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Effective Visualization of Temporal Ensembles

Lihua Hao, Christopher G. Healey, Senior Member, IEEE, and Steffen A. Bass

Abstract— An ensemble is a collection of related datasets, called members, built from a series of runs of a simulation or an ex-
periment. Ensembles are large, temporal, multidimensional, and multivariate, making them difficult to analyze. Another important
challenge is visualizing ensembles that vary both in space and time. Initial visualization techniques displayed ensembles with a small
number of members, or presented an overview of an entire ensemble, but without potentially important details. Recently, researchers
have suggested combining these two directions, allowing users to choose subsets of members to visualization. This manual selection
process places the burden on the user to identify which members to explore. We first introduce a static ensemble visualization system
that automatically helps users locate interesting subsets of members to visualize. We next extend the system to support analysis
and visualization of temporal ensembles. We employ 3D shape comparison, cluster tree visualization, and glyph based visualization
to represent different levels of detail within an ensemble. This strategy is used to provide two approaches for temporal ensemble
analysis: (1) segment based ensemble analysis, to capture important shape transition time-steps, clusters groups of similar mem-
bers, and identify common shape changes over time across multiple members; and (2) time-step based ensemble analysis, which
assumes ensemble members are aligned in time by combining similar shapes at common time-steps. Both approaches enable users
to interactively visualize and analyze a temporal ensemble from different perspectives at different levels of detail. We demonstrate our
techniques on an ensemble studying matter transition from hadronic gas to quark-gluon plasma during gold-on-gold particle collisions.

Index Terms—Ensemble visualization

1 INTRODUCTION

An ensemble is a collection of data produced by a series of runs of a
simulation or an experiment, each with slightly different initial con-
ditions or parameterizations. Scientists from various disciplines use
ensembles to simulate complex systems, explore unknowns in initial
conditions, investigate parameter sensitivity, mitigate uncertainty, and
compare structural characteristics of their models. Data collected from
each run forms an ensemble member, or more specifically a time-series
ensemble member if it contains results collected over a sequence of
time-steps. Ensembles are difficult to analyze due to their large size
and high complexity [27].

Different techniques have been developed for ensemble visualiza-
tion. Some create a concise overview, but omit potentially important
details from the original data [4, 21]. Others extend traditional visu-
alization techniques for a single simulation to support comparison be-
tween members [1, 18]. This provides a better view of the individual
members, but often limits comparison to a small member set. Seen in
this way, the two main approaches to ensemble visualization provide
either: (1) an overview that scales but at the expense of detail, or (2)
a visualization that maintains detailed information but only displays a
few members at a time.

We are collaborating with physicists at Duke University who are
studying particle collision ensembles. Each simulated collision pro-
duces a time-series member of 3D particle data. The physicists are in-
terested in studying how the shape of a volume evolves, where “shape”
corresponds to the density and extent of the particles within the vol-
ume. This includes specific needs to: (1) explore within individual
time-series members; and (2) compare both shape and data changes
over time across multiple members. Currently, this is done by analyz-
ing raw numeric data directly, or by producing simple visualizations of
a single member at a single time-step. Our approach is designed to al-
low fluid exploration throughout the ensemble to identify and compare
important shape and data features.
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More recent ensemble visualization systems support interactive
analysis at different levels of detail [12, 19]. These systems rely on
users to select a subset of members for detailed visualization, for ex-
ample, by brushing in a high level ensemble overview. Currently, in-
vestigating ways to automatically capture relationships between mem-
bers (inter-member relationships), or to explore important information
related to changes in the time dimension, are open challenges.

We first propose a hierarchical approach to combine the two direc-
tions of ensemble analysis, focusing on static ensembles that do not
change over time. Our technique reveals hierarchical inter-member
relationships and supports visualization and analysis of one or more
members simultaneously. An octree representation is built to com-
press the data and extract shapes from the ensemble [9, 22]. We ex-
tend the similarity matching in [28] to mathematically measure shape
dissimilarity between member pairs. These dissimilarities are used
to hierarchically cluster similar members into common groups. The
result is visualized as a level-of-detail cluster tree that allows users
to interactively perform comparative visualization among clusters of
members with varying levels of shape and data similarity.

We next extend the static system to support analysis and visualiza-
tion of temporal ensembles. This includes comparison of time-series
members and pattern mining in the time dimension. Our extended
system provides two approaches for temporal ensemble analysis: (1)
segment based; and (2) time-step based.

The first technique, segment based analysis, combines similar
shapes from all members across all time-steps. Time-series members
are compressed into a sequence of member segments by combining
neighboring member items with similar shapes. Dynamic time warp-
ing [24] is used to compare the compressed time-series members based
on shape changes over time. Results are visualized as a cluster tree that
highlights hierarchical inter-member relationships.

To explore common shape change patterns that occur at different
time-steps and across different members, we cluster member segments
over the entire ensemble, transforming it into a set of member cluster
participation sequences. We adapt UpDown tree contiguous item se-
quential pattern mining (CISP) [3] to discover patterns in the partici-
pation sequences. The patterns identify contiguous shape changes and
other important temporal features that occur frequently in the ensem-
ble. We extend our multivariate visualization to display patterns and
time-series member clusters, using animations to combine a sequence
of visualizations ordered in time.

The second approach, time-step ensemble analysis, is motivated by
our physics collaborators’ need to compare members at each time-step.
We independently clusters members at every time-step using our static



ensemble approach. Clustering the members converts the ensemble
into a set of shape cluster participation sequences, one per time-step,
suitable for closed CISP mining. This provides time-length reduction
and optimal pattern matching that allows for relationship analysis at
every time step.

2 RELATED WORK

Various visualization techniques have been presented to support anal-
ysis of ensemble data, for example, with volume rendering, multidi-
mensional visualization, and comparative visualization [2, 10, 16].

Ensemble-Vis was an early framework for visualizing weather fore-
casting and climate modeling ensembles [20]. It provides statistical
aggregation and linked views for color maps, contours, height fields,
and spaghetti plots, a technique for uncertainty visualization in mete-
orology that displays contours at specific attribute value boundaries.
Noodles is a similar visualization tool built for analysis of meteoro-
logical ensembles [23]. It provides more complex statistical aggre-
gation and uncertainty measurements, employing circular glyphs, rib-
bons, and spaghetti plots for data visualization.

Follow-on research extended ensemble visualization to support ef-
ficient visual comparison between pairs of members. Ensemble Sur-
face Slicing (ESS) [1] color-codes member surfaces and slices them
into equal-width strips, then builds a combined representation by ex-
tracting and visualizing strips member-by-member. Visual disconti-
nuities between strips highlight surface shape differences between the
strips’ members. Phadke proposed pairwise sequential animation for
3D ensembles by constructing glyphs for data elements whose color
and shape represent attribute value and parent member. Glyph opac-
ity varies over time based on a series of transfer functions to compare
pairs of members [18].

Recent studies have proposed systems that support multi-level and
interactive visual analysis. Matkovic developed a system to investi-
gate multi-run simulation results as families of data surfaces, plotted
in 2D [12]. The system uses multiple linked views to analyze data
surface projections and aggregations at a top level with parallel co-
ordinates and scatterplots; at a second level with parallel coordinates
and function graphs; and at a low level with 2D height 3D surface
views to explore a selected surface. Piringer designed an interactive
system to compare 2D function ensembles [19]. The system includes
a domain-specific overview to combine features into a 2D heatmap, a
member-specific overview to visualize members in a scatterplot, and a
detailed member view to visualize small subsets of members in a 3D
scatterplot.

Whitiker and Mirzargar proposed contour and curve boxplots to vi-
sualize statistical properties, outliers, and variability in ensembles of
contours or curves [13, 26]. Band depth statistically summarizes the
centrality of members of an ensemble, which are visualized using spe-
cialized boxplots. Demir developed multi-charts, an overlay of bar and
line charts to present statistical properties of ensemble members [5].
Köthur studied temporal properties of ensembles, generating temporal
profile clusters for different members [11], then consolidating them to
identify profiles representing specific features of interest.

Different approaches to characterize shape also exist. Gyulassy ap-
plied the Morse-Smale complex to segment a volume into ordered
topological features of interest based on gradient flow [6]. Pascucci
described the use of contour trees to represent topological changes in
level sets [17]. He proposed a visualization technique based on an
orrery to allow interactive filtering of topological properties (minima,
maxima, saddle points, etc.) at multiple levels of detail.

Ensemble visualization research builds on previous techniques like
glyph based rendering, comparative analysis, charts, and linked views.
Current systems support sophisticated statistical methods to represent
uncertainty [13, 26], to summarize member data in ways that highlight
areas of interest [5], and to consider the temporal aspects of ensemble
members [11].

We propose an octree based ensemble visualization framework that
measures shape similarities between members, then combines cor-
related members into a level-of-detail cluster hierarchy for detailed
member comparison. The hierarchy is visualized as a cluster tree,

providing a visual representations for multiple members. Since our
physics collaborators must compare changes in 3D shapes—spatial
distributions of particles—over time and identify frequent spatial and
temporal patterns in their particle collision ensembles, we further ex-
tend our static technique to analyze level-of-detail relationships within
and between time-series members using CISP mining, time-series
clustering, and animation based visualization of changes in shape and
data over time in a member cluster or temporal pattern.

Compared to existing ensemble analysis techniques, our approaches
enable users to analyze and visualize temporal ensembles from differ-
ent perspectives, and at user-chosen levels of details. This provides the
following novel contributions:

1. Shape and data comparison for 3D ensemble members.

2. Cluster tree visualizations to highlight hierarchical member rela-
tionships, and to support user-chosen tradeoffs in the number of
members visualized versus individual member detail.

3. Pattern identification for both static and temporal ensembles.

4. Individual and multi-member visualizations for shape, data, and
pattern comparison.

3 STATIC ENSEMBLE VISUALIZATION

We define an ensemble E = {M1,M2, . . .MN} with N time-series mem-
bers Mi ∈ E. Mi is a sequence of member items (mi,1,mi,2, . . .mi,T )
with T time-steps. Static ensemble visualization analyzes members at
a specific time-step Et = {m1,t ,m2,t , . . .mN,t}, providing an overview
of shape similarity between members, presented as a cluster tree. Clus-
ters in the tree are interactively selected and visualization for detailed
exploration of a set of members’ shapes and data values.

Our techniques assume a spatial distribution of data samples. More
abstract data can still be processed if a spatial layout can be imposed
prior to analysis. This is similar to many information visualization
techniques, which start with a layout algorithm to position data ele-
ments, followed by the application of a more traditional visualization
approach.

Octree construction. We begin by constructing an octree O [9, 22] to
compress member data and extract shapes at different levels of detail.
O’s root node is the minimum bounding cube that covers all data ele-
ments in E. For each mi, we recursively subdivide parent octants into
eight equal-sized child octants until the number of elements within an
octant meets an upper bound Omax. Following construction, each oc-
tant contains data from q members. Data in the octant is aggregated
to encode: (1) q data points representing the average spatial location
of each mi’s data elements; and (2) q pairs (µi,σi) representing the
average and variance of the attribute values in mi’s data elements.

Shape dissimilarity. We use mi’s octree to define the shape of a mem-
ber as the spatial distribution of its data elements. This lays a founda-
tion for hierarchical overviews of inter-member shape relationships,
freeing users from predicting relationships between members apriori
to choose which subsets of members to analyze and visualize.

Our shape comparison algorithm extends octree shape similarity
matching for 3D shape retrieval [28]. To support shape clustering,
we measure dissimilarity between members, as opposed to similarity.
We modify [28] to maintain dissimilarity accuracy for octrees with
large common empty regions. Given mi and m j ∈ E, let disr

i, j be the

dissimilarity between mi and m j in the r-th octant o l
r at level l in the

octree. cnt r
i and cnt r

j are the number of data elements of mi and m j that

lie within o l
r . We consider mi and m j to be equivalent if cnt r

i = cnt r
j

(disr
i, j = 0), as completely different if o l

r is empty for either mi or m j

(disr
i, j = 1), and as partially different otherwise, measured as:

disr
i, j =

∣

∣

∣
cnt r

i − cnt r
j

∣

∣

∣

max
(

cnt r
i ,cnt r

j

) (1)

The range of disr
i, j is [0,1], with higher scores for a larger relative

differences in point counts. Next, we aggregate disr
i, j between mi and



(a)

(b)

Fig. 1. Member visualization: (a) a member visualized in full detail; (b)
an aggregated visualization at the fourth level of the member’s octree

m j at each octree level l with N l non-empty octants (Eq. 2 left) to

produce a level dissimilarity dis l
i, j. Finally, we aggregate dis l

i, j over all

levels, starting at the root, to create an overall dissimilarity score disi, j
between mi and m j based on H, the height of O (Eq. 2 right).

dis l
i, j =

∑
N l

r=1 disr
i, j

N l
disi, j =

∑
H
l=1 w ldis l

∑
H
l=1 w l

(2)

A weighting factor w l = 1/γ l weights the dissimilarities at different
levels in O according to a shape comparison factor γ , assigning larger
weights to more detailed levels.

Visualization. disi, j ∀ i, j produces a dissimilarity matrix. This is used
as input to an agglomerative clustering algorithm that builds a cluster
tree whose visualization reveals inter-member relationships. Users in-
teract with the cluster tree to choose individual members or clusters—
subsets of members—to examine in detail. Member data is visualized
using glyphs that highlight shape and data differences (Fig. 1). Size
represents the number of data elements in each octant, color represents
a user-selected data attribute value, and flicker visualizes the attribute
value’s variance over the octant’s members (e.g., Fig. 3’s visualiza-
tion of individual members, and the combined visualization they pro-
duce). As members’ average attribute values differ over a wider range,
the octant’s glyph flickers between fully opaque and transparent more
quickly (see Supplemental Video 1).

Our choice of the specific colors, sizes, and flicker rates were se-
lected based on the perceptual properties of these features. Guidelines
from perceptual experiments conducted in our laboratory have identi-
fied the strengths and limitations of each of the features, both in isola-
tion and when combined in a common visualization [7, 8].

Our approach extends traditional multivariate visualization to sup-
port general shape visualization and region-by-region comparative vi-
sualization across multiple static ensemble members. This provides a
detailed view of shape, data element distributions, and important at-
tribute value differences. Users interactively choose the level of sim-
ilarity when exploring inter-member relationships, deciding when to
explore shape and data overviews, and when to visualize fine-grained
details in individual member datasets. The contributions of our static
ensemble approach are:

1. A scalable technique to represent an ensemble as a level-of-detail
cluster tree based on shape similarity.

2. A glyph visualization that supports visual comparison of both
shape and data across multiple members.

Fig. 2. Converting M1’s six members (m1,1,m1,2,m1,3,m1,4,m1,5,m1,6)
into four member segments (ms1,1,ms1,2,ms1,3,ms1,4)

(a)

(b)

Fig. 3. Member segmentation: (a) ratio based, the second member
segment contains member items with significantly different shapes; (b)
shape integration based, time-steps t51 and t52 where the volume splits
are correctly identified as a boundary between two member segments

3. An interface that allows users to interactively vary the level of
similarity of the members under examination.

4 TEMPORAL ENSEMBLE VISUALIZATION

We next extend our static techniques to include analysis and visualiza-
tion of a temporal ensemble E. Our approach supports comparison,
exploration, and visualization of changes in shape and data over time.

4.1 Member Segmentation

Including a time dimension leads to a significant increase N → N ×T
in the total number of member items, requiring N2×T 2 pairwise shape
comparisons for a brute-force shape clustering. To improve efficiency,
we combine similar member items into member segments (Fig. 2) and
move our dissimilarity evaluation from the member item level to the
member segment level. Member segmentation groups similar shapes
adjacent in a local region in time within Mi, abstracting its T member
items to T ′ member segments (msi,1,msi,2, . . .msi,T ′), T ′ ≤ T . This

can significantly improve performance if T ′ ≪ T by reducing the num-

ber of octree comparisons to O(N2 ×T ′2).

4.1.1 Shape Integration Based Segmentation

We initially implemented a contribution ratio based member segmen-
tation inspired by color image segmentation. In a temporal ensemble,
each member consists of temporally ordered results, so shapes col-
lected at adjacent time-steps are often similar and therefore may be-
long to the same member segment. We represent a member as a one-
dimensional row of member items (pixels), with neighbors defined as
the items that immediately precede and follow a target item.

Member segmentation uses the first item in the segment as a refer-
ence item, recursively updating the median distance using dissimilari-
ties between the reference item and new items. Unfortunately, there is
no guarantee that the first item is a good representative of a segment.
Fig. 3a converts a member that starts with a cylinder shape and ends
with two separated cones over 34 time-steps into 3 member segments,



using r = 1 and a dissimilarity threshold of 0.4. Because of the way
reference items were chosen, the second member segment incorrectly
combines the time-steps that contain the separation event.

The key to improving the quality of member segmentation is to find
a measure of median distance that considers the dissimilarity between
all member items, but without significantly increasing the cost of oc-
tree comparisons. The octree shape integration dissimilarity measure
in Section 4.2 compares two groups of member items with one octree
comparison. We apply this shape integration technique as follows:

1. Select a member item mi,t that is not part of any member seg-
ment, with neighbors mi,t−1 and mi,t+1.

2. If a neighbor does not belong to any existing segment and is
within a user defined dissimilarity threshold of the median of
items in the segment, add it to the segment.

3. Update the segment’s median dissimilarity using the dissimilar-
ity between an integrated octree of the current segment’s items
and the new item.

dismed = disshape-integration(mscurr,mnew) (3)

4. Recursively consider neighbors of new items until no more items
can be added to the segment. At the end of the recursion, a mem-
ber segment for mi,t is generated.

5. Repeat steps 1 through 4 until every member item is assigned to
a member segment.

Shape integration segmentation uses the average shape of a seg-
ment as its median to determine whether a new item should be as-
signed. It does not requires a contribution ratio, so the quality of the
segmentation depends only on median distance. Fig. 3b uses shape
integration to abstract the same 34 member items in Fig. 3a using the
same dissimilarity threshold of 0.4. This produces four member seg-
ments, properly capturing the volume’s split between t51 and t52. Each
member segment represents a smooth shape change with limited shape
variations from the median at each time-step, producing higher quality
segments that capture major shape changes in the time dimension.

Our member segmentation approach efficiently combines neighbor-
ing member items. It requires O(T ) octree comparisons to segment a

member with T time-steps. Shape clustering requires O(T 2) octree

comparisons to generate the dissimilarity matrix and O(T 2) time for
hierarchical clustering. Assuming T ′ is the average number of member
segments per member, segmentation groups the N ×T member items
in E into N ×T ′ member segments. This simplifies analysis and vi-
sualization of the ensemble by reducing the length of each member in
the time dimension. T ′ will depend on characteristics of the data and
the user-chosen dissimilarity threshold.

4.2 Cluster Shape Dissimilarity

To efficiently compare sets of member items, we propose an octree
shape integration approach that measures the dissimilarity between
the member items’ integrated octree representations. This extracts the
overall shape of member items in a set by averaging their data in each

octant. Analogous to Eq. 1 for static ensemble analysis, let cntlp,r and

cntlq,r be the number of data points of mi,p ∈ Mi at time-step p and

m j,q ∈ M j at time-step q, for octant ol
r at level l in the octree. We mea-

sure overall shape dissimilarity between Mi and M j at ol
r as follows:

disl
r =

∣

∣

∣
cntlMi,r

− cntlM j ,r

∣

∣

∣

max(cntlMi,r
,cnt l

M j ,r
)

cntlMi,r =
1

|Mi|
∑

p∈Mi

cnt l
p,r cntlM j ,r =

1

|M j|
∑

q∈M j

cnt l
q,r

(4)

By measuring dissimilarity between Mi and M j at each level of the
octree and aggregating the results across user-specified starting and
stopping levels, we create a final dissimilarity score, similar to the
shape dissimilarity calculation for a static ensemble.

Fig. 4. Improving dynamic time warping using member segments

If the shapes of member items in each cluster are similar, octree
shape integration provides a more precise approximation of cluster
shape dissimilarity, since it respects the overall shape of each clus-
ter by averaging their octree representations. If the shape dissimilarity
between each member item pair is unknown and a large number of
member items are involved in the comparison, the shape integration
technique is still efficient because it traverses the octree representation
a constant number of times: twice for shape averaging and once for
the final dissimilarity measure. The complexity of the algorithm does
not increase significantly as the size of the clusters increase.

5 SEGMENT BASED ENSEMBLE VISUALIZATION

Segment based ensemble visualization is a more general approach that
captures hierarchical relationships across all member items, proposes
member segmentation to reduce length in the time dimension, and cap-
tures possible shifting in the time dimension.

5.1 Time-Series Member Clustering

Time-series member clustering addresses one important goal in en-
semble visualization: identifying similar simulation or experiment
runs. In a temporal ensemble, analysis of inter-member relationships
(i.e., sets of similar members) is extended from a static level between
mi,t and m j,t to a sequential level between Mi and M j. Since changes
in shape can happen at different time-steps and over different periods
of time, we use dynamic time warping (DTW) [24] to find an optimal
alignment between two members. We then construct a cluster tree that
visualizes member similarity in E at different levels of detail.

DTW generates a non-linear alignment between two temporal se-
quences that minimizes pairwise distances by shifting and distorting
in the time dimension. Dynamic programming is used to identify an
optimal minimum distance between Mi and M j by building the shortest
warping path in a T ×T matrix D where D(p,q) encodes the shape dis-

similarity between mi,p and m j,q. It requires O(T 2) shape comparisons

to calculate the dissimilarity between Mi and M j, and O(T 2 × N2)
shape comparisons to compare all members in E.

We use the same T ′ member segments built in Section 4.1 to im-
prove performance by measuring dissimilarity between Mi and M j and
finding the optimal match between the two corresponding sequences
of member segments that minimizes their differences (Fig. 4). It costs

(T 2 ×T ′2) time to compare all pairs of segment sequences, a signifi-
cant improvement when the octree is large and T ′ ≪ N.

DTW generates a matrix encoding all pairwise member dissimilari-
ties in a time-series ensemble, respecting contiguous changes in shape
over time. We use this dissimilarity matrix as input to agglomerative
clustering, producing a cluster tree that supports inter-member rela-
tionship analysis and visualization.

5.2 Member Cluster Participation Pattern Mining

A second important requirement during ensemble visualization is to
identify shape patterns: common changes in shape over time. To iden-
tify shape changes that occur across multiple members, we need to
mark similar shapes. We do this by generating an (N ×T ′)× (N ×T ′)
dissimilarity matrix of member segments. This matrix is used to build
a segment cluster tree that allows users to choose clusters that combine
similar shapes across members.

Shape clusters and member segments both group member items
based on changes in shape over time. The key difference is that mem-
ber segments occur within a single member. Shape clusters can occur
across multiple members (Fig. 5).



Fig. 5. Member cluster participation sequences mark common changes
in shape c1, c2, c3, and c4 that occur across multiple members

Fig. 6. Visualizing a time-series member that fades member items in
and out based on time-step, the slider denotes the current t

As an example, consider an ensemble containing 14 member
segments (ms1,ms2, . . .ms14) that are grouped into 4 shape clusters
(c1,c2,c3,c4) based on shape change similarity over time (Fig. 5).
Now, ensemble members can be transformed into sequences of shape
clusters, for example, M1 = (m1,1,m1,2,m1,3,m1,4,m1,5,m1,6)⇒ S1 =
(c1,c2,c3,c4). We call this transformation segment cluster abstrac-
tion, and the resulting sequence S1 a member cluster participation
sequence. Transforming E = {M1,M2, . . .MN} produces N member
cluster participation sequences {S1,S2, . . .SN}.

The number and length of member cluster participation sequences
are often large, making it infeasible to manually identify frequent pat-
terns across the Si. To solve this, we use an UpDown tree to perform
CISP mining [3]. This allows us to automatically discover common
subsequences in the Si. These patterns represent a shape change that
occurs across multiple members. Once patterns are identified, they
can be visualized using our glyph based visualizer. It is also possible
to visualize where in each member a common pattern occurs. This
is discussed in detail when we introduce the RHIC ensemble in Sec-
tion 7.

5.3 Temporal Visualization

To visualize shape change, we extend our glyph based visualization to
use animation to display changes in shape over time. A sequence of
member items fade in and out based on their temporal order, generat-
ing a movie of contiguous changes in shape. A slider below the vi-
sualization captures the time-step of the current visible member item,
cluster, or pattern (Fig. 6). To improve the efficiency for visualizing
long members, we support an abbreviated representation that displays
a sequence of member segments rather than the original member items
(see Supplemental Video 2).

Visualizing member clusters from Section 5.1 produces a sequence
of visualizations of multiple members, where the p-th visualization
reveals shape similarities and dissimilarities between the members at
the p-th time-step. Analogously, a pattern visualization is a sequence
of visualizations of multiple members containing the given pattern.

Fig. 7. Time-step cluster participation sequences mark similar shapes
within a given time-step, e.g., c5,1 and c5,2 in time-step 5

6 TIME-STEP BASED ENSEMBLE VISUALIZATION

Another approach, advocated by our physics collaborators, compares
members at each time-step. To meet this goal, we designed time-step
based ensemble analysis, similar to the segment based approach but
embedding a static ensemble analysis at every time-step.

Our time-step ensemble analysis assumes that time-series members
are exactly aligned in the time dimension. It compares member items
at each time-step using Manhattan distance. The pairwise member
similarities serve as input to construct a member cluster tree that pro-
vides an overview of inter-member relationships at the given time-step.

To discover important patterns that occur across multiple members,
users define a threshold to select shape clusters across all time-steps.
This converts the time-series members into a set of member cluster
participation sequences, allowing us to apply CISP to identify com-
mon shape changes that occur frequently across multiple members.
We use our temporal visualization from Section 5.3 to visualize the
member clusters and the patterns they form.

6.1 Time-Series Member Clustering

As in segment based analysis, the goal of time-series member cluster-
ing is to identify similarities between simulation or experiment runs.
Given members that are aligned in time (Fig. 7), we adapt Manhattan
distance to compare members by averaging the dissimilarities at all
time-steps.

dis(Mi,M j) =
∑

T
t=1 dis(mi,t ,m j,t)

T
(5)

Dissimilarity matrices at every time-step have been generated during
time-step member clustering (Section 5.1), so it costs O(T ) time to
compare two time-series members. The comparison is more efficient
than DTW dissimilarity calculations, but only applicable if members
are aligned in time. Comparing all pairs of time-series members gen-
erates an N ×N dissimilarity matrix. We apply agglomerative clus-
tering to build a cluster tree that identifies inter-member relationships
throughout the ensemble.

6.2 Time-Step Cluster Participation Pattern Mining

Time-step pattern mining addresses the goal of identifying common
changes in shape over time across members. Octree construction and
shape dissimilarity calculations in time-step based ensemble analysis
are identical to segment based analysis. To combine similar shapes
among members and capture common subsequences, we cluster mem-
bers within each time-step. This produces T cluster trees, each captur-
ing the hierarchical inter-member relationships at a given time-step.
Because we restrict analysis to time-steps independently, we do not
combine similar shapes that are located in different time-steps, and
we do not reduce the lengths of the time-series members. It requires
O(N2 × T ) octree comparisons to analyze an N × T ensemble. This
suggests that time-step shape clustering is most applicable for ensem-
bles with short time-series members aligned in the time dimension.



Fig. 8. Transition from nuclei to free quarks and gluons; protons and
neutrons are disintegrated at extremely high temperature or density [25]

Similar to the segment cluster abstraction in Section 5.2, we trans-
form a time-series member into a time-step shape cluster participation
sequence to perform closed pattern mining (Fig. 7). A time-step shape
cluster ct, j is identified by a time-step t and a cluster ID j ∈ t. We
again use an UpDown tree CISP analysis to identify frequent changes
in shape over time. A time-step cluster consists of similar shapes at
the same time-step, so a pattern occurs in every Mi starting at the same
time-step tp and ending at the same time-step tq.

6.3 Temporal Visualization

Member cluster and shape change pattern visualization are identical to
the animation based temporal visualization in Section 5.3. Time-step
shape clusters do not combine similar shapes at different time-steps, so
we do not support abstracted member visualization. The visualization
reveals more detailed shape changes over time but can be less efficient,
especially for long time-series.

7 PRACTICAL APPLICATION

We implemented the ensemble analysis techniques as a stand-alone
system. We then applied both segment based and time-step based
temporal ensemble analysis to a simulated RHIC ensemble with 41
members {M1,M2, . . .M41}, each with T = 60 time-steps. Members
contain from 180,000 to 3.3 million particle samples. The analysis fo-
cuses on differences in shape and temperature—an attribute that our
physics collaborators are particularly interested in.

7.1 RHIC Ensemble

We are collaborating with physicists at Duke University to study
quark–gluon plasma (QGP) formation using the the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory. Heavy ion
collisions at very high energies are used to investigate interacting mat-
ter under extreme temperatures far above those of normal nuclear
matter [15, 25]. Quantum chromo-dynamics (QCD), the quantum
field theory of strong interactions, confirms matter transition from a
hadronic gas to a quark–gluon plasma at extremely high temperatures
and energy densities. In a QGP phase, protons and neutrons separate,
releasing quarks and gluons (Fig. 8).

Theoretical physicists believe that quark–gluon plasma existed in
the universe during the first few microseconds after its creation in the
Big Bang. Our collaborators use the RHIC to collide two opposing
beams of gold nuclei while they are traveling at relativistic speed [14].
The resulting collisions generate extremely hot, dense bursts of mat-
ter and energy that recreate QGP conditions similar to the very early
universe. Because of the extremely short time and length scales of
the heavy-ion collision, scientists must use indirect means to extract
conclusions from RHIC data, in our case, by comparing the measure-
ments to computational models of the collision dynamics. As with all
simulations, a key challenge is the choice of initial conditions for the
collision model, which is based on relativistic fluid dynamics.

(a)

(b)

Fig. 9. Stand-alone visualization system for temporal 3D ensembles: (a)
volume visualization of one or more members on the left, user interface
on the right; (b) ensemble overview grid representing all time-steps

Ensembles were collected using a RHIC simulation that models hy-
drodynamic calculations of a gold on gold collision at a center of mass
of 200 GeV per nucleon. The ensembles contain hundreds of members
from simulation runs with slightly different quantum fluctuations of
protons and neutrons, start times for the hydrodynamic calculations,
and granularities of the initial energy–density deposit that enters the
hydro field. Members contain large numbers of particles positioned
in 3D, each encoding separate data attributes like temperature, energy
density, pressure, and velocity.

The physicists stated specific needs to: (1) explore within an indi-
vidual time-series member; and perhaps more importantly (2) compare
shape and shape evolution across multiple members, to understand
how parameter choices and parameter sensitivity affect simulation re-
sults. We discuss below how our segment based and time-step based
analysis approaches are used to address these research questions.

7.2 Ensemble Analysis System

We constructed a stand-alone visual analytics system consisting of a
3D volume visualization widget and user interface (Fig. 9a), and an
ensemble overview widget (Fig. 9b) to highlight members and time
regions participating in selected segmentation, clustering, and pattern
mining results. Elements in the volume represent aggregated particle
sample positions and attribute values for the given octant across all
members being visualized. The aliasing artifacts in some of the vol-
umes are a consequence of the regular grid sampling used in the under-
lying simulation. The overview widget visualizes E as an N ×T grid,
each row representing a member and each column representing a time-
step (member item). When users select one or more segments, clusters,
patterns or members in the checklist, the corresponding member items
are highlighted. Selecting in the grid generates a tooltip with the mem-
ber ID, time-step ID and file name of the corresponding member item.
Double clicking in the grid visualizes the corresponding member item
in the visualization widget.

The system can input data points from CSV files, or octree repre-
sentations from a XML files, where each file corresponds to a time-
step in a member. Based on users’ requests, the system can perform
any of the temporal ensemble analysis approaches from Sections 5 and
6, or it can load and visualize pre-calculated segmentation results and
dissimilarity matrices.



(a)

(b) (c)

(d) (e)

Fig. 10. Shape integration segmentation: (a) all member segments se-
lected and visualized in red, the dashed yellow rectangle identifies clus-
ter boundaries where cylinder-shaped members start to split into dumb-
bell shapes: (b,c) split at t48–t49 in M3; (d,e) split at t49–t50 in M5

7.3 Segment Based Ensemble Analysis

We applied shape integration member segmentation to the RHIC en-
semble, using a dissimilarity threshold of 0.35. The 41× 60 member
items were assigned to 601 member segments (ms1,ms2, . . .ms601).
Fig. 10a visualizes the segmentation results in the ensemble overview
when all the segments in the list are selected. Each red rectangle rep-
resents a segment. A short segment indicates a rapid change in shape
over time, while a longer segment indicates smooth and slow changes
in shape. A RHIC simulation terminates when specific constraints are
satisfied, so not all members have the same number of time-steps.
White grid cells in the last column of Fig. 10a indicate that the cor-
responding RHIC members have terminated. A good segmentation re-
sult captures important shape transition time-steps in the simulations.
For instance, segment boundaries at the time-steps circled by the yel-
low dashed rectangle identify the time-steps when cylinder shapes start
to transition into dumbbells, visualized in Fig. 10b-e.

The system mathematically captures shape dissimilarities for all
segment pairs according to shape integration based octree comparisons
(Section 4.2). The resulting dissimilarity matrix produces a member
segment cluster tree with 1,201 nodes. The system allows users to
choose how much of the tree to visualize by defining a number of clus-
ter nodes k or a cut-off similarity threshold σ . For example, Fig. 11a
visualizes the last k = 100 nodes generated during clustering. Fig. 11b
graphs the thresholds of the cluster results by k, that is, the dissimilar-
ity of two most similar clusters. This helps users choose an appropri-
ate k or σ value. Based on Fig. 11b and feedback from our physics
colleagues, we set σ = 0.28 to assign segments into k = 43 clusters,
highlighted by the red nodes in Fig. 11a.

Based on the 43 clusters, the system transforms each time-series
member to a member cluster participation sequence using segment
cluster abstraction (Section 5.2), applying UpDown tree CISP to ex-
plore shape changes in the ensemble. The ensemble overview contains
a list of member cluster participation patterns, sorted by their occur-
rence frequencies and lengths. Selecting patterns in the list highlights
the member items covered by these patterns. Fig. 12 shows the top five
patterns. The three red regions identify the times when shape changes

(a)

(b)

Fig. 11. (a) Visualizing the agglomerative segment cluster tree with k =
100 cluster nodes; (b) dissimilarity between the two most similar clusters
for different values of k

Fig. 12. The five longest and/or most frequent segment patterns, high-
lighted in red in the overview grid

throughout the ensemble are similar. Note that patterns three and four
(cs1045 and cs1059) are contained in pattern five. The white grid cells
inside the middle red area indicate that member M24 is different from
all the other members in this time region.

The system supports visualization of one pattern at a time. For
example, visualizing pattern five fades in and out visualizations of
segment clusters cs1059,cs1051 and cs1045, respectively (Fig. 13). The
pattern covers approximately 25 time-steps, but the visualization sum-
marizes the data as three segment cluster visualizations. Segment pat-
tern visualizations capture a general understanding of major changes
in shape over time, omitting more detailed shape differences. Pat-
tern mining relies on the segment clustering abstraction results from
Section 5.2. Too fine a clustering assigns similar segments to differ-
ent clusters, ignoring common shape changes that would otherwise be
captured. Too coarse a clustering combines dissimilar segments and
results in patterns that encode dissimilar shape changes. Using differ-
ent segment clustering results to perform pattern mining enables users
to analyze shape changes at different levels of abstraction.



(a)

(b)

(c)

Fig. 13. Member cluster participation pattern five contains three cluster
segments: cs1059, cs1051, and cs1045

Fig. 14. DTW time-series member cluster tree

Users may want to compare the similarity of entire members, rather
than member segment or shape cluster-level details. To do this, our
system computes dissimilarities between every pair of members using
DTW. Fig. 14 visualizes a DTW member cluster tree, where nodes
contain similar members. This can be used together with, or in place
of, a finer member segmentation approach, which leads to more de-
tailed member comparisons, but at the expense of higher time com-
plexity during segmentation and segment clustering.

7.4 Time-Step Based Ensemble Analysis

We next applied time-step ensemble analysis to the 41-member RHIC
ensemble. We first calculated dissimilarities between all member pairs
at every time-step to produce 60 cluster trees encoding static hierarchi-

(a)

(b)

(c)

Fig. 15. (a) Cluster tree visualization at t50 with k= 2 clusters highlighted:
(b) disconnected cones cluster; (c) connected dumbbell cluster

cal inter-member relationships. Fig. 15a visualizes the cluster tree at
t50. Double-clicking the two red nodes in the tree visualizes the two
member clusters (Fig. 15b,c). Fig. 15b combines members in t50 that
are shaped like two separated cones. Fig. 15c combines members in
t50 with a connected dumbbell shape. The static cluster trees enable
scientists to analyze inter-member relationships at different levels of
detail at a particular time-step.

The system compares time-series members with Manhattan dis-
tance (Section 6.1). Fig. 16 visualizes the time-series member cluster
tree, an overview of inter-member relationships with members aligned
over time.

To identify common shapes across members, we cluster members at
every time-step. Fig. 17a visualizes the maximum and average thresh-
olds of the clustering results encoded in the 60 cluster trees. This al-
lows scientists to choose a threshold to specify the number of clusters
at each time-step. For this application, we choose a cut-off threshold of
σ = 0.22. Fig. 17b visualizes the number of clusters at every time-step.
From t1 to t8 and t49 to t52, members are assigned to a large number of



Fig. 16. Time-step comparison based member cluster tree

(a)

(b)

(c)

Fig. 17. Member cluster results at each time-step: (a) maximum and
average clustering thresholds; (b) number of clusters; (c) shape change
patterns common to all members

clusters, indicating larger shape dissimilarities in these time-steps.

Given the clustering results, the system transforms all members into
a set of time-step shape cluster participation sequences, using time-
step shape abstraction (Section 6.2). It then performs CISP to explore
shape changes that occur frequently in the ensemble. Fig. 17c high-
lights patterns that occur in all 41 members. Users can apply different
cluster results to discover patterns at different levels of abstraction.
Shape changes covered by a pattern always start and end at the same
time-steps, since the members are aligned in time. The length of a

time-step pattern is equivalent to the number of time-steps covered by
the pattern, providing a more detailed summarization and comparison
of common shape changes.

8 CONCLUSIONS

The techniques described in this paper provide a scalable, level-of-
detail analysis framework for temporal ensembles. We present a high-
level overview of inter-member relationships, allowing users to choose
the amount of detail to visualize during ensemble exploration and
member comparison. Analysis of the ensemble is not limited to a
particular time-step, since it identifies changes in shape across time.
Users can analyze the ensemble from different perspectives, compar-
ing results from both segment based and time-step based analysis.

Member segmentation locates both smooth and rapid shape varia-
tions in ensemble members, capturing the time-step boundaries con-
taining these important changes. This allows users to visualize ab-
stract shape changes summarized as sequences of member segments.
We apply octree integration to efficiently compare segments. A clus-
ter of segments represents similar shapes in different members and at
different time-steps. The resulting cluster tree enables analysis and
visualization at user-chosen levels of detail and time.

Pattern mining highlights similar shape changes across multiple
members. Member cluster participation sequences identify patterns
that address shifting and distortion in the time dimension. Time-step
shape cluster participation sequences capture common shape patterns
at a more detailed level, based on members directly aligned at each
time-step. Pattern visualization summarizes important shape changes
as clusters of member segments or time-step by time-step pattern oc-
currences. The member item grid visualizations highlight time regions
and members covered by selected segments, clusters, or patterns, en-
abling users to rapidly focus on time periods or members of interest.
In this way, different ensemble views are integrated and coordinated,
providing a multi-level analysis system.

Feedback from our physics colleagues has been uniformly positive.
The system design was influenced by their needs (e.g. the inclusion
of time-step based analysis), and they have initiated integration of our
tools into their workflow to study additional ensembles they have con-
structed.

In summary, we present a set of techniques that support a scalable
approach to analyzing temporal ensembles. Our methods combine
clustering and pattern mining based overviews with detailed shape and
data comparison using animated glyph visualizations. This offers the
following contributions:

1. Shape and data comparison for ensemble members (Sec. 3).

2. Cluster tree construction to highlight hierarchical member rela-
tionships, and to support user-chosen tradeoffs in the number of
members visualized versus individual member detail (Sec. 3).

3. Common pattern identification for both static and temporal en-
sembles (Sec. 4, 5, 6).

4. Glyph based visualization for shape data, and pattern comparison
(Sec. 3, 5.3, 6.3).

Performance improvements are critical in large data analytics. The
time complexity of our temporal ensemble analysis is dominated by:
(1) I/O time; and (2) the number of octree shape comparisons per-
formed. For example, the 41 member RHIC ensemble octree contains
more than 20,000 octants, making shape comparison computationally
expensive. Our current system enables users to reload previous seg-
mentation results and dissimilarity matrices, but we must still regener-
ate the matrices if new shape comparison or segmentation metrics are
applied. To improve performance, we intend to explore approaches to
reduce the number of shape comparisons, and to use parallel process-
ing to expedite dissimilarity calculations.

The quality of the segmentation results during shape integration de-
pend on shape comparison, starting time-step, and the measure of me-
dian dissimilarity. Users may need to investigate different values to
make an appropriate choice. To improve effectiveness, we intend to
explore automatic evaluation methods to choose optimal parameters.



The current system does not automatically choose the number of
clusters to present from the cluster tree. Users must select a k value to
transform members into sequences. Member visualization and cluster
visualization are designed to integrate with the cluster tree visualiza-
tion, meaning they are meant to visualize the overall shape of a cluster
of members, in addition to revealing detailed shape similarities. We
will explore techniques to overcome these limitations.
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