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The problem of the determination of the effective viscosity of disperse systems (emulsions, 
suspensions) is considered. On the basis of the formal solution of the equations governing creeping 
flow in a statistically homogeneous dispersion, the effective viscosity is expressed in a series expansion 
in terms of correlation functions. The contribution of the interfacial tension to the effective viscosity 
is also considered and finally bounds for the effective viscosity are indicated. 

1. Introduction 

The rheology of  dispersions is a growing field o f  interest (Mewis and Spaull ~) 

and Herczyfiski and Piefikowska2)). Dispersions can be subdivided into two 

classes, namely suspensions and emulsions. Suspensions are defined as fine rigid 

particles suspended in a fluid. In emulsions (un)deformable fluid particles are 

immersed in another  fluid. The general problem to be solved is the description o f  

the flow o f  dispersions including a relationship between microscopic and macro-  

scopic behaviour.  The key to this problem is the formulat ion o f  a constitutive 

equation.  A particular member  o f  this family o f  problems is the determinat ion o f  

the Newtonian  part  o f  the constitutive equation. This is the subject o f  the present 

paper. 

First o f  all one has to define the dispersion and flow characteristics. In this paper 

the dispersion consists o f  two incompressible Newtonian  fluids, with viscosities r h 

and q2, subjected to a steady motion.  The influence o f  inertia forces and Brownian 

mot ion is neglected. The contact  area between the fluids is characterized with a 

constant  interfacial tension 7. The dispersion is considered as statistically homoge-  

neous and isotropic. For  r h ~ o v  the dispersion can be regarded as a suspension. 

In section 2 the starting points and basic assumptions  are discussed more  

extensively. 

The first investigation o f  such a system was carried out for its most  simple 

manifestation. It was presented by Einstein3), who calculated the effective viscosity 

q* o f  a suspension of  rigid spheres with negligible hydrodynamic  interactions: in 
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first order of the volume fraction q~ he found 

r/* = r/,(l + ~4,),  (1.1) 

where r/i is the viscosity of the fluid surrounding the particles. It lasted till 1932 

that this result was generalized by Taylor 4) for an emulsion of almost spherical 

particles (7--}~) of  a Newtonian fluid with viscosity th, neutrally buoyant in a 

Newtonian fluid with viscosity r/l, 

( 2r/l + 5r/2 ) 
q* = r/l l q 2(r/I + r/2) (/) " (1.2) 

Both results are easy to obtain, but a plausible expectation in those times that the 

problem of the formulation of the rheological properties of dispersions might be 

solved gradually with increasing detail has not been realized. Only the calculation 

of the effective viscosity for rigid spheres with two-particle hydrodynamic 

interactions resulting in 

r/* = r/,(1 + ~b + (7.6 + 0.8)q~2), (1.3) 

presented by Batchelor and GreenS), is a step in this direction. The generalization 

of Taylor's result to two-particle interactions is absent, as is the calculation of the 

influence of  multiparticle interactions on r/*. 

The difficulties that are to be encountered can be imagined by setting up a 

hierarchy of flow equations in which the sequence is determined by the number 

N of the N-particle conditional average of  a traction integrated over the surface 

of one particle, keeping the position of N - 1 other particles constant. The use 

of a Heaviside-like function and ensemble averaging makes it easy to arrive at this 

hierarchy (Lundgren6)). This hierarchy clarifies the significance and limitations of 

the solution for one particle in a flow, for two particles in a flow, etc., and it 

demonstrates the ambivalence of cell models. 

In this article the hierarchy approach is not used, but the possibilities of a 

statistical continuum method (BeranV)) are investigated. The fact is that the 

Heaviside-like function can also be used for a dispersion of two Newtonian fluids 

to indicate the viscosity of the different fluids. Thus the viscosity can be 

represented as a generalized position-dependent function. Separating this function 

in a position-dependent and -independent part offers the opportunity to solve the 

equations of motion by means of  Oseen-operators. Then the averaged deviatoric 

part of the stress tensor for some particular dispersions can be developed in a 

series proportional to the averaged rate-of-strain tensor and this gives an 

expression for the effective viscosity. The series can be subdivided into a part that 

is texture-independent and another part that is texture-dependent. The texture- 

independent part represents the so-called effective-medium viscosity. By taking 

rh--, oo this effective-medium viscosity equals the viscosity of  a suspension of rigid 
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spheres found by kundgren6), by an ad hoc closure of the mentioned hierarchy 

of flow equations. Another result is the deduction of bounds for the viscosity, 

though already found in another way by Hashing). The presented statistical 

continuum approach is conceptually founded in work on electrical conductivity 

of polycrystalline materials (Willemse 9) and Willemse and CaspersL°)). Its 

feasibility for dispersions is investigated in the present paper. 

In the discussion the results are confronted with the results of two partially 

competitive lines in the research of the rheological properties of dispersions. The 

first one (NagataniJl), Bedeaux et al.~2)) is akin to the presented method, because 

in this approach the flow equations are also solved formally by the use of 

Oseen-operators. The difference, however, is that first the flow equations are 

Fourier-transformed. The second line (Hashing), Keller et al.t3) and Batchelor~4)) 

tries to find bounds for the viscosity by using variational techniques and these 

results are comparable with the bounds found by the presented method. 

2. Basic equations governing creeping flow 

The state of a moving fluid is determined by five quantities, viz. the three 

components of  the velocity u, the pressure p, and the density p (Landau and 

Lifshitz~5)). For the description of the motion of a dispersion in which the fluid 

particles are neutrally buoyant only four quantities are needed, since the density 

p is assumed to be constant throughout. Consequently, the hydrodynamics of a 

dispersion is sufficiently characterized by four equations of motion. These four 

equations may be derived from two principles: the conservation of mass and of 

momentum, which read respectively 

? ? 
p + ~ ( p u , )  = 0,  (2.1) 

?t 

p ~ + pui cgxj (?x~ Zii, (2.2) 

where Z, represents a component of the stress tensor and where a Cartesian 

coordinate system is employed and Einstein's summation convention is utilized. 

In order to make this set of equations more tractable and, what is more, linear 

a few simplifying assumptions will be made. 

The non-linear term p(u • V)u may be neglected with respect to the term on the 

right-hand side of  (2.2) if the Reynolds number Re = lup/q .~ l, where r/ is the 

coefficient of viscosity. The Reynolds number of a type of flow indicates the ratio 

of the inertia forces and the viscous forces. The quantities l, u, p, and r/appearing 

in the expression for the Reynolds number, are parameters characterizing the fluid 
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and its kinematic behaviour and are typical for the type of flow. In the case of 

a dispersion consisting of fluid particles with dimension a, the characteristic length 

l equals a. If the type of flow is taken to be extensional, i.e. u~ = ~,jxj, with ~t a 

symmetric, traceless and constant tensor, the condition for the Reynolds number 

in the neighbourhood of the fluid particles results in ~ta2p/rl ~ 1, with ~t = ~ .  

This condition must hold in the inner region as well as in the outer region of  the 

fluid particles. Obviously, this condition will be violated in the distant outer 

region. However, this difficulty will not be regarded here and it will be assumed 

that p(u" 17)u = 0 everywhere. 

For steady extensional flow of  the dispersion on a macroscopic scale the term 

p(Su~/St) in (2.2) may be neglected on a microscopic scale if the volume fraction 

q5 of the fluid particles is small as compared to unity. In that case the motion of 

every fluid particle is affine and the quantity Ou~/St may be estimated to be of the 

same order of magnitude as the term uj(Oui/Oxj), because every fluid particle may 

be thought of as being embedded in an unperturbed fluid flow. Without further 

justification it is assumed in the remainder that Ou~/Ot vanishes everywhere. 

The effect of Brownian motion is not taken into account in this paper. For 

spherical particles with radius a the mean squared distance traversed in a time t 

is given by r 2 = 6Dt, where the diffusion constant D equals D --- kT/6r~rla. From 

these expressions it is seen that the velocity as a consequence of Brownian 

movement depends on D and that this contribution to the velocity of the particles 

becomes smaller if the temperature T is lowered or if the size of the particles is 

increased. The only essential aspect of Brownian motion regarding the effective 

viscosity of a dispersion is its influence on the probability distribution function 

of the arrangement of fluid particles in the continuous phase. According to 

Russell6), the effect of Brownian motion is dominated by hydrodynamic forces on 

the condition that the translational P6clet number Pe t = rla3~/kT >> 1. Hence, the 

latter and former condition restrain the flow strength by kT/t la  3 ~ ~ ~ ~l/a2p, for 

the subsequent results to have a chance of validity. 

In order to be able to solve the equations of motion (2.1) and (2.2) one needs 

a constitutive equation, connecting the fields u and ,~. The dispersion consists of 

a continuous phase containing fluid particles, both of  which are assumed to be 

Newtonian. The transition of one phase to the other is treated as an infinitesimally 

thin and non-material interface, which is characterized with a constant interfacial 

tension 7. 

In a Newtonian fluid the stress tensor ,r only depends linearly on the rate-of-strain 

tensor D, defined by 

IOn, O.j  
0x,/' (23) 

and by assuming the interfacial tension tensor F to be two-dimensionally 
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isotropic, the constitutive equation reads (see appendix A) 

S~j = a~i + F~j = - P f i o  + 2rIDo + 7(6~ - n in j )a ( r  - r0). (2.4) 

Here the unit normal vector n points out of the fluid particle, the boundary of 

which is described by r0 occurring in the argument of the Dirac delta function 

6 ( r  - to). 
Of course, the constitutive equation of  the interface in (2.4) may be extended with, 

for instance, a viscous term (Oosterbroek and Mellema'7)), but here a non- 

material interface is chosen. Note that the interracial tension contains only 

tangential components and no normal component. This is easily checked by 

contraction of  the tensor U~I, with components 6 o - n~nj, with the unit normal n. 

The spatial distribution of two immiscible phases in the dispersion can be 

described in an elegant way by the indicatrix ~, defined by 

{01' r i n s ° l v e n t '  (2.5) 
~(r) = r in fluid particle, 

which enables one to mark the interface by 

~?x~i = - ni 6 (r - r0). (2.6) 

The viscosity is then given by 

r/(r) = r/t + (r/2 - rh){(r ) , (2.7) 

with r h the viscosity of the solvent and r/2 the viscosity of the fluid particles. 

Summarizing, the conservation equations (2.1) and (2.2) become in the con- 

tinuous phases, respectively, 

~u, = 0 (2.8)" 

and 

~/dx: - ~x~' (2.9) 

while at the interface of the two fluids they become respectively 

and 

u i n i =  U,n, (2.10) 

c~nJ ~'? ( 6 i j - n , n , )  (2.11) [a0]n/= 7n, &xj ~3xj 

where Udenotes the velocity of the interface, which has only a normal component, 
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and where the square bracket [tr,j] means the magnitude of the discontinuity at the 

interface (see appendix A). 

Since y is assumed to be a constant throughout the interface, (2.11) reduces to 

anj 
[tr~]nj = yn, ~ x f  (2.12) 

3. Definition of the effective viscosity 

In defining the effective viscosity r/* of a dispersion the basic assumption is that 

the dispersion behaves macroscopically as a Newtonian fluid. From this assump- 

tion it follows that the rate-of-strain tensor D of the main flow must be 

translationally invariant to effect a homogeneous (random) distribution of 

particles. 

For the definition one may use two different starting points, viz. the constitutive 

equation and the energy dissipation. The constitutive equation relates the 

macroscopic quantities (Zo )  and (D,j) as follows: 

- - -  ( 3 . 1 )  

Here the bracket denotes volume averaging, 

lim 1 ~A dV, (3.2) (A) 
V~3c V 3 

V 

where V is the volume over which the averaging is performed. Note that the 

definition implies that ( A )  is translationally invariant. Another way of averaging 

is ensemble averaging accomplished by averaging the statistical quantity over an 

admissible ensemble of realizations, weighing thus with a probability density of 

the realizations. The advantage of volume averaging is the absence of boundary 

effects (Herczyfiski and Piefikowska2)). 

The definition making use of the energy dissipation, expresses that the total 

dissipation in the dispersion equals the dissipation of a microscopically homo- 

geneous Newtonian fluid obeying the same boundary conditions: 

(ZqDo) = 2~I*(Do)(Do) .  (3.3) 

In (3.1) it is assumed that the deviator of the averaged surface tension tensor is 

linearly related to the averaged rate-of-strain tensor ( D ) .  In general, the two 

tensors would be related like 

(y(~6 o - n, nj)f(r - to)) = f ( ( D u ) ) ,  (3.4) 

where f is some appropriate function of (Do.), but the assumption of linearity 
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leads to 

( r ( ~ a . . : , ) a ( ~  - ~,,)) : . ( D . ) .  (3.5) 

with c constant. 

The step from (3.4) to (3.5) can be seen as a truncation of a Taylor series expansion 

that becomes more valid with decreasing ( D , ) .  From (3.5) it is seen that the 

averaging of the deformation of the fluid particles comes to averaging of  the tensor 

nn,  having the same principal directions as the ( D )  tensor, and that the 

contribution of the surface tension tensor to the effective viscosity r/* depends on 

the combination of  the magnitude of the surface tension and the resulting 

deformation. It is hard to say under what conditions regarding the values of 7 and 

the ratio qz/~h eq. (3.5) can be true. It is felt that for sufficiently large values of 

7 and constant value of  ( D )  eq. (3.5) is probably true due to resulting small 

deformations of the spheres. 

The average of the stress tensor r appearing in (3.1) may be replaced by (see 

appendix B) 

so that the first definition (3.1) could also read 

:_,_ (<,vJ) - ~ ~ (~,,,,) ,~,,- 2,7"(D,i). (3.7) 

By defining the effective viscosity r/* in this way it seems that it does not depend 

on the averaged surface tension tensor, a problem that was extensively discussed 

by Batchelor~). 

The second definition of the effective viscosity, using the dissipation, can be 

simplified to 

2 q * ( D o ) ( D i , ) = ( X i ,  D . )  

= ( ( ~ .  ' . - ~Xkka.)D/) 

= ( ( 2 q D  o + 7({6  o n ,n , )Of r  - r , , ) )D, / )  

= ( 2 q D ,  D , / ) .  (3.8) 

The last step is possible since the steady main flow consntutes locally a stationary 

stochastic process in which the time-derivative of the surface energy 7S, being 

d 
dt  ( y S )  = - ( T n ~ n / D j ~ ( r  - t o ) ) ,  (3.9) 

with S the total area of the surface of all fluid particles, vanishes (see 

Rosenkilde*~)). 
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The fact that no effective storage of elastic energy results is satisfactory since it 

was assumed that the dispersion behaves macroscopically Newtonian. 

The consistency, or rather the requirement of consistency, of the two definitions 

of the effective viscosity t/* may be used for obtaining bounds for t/*. To do so 

the rate-of-strain tensor D is subdivided into the average value and its 

fluctuations, 

D 0= (Du) + D ~ .  (3.10) 

Note that the average value of the fluctuations vanishes: ( D ~ ) =  0. The two 

definitions given in (3.1) and (3.8) being compared, 

t I * ( D o )  = (r IDo)  + ~(V(~6~j - n ,ni)6(r  - ro)) , (3.11) 

t l * ( D ~ ) ( D , j )  = ( t lD~D~)  , (3.12) 

and (3.11) being multiplied by (Du), it holds 

( ~ D o ) ( D o )  + ½(y (~6~-  n;nj)6(r - r o ) ) ( D ~ )  = ( q D ~ D ~ )  . (3.13) 

Applying (3.10) in this equation leads to 

( r l D ~ ) ( D ~ )  + ( r l D ~ D ~ )  - 1(7(~6 ~ -  n, nj)6(r  - r o ) ) ( D ~ )  = 0, (3.14) 

and finally insertion of this result in equation (3.12) gives 

~ I * ( D , - ) ( D ~ )  = ( q ) ( D , ) ( D o . )  - ( r l O ~ D ~ . )  

1 1 
+ ~(y (~fi~: - n,nj)6 (r - ro ) ) (D~:) .  (3.15) 

Since (~ID~.Db) is positive semi-definite, it follows: 

c 
~/* ~ (r/) + ~ .  (3.16) 

As y is assumed to be constant, only in two cases it is easy to obtain the simple 

result 

(3.17) 

namely for y = 0 and for spherical particles with ~ ~ 0. 

The latter case, however, is not feasible in a flow as a consequence of the condition 

of force equilibrium at the particle interface given in eq. (2.12). For the remaining 

possibility, viz. y = 0, it is also possible to obtain the corresponding lower bound 

by working with the fluidity l/r/, being the inverse of the viscosity r/, 

(1 /~ ) -~  ~ < q* <~ ( 9 ) .  (3.18) 

These bounds were already found by Hashin 8) and Batchelor14), but it must be 

emphasized that these bounds cannot be valid for immiscible fluids, because then 
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), ~ 0. The latter conclusion is in accord with the only result that is proved beyond 

any doubt (Keller et al.13)), namely the so-called Einstein-Taylor formula, giving 

the effective viscosity r/* in the first order of the volume fraction ~b of the fluid 

particles (expression (1.2)). 

4. Formal solution of  the flow fields 

The hydrodynamic problem of flow in a dispersion is given by the equations 

already given in section 2: 

au, 
incompressible fluid: ?x, 0,  (4.1) 

a ?nj 
equilibrium of forces: ?.x-j a!,= "/n,w=c,x, 6(r - ro), (4.2) 

constitutive equation: rr,/= - p 6  o + 2r/Di,, (4.3) 

viscosity: q(r) = rh + (r/2 - r/l)~(r). (4.4) 

Now, in the last equation, the description of the spatial distribution of the 

viscosity, a new parameter r/0 is introduced aiming at the effective viscosity r/* (see 

section 5), 

rl(r ) = qo(1 + q(r)),  (4.5) 

with 

q(r) - q0 
q ( ~ )  - 

qo 

Inserting (4.3) in (4.2) and making use of (4.1), one arrives at the following 

differential equation: 

ap+ q (4.6) 

which becomes with the help of (4.5) 

~ anj 6 ~' /au, aU/~ 
?P + - - =  ( r - r , , ) - r / 0  q t ~ + ~ x i )  (4.7) 

- ~:,,. ,7o Ox~ ~" '  axj ~ " 

By using the Oseen tensor and vector respectively this equation can be solved 

formally, 

0 1 + + 
~rCrlo J \rl2 r~2 / 

V 

{ ~nk •(r2 -- r0) + qo q + (4.8) 
X --~H/~X2,k ~Xzk k(~X2, k aX2. i/]) 
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and 

-- 1 f XI2,j 
p ( r l )  = P ( ° ) ( r l )  + ~ ddrz r~2 

v 

{ + dnk 3 ( r 2  - -  r0) + no - -  q + (4.9) 
× --)'nj 63X2 k aX2. k ikt3X2,k t3X2,jl ) 

with rj2 - r2 -- rl, and where V designates the volume of the dispersion, eventually 

taken to be infinite; furthermore, u ~) and p(0) are the additive solutions of eq. (4.7) 

in the case that the right-hand side equals zero. 

By differentiating (4.8) with respect to rl one arrives at 

D0(r,) = D~)(rO + ~ 1--L fd¥2(3 xt2'iX12'jXl2'k r~ ..X12'k~ 
~Tttlo J \ r ~ 2  +'J r~ 2 ,] 

V 

x - ~nk ~ - -  (r2 -- ro) + 2r/o q(r2)Dkt(r2) (4.10) 
OX2,1 

where D~ ) is the unperturbed rate-of-strain tensor, which was assumed to be 

translationally invariant. 

Changing the set of independent variables rt and r 2 into ri and rt2 , one can write 

(4.9) and (4.10) as 

D o ( r , ) = D ~ ) +  l___Idrt:(3x,:.,X,EjX,+.k ,~..Xtm.t'~ 

or~rlo J \ r+2 ++ r+ 2 ) 
v 

x - 7nk Oxt2,~ ° t r l  + r12 - to) + 2+/o ~ q(rl + ri2)Dkl(rl + r,2) 

(4.11) 

and 

p(rl) =p(°)(rl)-- ~ drl~ 

V 

× -),nj c~xl2.--~ 3(rl + r12 - r0) + 2r/o d-~12, q ( r l ,  + rt:)Djk(r, + r]2) • 

(4.12) 

Eq. (4.11) can be written in a short-hand notation 

Do _/)(o) + (~) (4.13) - -  _ o D o + GoklqDk~ , 
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where 

Dl)')(rl) = 8~rh ' dr,.. 3 r? 2 3# r~ 2 ] 
i' 

{ -4 
and where the integral-operator G~,I is defined by 

(4.14) 

f ( \>  ~\ ? 

1 Xl2"iXl2"l-\'12k 6 i - - : ~  .~.~ • (4.15) 
Gi,~l(rl) =-4~z drl2 3 r~: rl: / ~-rL2.1 

V 

Note that, since Dkt is symmetrical with respect to the indices k and l, only that 

part of G0k l that is also symmetrical in the indices k and I operates effectively on 

Dkt, so that G,jkt may also be defined as follows: 

' f (  Gi,,,(r,) = 8~ dr,2 3 \ '12 'x '2 '1  ~ ~/-~.,2,k ('~ -\122 ~ 
rT2 " t4. 6t 

T t 12 ¢'-~-12./,/ 

V 

If averaging is assumed to commute with differentiating and integrating, the 

average value of D~I equals the average values of D~,~ ', because in the term {DI)'~ ) 

the quantity in (4.14), 

,!n, . ) I f (?n, 6 ( r ,+ r ,2_ r , )=  0 (4.17) 7/1k ~Xl2J ~ ( r l  ~- r 1 2  - -  IP°) = V drl?'n* ?-~12,t 

see eq. (38) of  Rosenkildel~), and because in eq. (4.11) the quantity 

( q ( r  I 4-rjz)Dlk(r I 4- rl2)) does not depend on rn2 since statistical homogeneity is 

assumed. From this it follows 

(D,,)  : (DI[") = DII" • (4.18) 

The contribution of the interracial tension to the rate-of-strain tensor D ~' vanishes 

if all the particles are spheres: in that case div n is a constant and that part of  the 

integrand in (4.14) enclosed in parentheses can be written as the curl o f r l  x r / r  ~, 

so that Stokes' theorem can be employed for a closed surface. Also in the case 

of  mixtures of fluids (7 = 0) the tensor D e~ equals zero. Henceforth, only these 

two special systems are considered, i.e. D~;~= 0. 

Eq. (4.13) may now be written 

Dij = <Do)  + GijktqDkt . (4.19) 

The integrand in the integral-operator G~kt appearing in Cartesian form in (4.15) 
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can be written in terms of spherical harmonics Ytm(q~, 0) as follows: 

1 f 1 

1 fdr,zln~,(~,2). 2 = 2 , 4 ; # = - 2 , - ) . + 1  . . . . .  2, 
+ Co kt'~* 4---~ J --lZ 

(4.20) 

where the constants CijkU~, connect the Cartesian with the spherical tensors (see 

Willemse and Caspers~°)). These constants c,jku u are symmetrical in the indices i 

and j, k and l, and also in the pairs of indices/j and kl (cf. eq. (93) of KrSner and 

Koch2°)). 

The values of the complex numbers CUkU. . are immaterial within the scope of this 

paper, but it is important to note the following properties, which can be derived 

from eq. (4.20): 

Cijij,2 # = Ciijjfi4 a = Cijji,2 # = 0 . 

The first integral is a total derivative with respect to the radius r, from which it 

follows that eq. (4.19) can be written as 

O U = (Do) + {(qOo) -- {qO o + rqktqOkt, (4.21) 

with 
1 

j 1 Y~,(~,z) (4.22) Yii*,(r,) = cok,.~. ~ dr,2 r~  2 

Keeping in mind that (4.21) represents an iteration series, one can also represent 

this equation by its sum: 

= ( ( - D ) + 2 ( q D ) ~  (4.23) 
D!i \ l + 3q-- Yq J~" 

Expansion of this series in the first few terms should lead to 

,{( ) } Dii = ~ i + V~kt ~ q  + Y2,jk,--(l + ~q)2 F ' ' "  ((Dk,) + {(qDkt)) 

(4.24) 

where the third term written out in full reads 

l [" 1 ~ 1 
YZkl = C i j Y n n , ) . # C m n k l . ) , ' l ( T A ~  /drt2 7 Y, tu(l;12) j dr23 - -  Y~,u,(fz3) (4.25) 

(4~4 d r l 2  r 3 3  " 

5. Calculation of the effective viscosity and its bounds 

The definition of the effective viscosity r/*, given by eq. (3.1) and in another 

form by eq. (3.11), results in combination with (4.5) in the task to calculate 

rl*(Oij) = r/0((l + q)Oij) + ½c(D~) , (5.1) 
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where c is given in eq. (3.5), 

()' (~&o - nin/)6 (r - r0) ) -- c (D!/).  (5.2) 

In the last equation the constant c expresses the relation between the averaged 

rate-of-strain exposed on the dispersion and the resulting form of the fluid 

particles. Starting from a dead fluid with spherical particles, the imposed fluid flow 

in the neighbourhood of the particle determines the deformation of the spherical 

particle and the deformed sphere in its turn determines the fluid flow. In other 

words, one has to solve an equilibrium problem, such that the equation 

[ao]n , = 7n, div n holds. This constitutes a difficult problem with boundary condi- 

tions on boundaries that depend themselves on the solution. It appears that this 

problem cannot be solved with the method presented here, but that one has to 

solve a deterministic problem in order to determine the value of the constant c. 

By not taking into account this term any longer, it is to be expected that the results 

in the remaining of this paper can only be valid for dispersions of  spherical 

particles, which may be realized by letting r h go to infinity at constant 7, so that 

eq. (5.2) gives no contribution to eq. (5.1) and also in the case of  7 going to zero 

giving rise to all kinds of  deformations of  the particles, such that 

( (3~/ -  nin,)6(r-  r,,)) goes to zero. In these two cases eq. (5.1) simplifies to 

rl*(Di/) = rh,((l + q)Do) = q,,(O!/) + qo(qDo) . (5.3) 

From eq. (4.23) it follows 

\ 
\ l + s q - -  Yq /t / '  (5.4) 

and taking the term 1 + ~q out of  the parentheses, one gets 

1 1 2 r r ~  ' 
(5.5) 

with 

q 

r ~  l + s q .  

Eq. (4.5) being used, the renormalized parameter  r~ can also be written as 

r~=5  q - ~ / 0  
2q + 3q0 " (5.6) 

In order to obtain an explicit expression for (qD+y) the second term in the 
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right-hand side of eq. (5.5) is taken to the left-hand side of this equation, after 

which the resulting equation is multiplied by the inverse of the fourth-rank tensor 

The solution of (5.5) is then given by 

( q D o > =  \ l ~ ~/ktmn (Din.>, (5.7) 
O 

where in the series expansion of the formal geometrical progressions the adequate 

contraction of the tensors must be performed. 

Equation (5.3) can now be written as 

[ 1 
• * < O / J >  = " °  (~im~jn-~ik(~jl2(i~_~>ijklJ <omn> 

I fi~"fit" + 3 <1-S -Y-~ )k"" (Din.) (5.8) 
= ~/0 - - - -  

0 ~ ~ik(~J I 2<--l--~>ijk, 
Since the dispersion behaves statistically isotropic, the expression in square 

brackets in (5.8) should be an isotropic tensor. For this reason the effective 
viscosity can be represented by the following scalar: 

1 + ( 3 / 5 )  Z.~=, T (") 

r/* = t/o 1 - ( 2 / 5 )  E ; = ,  T (")' (5 .9 )  

with 

T(n) _ ZT(~) t o - , j o ,  n =  l , 2 , . . . .  

The first three terms of the T-series read 

T ¢1)=(r7>= 5 2 , - + ~ 0  ' 

T(2)_ 1 f 1 
qk, -- cukt,~u ~ jdr,2 r~--~ L"(lP'2)(r/(rl)r/(r' 

(5.10) 

(5.10 

+ r,2)), (5.12) 
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x (C(r,)jl(r, + r,Jri(r, + r12 + r,J) (5.13) 

Note that the first term T”’ is texture-independent. i.e. it does not depend on the 

form, size distribution, orientation, orientation distribution, spatial distribution. 

and other statistical information regarding the geometry of the fluid particles, and 

that the higher-order terms T’“‘. II > 2. express in increasing detail the influence 

of the textural properties of the dispersion on the effective viscosity because T”“, 

I1 3 2. represent angular integrals over n-point correlation functions (Beran’)). 

The value of Q, is still undetermined and can be chosen at will. The value of 

r],, following from the obvious condition (f) = 0 is the value corresponding with 

the effective viscosity q* in the effective-medium theory (Hori”)). This condition 

leads to the quadratic equation 

The one positive root of this equation is given by the familiar solution of quadratic 

equations, but in two limiting cases a simple expression is obtained. 

The viscosity in eq. (5. I5), which should be considered as the texture-independent 

part of the effective viscosity, coincides with the effective viscosity derived by 

Lundgren). 

In general the solution of (5.14) can be expressed in first order of 4, 

(5.17) 

This result can be regarded as the texture-independent viscosity at low concen- 

trations and may be compared with the EinsteinTaylor formula 

(5.18) 

Only in the limiting case of rigid spheres Q +cl, these two expressions give the 

same result, which is not at all surprising since the effect of the interfacial tension 

is completely ignored in all other cases in (5.17). 

The freedom of choice of the value of ‘lo enables one to establish the so-called 
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Hashin-Shtr ikman bounds (Hashin and Shtrikman22)): 

A -..< t/* -..< B ,  

in which 

1 + 3T( l )  

A = % 1 - 2 T ( I ) '  with t/o ~< min{t/1, t/2} 

and 

(5.19) 

1 + 3Tin 
with t/0/> max{t/l, t/2} • 

B = t/0 1 - ~T (1)' 

By taking r/o = min{t/l, t/2} and t/o = max{t/L, t/2} these bounds are the best possible 

bounds on the basis of  the one-point correlation function alone, i.e. in terms of  

qS, t/~ and t/z alone. If  it is assumed that  t/l ~< t/2, these best bounds become 

5t/1 + 3(~]2 -- nl)(~) (5.20) 3t/l-+- 2t/2 + 3(t/2 -- t / l)~ ~ t / ,  ~ t /2  

t/~ 3t/1 + 2t/2 - 2(t/2 - t/t)4~ 5t/z - 2(q2 - t/l)q~ 

if t/i > t/z, the inequality signs must  be reversed. For  t/o-",0 respectively t /o+m the 

bounds given in eq. (3.18) are reproduced, 

(t/--1)--I ~ t/* ~ ( t / )  , (5.21) 

For the two limiting cases mentioned above, t/2--+oo and t/2--+0, a lower bound 

respectively an upper bound can be deduced 

2 + 3 ~  _ t/l( 1 + ~b + ~b'  + . "  "), (5.22) 
t/2--*m: t/* t> t/l 2(1 - ~b) 

t/2 --+0" t/*~t/~,----TT7 = r h ( 1 - 3  + -  + ' " ) "  (5.23) 

From eq. (5.22) it follows that  the so-called Huggins coefficient K. ,  determining 

the second-order term of  t/* in the case of  rigid particles, 

(5.24) 

possesses a lower bound: 

KH >/0.4.  (5.25) 

6. D i scuss ion  

The results derived by the presented statistical cont inuum approach are only 

valid in cases that  ( F }  and D (r) equal zero. This imperfection is difficult to 
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eliminate by reasons explained in section 5. Both requirements are satisfied for 

rigid spheres and for mixtures of  Newtonian fluids with vanishing interfacial 

tension. 

To get some insight in the influence of ~F )  and D ~''~ an analysis of the 

well-known deterministic calculation of the effective viscosity of an emulsion of 

two Newtonian fluids in the first order of volume fraction of the (almost) spherical 

particles is instructive. A convenient starting point is the general expression of the 

stress tensor for an emulsion given by Batchelo?8), 

(Z ' )  =(pressure term) + 2r/,~O) + lim 1 j. ~ (a~ 'nr-rh(un+nu))dS ,  (6.1) 
, d  

Pip 

where ?. Vp is the surface of the particles within V and a~ is the stress tensor of the 

Newtonian continuous phase. With the help of eq. (2.12) and Rosenkilde's ~9) 

equations (8) and (15) it follows that 

The stress tensor a2 belongs to the Newtonian dispersed phase given by 

a2 = - p l  + 2rl2D. (6.3) 

Since Y "a2 = 0 within the particles, it follows, with Gauss' theorem, 

f a~'nr dS = f a2dV = q2 f (un + nu)dS + (pressure term) . (6.4) 

r ~ l p  I'p l: ['p 

Thus eq. (6.1) becomes 

(~ ' )  = (pressure t e rm)+  2q~(D) 

+ lira (tb - t/l) (un + nu) dS + lim 1 ~..~ p _ ~.~, p 70',1 dS .  (6.5) 

P l ' p  pl'p 

Apparently 

2q,(O~ + lim 1 f ~..r, p (r/2 - rl0 (un + 

lp 

and the deviatoric part of 

nu) dS 

lim 1 f v~ ~ V TUn dS 
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correspond to 

2)70((1+q)D)  and (7(~I - n n ) f ( r - r o ) ) ,  

respectively, of the present paper. 

Two conclusions can be drawn at first sight. For y --- 0 the effective viscosity of 

the emulsion is r h plus a quantity proportional to )?2 - r h, which is confirmed by 

expression (5.17). Secondly, for arbitrary 7 the form of the particles will influence 

the flow field and in general Sovp (un + nu)dS, thus making )7 * dependent on 7. 

However, apart from the contribution through ( F ) ,  it is not clear whether 7 

contributes to r/* by means of  the texture-dependent part of it or directly by D (v) 

or by both. 

The papers of Schowalter et al. 23) and Taylor 24) enhance these conclusions for 

emulsions in a pure straining motion. Schowalter et al. 23) calculated the viscosity 

of almost spherical particles (y ~ ~ )  of Newtonian fluid with viscosity rh dispersed 

in a Newtonian fluid with viscosity ~h in the first order of volume fraction tk, using 

expression (6.1). Their result (see appendix D) is 

lim 1 f v ~ ( t l 2 - r h )  j ( u n + n u ) d S =  6r/2 r/lr/iq~(O ) 
5rfi + r  h 

,% 

(6.6) 

and 

f 16~/1 -k 19~/2 lim 1 y(~l - n n ) d S  - rh~(O ) . (6.7) 
v ~  V 5(~h + rh) 

~vp 

If (6.6) and (6.7) are added, the Einstein-Taylor contribution to the effective 

viscosity can be deduced. The formalism in the paper of Schowalter et al. 23) and 

the calculations in Taylor's paper 24) can be used to deduce the contribution of both 

terms for the case of an emulsion of Newtonian fluids with viscosities ~h and )72 

and interfacial tension y = 0 during the first moment when spheres of Newtonian 

fluid with viscosity r/2 are placed in a pure straining motion. It appears that for 

this case 

, f 
lim ~ (~/2 - ~h) (un + nu) dS = 10(r/:----rh) r /~ ( D )  
w ~  3r h + 2r/2 

~Vp 

(6.8) 

and 

lira 1 f T ( _ ~ 7 _ n n ) d S = O .  
V ~  L I  

(6.9) 
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Eq. (6.8) results in a viscosity change 

5(q2 - rh) 

ql 3r/l + 2172 q~ 

due to the dispersed phase, as is also found in expression (5.17). As expected, (6.6) 

and (6.8) are proportional to r/2 - r/t. Since in both cases the form of  the particles 

is almost spherical, the difference between (6.6) and (6.8) is due to the influence 

of  the tensor D B'>. 

Experimentally (5.14) can be checked if the tractions on either side of  the interface 

are much larger than their difference (see eq. (2.12)). This is the case for the 

dynamic viscosity if the frequency is large enough. For the special case ~b-*0 

Oldroyd 25) derived that the high-frequency real part of the dynamic viscosity 

equals the viscosity as given by (5.17). The feasibility of pertinent measurements 

has been demonstrated by Oosterbroek et  ai.26). 

As a method the presented statistical continuum approach can be compared 

with work done by Nagatani t~) and Bedeaux et al. 12) for suspensions of spheres. 

They also solved the flow equations formally with generalized Oseen operators, 

but they chose the way via Fourier transformation of the flow equation. 

Nagatani's result, 

5(rh - r/9 , ] ' 
, * = . ,  (6.1o) 

deduced for 7 = 0+ may be compared with (5.14). In the first order of ~b expressions 

(6.10) and (5.14) are the same. Also both expressions of r/* satisfy the condition 

that for r h = r/2 the effective viscosity equals r h. For r h ¢ r/2 the expressions differ 

in higher order of 4}. The cause of this difference is not clear. Note that for r/2~ vc 

(rigid particles) the difference disappears. 

The results of Bedeaux et al.~2) are less easy to compare because they presented 

the effective viscosity as an operator. After some approximation it degenerates to 

a scalar, for which they presented two expressions. First they calculated the 

viscosity in the absence of number density correlations, 

q* -+ q,(l +~q~ + ~gb2 + .- 9 ,  (6.11) 

and further r/* was calculated up to the second order in the density of the spheres, 

q* = r/.(l +~q~ + 4.8q~2). (6.12) 

Apparently, both results are less accurate than the effective viscosity of Nagatani 

and the effective medium viscosity of the present paper, for which the 

Batchelor-Green expression (1.3) for q* is taken as the most reliable reference. 

Eq. (6.11) is even extremely low since it is identical with the lower bound in 

inequality (5.22). 
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Another result that is noteworthy but methodically derived in a different way 

was given by Lundgren6). He proposed an ad hoc closure of an hierarchy of flow 

equations (see section 1). Physically his approach implies that statistically each 

rigid sphere moves in a medium with effective viscosity 

r/* = r/ ,(1- ~qS)~, (6.13) 

but it is interpreted as an approximation of the effective viscosity of the dispersion. 

Expression (6.13) is identical with the effective medium viscosity given in (5.15). 

The bounds given in the inequalities (5.20) are identical with the bounds 

obtained by Hashing), using a variational method. Again their validity is restricted 

to mixtures of Newtonian fluids with 7 = 0 and to rigid spheres (q2~oo). The 

lower bound, (5.22), may also be compared with the corresponding bound given 

by Keller et al)3), which they deduced using extremum principles for a cellular 

system. The lower bound, given in (5.22), appears to be an improvement upon 

theirs, for it is higher. The other bounds, given in (5.21), which were also found 

by Hashin s) and Batchelor~4), are worse than those in (5.20). That this should be 

the case was demonstrated by HashinS). 

The main merit of the statistical continuum approach given in the present paper 

appears to be the deduction of an effective medium viscosity and viscosity bounds 

from one point of view and a contribution to the interpretation of the results, also 

found by Hashin8), Lundgren6), Batchelor'4), and NagatanP l), having been derived 

after omission of ( F )  and D ~'/). 

Appendix A 

C o n s e r v a t i o n  o f  m o m e n t u m  

In the derivation of eq. (2.11) two starting-points are used, namely Newton's 

law in the steady-state approximation and the constitutive equation for the 

dispersion. 

Newton's law: 

f Z ' . N  dS = O, (A.1) 

S 

(see fig. i). 

Constitutive equation: 

X = a + T U l t 6 ( r  - ro).  (A.2) 

Here the tensor On denotes the second-rank unity tensor, having the components 

(6ij - ninj)  in a Cartesian frame of reference. 
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Fig. 1. Intersection of an arbitrary volume V with boundary S containing part 
a fluid particle and the ambient fluid. 

of the interface S' of 

Combination of (A.1) and (A.2) gives 

O=f~,'NdS:fa'NdS+fTU,,'N6(r-ro)dS 
5 S 5; 

= f  ,jN dS ni,!,)Nids (A.3) 

S C 

The path-integral in (A.3) is performed over a closed curve C, being the 

intersection of  the surfaces S and S'. The projection of the unit normal vector N 

of  the surface S on the surface S '  results in a unit vector v tangential to S '  and 

perpendicular to C. This implies that v = N, so that the otherwise arbitrary surface 

S should intersect the interface S '  perpendicularly. The subtle reason for this 

condition is to provide antagonistic interior and exterior points of the fluid particle 

on either side of the interface S';  this choice is a matter of convenience. The triplet 

n, ! and v constitute a right-handed coordinate system on the curve C, ! being 

the unit tangent vector of the curve C. 

Equation (A,3) then becomes 

o=f ..NdS=f .NdS+f,;v 
Y, S ( '  

and on applying Gauss'  theorem, 

ds, (A.4) 

= f f ,~ .NdS= ~ aodV+ a~injdS j xj 
S V I S'I 

+f a,jdV-faonjdS+ vv, ds. 
v: s5 c 

(A.5) 



EFFECTIVE VISCOSITY OF DISPERSIONS 307 

Analogously to the description of  q as given in (2.7) the stress tensor a can be given 

by 

frO" = O'l,q (1 - -  ~)  "4- O'2,~ • (A.6) 

Differentiation with respect to the coordinate r gives 

O O 8 
OX, O'/, = (1 - -  ~ )  ~ O'l./j "J- ~ ~X, ff2.lj + (O'l./j - -  O'2,/j)r/,¢~ (r - -  r0 ) -  ( A . 7 )  

Keeping in mind this way of  dealing with discontinuities, one may write (A.5) as 

S v C 

For the evaluation of  the contour-integral Stokes' theorem is applied on a tensor 

A = yn ® or indexical Akl = yE~¢np, thus following Rosenkilde's p roof  ~9) of  eq. (9) 

but now for an open surface: 

~ A "lds = f ( I  7 x A ) ' n  dS 

C S '  

S' 

=fE.(f~jYE.tnP) n'dS 
S' 

= j~-~n,~xj+ 0o- n~ , ) dS. (A.9) 

S' 

Since the triplet n, /, and v constitute a right-handed system, it holds n x ! = v 

and therefore A • l = yr. In (A.9) use is made of the identity 

0 1 c3 1 c3 
n i  - -  Fli = - -  n i n i  = 1 ~ -  0 

Returning to eq. (A.8): 

O= ~, 'NdS= a~dV+ -yn,-~x+(6~-n,n j) dS 

S V S' 

On, -- ro) t d V. (A. 10) =f{f~jaiJ+(--Tn,-~xj+(~ij--nin,)~xj)~(r 
.1 

V 
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Since the volume V was taken arbitrarily, it holds 

V ' ~  + I 7 " ' F  = 0 ,  (A.11) 

where the symbol Vu = U . -  V (see Eliassen27)). 

Returning to eq. (A.2), one finally arrives at 

V . Z  = 0. (A.12) 

In the limit of  S approaching and still enveloping S ' ,  the vectors n and N will 

almost everywhere coincide (possibly apart  from their sign), so that at the interface 

S '  it holds 

~n~ ~, 
[aii]ni = 7'ni ~')'X~ ?,xj (fi~s -- n~ni), (A. 13) 

where the square bracket [aij ] means the difference between the outside value and 

the inside value of  ~,j; this is a direct consequence of the inversion of the direction 

of  the vector N at both sides of  the interface S'.  

Appendix B 

The average o f  the stress tensor v 

The average of the stress tensor _r is computed as follows: 

,f if ~z,,)=~ r~jdV= V {~"+:(6"-n'n~)'~(r-r")}dV' (R1) 
V V 

When use is made of eq. (14) in the paper of  Rosenkilde ~) for variable 7, 

~,(6!/-  n ,n/ )6(r  - ro) d V  : x: ~,n~ Px~ 

l [ 

eq. (B.1) becomes, with the help of  (A.10) 

Appendix C 

H a s h i n - S h t r i k m a n  bounds 

The T series is the average of a Neumann series times r~, 

(B.2) 
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with t an integral operator defined by 

1 I 1 tij~l(r,) = cijkl,~,-~ drl2 ~ Y~,(t~12)t1(r, + r,2), (C.2) 
J 12 

in short-hand notat ion 

t~jkz = Yokt6, t~jkt2 = L j , , , q Y , ~ t ~  , etc. . (C.3) 

Here t2tz is defined analogously to Y~kt given in (4.25). 

The renormalized parameter t~ is negative semi-definite if 

rio >/max{r/i, r/2}. 

For such a value of  I10 it holds 

(rT(t~k, + t~k + l)z> ~< 0 ,  n = 1, 2 . . . . .  (C.4) 

in which expression t is the integral operator defined above in (C.2). From this 

inequality it follows for a statistically isotropic material that  (cf. eqs. 

(5.10)-(5.13)): 

Ta ,+  I) + 2T~2,+2) + Tt2n + 3) ~< 0 ,  ( 0 . 5 )  

By using this inequality for n = 1, 2 . . . . .  and summing, it is deduced that 

T~3) (C.6) 
n=3 

and since T ¢3~ is negative semi-definite (cf .  ( C . 4 ) ) ,  it follows 

T¢") ~ T °) + T¢2). (0.7) 
tl--I 

Since T a~ vanishes for a statistically isotropic material (c,j0,~. ~ = 0), it is seen that  

ri*, given by eq. (5.9), 

1 + 3 E ~ =  I T ~") 

ri * = q0 1 - 2 '~nm=l T(n), (0.8) 

possesses an upper bound,  because r/* is a monotonic  increasing function of  

E ~  I T~"~: 

1 + 3Tin 

ri* ~< ri0 1 - ~ T  a)" (0.9) 

By choosing ri0 ~< min{ril, riz} the renormalized parameter r~ !s positive semi- 

definite, from which, in the same way, a lower bound may be derived. Hence, ri * 

is bounded by 

A ~< q* ~< B,  (C.10) 
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in which 

A = r / 0 -  

and 

1 + 3T~J 

1 - ~T ")' 
with r/o ~< min{r/,, r/2 

1 + ~T Ij) 
with r/0/> max{r/t, r/2} B r/o 1 - -  ~ T  (1)' 

The best bounds  are obta ined by taking r/0 = min{r/,, r/2} and r/o = max{r/,, r/2} 

respectively. These are the best bounds  that  can be indicated solely on the basis 

o f  knowledge of  the values of  r/~ and r/> 

Appendix  D 

Ident(fication of  separate terms contributing to the effective viscosi O, 

In this appendix  Schowalter  et al. 23) are followed closely to arrive at eqs. 

(6.6) (6.9). 

Eqs. (22) and (25) or Schowal ter  et al. 23) give 

d = c  f ((al "n)r - ql(un + nu)) dS 

~" l'pO 

I "p0 ¢ I'pO 

w i t h  n = r/r  a n d  d S  = r 2 d ~ .  

( D . 1 )  

The particles are considered as identical, independent  o f  each other  and a lmost  

spherical. The surface of  a particle is indicated by ? Vr~ , the number  concentra t ion  

by c and the radius vector  f rom the centre of  the particle to a surface point  

by r. The tensor  ~ 3 can be expressed in the solid spherical ha rmonic  p 3 as 

follows: 

~=p ~l +l:(rgp ~+(Vp  3)r). (D.2) 

Eq. (24) of  Schowalter  et al. 23) restricted to pure straining mot ion  gives 

(un + nu ) dS  = 2 D ' r r r  df2 + - -  rrp ~r df2, (D.3) 
qt 

? VpO ? ~pO f ~'pll 

where D is the constant ,  traceless, symmetr ic  rate-of-strain tensor which is applied 

at infinity. 
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With their eqs. (26)-(28) Schowalter et al. 23) demonstrated that 

I 2, 
rrp_3r dr2 = - ~ c , / ,  (D.4) 

~vpo 

and with neglect of the pressure term and the non-Newtonian contribution of d 

to the constitutive equation that 

j 4 3 0 = ~nb c5qlA _3D. (D.5) 

In (D.5) b is the radius of the spheres (so q~ =4nb3c) and A°3 is a constant 

typical for the flow and the emulsion. 

Realizing that 

f D dQ = 4nb3D (D.6) D ~ r 

~7 Vpo 

for spheres with radius b, one can conclude that 

if (r/2 - ql) p (nu + un) dS = 2(r h - rh)(1 - A ° 3)q~O (D.7) 

0 Vpo 

and 

,f y(~1 - n n ) d S  = (A °_3(3~h + 2t/2) - 20h - rh))qSD. (D.8) 

? Vp0 

According to Schowalter et al. 23) the difference between D and ( D )  is on the order 

of q~, so that D in (D.7) and (D.8) may be replaced by ( D )  as long as only 

contributions in first order of ~b are considered. 

For almost spherical (y ~ ~ )  fluid particles with viscosity t/2 immersed in a fluid 

with viscosity ql subjected to pure straining motion 

AO _ 2rh + 5q2 (D.9) 
-3  5(771 71- q2)" 

For fluid particles with viscosity ~/2 immersed in a fluid with viscosity r/l and 

interracial tension y = 0 during the first moment when they are placed with a 

spherical form in a pure straining motion Taylor 24) found 

A°_3 = 2 q2 -- q~ (D.10) 
3rh + 2q2" 

Insertion of (D.9) in (D.7) and (D.8) gives (6.6) and (6.7) respectively. Repeating 

this procedure with (D.10), one reproduces (6.8) and (6.9), respectively. 
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