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Abstract. This paper deals with the combination of classification mod-
els that have been derived from running different (heterogeneous) learn-
ing algorithms on the same data set. We focus on the Classifier Evalua-
tion and Selection (ES) method, that evaluates each of the models (typi-
cally using 10-fold cross-validation) and selects the best one. We examine
the performance of this method in comparison with the Oracle selecting
the best classifier for the test set and show that 10-fold cross-validation
has problems in detecting the best classifier. We then extend ES by ap-
plying a statistical test to the 10-fold accuracies of the models and com-
bining through voting the most significant ones. Experimental results
show that the proposed method, Effective Voting, performs comparably
with the state-of-the-art method of Stacking with Multi-Response Model
Trees without the additional computational cost of meta-training.

1 Introduction

A very active research area during the last years is the one involving method-
ologies and systems for the combination of multiple predictive models. It has at-
tracted scientists from the fields of Statistics, Machine Learning, Pattern Recog-
nition and Knowledge Discovery aiming at improving the predictive accuracy of
a single classification or regression model. Within the Machine Learning com-
munity this area is commonly referred to as Ensemble Methods [6].

Models that have been derived from different executions of the same learning
algorithm are often called Homogeneous. Such models can be induced by inject-
ing randomness into the learning algorithm or through the manipulation of the
training instances, the input attributes and the model outputs [7]. Homogeneous
models are typically combined through weighted or unweighted voting. Models
that have been derived from running different learning algorithms on the same
data set are often called Heterogeneous.

This paper deals with the combination of Heterogeneous Classification Mod-
els and focuses on the Classifier Evaluation and Selection (ES) method. This
method evaluates each of the models (typically using 10-fold cross-validation)
and selects the best one. We examine the performance of ES in comparison with
the Oracle selecting the best classifier for the test set and show that 10-fold
cross-validation has problems in detecting the best classifier. We then extend
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ES by applying a statistical test to the 10-fold accuracies of the models and
combining through voting the most significant ones in an attempt to alleviate
this problem. Extensive experimental results show that the proposed method,
Effective Voting, performs comparably with the state-of-the-art Heterogeneous
Ensemble Method of Stacking with Multi-Response Model Trees [8] without the
additional computational cost of meta-training.

The rest of this paper is organized as follows. The next section presents
related work on combining Heterogeneous Classification Models. Section 3 de-
scribes in detail the proposed approach. Section 4 presents the experimental
methodology and Section 5 the results and observations. Finally, Section 6 sum-
marizes this paper and discusses issues for further investigation.

2 Combining Heterogeneous Classification Models

Unweighted and Weighted Voting are two of the simplest methods for combining
not only Heterogeneous but also Homogeneous models. In Voting, each model
outputs a class value (or ranking, or probability distribution) and the class with
the most votes (or the highest average ranking, or average probability) is the
one proposed by the ensemble. Note that this type of Voting is in fact called
Plurality Voting, in contrast to the frequently used term Majority Voting, as
the latter formally implies that at least 50% (the majority) of the votes should
belong to the winning class. In Weighted Voting, the classification models are
not treated equally. Each model is associated with a coefficient (weight), usually
proportional to its classification accuracy.

Another simple method is Evaluation and Selection. Each of the classification
models is evaluated (typically using 10-fold cross-validation) on the training set
and the best one is selected for application on the test set. In [10, 20], the accu-
racy of the models is estimated locally on the different examples that surround
each test example. Such approaches belong to the family of Dynamic Classifier
Selection introduced in [11], which was the first work discussing the idea of us-
ing a different function for classifier combination in different partitions of the
training set.

Stacked Generalization [19], also known as Stacking in the literature, is a
method that combines multiple classifiers by learning a meta-level model that
predicts the correct class based on the decisions of the classifiers. This model is
induced on a set of meta-level training data that are typically produced by a
process similar to applying k-fold cross-validation on the training data. Specif-
ically, k-1 folds are used for training the classifiers and one for recording their
decisions along with the true class. This leads to a meta-level training data set
of equal size to the original training data set. A meta-classifier is then induced
from these data. When a new instance appears for classification, the output of
all classifiers is first calculated and then propagated to the meta-level model,
which outputs the final result. A recent study [9] has shown that Stacking with
Multi-Response Model Trees [8] as the meta-level learning algorithm, is the most
accurate heterogeneous classifier combining method of the Stacking family.
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3 Effective Voting of Heterogeneous Classifiers

This paper presents a simple, yet effective extension to Classifier Evaluation
and Selection. On top of the 10-fold cross-validation for the evaluation of the
models we apply a paired t-test with a significance level of 0.05 for each pair
of models to evaluate the statistical significance of their relative performance.
We then combine the most significant ones through 3 different strategies. The
whole process of the proposed method, called Effective Voting, is described in
the following paragraphs.

Consider a set of classification models ci, i=1..N . For each pair of models i,j
we initially perform the paired t-test:

test(ci, cj) =






1 if ci significantly better than cj

−1 if cj significantly better than ci

0 otherwise

Then for each model we calculate the overall significance index:

Sig(ci) =
N∑

j=1

test(ci, cj)

Finally we try the following 3 strategies:

– EV1: We select the model(s) with the highest significance index and combine
their decisions through Weighted Voting (if more than one).

– EV2: We select the model with the lowest error rate along with any others
that are not significantly worse than this and combine their decisions through
Weighted Voting (if more than one).

– EV3: We select the three models with the highest significance index and
combine their decisions through Voting. If there are ties, we brake them by
selecting the most accurate ones.

Note that all of the above proposed strategies aim at selecting the most
significantly accurate models, yet in a different way. The first gives priority to
models with the highest statistical significance index taking into account their
accuracies through the Weighted Voting process. The second gives priority to
the most accurate model but also considers those that are not significantly worse
than the best one. The last strategy always chooses the three models with the
highest statistical significance index and combines them through simple Voting.
However, it also takes into account the accuracy of the models, by selecting the
most accurate ones when there are draws.

Table 1 exemplifies the operation of the three different strategies, based on
a sample of the error rates and significance tests of 10 models from the experi-
mental results. For each model in each row, the first 10 columns show the result
of the paired t-test. The next two columns show the significance index and the
average error rate. The last 3 columns show which models are selected by each
strategy.
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Table 1. Example of the operation of the three Effective Voting strategies

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 Sig Err. (%) EV1 EV2 EV3

c1 0 1 1 1 0 0 1 0 0 0 4 23.53
√

c2 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -9 71.08
c3 -1 1 0 0 0 -1 0 0 -1 -1 -3 28.44
c4 -1 1 0 0 -1 -1 0 0 -1 -1 -4 29.42
c5 0 1 0 1 0 0 0 0 0 0 2 24.51

√
c6 0 1 1 1 0 0 1 1 0 0 5 20.59

√ √ √
c7 -1 1 0 0 0 -1 0 0 -1 -1 -3 28.93
c8 0 1 0 0 0 -1 0 0 0 0 0 27.97
c9 0 1 1 1 0 0 1 0 0 0 4 22.55

√ √
c10 0 1 1 1 0 0 1 0 0 0 4 21.57

√ √

We notice that EV1 selects just one model, c6, as it is the only one with the
highest significance index, equal to 5. It is also the model with the lowest error
rate. However, if we look at the line of c6, we will see that models c1, c5, c9 and
c10 are not significantly worse. Therefore the decisions of all these models along
with c5 are combined by EV2 through Weighted Voting. Finally EV3 selects c6

and then has to choose another two models from c1, c9 and c10 as they tie with
a significant index of 4. From these it drops c1, as it has the highest error rate
and combines c6 c9 and c10 with Voting.

Effective Voting aims to stand in between methods that combine all models,
such as Voting, Weighted Voting and Stacking and methods that just select a
single model, like Evaluation and Selection. The former category of methods has
the advantage of error correction through the contribution of different biases
but also has the disadvantage of letting some models with potentially inferior
predictive performance participate in the combination process. On the other
hand the latter category excludes all models but one, which might not always
be the most accurate one. Effective Voting attempts to first select the most
significant models with the aid of statistical tests and then combine them through
a voting process. It can therefore be considered as a pre-processing method,
rather than an actual combination method.

4 Experimental Setup

This section provides information on the data sets, combining methods, partic-
ipating algorithms and evaluation methodology that were used for the experi-
ments. The WEKA machine learning software [18] was used as the platform for
all the experiments.

4.1 Data Sets

The predictive performance of the combining methods was evaluated on 40 data
sets from the UCI Machine Learning repository [3]. Table 2 presents the details
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Table 2. Details of the data sets used in the experiments: Folder in UCI server, number
of instances, classes, continuous and discrete attributes, (%) percentage of missing
values

UCI Folder Inst Cls Cnt Dsc MV

annealing 898 6 6 32 64.98
audiology 226 24 0 69 2.03
autos 205 7 15 10 1.15
balance-scale 625 3 4 0 0.00
breast-cancer 286 2 0 9 0.35
breast-cancer-wisconsin 699 2 9 0 0.25
car 1728 4 0 6 0.00
chess (kr-vs-kp) 3196 2 0 36 0.00
cmc 1473 3 2 7 0.00
dermatology 366 6 1 33 0.01
ecoli 336 8 7 0 0.00
glass 214 7 9 0 0.00
heart-disease (cleveland) 303 5 6 7 0.18
heart-disease (hungary) 294 5 6 7 20.46
heart-disease (switzerland) 123 5 6 7 17.07
heart-disease (va) 200 5 6 7 26.85
hepatitis 155 2 6 13 5.67
horse-colic 368 2 7 15 23.80
image 2310 7 19 0 0.00
ionosphere 351 2 34 0 0.00
iris 150 3 4 0 0.00
labor 57 2 8 8 35.75
lymphography 148 4 3 15 0.00
pima-indians-diabetes 768 2 8 0 0.00
primary-tumor 339 22 0 17 3.90
soybean 683 19 0 35 9.78
statlog (australian) 690 2 6 9 0.65
statlog (german) 1000 2 7 13 0.00
statlog (heart) 270 2 13 0 0.00
statlog (satimage) 6435 6 36 0 0.00
statlog (segment) 2310 7 19 0 0.00
statlog (vehicle) 846 4 18 0 0.00
thyroid-disease 3772 4 7 22 5.54
tic-tac-toe 958 2 0 9 0.00
undocumented (sonar) 208 2 60 0 0.00
undocumented (vowel-context) 990 11 10 3 0.00
voting-records 435 2 0 16 5.63
waveform 5000 3 40 0 0.00
wine 178 3 13 0 0.00
zoo 101 7 1 16 0.00

of the data sets (Folder in UCI server, number of instances, classes, continuous
and discrete attributes, (%) percentage of missing values).
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4.2 Combining Methods and Participating Algorithms

We compared the following classifier combining methods that were described in
Sections 2 and 3: Stacking with Multi-Response Model Trees (SMT), Voting (V),
Weighted Voting (WV), Effective Voting with the 3 different strategies (EV) and
Evaluation and Selection (ES).

The comparison also includes the Oracle classifier selection method (ORA)
that a-posteriori selects the classification algorithm with the highest accuracy on
the test-set. This is not an actual combining method, but it is used to evaluate
the ability of (ES) to select the best classifier on the test set. The predictive
performance of ORA is the best performance that ES could achieve, if it always
selected the best classifier for the test-set.

All the above methods are used in conjunction with the WEKA implementa-
tions of the following 10 base-level classification algorithms, which are run with
default parameter values unless otherwise stated:

– DT: the decision table algorithm of [13].
– JRip: the RIPPER rule learning algorithm [5].
– PART: the PART rule learning algorithm [17].
– J48: the decision tree learning algorithm C4.5 [15].
– IBk: the k nearest neighbor algorithm [1].
– K*: an instance-based learning algorithm with entropic distance measure [4].
– NB: the Naive Bayes algorithm [12] using the kernel density estimator rather

than assume normal distributions for numeric attributes.
– SMO: the sequential minimal optimization algorithm for training a support

vector classifier using polynomial kernels [14].
– RBF: an algorithm for training a radial basis function network [2].
– MLR: the multi-response linear regression algorithm, as used in [16].

The meta-level training data for Stacking are produced using 10-fold strat-
ified cross-validation on the training set. The same procedure is used for esti-
mating the accuracy of the above base-level algorithms and their significance
index through the paired t-tests. All combining methods operate on probability
distributions of the base-level classifiers.

4.3 Evaluation Methodology

For the evaluation of the combining methods we perform a 10-fold stratified
cross-validation experiment. In each of the 10 repetitions, the same 9 folds are
used for training the different combining methods and 1 fold for evaluating their
performance. The error rates are averaged over the 10 folds in order to obtain
the average error errm(di) of each method m in each data set di.

A first indicator for pairwise comparisons, is the geometric mean of the aver-
age error of each method over all the data sets. Comparing the geometric means
of each method we can get a general impression of the relationship between the
methods. If the geometric mean of a method m1 is greater than another method
m2 then this implies that method m1 performs worse than method m2, and vice
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versa. The ratio of their means gives a measure of how much better/worse is
their relative performance.

In addition, we apply a paired t-test to the errors of the methods in the 10
folds of the cross-validation experiment with a significance level of 0.05. From
the outcome of this test on all data sets we report the statistically significant
wins and losses for each pair of methods.

5 Results and Discussion

Table 3 shows the significant wins and losses for each pair of combining methods
on all data sets. Table 4, shows the average 10-fold cross-validation error rate of
the combining methods for each data set. The geometric mean is presented in
the last line.

Table 3. A symmetric matrix that presents the significant wins and losses (w:l) for
each pair of combining methods

SMT V WV EV1 EV2 EV3 ES ORA

SMT 7:1 7:1 5:2 3:3 3:4 8:2 3:18
V 1:7 0:1 2:5 0:7 0:6 5:6 0:23
WV 1:7 1:0 2:5 0:4 0:5 5:6 0:22
EV1 2:5 5:2 5:2 0:1 1:4 0:0 0:31
EV2 3:3 7:0 4:0 1:0 1:1 3:1 0:17
EV3 4:3 6:0 5:0 4:1 1:1 3:2 0:23
ES 2:8 6:5 6:5 0:0 1:3 2:3 0:29
ORA 18:3 23:0 22:0 31:0 17:0 23:0 29:0

5.1 The Performance of Evaluation and Selection

The results show that ORA achieves by far the significantly best performance
compared to the rest. However, ORA is a control method for comparison pur-
poses. The ES method which should approximate it, actually performs much
worse. This reveals the fact that the average accuracy of a classification algo-
rithm based on a 10-fold cross-validation experiment on a training set is often
an unsuccessful indicator of the algorithm’s accuracy on a test set.

A more profound look into which algorithms are selected as best by ES
against the true best as selected by ORA is given by the confusion matrix of
Table 5. The total number of selections in the last column, shows how many times
the algorithm of each row was selected by ES. The total number of selections at
the bottom of the table, shows how many times the algorithm of each column
was truly best. The number in row i and column j represents the number of
times that the algorithm of row i was found to be the best by ES while the true
best was the algorithm of column j. Note that the total number of selections is
400 (40 data sets * 10 folds of the cross-validation).
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Table 4. Folder in UCI server, average error rate of each combining method on each
of the 40 data sets and geometric mean of each combining method over all data sets

UCI Folder SMT V WV EV1 EV2 EV3 ES ORA

annealing 1.56 2.78 2.67 1.67 1.67 2.00 1.67 1.67
audiology 20.34 16.80 17.69 19.49 17.31 18.16 20.36 14.60
autos 15.48 16.02 16.00 19.83 18.40 16.45 21.76 14.57
balance-scale 5.44 10.24 9.92 8.00 8.32 9.91 8.00 8.00
breast-cancer 24.47 24.11 24.47 26.88 23.41 25.91 29.01 19.94
breast-cancer-wisconsin 3.01 3.00 3.00 2.86 3.00 3.00 2.72 2.00
car 1.74 5.09 4.92 4.75 4.74 4.46 5.32 3.88
chess (kr-vs-kp) 0.63 0.78 0.72 0.56 0.47 0.59 0.59 0.47
cmc 45.15 47.05 46.98 48.21 46.37 47.12 48.68 44.20
dermatology 1.64 1.91 2.18 3.00 2.46 2.46 2.73 0.82
ecoli 14.31 12.83 13.13 13.39 13.71 13.40 12.79 11.31
glass 22.40 23.79 23.31 23.81 23.29 24.29 27.51 17.77
heart-disease (cleveland) 16.46 18.19 18.19 15.84 17.19 14.85 16.81 11.57
heart-disease (hungary) 16.34 18.01 17.68 14.63 14.97 14.61 13.95 11.89
heart-disease (switzerland) 65.71 58.21 59.74 63.21 60.64 63.14 61.67 47.63
heart-disease (va) 68.50 66.50 68.00 69.50 66.00 64.00 64.50 57.50
hepatitis 19.46 14.88 14.88 14.25 14.88 14.25 14.21 8.38
horse-colic 16.29 14.67 14.67 16.00 16.82 15.46 16.00 12.21
image 2.08 1.90 1.86 2.21 1.90 1.65 2.25 1.73
ionosphere 7.12 7.68 7.97 8.83 7.12 5.13 7.99 4.28
iris 6.00 4.67 4.67 4.67 4.67 5.33 3.33 2.00
labor 7.00 5.33 5.33 8.33 5.33 7.00 10.33 0.01
lymphography 21.52 14.24 14.24 18.90 14.24 12.90 14.81 8.14
pima-indians-diabetes 22.91 23.30 23.04 22.91 23.04 23.17 23.56 20.83
primary-tumor 58.38 53.96 53.96 51.92 51.91 49.26 52.80 47.49
soybean 6.59 7.02 7.02 6.59 6.73 7.02 6.30 4.39
statlog (australian) 14.35 13.19 13.19 14.35 13.91 13.62 14.78 11.74
statlog (german) 22.80 24.00 23.90 25.00 24.60 24.50 25.20 22.40
statlog (heart) 14.81 15.93 16.30 15.19 15.19 15.56 15.19 11.85
statlog (satimage) 7.79 8.38 8.27 9.20 8.80 8.50 9.71 8.78
statlog (segment) 1.82 1.52 1.47 2.12 1.90 1.77 2.25 1.69
statlog (vehicle) 20.33 25.53 25.30 23.76 23.88 23.40 24.95 21.63
thyroid-disease 0.40 2.78 2.41 0.48 0.42 0.37 0.58 0.32
tic-tac-toe 0.83 3.13 3.13 1.56 1.67 1.67 0.94 0.94
undocumented (sonar) 17.79 15.90 15.43 14.31 11.50 11.50 15.29 8.62
undocumented (vowel-context) 0.91 1.21 0.71 0.71 0.71 0.71 0.71 0.51
voting-records 3.91 4.37 4.37 3.91 3.92 4.14 4.13 2.77
waveform 13.58 16.30 16.14 13.58 13.58 13.92 13.42 13.24
wine 1.70 0.56 0.56 2.78 1.11 1.70 2.78 0.01
zoo 5.91 2.91 2.91 6.00 2.91 5.00 7.00 2.00

geometric mean 7.93 8.60 8.45 8.58 7.81 8.00 8.57 4.59
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Table 5. Confusion matrix: number of times each algorithm was selected by ES against
true times being best

DT IBk J48 JRip K* MLR NB PART RBF SMO Total

DT 11 2 1 0 2 2 2 2 0 0 22
IBk 2 9 1 4 9 0 1 1 0 6 33
J48 5 0 7 5 2 3 2 5 1 3 33

JRip 4 6 9 21 8 5 4 9 1 2 69
K* 0 5 2 7 4 1 4 2 0 6 31

MLR 1 2 2 7 3 9 13 5 1 7 50
NB 5 7 8 6 4 10 18 3 1 11 73

PART 1 4 4 3 0 1 0 3 0 3 19
RBF 0 0 0 0 0 0 1 0 1 0 2
SMO 5 5 5 4 4 13 7 5 0 20 68

Total 34 40 39 57 36 44 52 35 5 58
Ratio 0.32 0.23 0.18 0.37 0.11 0.16 0.35 0.09 0.20 0.34

We firstly notice that RBF is only 5 times the best classifier out of the
400. This shows that in general it is not a very accurate classification learning
algorithm with the default parameters as used in the experiments. The most
accurate classifiers are JRip, NB and SMO. These are also the algorithms that
are most of the times correctly identified by ES as it is given by the ratio of
correct selections by ES over the actual selections by ORA, in the last line of
Table 5. PART and K* are two algorithms that although together they are 71
times the best algorithms, yet ES only correctly identifies them 7 times.

5.2 The Performance of Effective Voting

The results in Table 3 show that the proposed approach manages to alleviate
the problem of predicting the most accurate classification algorithm on a test set
based on the average accuracies of a 10-fold cross-validation experiment on the
training set. Strategy EV1 is comparable to ES and has a lower geometric mean
error. More importantly, strategies EV2 and EV3 have respectively two and one
significant wins more than ES and a lower geometric mean error.

In addition, EV2 is comparable to the state-of-the-art SMT method with a
lower geometric mean error and EV3 has one significant win more but a little
higher geometric mean error. Moreover, Effective Voting is much faster than
SMT as it does not involve any computational cost for meta-training. In fact,
SMT is a very complex method since not only does it require meta-training, but
it also learns one model for each class at the meta-level. It so creates a second
Ensemble of homogeneous models at the meta-level, which in part justifies its
increased performance.
It is interesting to mention the actual data sets where the significant wins/losses

of the Effective Voting variants occur compared to the state-of-the-art SMT
method. SMT is significantly better than all three methods in the data sets of
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balance-scale and car (which is in accordance with the results of [9]). In addition,
in the cmc domain it wins all but EV2 and in statlog-satimage all but EV3. All
variants of EV win SMT in the primary-tumor domain. In addition EV1 wins
SMT in the hepatitis domain, EV2 in the hepatitis and sonar domains and EV3

in the lymphography, ionosphere and sonar domains. This shows that the three
different strategies of EV actually offer different merits.

5.3 Evaluating the Effect of Model Removal

In this part we evaluate the effect that the removal of a model has on the per-
formance of the methods. We will remove in turn the different models, replacing
them back to the ensemble before removing the next. The geometric mean error
of the combining methods is presented in Table 6. Each column corresponds to
one run and the header of the columns states the classification algorithm not
used.

Table 6. Geometric mean error of combining methods with different ensemble com-
positions

(ALL) DT IBk J48 JRIP K* MLR NB PART RBF SMO

SMT 7.93 7.91 7.78 7.85 7.82 7.88 8.23 7.95 7.90 7.92 7.88
V 8.60 8.69 8.85 8.92 8.86 9.04 8.47 8.65 9.03 8.50 8.77

WV 8.45 8.47 8.63 8.48 8.74 8.78 8.27 8.40 8.70 8.28 8.43
EV1 8.58 8.56 8.71 8.57 8.52 8.45 8.47 8.47 8.59 8.52 8.55
EV2 7.81 7.81 7.69 7.84 7.98 7.92 7.89 8.01 7.93 7.84 7.76
EV3 8.00 8.03 8.26 8.12 8.33 8.46 8.20 8.26 8.08 8.06 8.12
ES 8.57 8.88 8.62 8.59 8.81 8.48 8.71 8.79 8.74 8.74 8.70

ORA 4.59 5.34 4.77 4.73 4.75 4.68 4.64 5.38 4.72 4.56 4.66

The results show that from the three proposed strategies for Effective Voting,
the most competitive one is EV2. For all different model compositions of the
ensemble it has a much lower geometric error mean. In addition the geometric
mean of EV2 is comparable with that of SMT.

6 Conclusions and Future Work

This paper has focused on the method of Classifier Evaluation and Selection
(ES). It demonstrated that one of the weaknesses of this method derives from
the inaccurate evaluation of the models’ accuracies. To remedy this problem we
proposed an extension to ES that makes use of statistical significance tests in
order to select and combine the most accurate models. Through a large and
thorough experimental study we showed that the proposed method, Effective
Voting, is comparable in accuracy to recent state-of-the-art heterogeneous clas-
sifier combining methods, such as Stacking with Multi-Response Model Trees
having at the same time reduced computational cost.
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As a general conclusion, we believe that it is worth researching more into
advancing simple heterogeneous ensemble methods such as evaluation and se-
lection instead of complex methods that require a lot more computational cost.
This conclusion is reinforced by the very good performance of the ORA method.
On the other hand, ORA was significantly worse than SMT in the domains of
balance-scale and car, which shows that in some cases more complex methods
are definitely required to achieve better performance.

For future work, we intend to research into alternative methods for classifier
performance evaluation, in order to further improve the Evaluation and Selection
framework. In addition we intend to investigate the applicability of the proposed
ideas to more complex Classifier Evaluation methods such as those that are based
on local accuracy estimates.
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