation
function of order 1/2 to take into account the superimposed Rouse-type behaviour found in the measurements
of the chemical cross-links in addition to their dominating elastic response, with the fourth parameter being a
chemical Rouse stress intensity factor. The simple, effective visco-elastic models are suitable in predicting the
mechanical properties of tough, doubly cross-linked, single-network PVA hydrogels with application potentials
in tissue and noise abatement engineering.

Keywords Doubly cross-linked , single-network hydrogel · Chemical cross-link · Physical cross-link ·
Mittag–Leffler relaxation function · Rouse mode · Abel relaxation function

1 Introduction

Hydrogels are an interesting material, essentially consisting of cross-linked macromolecules containing
hydrophilic functional groups while forming a three-dimensional polymer network, being abundantly swollen
with water and intrinsically owing application potentials in such as hygienic products, food additives, bio
sensors and in tissue engineering [1,12,14,18,53,69,77,80,82] and, more recently, as dampers and vibration
isolators [72]. Tissue engineering includes fabrication of artificial cartilages, blood vessels, tendons, bladders,
muscles and ligaments. Early fabricated hydrogels are displaying a poor mechanical strength while containing
a single polymer network chemically cross-linked by covalent bonds. However, more recent hydrogels are
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containing a double network; the first network is tightly cross-linked, while the second is loosely cross-linked,
as successfully developed by Gong et al. [18,19] and other [2,23,76]. Those recent hydrogels are displaying
a substantial increase in mechanical strength needed for the previously mentioned artificial body parts.

However, double-network hydrogels with only chemical bonds display permanent strain softening and
loss of mechanical strength at repeated loading and unloading due to permanent rupture of chemical cross-
links, mainly located at the tightly cross-linked network. The permanent mechanical strength is substantially
increased for double-network hydrogels where chemical cross-links, located at the tightly cross-linked network,
are substituted by physical cross-links [6–8,14,25,28,38,47,52,53,63,73,75,77,82]. In principle, the physical
cross-links broken dissipate energy and act as sacrificing cross-links at loading while being reassembled at
unloading, thus leading to recovery, where the second, chemically cross-linked network provides a memory of
the initial undeformed state and prevents propagation of cracks [6–8,14,25,28,38,47,52,53,63,73,75,77,82].
Physical cross-links may include hydrogen bonds, hydrophobic, π – π , van der Waals and ionic; ion–ion,
ion–dipole, dipole–dipole interactions, see e.g. Refs. [1,45,69,80,82].

Large deformation visco-elasticity models including Mullins effect have been developed for double-
network hydrogels [44,47,79]. A fractional time power-dependent visco-elastic model for hydrogels has been
developed by Keshavarz and co-workers [35], a more generic fluid–solid mechanical-based model by Birgers-
son and co-workers [9,37] and a model which also includes poroelasticity has been developed by Wang and
Wong [70].

An interesting alternative to the double-network hydrogels is doubly cross-linked, single-network hydrogels
simultaneously containing both chemical and physical cross-links [11,13–15,22,24,34,39–43,48–51,53,58,
69,74,78,80–83] and, similarly, both strong and weak physical cross-links [14,27,45,60,64,65]. An attractive
observation by e.g. Czarnecki et al. [15] is that it is possible to tune the strength of the physical cross-links by
selecting a proper metal ion to modify the kinetics and thermodynamics of the adhesion–deadhesion activity
of the physical cross-links resulting in a very broad potential relaxation time range of the temporary physical
cross-links. This in turn results in a broad frequency range where within it is possible to tune the angular
frequency ωa|d for maximum loss shear modulus max(ℑμ̂) of the hydrogel, where μ̂ is the shear modulus, ℑ
is the imaginary part, and subscripts a and d stand for the adhesion and deadhesion of the physical cross-links,
respectively. For angular excitation frequencies well below ωa|d, the time is sufficiently long for the physical
cross-links to debond (deadhesion) and for angular excitation frequencies well above ωa|d, the time is too short
for the physical cross-links to debond; that is, almost only chemical cross-links of the hydrogels are active in
the former case, while both chemical and physical cross-links are active in the latter case, see Fig. 1 [15,49,58].

Stress–strain models for doubly cross-linked single-network hydrogels have been developed using finite
deformation and fractional time power dependence [49], finite deformation and survivability functions using
several material parameters [21,41–43], generalized Stokes–Einstein equation [50] and are reviewed by Cre-
ton [14] and Zhou et al. [82]. Of particular interest is the observed associative Rouse mode behaviour [59]
of the contributing physical cross-link network part to the total shear modulus of the hydrogels showing a
corresponding relaxation function with a time dependence of fractional order −1/2 and equivalently a shear
modulus with a frequency dependence of fractional order 1/2 [42,43,45,49]. In this paper and based on the

Fig. 1 Doubly cross-linked, single-network hydrogel, excited at low and high frequencies f = ω/2π
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latter observation, a visco-elastic model is derived by assuming nearly incompressible doubly cross-linked
hydrogels with elastic spherical response and visco-elastic deviatoric response, using a Mittag–Leffler relax-
ation function [36] of order 1/2 where generalized relaxation time is tunable, thus resulting in a tunable
frequency ωa|d for maximum loss shear modulus, in addition to a tunable equilibrium elastic modulus and
relaxation intensity. It is possible to additively split the resulting fractional derivative-based shear modulus
model into chemical and physical cross-link parts. Fractional calculus has found a broad application area
including visco-elasticity, see e.g. Refs. [3–5,10,17,29,30,33,36,54–56,61,62,66–68,71], generally display-
ing a close agreement with those of measurements over a broad frequency range, in chemical and physical
ageing modelling of elastomers [31,32] and in other fields, as shown in Machado et al. [46]. The derived model
results are compared to those of measurements of doubly cross-linked, single-network polyvinyl alcohol (PVA)
hydrogels of two different borax concentrations from Refs. [49,78]. Finally, the model is refined by additively
including also an Abel relaxation function of order 1/2 into the deviatoric convolution integral to take into
account the superimposed Rouse-type behaviour found in the measurements of the chemical cross-links in
addition to their dominating elastic response. The simple, effective visco-elastic models developed are suitable
in predicting the mechanical properties of tough, doubly cross-linked, single-network polyvinyl alcohol (PVA)
hydrogels, including the separate chemical and physical cross-link contributions, with application potentials
in tissue engineering and, more recently, as vibration isolators and dampers.

2 Model

The hydrogels are assumed homogeneous, isotropic, non-ageing and nearly incompressible with deformation
confined to infinitesimal strain. The total second-order stress tensor σ is additively decomposed into an elastic
spherical part

tr [σ ] = 3aμ∞ div [u] , (1)

and a visco-elastic deviatoric part

dev [σ ] = 2μ∞

{
dev [∇u] +

∫ t

−∞
△Eα

(
−

[
t − s

τrel

]α)
∂ dev [∇u(s)]

∂s
d s

}
, (2)

respectively, using a convolution integral with a kernel of fractional standard linear solid[36], such as

σ = 1

3
tr [σ ] i + dev [σ ] , (3)

where u is first-order displacement tensor, t is time, a ≫ 1 is a nearly incompressible material constant (with
a → ∞ being the incompressible limit), μ∞ is the equilibrium elastic modulus, and △ is a non-dimensional
relaxation intensity,

Eα(x) =
∞∑

n=0

xn

Ŵ(1 + αn)
, (4)

is the Mittag–Leffler function, Ŵ(z) =
∫ ∞

0 sz−1e−s d s, z > 0, is the Gamma function, τrel is generalized
relaxation time, 0 < α < 1 is a material constant, i is second-order unit tensor, ∇ is the nabla operator, and
the operators tr [ · ], div [ · ] and dev [ · ] denote trace, divergence and deviator, respectively.

Based on the observed associative Rouse mode behaviour [59] of the contributing physical cross-link
network displaying a relaxation function with a time dependence of fractional order −1/2 and equivalently
a shear modulus with a frequency dependence of fractional order 1/2 [42,45,49], the material constant for
the hydrogel is set to α = 1/2 being a generalization of the associative Rouse mode behaviour displaying a
relaxation function with an approximative time dependence of fractional order −1/2 in the long time range
and shown below. The visco-elastic deviatoric stress Eq. (2) becomes

dev [σ ] = 2μ∞

{
dev [∇u] +

∫ t

−∞
△E1/2

(
−

√
t − s

τrel

)
∂ dev [∇u(s)]

∂s
d s

}
, (5)

which is possible to reformulate [26] as

dev [σ ] = 2μ∞

{
dev [∇u] +

∫ t

−∞
△erfcx

(√
t − s

τrel

)
∂ dev [∇u(s)]

∂s
d s

}
, (6)
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where the scaled complementary error function

erfcx(z) = 2ez2

√
π

∫ ∞

z

e−s2

d s = ez2

[1 − erf(z)] , (7)

being a numerically stable function reducing possible under- and overflow during its numerical estimation,
and the error function

erf(z) = 2√
π

∫ z

0

e−s2

d s. (8)

Using an asymptotic expansion of the relaxation function [57], that is, of the scaled complementary error
function, results in

erfcx
√

t∗ ∼ 1√
π t∗

, (9)

as t∗ → ∞ where normalized time t∗ = t/τrel. As a result, the relaxation function for the hydrogels displays

an approximative normalized time dependence of 1/
√

t∗ as t∗ → ∞, that is, of a fractional order −1/2 in the
long time range while reducing to that of the observed associative Rouse mode behaviour [59]. In passing, it is
noted that e.g. Bagley and Torvik [4] and Wharmby and Bagley [71] apply half-order derivatives in their stress–
strain relations, while identifying the Rouse mode behaviour, being the long time/low-frequency asymptote of
the present model. Furthermore, the long normalized time approximation of the present relaxation function is
identical to the Abel operator kernel [36]

erfcx
√

t∗ ≈ I1/2

(
t∗

)
=

1

Ŵ
(

1
2

)√
t∗

, (10)

as t∗ → ∞, where the specific value of the Gamma function Ŵ(0.5) = √
π . On the other hand, the relaxation

function displays [57]

erfcx
√

t∗ ≈ 1 − 2

√
t∗

π
∼ exp

(
−

√
t∗

Ŵ
(

3
2

)
)

, (11)

as t∗ → 0+, where Ŵ(1.5) = √
π/2; that is, the relaxation function at a short normalized time shows a

stretched exponential function behaviour with a very fast decay at increasing normalized time.
Temporal Fourier transformations [̃ · ] =

∫ ∞
−∞[ · ] exp(−iωt) d t of the constitutive Eqs. (1) and (5), where

i is the imaginary unit, result in
tr [̃σ ] = 3aμ∞ div [̃u] (12)

and

dev [̃σ ] = 2μ∞

{
1 +

△
√

iω∗

1 +
√

iω∗

}
dev [∇ũ] , (13)

where the normalized angular frequency ω∗ = ω/ωa|d and the material parameter ωa|d is related to the
generalized relaxation time as ωa|d = 1/τrel. It should be noted, as stated in the Introduction section, that
fractional derivative models have been applied previously also for visco-elasticity. It is the additive split in
chemical and physical cross-link contributions that is the study focus. This is considered next.

The shear modulus μ̂ defined via dev[̃σ ] = 2μ̂ dev[∇ũ] in Eq. (13) is possible to additively split into

μ̂ = μ̂Ch + μ̂Ph, (14)

where μ̂Ch and μ̂Ph are the shear modulus derived from chemical and physical cross-links, respectively, see
e.g. Refs. [15,49]. In particular, the normalized shear modulus μ̂∗ = μ̂/μ∞ with μ̂ from Eq. (13) displays

μ̂∗ ≈ 1 + △
√

iω∗ =
μ̂∗

Ch︷︸︸︷
1 +

μ̂∗
Ph︷ ︸︸ ︷

△
√

ω∗

2
(1 + i), (15)

for ω∗ ≪ 1, while using
√

i = (1 + i )/
√

2. That is, the normalized shear modulus derived from the chemical
cross-links is approximately normalized frequency independent and elastic (only showing a non-vanishing
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normalized storage modulus), while the normalized shear modulus derived from corresponding physical cross-
links displays an identical normalized storage and loss modulus

ℜμ̂∗
Ph = ℑμ̂∗

Ph = △
√

ω∗

2
, (16)

for ω∗ ≪ 1, where ℜ is the real part, being similar to associative Rouse mode behaviour [59] and other

results [42,45,49], however, and most importantly, here with the coefficient in front of
√

ω∗ (in Eq. (16)) given
in terms of physically quantifying material parameter △. Furthermore, the maximum normalized loss modulus

max
{
ℑμ̂∗} = △

2(1 +
√

2)
, (17)

at an angular frequency for maximum dissipation ω∗ = 1 due to the maximum adhesion–deadhesion activity
of the physical cross-links. In passing, it may be noted that the maximum normalized loss modulus max{ℑμ̂∗

Ph}
derived from the physical cross-links only and its normalized angular frequency locus are identical to those of
the corresponding hydrogel μ̂∗ derived from both chemical and physical cross-links due to the model applied,
displaying a purely elastic, frequency-independent normalized shear modulus μ̂∗

Ch derived from the chemical
cross-links only and being identical to its normalized storage modulus ℜμ̂∗

Ch and to the normalized equilibrium
elastic modulus μ∗

∞ ≡ 1. Finally, the normalized shear modulus from Eq. (13) displays

μ̂∗ ≈ 1 + △, (18)

for ω∗ ≫ 1. That is, the normalized shear modulus is showing an elastic, normalized frequency-independent
behaviour being identical to the normalized storage modulus with vanishing loss modulus where relaxation
intensity △ may physically be identified as the relative contribution of the physical cross-links at full activity to
the normalized total shear modulus in relation to the corresponding contribution of the chemical cross-links. A
simple estimation example of the relaxation intensity is △ = νPh/νCh for an ideally, isotropic, doubly and tetra-
functionally cross-linked, single network with equal-functional and homogeneous distribution of chemical and
physical cross-links, lacking any trapped entanglements, where νCh and νPh are the cross-link densities in mol
per volume for chemical and maximally active physical cross-links, respectively [15]. Furthermore, simple
and possible physical models to estimate the equilibrium elastic modulus include, but are not limited to,

affine and phantom network models [16], reading μaffine
∞ = χνCh RT/2 and μ

phantom
∞ = [1 − 2/χ ]χνCh RT/2,

respectively, where R = 8.314 J/molK is the universal molar gas constant, T is temperature, and χ is cross-link
functionality, that is, the number of chain segments emanating from each chemical cross-link, being χ = 4
for tetra-functional cross-link networks. Physically, the increasing density of active physical cross-links at
increasing normalized frequency and, thus, decreasing time for debonding of physical cross-links result in
an increased total cross-link density, including both chemical and physical cross-links. This in turn results
in a reduced network flexibility and reduced conformal freedom which in turn result in an entropy governed
increase of the normalized storage modulus of the doubly cross-linked, single-network hydrogel [15].

Finally, the normalized shear modulus from Eq. (13), valid throughout the whole normalized frequency
range, splits additively into

μ̂∗ =
μ̂∗

Ch︷ ︸︸ ︷
1︸︷︷︸

ℜμ̂∗
Ch

+ i 0

ℑμ̂∗
Ch

+

μ̂∗
Ph︷ ︸︸ ︷

△
√

2

√
f ∗ +

√
2 f ∗

1 +
√

2 f ∗ + f ∗
︸ ︷︷ ︸

ℜμ̂∗
Ph

+ i
△
√

2

√
f ∗

1 +
√

2 f ∗ + f ∗
︸ ︷︷ ︸

ℑμ̂∗
Ph

, (19)

where the chemical and physical parts from Eq. (14) are explicitly given and the normalized frequency f ∗ =
f/ fa|d. Note that the relation between the frequency f and the angular frequency ω is 2π f = ω, while
the normalized relation reads f ∗ = ω∗. Note also that the normalized loss modulus ℑμ̂∗

Ch derived from the
chemical cross-links only is assumed to vanish. This is a plausible assumption as in general ℑμ̂∗

Ch ≪ ℑμ̂∗
Ph

for real doubly cross-linked hydrogels, see e.g. Refs. [15,49,58,78].
The normalized relaxation spectrum γ ∗ to the normalized relaxation functions in Eq. (6) is defined via

△erfcx
√

t∗ =
∞∫

τ∗= 0−

γ ∗(τ ∗) e−t∗/τ∗
d
{
loge(τ

∗)
}
, (20)
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for t∗ ≥ 0, respectively, where τ ∗ = τ/τrel is the normalized relaxation time. The normalized relaxation
spectrum is possible to obtain from the normalized shear modulus [20] as

γ ∗(τ ∗) = 1

π
ℑ

{
lim

ǫ→0+
μ̆∗

(
− 1

τ ∗ + iǫ

)}
, (21)

where μ̆∗(iω∗) ≡ μ̂∗(ω∗), resulting in

γ ∗(τ ∗) = △
π

√
τ ∗

1 + τ ∗ . (22)

Obviously, the normalized spectrum is continuous while displaying a maximum of

max
{
γ ∗} =

△
2π

, (23)

located at the normalized relaxation time τ ∗ = 1. Clearly, the generalized relaxation time τrel applied in
the constitutive Eq. (6) is the relaxation time for maximum relaxation spectrum. Spectrum is useful while
investigating visco-elasticity and molecular motion, being intelligible as the specific molecular time reaction
range, involving broad time scales, thus making a natural logarithmic scale (20) most appropriate. Clearly, the
generalized relaxation time for hydrogel is physically interpreted as the optimal relaxation time for adhesion–
deadhesion of physical cross-links [58].

3 Results and discussion

The normalized shear storage and loss modulus with △ = 10 are shown in Fig. 2 versus the normalized
frequency together with the loss factor, determined as

η =
ℑ

[
μ̂Ch + μ̂Ph

]

ℜ
[
μ̂Ch + μ̂Ph

] . (24)

Clearly, the studied hydrogel is essentially displaying a fast normalized storage modulus increase with the
normalized frequency, starting at a low-frequency normalized storage modulus plateau of about 1 and is clearly
approaching a high normalized frequency plateau of 1 + △ = 11 at the high normalized frequency end; the
latter observations are in accordance with the high normalized frequency approximation (18). The normalized

Fig. 2 Normalized storage, loss modulus and loss factor versus normalized frequency with △ = 10
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loss modulus is peaking at f ∗ = 1, not surprising, as the hydrogel is tuned to peak at that normalized frequency

while displaying a maximum normalized loss modulus of △/(2 + 2
√

2) = 2.07, in accordance with Eq. (17).
The maximum loss factor of the studied hydrogels is

max(η) = △
[√

2 +
√

1 + △
]2

− 1

= 0.47, (25)

that is 47 %, while peaking at a lower normalized frequency than the corresponding normalized frequency for
maximum normalized loss modulus, namely at f ∗ = 1/[1 + △] = 0.09.

A detailed study over the normalized moduli versus the normalized frequency with △ = 10 is shown in
Fig. 3 while using Eq. (19), displaying the contributions from the chemical and physical cross-links and their
normalized frequency dependencies. Clearly, the normalized storage modulus due to the contributions from
the chemical cross-links only is displaying a normalized frequency-independent behaviour while fully gen-
erating the normalized total storage modulus at vanishing normalized frequency. In contrast, the normalized
storage modulus due to the contributions from the physical cross-links only disappears at vanishing normalized
frequency while showing a normalized frequency dependence of fractional order 1/2 in the low normalized
frequency range. Additionally and for enhanced visual clarity, a function with a normalized frequency depen-
dence of fractional order 1/2 is depicted in Fig. 3. Furthermore, the normalized storage modulus due to the
contributions from the physical cross-links only coincides with its normalized loss modulus in the low normal-
ized frequency range, in accordance with the preceding research results [49], being similar to the associated
Rouse mode behaviour[59]. A conceivably ingenuous physical explanation of the dynamic behaviour of a
doubly cross-linked single-network hydrogel over the normalized frequency range is depicted within the cir-
cles in Fig. 3, displaying the hydrogel consisting of chemically and physically cross-linked macromolecules
abundantly swollen with water, while being evaluated at various normalized frequencies. At a very low nor-
malized frequency ( f ∗ ≪ 0.001), almost at a quasi-static state, the period time of the mechanical oscillation
is very long and all temporary physical cross-links are debonded (after bonding) within a time frame much
less than the period time of the mechanical oscillation. Consequently, the influence of the temporary physical
cross-links is negligible within the period time of the mechanical oscillation and only the chemical cross-links

Fig. 3 Normalized moduli of a doubly cross-linked, single-network hydrogel versus normalized frequency with △ = 10, together
with a symbolical indication of chemical and physical cross-link activity in circles
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are active, symbolically indicated by the two red • chemical cross-links in the circle above ≪ 0.001 in Fig. 3.
The hydrogel is displaying essentially an elastic behaviour within this very low normalized frequency range
with the normalized storage modulus mainly proportional to the chemical cross-link density. At increasing nor-
malized frequency, the influence of the temporary physical cross-links increases; they still have time to debond
(after bonding), though the period time of the mechanical oscillations is not any longer very long compared to
all the temporary physical adhesion–deadhesion processes. That is, the physical cross-links start to be active
while simultaneously contributing to the normalized storage modulus by the increased total effective cross-link
density and to the normalized loss modulus by the dissipation activity connected to the adhesion–deadhesion
operations of the physical cross-links. This is a plausible physical explanation of the simultaneous increase of
the normalized storage and loss modulus with the increased normalized frequency; the higher the normalized
frequency is, the larger is the increase due to the shortened mechanical oscillation time while approaching that
of the time frame for adhesion–deadhesion activity of the physical cross-links. This results in a relatively more
active physical cross-links within the period time of the mechanical oscillation, symbolically indicated by the
one, five and the twenty yellow • physical cross-links undergoing adhesion and deadhesion operations in the
circles above 0.01, 0.1 and 1, respectively, in Fig. 3. At f ∗ = 1, the period time of the mechanical oscillation
matches perfectly the time frame for adhesion–deadhesion activity of the physical cross-links, resulting in an
optimum dissipation and, thus, a maximum normalized loss modulus with maximum adhesion and deadhesion
active physical cross-links within the period time of mechanical oscillation, symbolically indicated by the
twenty yellow • physical cross-links undergoing adhesion and deadhesion operations in the circle above 1
in Fig. 3. At further increased normalized frequency, the period time of the mechanical oscillation is shorter
than the time frame for adhesion–deadhesion activity of the physical cross-links, resulting in physical cross-
links that do not have sufficient time to debond (after bonding), thus resulting in a decreased normalized loss
modulus due to the decreased adhesion–deadhesion activity of the physical cross-links, in addition to the
increased normalized storage modulus due to the increased total effective cross-link density. The higher the
normalized frequency is, the shorter is the period time of the mechanical oscillation and, thus, the higher is the
activity of the non-debonding physical cross-links, symbolically indicated by the twelve and twenty green •
non-debonding physical cross-links in the circles above 10 and ≫ 100, respectively, in Fig. 3. At a very high
frequency, f ∗ ≫ 100, the period time for the mechanical oscillation is very short and all possible temporary
physical cross-links are non-debonding, symbolically indicated by the twenty green • non-debonding physical
cross-links in the circle above ≫ 100. This results in a high normalized storage modulus, being proportional
to the total chemical and physical cross-link density, symbolically indicated by the two red • chemical cross-
links plus the twenty green • non-debonding physical cross-links in the circles above ≫ 100. However, the
normalized loss modulus is vanishing due to the disappearing adhesion–deadhesion activity of the physical
cross-links, symbolically indicated by the vanishing number of yellow • physical cross-links undergoing
adhesion and deadhesion operations in the circle above ≫ 100. The normalized storage modulus at a very
high normalized frequency is about 11 (1 + △) times that of the corresponding normalized storage modulus
at vanishing normalized frequency, achievable by selecting a maximum physical cross-link density ten times
higher than the corresponding chemical cross-link density, symbolically indicated by the ratio of twenty green
• non-debonding physical cross-links to two red • chemical cross-links, that is 20/2 = 10, in the circles above
≫ 100. Although the normalized storage modulus due to the contributions from the physical cross-links only
disappears at vanishing normalized frequency and the normalized frequency for the maximum normalized
loss modulus is as high as f ∗ = 1, the normalized frequency for equal contribution from the physical and
chemical cross-links to the normalized storage modulus is nevertheless very low, only about f ∗ = 0.0207.
The main reason is the relatively high physical cross-link density compared to the corresponding chemical
cross-link density, resulting in a fast increase of the normalized storage modulus with increased normalized
frequency due to a relatively fast growing contribution from the physical cross-links. In passing, it is noted
that other dissipation mechanisms may exist although adhesion–deadhesion activity of the physical cross-links
prevails over those alterative mechanisms, thus making a purely elastic normalized storage modulus due to
the contributions from the chemical cross-links only and with vanishing normalized loss modulus, a suitable
model [15,58]. Finally, similar physical explanations as above are given elsewhere [15,49,58], although the
physical explanations, nevertheless, in this study are comprehensively clarified.

The normalized relaxation spectrum γ ∗ with △ = 10 is shown in Fig. 4 versus the normalized relaxation
time τ ∗, ranging over a very broad normalized time scale. Clearly, the normalized relaxation time locus for
the maximum normalized relaxation spectrum is τ ∗ = 1 while displaying a maximum normalized relaxation
spectrum of 1.59. Physically, the generalized relaxation time for hydrogel is of the same order as the optimal
time frame for adhesion–deadhesion process of physical cross-links [58]. Indeed, the optimal time frame is
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Fig. 4 Normalized relaxation spectrum versus normalized relaxation time with △ = 10

Topt ≡ 1/ fa|d = 2πτrel, derived from the constitutive material parameter relation ωa|d = 1/τrel, reading in
normalized form T ∗

opt ≡ Topt/τrel = 2π . Furthermore, the relaxation spectrum in Fig. 4 is continuous, thus
enabling a wider time scale most likely found in the real molecular networks and in the adhesion–deadhesion
physical cross-links processes to be successfully taken into account by the applied Mittag–Leffler and the
scaled complementary error relaxation function, while additionally giving a richer structure to the model.

Finally, the model results are compared to those of the measurements from Mayumi et al. [49] and Zhao et
al. [78]. The doubly cross-linked, single-network hydrogels consist of poly(vinyl alcohol) (PVA) chemically
cross-linked in an aqueous solutions with glutaraldehyde (GA) at a PVA concentration of 12 wt% and a GA
concentration of 5.5 mM corresponding to 0.2 mol% of GA to monomer unit of PVA. The physical cross-links
are borate ions acting as transient cross-links between the PVA chains and prepared by immersing the chemically
cross-linked PVA hydrogels into an aqueous solutions of borax and NaCl of concentrations of 1 mM [49],
50 mM [78] and 90 mM [49], 460 mM [78], respectively, corresponding to 1.5 mol % [49] and 73 mol% [78],
respectively, of borate to monomer unit of PVA. The reader is referred to Mayumi et al. [49] and Zhao et al. [78]
for the details regarding the sample preparations and measurements of the various shear moduli. The results
are in Fig. 5 showing the normalized total storage modulus, physical storage modulus, physical loss modulus,
chemical storage modulus and the normalized chemical loss modulus versus the normalized frequency f ∗, for
the model where △(a) = 12.3 and △(b) = 28.4, respectively, and for the measurements [49](a), [78](b), however,
displaying a courser measurement normalized frequency mesh than those in Mayumi et al. (Fig. 2) [49] and

Zhao et al. (Figs. 5a and 10a) [78] for visual clarity. Other materials parameters applied read μ
(a)
∞ = 1500 N/m2,

μ
(b)
∞ = 1700 N/m2 and f

(a)
a|d = 0.6/2π Hz, f

(b)
a|d = 5.0/2π Hz, respectively. Clearly, the model results and those

of the measurements match remarkably well over the broad normalized frequency ranges while using only three
physically quantifiable material parameters: the frequency for maximum loss modulus, the equilibrium elastic
modulus and the relaxation intensity. In particular, the model results and those of the measurements of the
normalized total and physical storage modulus almost overlap each other, the normalized loss modulus displays
identical pattern although differing slightly more in Fig. 5a, while almost matching in Fig. 5b. Moreover, the
elastic, normalized frequency-independent chemical storage modulus is clearly a suitable model displaying
an almost perfect overlap between measurement results and those of the model over the normalized frequency
range with a small deviation at the higher normalized frequency range. Furthermore, the normalized chemical
loss modulus measurement results display ℑμ̂∗

Ch ≪ ℑμ̂∗
Ph throughout the normalized frequency range, thus

making a vanishing normalized chemical loss modulus ℑμ̂∗
Ch ≈ 0 a suitable model. Finally, the shear modulus

(19) was generalized to allow for other α values than 1/2 via temporal Fourier transform of Eq. (2) while
subsequently minimizing the relative least square difference between the measured μ̂∗meas

n and modelled

μ̂∗mod
n (α) normalized shear modulus

min
0<α<1

ntot∑

n=1

∣∣∣∣
μ̂∗meas

n − μ̂∗mod
n (α)

μ̂∗meas
n

∣∣∣∣
2

, (26)
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(a) (b)

Fig. 5 Normalized moduli of a doubly cross-linked, single-network poly(vinyl alcohol) (PVA) hydrogel with glutaraldehyde
(GA) chemical cross-links concentration of 0.2 mol% of GA to monomer unit of PVA, and borate ions physical cross-links,
versus normalized frequency. a Model results (lines) with △ = 12.3 compared to those of measurements (symbols) from Mayumi
et al. (Fig. 2) [49] at physical cross-link concentration of 1.5 mol% of borate to monomer unit of PVA. b Model results (lines)
with △ = 28.4 compared to those of measurements (symbols) from Zhao et al. (Figs. 5a and 10a) [78] at physical cross-link
concentration of 73 mol% of borate to monomer unit of PVA

by a Matlab
� constrained nonlinear multi-variable programming solver fmincon, where ntot is the total

number of measurement points, resulting in an optimum αoptimum = 0.55 for the measurement in Fig. 5a.
Consequently, the shear modulus (19) with α = 1/2 is an appropriate model while also showing a Rouse mode
behaviour of the physical storage and loss modulus with the fractional half-order frequency dependence at low
normalized frequencies. It should be noted that other models with more parameters such as 7-parameter [42,43]
and 4-parameter [21] large strain models including survivability functions have been tested for doubly cross-
linked, single-network PVA hydrogels also showing a good fit.

3.1 Refined model

It may be observed that the normalized chemical loss modulus measurement results in Fig. 5a, b also display
a Rouse-type behaviour with a normalized frequency dependence of fractional order 1/2 throughout the
normalized frequency range and that the normalized chemical storage modulus measurement results display
a slight increase and a small deviation from the constant value at the higher normalized frequency range. It
is possible to extend the present 3-parameter model Eq. (5) into a 4-parameter model by additively including
also an Abel relaxation function of order 1/2 into the deviatoric convolution integral resulting in

dev [σ ] = 2μ∞

{
dev [∇u]

+
∫ t

−∞

[
C I1/2

(
t − s

τrel

)
+ △E1/2

(
−

√
t − s

τrel

) ]
∂ dev [∇u(s)]

∂s
d s

}
, (27)

where the fourth parameter C may be named as a chemical Rouse stress intensity factor. The resulting normal-
ized shear modulus, valid throughout the whole normalized frequency range, splits additively into

μ̂∗ =

μ̂∗
Ch︷ ︸︸ ︷

1 + C

√
f ∗

2︸ ︷︷ ︸
ℜμ̂∗

Ch

+ i C

√
f ∗

2︸ ︷︷ ︸
ℑμ̂∗

Ch

+

μ̂∗
Ph︷ ︸︸ ︷

△
√

2

√
f ∗ +

√
2 f ∗

1 +
√

2 f ∗ + f ∗
︸ ︷︷ ︸

ℜμ̂∗
Ph

+ i
△
√

2

√
f ∗

1 +
√

2 f ∗ + f ∗
︸ ︷︷ ︸

ℑμ̂∗
Ph

, (28)

where the 4-parameters are the equilibrium elastic modulus, the frequency for maximum loss modulus, the
relaxation intensity and the chemical Rouse stress intensity factor. The chemical half-order normalized fre-
quency dependence in Eq. (28) is similar to that of e.g. Bagley and Torvik [4] and Wharmby and Bagley [71],
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(a) (b)

(c)

(d)

Fig. 6 The 4-parameter normalized modulus model results in a and b are compared to the same measurements results as in

Fig. 5a, b from Mayumi et al. [49](a) and Zhao et al. [78](b), respectively, while using identical material parameter values as in

Fig. 5a, b in addition to C(a) = 0.0194 and C(b) = 0.0621. The 3- and 4-parameter model results for normalized chemical storage
modulus in c and d are compared to those of measurements from Fig. 5a, b, respectively

while they identified the Rouse mode behaviour in stress–strain relations. The 4-parameter model results are
compared to the same measurements results as in Fig. 5a, b from Mayumi et al. [49](a) and Zhao et al. [78](b),
respectively, while using the identical material parameter values as in Fig. 5a, b, in addition to C

(a) = 0.0194
and C

(b) = 0.0621. The optimum chemical Rouse stress intensity factors are calculated by the Matlab
�

constrained nonlinear multi-variable programming solver fmincon minimizing the relative least square dif-
ference between modelled and measured normalized chemical loss modulus. Clearly, the 4-parameter model
results for the normalized chemical loss modulus and those of the measurements match well throughout the
normalized frequency range in Fig. 6a, b. Moreover, the 4-parameter model results for normalized chemical
storage modulus display a slight increase with normalized frequency in accordance with those of the measure-
ments in Fig. 6a, b. Furthermore, the 3- and 4-parameter model results for the normalized chemical storage
modulus in Fig. 6c, d are compared to those of the measurements from Fig. 5a, b, respectively. Clearly, the
4-parameter model results for the normalized chemical storage modulus match remarkably well with those of
measurements.
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4 Conclusions

The derived visco-elastic 3-parameter model for doubly cross-linked, single-network polyvinyl alcohol hydro-
gels:

– Covers the low-frequency range f ∗ ≪ 1 with the normalized shear modulus given in Eq. (15), showing a
constant value in addition to a fractional half-order normalized frequency dependence due to the physical
cross-links, similar to the associated Rouse mode behaviour [59]. In time domain, the relaxation function
is identical to an Abel operator kernel (10) while displaying a normalized time dependence of negative
fractional order −1/2, being the long time limit of a Mittag–Leffler/scaled complementary error function

– Covers the mid-frequency range f ∗ ≈ 1 showing a maximum normalized loss modulus according to
Eq. (17) due to the maximum dissipation at the adhesion–deadhesion activities of the physical cross-links
as explained by e.g. Czarnecki et al. [15]. In the relaxation time domain, maximum dissipation is displayed
at the normalized relaxation time equal to 1; physically interpreted as the optimal normalized relaxation
time for the adhesion–deadhesion activities of the physical cross-links [58].

– Covers the high-frequency range f ∗ ≫ 1 with the normalized shear modulus given in Eq. (18), showing
an elastic limit where almost all physical cross-links are fully active, in addition to the chemical cross-
links [15]. In the time domain, the relaxation function shows a stretched exponential function behaviour
with a very fast decay at increasing normalized time (11), in contrast to the significantly slower decay at
increasing normalized time of the Abel operator kernel (10) at the long normalized time limit

Physically, the wide spectrum of the normalized time scales in the applied relaxation Mittag–Leffler/scaled
complementary error function, as compared to the ordinary exponential relaxation function, allows for a
wider range of normalized relaxation times most likely found in the real, doubly cross-linked, single-network
hydrogels at adhesion–deadhesion activities of the physical cross-links, thus giving a richer structure to the
model. Interestingly, the 3-parameter model (19) covers the full normalized frequency range and matches
measurements results remarkably well while applying only three material parameters that are physically
quantifiable, namely

1. The frequency for the maximum loss modulus fa|d, tunable by selecting a proper metal ion to modify the
kinetics and thermodynamics of the adhesion–deadhesion activity of the physical cross-links [15].

2. The equilibrium elastic modulus μ∞, tunable by selecting a suitable chemical cross-link density [15] and,
finally,

3. The relaxation intensity △, tunable by selecting a suitable maximally active physical-to-chemical cross-link
density ratio [15].

The 3-parameter model is extended into a 4-parameter model by including a fourth parameter;

4. the chemical Rouse stress intensity factor C.

The resulting 4-parameter model (28) covers the full normalized frequency range and matches measurements
results remarkably well while also displaying a Rouse-type behaviour of the normalized chemical loss modulus
with a normalized frequency dependence of the fractional order 1/2 throughout the normalized frequency range
and a slight increase of the normalized chemical storage modulus with normalized frequency in accordance
with those of measurements.

The simple, effective visco-elastic 3- and 4-parameter models are suitable in predicting the mechanical
properties of tough, doubly cross-linked, single-network PVA hydrogels with application potentials in tissue
and noise abatement engineering. The 4-parameter model is preferable while more accurately modelling the
normalized frequency dependence of the normalized chemical loss modulus. Nonetheless, the 3-parameter
model results in satisfactory results since the normalized chemical loss modulus is substantially smaller than
the other normalized modula (physical and chemical) over the considered normalized frequency range while,
in addition, evidently not requiring any preparations nor measurements for the determination of the material
parameter C.
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